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Abstract: According to World Health Organization (WHO), the population suffering from human
immunodeficiency virus (HIV) infection over a period of time may suffer from TB infection which
increases the death rate. There is no cure for acquired immunodeficiency syndrome (AIDS) to date
but antiretrovirals (ARVs) can slow down the progression of disease as well as prevent secondary
infections or complications. This is considered as a medication in this paper. This scenario of HIV-TB
co-infection is modeled using a system of non-linear differential equations. This model considers
HIV-infected individual as the initial stage. Four equilibrium points are found. Reproduction number
R0 is calculated. If R0 >1 disease persists uniformly, with reference to the reproduction number,
backward bifurcation is computed for pre-AIDS (latent) stage. Global stability is established for
the equilibrium points where there is no Pre-AIDS TB class, point without co-infection and for the
endemic point. Numerical simulation is carried out to validate the data. Sensitivity analysis is carried
out to determine the importance of model parameters in the disease dynamics.

Keywords: Co-infection of HIV-TB; equilibrium point; reproduction number; stability analysis;
backward bifurcation

1. Introduction

In the public health sector, human immunodeficiency virus (HIV) continues to be the major health
threat globally, having claimed more than 32 million lives to date [1]. There were approximately
37.9 million people living with HIV at the end of 2018 [1]. The human immunodeficiency virus (HIV)
is a virus that spread through certain body fluids, attacking the body′s immune system, specifically
the CD4 cells. The immune function is typically measured by CD4 cell count. Over time, HIV can
destroy so many of these cells that the body can’t fight against infections and diseases, which paves the
way for many opportunistic diseases. One such disease is tuberculosis (TB). It is a contagious disease
caused by bacteria called Mycobacterium tuberculosis. The bacteria mostly attack the lungs, but can
also damage other parts of the body. The population living with HIV are 15–22 times more likely to
develop TB [2]. It is the most commonly occurring illness among HIV-infected individuals, including
among those taking antiretroviral treatment (ART). This interaction explains the fact that HIV and TB
co-infection is a deadly human syndemic, where syndemic refers to the convergence of two or more
diseases that exacerbate the burden of the disease [3]. For the treatment of HIV, HIV drugs called
antiretrovirals (ARVs) are advised. ART reduces the risk of TB infection in people living with HIV by
65% [4]. It plays a significant role in preventing TB.

Mathematical modelling has enhanced understanding of disease dynamics. The first compartmental
model was given by Kermack and McKendrick [5]. Some basic papers like [6,7] have constructed
mathematical models by formulating non-linear differential equation for their respective models and have
worked out the critical point/equilibrium points of the respective system and various related properties.
In some the related research, many authors have worked out various types of HIV-TB co-infection
model. Kirschner et al. [8] developed a model for HIV-1 and TB coinfection inside a host. This was the
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first attempt to understand how TB affects the dynamics of HIV-infected individuals. TB is known to
be the common serious opportunistic infection occurring in HIV individuals and it occurs in more than
50% of the acquired immunodeficiency syndrome (AIDS) cases in developing countries. Naresh et al. [9]
developed a simple nonlinear mathematical model dividing the population into four sub-classes,
namely the susceptible, TB-infective, HIV-infective and AIDS patients. The treatment class in the
HIV-AIDS co-infection model was first introduced by Huo et al. [10], however, Bhunu et al. [11] in his
co-infection model considered all aspects of TB and HIV transmission dynamics with both HIV and TB
treatment. This paper incorporated ARTs for AIDS cases and studied its implication on TB. However,
the author did not consider the case where individual co-infected with HIV-TB can effectively recover
from TB infection. Another HIV-TB co-infection model was formulated by Roeger et al. [12], assuming
TB-infected individuals in the active stage of disease to be sexually inactive. Singh et al. [13] studied
the transmission dynamics of the HIV/AIDS epidemic model considering three different latent stages
based on treatment. Torres et al. [14], in his model, incorporates both TB and AIDS treatment for
individuals suffering with either or both disease.

The model formulated in this paper considers the susceptible class to be HIV-infected. The paper
is organized as follows. The model is formulated and its description is given in Section 2. Calculation
of reproduction number and uniform persistence of the disease is shown in Section 2.3. In Section 2.4,
global stability for all the equilibrium points is done. In Section 3, backward bifurcation is established.
The sensitivity of reproduction number is done in Section 3.1. Section 3.2 presents a numerical
simulation. The paper concludes in Section 4.

2. Mathematical Model

We begin with seven mutually exclusive compartmental models showing HIV-TB co-infection.
In this model, the human population is divided into sub-populations as follows: acute HIV-infected
individuals (H), co-infected with HIV-TB (HTB), Pre-AIDS stage(PA), infected individuals undergoing
any type of treatment say ARV’s and any TB treatment (M), Pre-AIDS stage with TB disease (PATB),
HIV-infected individuals showing clinical AIDS symptoms (A), HIV-infected individuals with AIDS
symptoms coinfected with TB disease (ATB).

The notations and parametric values assumed in the paper for the study of dynamical system of
HIV-TB co-infection model is tabulated in Table 1.

Table 1. Parametric definitions and its values.

Notations Description Parametric Values

N(t) Number of individuals at any instant of time 100
B Birth rate 0.2
β1 Rate at which co-infection occurs 0.45
β2 Rate at which HIV-infected individuals reaches pre-AIDS stage 0.48
β3 Rate at which HIV-infected individualsopt for medication 0.31
β4 Rate at which co-infected individual goes for medication 0.1
β5 Rate at which co-infection (HIV-TB) individual joins pre-AIDS TB stage 0.037
β6 Rate at which pre-AIDS infectives opt for medication 0.25
β7 Rate at which pre-AIDS TB infectives undergo medication 0.15
β8 Rate at which pre-AIDS infected individuals join pre-AIDS TB class 0.8
β9 Rate at which pre-AIDS suffer from full-blown AIDS 0.3
β10 Rate at which Pre-AIDS TB infectives joins full-blown AIDS TB class 0.001
β11 Rate at which treated infectives move to AIDS class 0.78
β12 Rate at which individuals with full-blown AIDS suffer from TB 0.35
µ Natural death rate 0.002
µD Death rate due to AIDS 0.6
µDTB Death rate due to co-infection 0.52

In this paper, the susceptible class is considered to be HIV-infected (acute HIV infection). This class
is increased by recruitments of newly HIV-infected individuals at the rate B. All the individuals in
their respective compartments suffer from natural death at the constant rate µ. Individuals undergoing
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medication (treatment) through ARTs lower the rate of progression from HIV disease to AIDS, as HIV
can never be cured.

Here, the individuals infected with HIV develop a very weak immune system, which means
they are likely to get infected by many opportunistic diseases. As TB is considered to be one of the
most commonly occurring disease among HIV patients [15], the individual infected with HIV gets TB
disease moving towards HTB by rate β1. The HIV-infected individuals are also assumed to progress
to the asymptotic pre-AIDS class (PA) at the rate β2. The HIV-infected and co-infected individuals
undergoing treatment move to class M with the rates β3 and β4, respectively. Similarly, individuals
with a co-infection of HIV-TB move towards PATB with the rate β5. Individuals showing symptoms of
AIDS (PA) suffer from full-blown AIDS, joining A, at the rate β9, and they are more likely to develop
TB, progressing to class PATB with the rate β8. PA class individuals undergoing ARTs treatment
(anti-retroviral therapy) join M at the rate β6. Individuals in PATB are treated for TB at the constant
rate β7, joining M, and some of them can also develop full-blown AIDS, moving to ATB class with the
constant rate β10. Treated individuals, recovered from TB but still with HIV infection (as it cannot be
cured) move to full-blown AIDS (A) with the constant rate β11. Individuals suffering with AIDS have
such a badly damaged immune system that they get an increasing number of severe illnesses (here, TB)
and hence move towards full-blown AIDS-TB class with the constant rate β12. The death rates µD and
µDTB are considered as deaths due to individuals infected with AIDS and AIDS-TB, respectively.

2.1. HIV-TB Co-infection Model

Considering the aforementioned assumptions and Figure 1 gives rise to the following set of
non-linear differential equations for the HIV-TB co-infection model:

dH
dt = B− β1HHTB − (β2 + β3 + µ)H
dHTB

dt = β1HHTB − β5HTBPATB − (µ+ β4)HTB
dPA
dt = β2H − β8PAPATB − (µ+ β6 + β9)PA

dM
dt = β3H + β4HTB + β6PA + β7PATB − (µ+ β11)M

dPATB
dt = β5HTBPATB + β8PAPATB − (µ+ β7 + β10)PATB

dA
dt = β9PA + β11M− (µ+ µD + β12)A
dATB

dt = β10PATB + β12A− (µ+ µDTB)ATB

(1)

where N(t) = H(t) + HTB(t) + PA(t) + M(t) + PATB(t) + A(t) + ATB(t).
The system satisfies the conditions:

H(t) ≥ 0, HTB(t) ≥ 0, PA(t) ≥ 0, M(t) ≥ 0, PATB(t) ≥ 0, A(t) ≥ 0, ATB(t) ≥ 0

Adding the above set of differential equations, we get,

dN(t)
dt = B− µ(H + HTB + PA + M + PATB + A + ATB) − µDA− µDTBATB

≤ B− µ(H + HTB + PA + M + PATB + A + ATB)

Hence, dN(t)
dt ≤ B− µN, so that lim

t→∞
supN ≤ B

µ

The feasible region for the system is defined as

Λ =

{
(H, HTB, PA, M, PATB, A, ATB) : 0 ≤ H + HTB + PA + M + PATB + A + ATB ≤

B
µ

}
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We assume L1 = β2 + β3, L2 = β6 + β9, L3 = β7 + β10. The modified system is

dH
dt = B− β1HHTB − (L1 + µ)H
dHTB

dt = β1HHTB − β5HTBPATB − (µ+ β4)HTB
dPA
dt = β2H − β8PAPATB − (L2 + µ)PA

dM
dt = β3H + β4HTB + β6PA + β7PATB − (µ+ β11)M

dPATB
dt = β5HTBPATB + β8PAPATB − (L3 + µ)PATB

dA
dt = β9PA + β11M− (µ+ µD + β12)A
dATB

dt = β10PATB + β12A− (µ+ µDTB)ATB

(2)

System (1) and (2) are equivalent, hence Λ is also the feasible region for system (2).
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Figure 1. Transmission of individuals in different compartments.

2.2. Equilibrium Solutions

Equating dH
dt = dHTB

dt = dPA
dt = dM

dt = dPATB
dt = dA

dt = dATB
dt = 0 and solving for the compartments

following are the equilibria:

1. E1(H1, 0, PA1 , M1, 0, A1, ATB1)

H1 = B
L1+µ

, HTB1 = 0, PA1 =
Bβ2

(L1+µ)(L2+µ)
, M1 =

B(L2β3+β2β6+β3µ)
(L1+µ)(L2+µ)(β11+µ)

,

PATB1 = 0, A1 =
B(β11(L2β3+β2β6+β3µ)+β2β9(β11+µ))
(L1+µ)(L2+µ)(β11+µ)(µ+µD+β12)

,

ATB1 =
Bβ12(β11(L2β3+β2β6+β3µ)+β2β9(β11+µ))
(L1+µ)(L2+µ)(β11+µ)(µ+µD+β12)(µ+µD)

.

2. E2(H2, 0, PA2 , M2, PATB2 , A2, ATB2)

H2 = B
L1+µ

, HTB2 = 0, PA2 =
L3+µ
β8

, PATB2 =
Bβ2β8−(L1+µ)(L2+µ)(L3+µ)

β8(L1+µ)(L3+µ)
,

M2 =
Bβ8(L3β3+β2β7+β3µ)+(L1+µ)(L3+µ)(β6(L3+µ)−β7(L2+µ))

β8(L1+µ)(L3+µ)(β11+µ)
,

A2 =

{
Bβ8β11(L3β3 + β2β7 + β3µ) + (L3 + µ)2(L1 + µ)

(β9(β11 + µ) + β6β11) − (L1 + µ)(L2 + µ)(L3 + µ)β7β11
}

β8(L1+µ)(L3+µ)(µ+µD+β12)
,

ATB2 =

Bβ8β11β12(β2β7 + L3β3 + µβ3) + (β11 + µ)µDBβ2β8β10 − (L1 + µ)(L2 + µ)
(L3 + µ)(β7β11β12 + (β11 + µ)µDβ10) + (β12 + µ)(β11 + µ)Bβ2β8β10 + (L1 + µ)
(L3 + µ)(β6β11 + (β11 + µ)β9β12) − (L1 + µ)(L2 + µ)(L3 + µ)(β11 + µ)(β12 + µ)

β8(L1+µ)(L3+µ)(β11+µ)(µ+µDTB)(µ+µD+β12)
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3. E3(H3, HTB3 , PA3 , M3, 0, A3, ATB3)

H3 =
β4+µ
β1

, HTB3 =
Bβ1−(L1+µ)(β4+µ)

β1(β4+µ)
, PA3 =

β2(β4+µ)
β1(L2+µ)

,

M3 =
(L2+µ)(Bβ1β4−(β4+µ)(L1β4−β3β4−β3µ−β4µ))+β2β6(β4+µ)

2

β1(L2+µ)(β4+µ)(β11+µ)
,

PATB3 = 0, A3 =

{
β4β11(Bβ1 − L1(β4 + µ))(L2 + µ) + (β4 + µ)(L2β11(β3β4 + β3µ− β4µ)

−β4β11µ2) + (β4 + µ)2(β2β9(β11 + µ) + β2β6β11 + β3β11µ)
}

β1(L2+µ)(β4+µ)(β11+µ)(µ+µD+β12)

ATB3 =

{
β12(β4β11(Bβ1 − L1(β4 + µ))(L2 + µ) + (β4 + µ)(L2β11(β3β4 + β3µ− β4µ)

−β4β11µ2)) + (β4 + µ)2(β2β9(β11 + µ) + β2β6β11 + β3β11µ)
}

β1(L2+µ)(β4+µ)(β11+µ)(µ+µD+β12)(µ+µDTB)

4. Endemic Equilibrium point E∗(H∗, H∗TB, P∗A, M∗, P∗ATB, A∗, A∗TB)

H∗ = r(β8(β4+µ)−β5(L2+µ))+Bβ5
β5(L1+µ)+β1(L3+µ)−β2β5

, H∗TB =
−β8r+L3+µ

β5
, P∗A = r,

P∗ATB =

rβ1(β8(β4 + µ) − β5(L2 + µ)) + β5(Bβ1

−(L1 + µ)(β4 + µ) + β2(β4 + µ)) − β1(L3 + µ)(β4 + µ)
β5(L1β5+L3β1+β1µ−β2β5+β5µ)

,

M∗ =

r[(β5β6 − β4β8)[β5(L1 + µ) + β1(L3 + µ) − β2β5] + (β3β5 + β7β11)(β8(β4 + µ)
−β5(L2 + µ))] + β5β7[(Bβ1 − (L1 + µ)(β4 + µ)) + β2(β4 + µ)] + β4β5(L1 + µ)
(L3 + µ) + (L3 + µ)β1(β4(L3 + µ) − β7(β4 + µ)) − β2β4β5(L3 + µ) + Bβ3β2

5
β5(β11+µ)(β5(L1+µ)+β1(L3+µ)−β2β5)

,

A∗ =

r(β11(β1β7 + β3β5)(β8(β4 + µ) − β5(L2 + µ)) + (β1(L3 + µ) + β5(L1 + µ) − β2β5)

((β11 + µ)β5β9 + (β5β6 − β4β8)β11)) + β11(β5β7(Bβ1 − (L1 + µ)(β4 + µ)) + β2(β4 + µ))
+β4β5(L1 + µ)(L3 + µ) + β1(L3 + µ)(β4(L3 + µ) − β7(β4 + µ)) − β2β4β5(L3 + µ) + Bβ3β2

5
β5(µ+β11)(µ+µD+β12)(β5(L1+µ)+β1(L3+µ)−β2β5)

,

A∗TB =

r[(β8(β4 + µ) − β5(L2 + µ))((β11 + µ)β1β10(µ+ µD + β12) + β11β12(β3β5 + β1β7))

+(β5(L1 + µ) + β1(L3 + µ) − β2β5)β12((β4 + µ)β5β9 + (β5β6 − β4β8)β11)] + µDβ10

(β11 + µ)(β4 + µ)(β2β5 − β1(L3 + µ) − β5(L1 + µ)) + µDBβ1β5β10(β11 + µ) + β7β11β12

(β4 + µ)(β2β5 − β5µ− L3β1) − β10(β12 + µ)(β11 + µ)2(β5(L1 + µ) + β1(L3 + µ)) + β4

β11β12(L3 + µ)(β5(L1 + µ) + β1(L3 + µ) − β2β5) + β5β10(β11 + µ)(β12 + µ)(β2(β4 + µ)
+Bβ1) − β1β7β11β12(β5 + µ)(β4 + µ) + Bβ5β11β12(β1β7 + β3β5)

β5(µ+β11)(µ+µDTB)(µ+µD+β12)(β5(L1+µ)+β1(L3+µ)−β2β5)

where,
r = rooto f ((β1β8(β5(L2 + µ) − β8(β4 + µ)))Z2 + (−β5β8(Bβ1 − (L1 + µ)(β4 + µ))

−β2
5(L1 + µ)(L2 + µ) + β1(L3 + µ)(β8(β4 + µ) − β5(L2 + µ)))Z + Bβ2β2

5
.

2.3. Reproduction Number

The reproduction number measures the expected number of secondary infected individuals
produced due to an infected individual during the entire death period in an uninfected population.

In this paper, reproduction number R0 is defined as the number of infected individuals due to an
AIDS- or TB-infected individual in the HIV infected-population. It is calculated using next-generation
matrix method [16] and is defined as the spectral radius of FV−1 at E1.

where, F =



β1H 0 0 0 0 0 β1HTB

0 0 0 0 0 0 0
0 0 0 0 0 0 0

β5PATB β8PATB 0 β5HTB + β8PA 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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V =



β4 + β5PATB + µ 0 0 β5HTB 0 0 0
0 β8PATB + L2 + µ 0 β8PA 0 0 −β2

−β4 −β6 β11 + µ −β7 0 0 −β3

0 0 0 L3 + µ 0 0 0
0 −β9 −β11 0 β12 + µD + µ 0 0
0 0 0 −β10 −β12 µ+ µDTB 0
β1H 0 0 0 0 0 β1HTB + L1 + µ


The dominant eigenvalue of FV−1 at E1 is R0 =

Bβ2β8
(L1+µ)(L2+µ)(L3+µ)

+
β1B

(L1+µ)(β4+µ)
.

2.4. Persistence of Disease

Now, uniform persistence for the system (1) is constructed. The model system
(1) is said to be uniformly persistent if there is a constant f , such that any solution
(H(t), HTB(t), PA(t), M(t), PATB(t), A(t), ATB(t)) satisfies [17,18].

lim
t→∞

inf H(t) > f , lim
t→∞

inf HTB(t) > f , lim
t→∞

inf PA(t) > f , lim
t→∞

inf M(t) > f ,

lim
t→∞

inf PATB(t) > f , lim
t→∞

inf A(t) > f , lim
t→∞

inf ATB(t) > f .

Provided that (H(0), HTB(0), PA(0), M(0), PATB(0), A(0), ATB(0)) ∈ Λ

Theorem 1. The model (1) is uniformly persistent in Λ only if R0 > 1.

2.5. Stability Analysis

In this section, global stability is studied for all the equilibrium points obtained.

Theorem 2. Global Stability of E1(H1, 0, PA1 , M1, 0, A1, ATB1)

The system (2) of the model can be written as

dX1

dt
= F1(X1, Z1) (3)

dZ1

dt
= G1(X1, Z1), G1(X1, 0) = 0 (4)

where X1 = (H, PA, M, A, ATB) and Z1 = (HTB, PATB). According to this notation, equilibrium point is
denoted by E1 = (X′1, 0), where X′1 = (H1, 0, PA1 , M1, 0, A1, ATB1).

By the Castillo Chavez method, the following two condition ensure the global stability of the
given equilibrium point:

P.1 For dX1
dt = F1(X1, 0), E1 is globally asymptotically stable.

P.2 G1(X1, Z1) = AZ1 − Ĝ1(X1, Z1), where Ĝ1(X1, Z1) ≥ 0 for (X1, Z1) ∈ Λ.

where A = DZ1G1(X1, 0) is a M-matrix (matrix with non-negative off diagonal elements) and Λ is the
region defined above. We have,

F1(X1, 0) =


B− (β2 + β3 + µ)H

β2H − (µ+ β6 + β9)PA
β3H + β6PA − (µ+ β11)M

β9PA + β11M− (µ+ µD + β12)A
β12A− (µ+ µDTB)ATB


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G1(X1, Z1) =

[
β1HHTB − β5HTBPATB − (µ+ β4)HTB

β5HTBPATB + β8PAPATB − (µ+ β7 + β10)PATB

]
and G1(X1, 0) = 0, thus

A = DZ1G1(X′1, 0) =
[
β1H − (µ+ β4) 0

0 β8PA − (µ+ β7 + β10)

]

Ĝ(X1, Z1) =

[
β5HTBPATB
−β5HTBPATB

]
(5)

From Equation (5), the condition P.2 is not satisfied, since Ĝ1(X1, Z1) ≥ 0 is not true. Therefore,
the equilibrium point E1 may not be globally stable. Here, since disease (HIV-AIDS) persists at this
point, it will not be globally stable. Following [19], the backward bifurcation occurs at R0 = 1.

Theorem 3. Global Stability of E2(H2, 0, PA2 , M2, PATB2 , A2, ATB2)

The system (2) of the model can be written as

dX2

dt
= F2(X2, Z2) (6)

dZ2

dt
= G2(X2, Z2), G2(X2, 0) = 0 (7)

where X2 = (H, PA, M, PATB, A, ATB) and Z2 = (HTB). According to this notation, the equilibrium
point is denoted by E2 = (X′2, 0), where X′2 = (H2, 0, PA2 , M2, PATB2 , A2, ATB2).

Using the Castillo Chavez method [20], the following two condition ensure the global stability of
the given equilibrium point:

P.3 For dX2
dt = F2(X2, 0), E2 is globally asymptotically stable.

P.4 G2(X2, Z2) = BZ2 − Ĝ2(X2, Z2), where Ĝ(X2, Z2) ≥ 0 for (X2, Z2) ∈ Λ.

where B = DZ2G2(X2, 0) is an M-matrix (matrix with non-negative off diagonal elements) and Λ is the
region defined above.

The equilibrium point E2(H2, 0, PA2 , M2, PATB2 , A2, ATB2) is the globally asymptotically stable
equilibrium of the system (P.3)–(P.4)

we have F2(X2, 0) =



B− (β2 + β3 + µ)H
β2H − β8PAPATB − (µ+ β6 + β9)PA
β3H + β6PA + β7PATB − (µ+ β11)M
β8PAPATB − (µ+ β7 + β10)PATB
β9PA + β11M− (µ+ µD + β12)A
β10PATB + β12A− (µ+ µDTB)ATB


The eigenvalues of the characteristic polynomial of its Jacobian matrix are given as

λ1 = −(µ+ β2 + β3),λ2 = −(µ+ β11),λ3 = −(µ+ µDTB),λ4 = −(µ+ µD + β12),

λ5 = − 1
2 ((β8PATB + β6 + β7 + β9 + β10 + 2µ− β8PA)

−

√
β2

8(PA − PATB)
2 + (β6 − β7 + β9 − β10)

2 + 2β8(PA + PATB)(β6 − β7 + β9 − β10)),

λ6 = − 1
2 ((β8PATB + β6 + β7 + β9 + β10 + 2µ− β8PA)

+
√
β2

8(PA − PATB)
2 + (β6 − β7 + β9 − β10)

2 + 2β8(PA + PATB)(β6 − β7 + β9 − β10))

Here, λ5,λ6 have a negative real part if (β6 + β9 + µ)β8PA < (β7 + β10 + µ)(β6 + β9 + µ+ β8PATB).
Hence, by Routh–Hurwitz criterion, the system is globally asymptotically stable.
Next,



Axioms 2020, 9, 29 8 of 14

G2(X2, Z2) = (β1H2 + β5PATB2 − (µ+ β4))HTB − (β1(H2 −H)HTB + β5(PATB2 − PATB)HTB)

= BHTB − Ĝ2(X2, Z2)

Here, Ĝ2(X2, Z2) ≥ 0, hence the conditions of P.3 and P.4 are satisfied. Hence, by Castillo Chavez the
system is globally stable.

Theorem 4. Global stability of E3(H3, HTB3 , PA3 , M3, 0, A3, ATB3)

The system (1) of the model can be written as

dX3

dt
= F3(X3, Z3) (8)

dZ3

dt
= G3(X3, Z3), G3(X3, 0) = 0 (9)

where X3 = (H, HTB, PA, M, A, ATB) and Z3 = (PATB). According to this notation, the equilibrium
point is denoted by E3 = (X′3, 0), where X′3 = (H3, HTB3 , PA3 , M3, 0, A3, ATB3).

The following two conditions ensure the global stability of this equilibrium point

P.5 For dX3
dt = F3(X3, 0), E3 is globally asymptotically stable.

P.6 G3(X3, Z3) = CZ3 − Ĝ3(X3, Z3), where Ĝ3(X3, Z3) ≥ 0 for (X3, Z3) ∈ Λ

where C = DZ3G3(X3, 0) is an M-matrix (matrix with non-negative off diagonal elements) and Λ is the
region defined above.

The equilibrium point E3(H3, HTB3 , PA3 , M3, 0, A3, ATB3) is the globally asymptotically stable
equilibrium of the system (P.5)–(P.6)

we have F3(X3, 0) =



B− β1HHTB − (β2 + β3 + µ)H
β1HHTB − (µ+ β4)HTB

β2H − (µ+ β6 + β9)PA
β3H + β4HTB + β6PA − (µ+ β11)M
β9PA + β11M− (µ+ µD + β12)A

β12A− (µ+ µDTB)ATB


The eigenvalues of the characteristic polynomial of its Jacobian matrix are given as

λ1 = −(µ+ β6 + β9),λ2 = −(µ+ β11),λ3 = −(µ+ µDTB),
λ4 = −(µ+ µD + β12),
λ5 = − 1

2 ((β1HTB + β2 + β3 + β4 + 2µ− β1H)

−

√
β2

1(H −HTB)
2 + (β2 + β3 − β4)

2 + 2β1(H + HTB)(β2 + β3 − β4))

λ6 = − 1
2 ((β1HTB + β2 + β3 + β4 + 2µ− β1H)

+
√
β2

1(H −HTB)
2 + (β2 + β3 − β4)

2 + 2β1(H + HTB)(β2 + β3 − β4))

here, λ5,λ6 have negative real part if (β2 + β3 + µ)β1H < (β4 + µ)(β2 + β3 + µ+ HTBβ1). Hence, by
Routh–Hurwitz criterion, the system is globally stable.
Next,

G3(X3, Z3) = (β5HTB + β8PA − (µ+ β7 + β10))PATB − (β5(HTB3 −HTB)PATB + β8(PA3 − PA)PATB)

= CPATB − Ĝ3(X3, Z3)

Here, Ĝ3(X3, Z3) ≥ 0, hence the conditions P.5 and P.6 are satisfied. Therefore, by Castillo Chavez the
system is globally stable.
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Theorem 5. The endemic equilibrium point E∗(H∗, H∗TB, P∗A, M∗, P∗ATB, A∗, A∗TB) is globally asymptotically stable.

Proof. Let us assume Lyapunov function

L∗(t) = 1
2 [(H −H∗) + (HTB −H∗TB) + (PA − P∗A) + (M−M∗) + (PATB − P∗ATB) + (A−A∗) + (ATB −A∗TB)]

2

dL∗
dt = [(H −H∗) + (HTB −H∗TB) + (PA − P∗A) + (M−M∗) + (PATB − P∗ATB) + (A−A∗) + (ATB −A∗TB)]

[H′ + H′TB + P′A + M′ + P′ATB + A′ + A′ATB]

= [(H −H∗) + (HTB −H∗TB) + (PA − P∗A) + (M−M∗) + (PATB − P∗ATB) + (A−A∗) + (ATB −A∗TB)]

[B− µ(H + HTB + PA + M + PATB + A + ATB) − µDA− µDTBATB]

= −[(H −H∗) + (HTB −H∗TB) + (PA − P∗A) + (M−M∗) + (PATB − P∗ATB) + (A−A∗) + (ATB −A∗TB)]

[µ((H −H∗) + (HTB −H∗TB) + (PA − P∗A) + (M−M∗) + (PATB − P∗ATB) + (A−A∗) + (ATB −A∗TB))]

= −µ[(H −H∗) + (HTB −H∗TB) + (PA − P∗A) + (M−M∗) + (PATB − P∗ATB) + (A−A∗) + (ATB −A∗TB)]
2

≤ 0

where B = µ(H∗ + H∗TB + P∗A + M∗ + P∗ATB + A∗ + A∗TB) + µDA + µDTBATB �

Here, dL∗
dt ≤ 0. Hence, by LaSalle Invariance principle [21] the endemic equilibrium point is

globally asymptotically stable.

3. Backward Bifurcation

If the reproduction number R0 > 1, then PA > 0, the system (1) exhibits a unique positive solution
E∗. Now, on solving system (2), we have

F(P∗A) = b2P∗2A + b1P∗A + b0 (10)

where,

b2 = β1β8(β5(L2 + µ) − β8(β4 + µ))
b1 = β8(µ+ β4)[β1(L1 + µ) + β5(L3 + µ)] − β1β5[(L2 + µ)(L3 + µ) + Bβ8] − β2

5(L1 + µ)(L2 + µ)
b0 = Bβ1β2

5

Here, the coefficient b2 < 0, and b0 depends on the value of R0. If R0 < 1, then b0 is positive and if
R0 > 1, then b0 is negative. For R0 > 1, Equation (10) has two roots, positive and negative.

For b1 > 0, the system has endemic equilibria continuously depending on R0; this shows that
there exists an interval for R0, which has two positive equilibria as follows:

I1 =
−b1 −

√
b1

2 − 4b2b0

2b2
, I2 =

−b1 +
√

b1
2 − 4b2b0

2b2

For Backward Bifurcation, setting b1
2
− 4b2b0 = 0 and solving for critical points of R0 gives

RC = 1−

[β8(µ+ β4)[β1(L1 + µ) + β5(L3 + µ)] − β1β5[(L2 + µ)(L3 + µ)
+Bβ8] − β2

5(L1 + µ)(L2 + µ)]2((L1 + µ)(L2 + µ)(L3 + µ) − Bβ1β8)

4(β1β8(β5(L2 + µ) − β8(β4 + µ)))Bβ2β2
5(L1 + µ)(L2 + µ)(L3 + µ)

If RC < R0, then, equivalently, b1
2
− 4b2b0 > 0 and backward bifurcation occur for the points of R0,

such that RC < R0 < 1 [22], as shown in the above Figure 2. Here, RC= 0.95 is the critical value after
which co-infection attains stability.
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3.1. Sensitivity Analysis of R0

In this section, sensitivity indices of R0 with respect to different parameters are calculated as
shown in Table 2, using the formula γR0

α = ∂R0
∂α . αR0

, where α is the model parameter. These indices show
how crucial each parameter is to disease transmission.

Table 2. Effect of Parameters on Sensitivity.

Parameter Value Observation

B 1 The transmission rate of HIV is directly proportional to birth rate.
β1 0.4925 The transmission rate of co-infection occurs at 49%.
β2 0.9013 Among HIV infectives, around 90% of them join the pre-AIDS stage.
β3 0.6084 Individuals moving toward medication can be increased further by creating awareness programs.
β4 0.5172
β6 0.77 77% of individuals in pre-AIDS class opt for medication.
β7 0.5022 From the pre-AIDS, class 50% of individuals undergo medication for TB disease.
β8 0.5075 Transmission occurs at the rate of 50% from the pre-AIDS class to pre-AIDS TB.

β9 0.724 The number of individuals in pre-AIDS class suffering from AIDS can be reduced if they take
treatment while in pre-AIDS class.

β10 0.9967 The transmission rate of individuals from pre-AIDS TB stage to AIDS TB stage highly effects the
sensitivity of R0.

µ 0.9793 Natural death rate cannot be removed completely even if the treatment is opted for in initial stage.

The other parameters β5, β11, β12,µD,µDTB do not have any impact on the sensitivity of
reproduction number.

3.2. Numerical Simulation

From Figure 3 it can be observed that about 34% of the total HIV-infected population gets TB
infection within 15 months. Approximately 30% of individuals infected with HIV go for treatment
in 27 months. Co-infected individuals undergo treatment for TB in 11 months. Within 26 months,
approximately 31% of HIV-infectives proceed to next stage, i.e., AIDS. About 22% of pre-AIDS infectives
get TB infection and join pre-AIDS TB in 20 months. Individuals in the pre-AIDS class initially undergo
medication then, due to ignorance or any other social reason, individuals leave the compartment and,
after some time, joins the medication class again. Between approximately 1.7 and 4 months, individuals
in the pre-AIDS class (not taking any kind of medication) suffer from AIDS, whereas those undergoing
treatment get infected by AIDS within 28 months. This shows that medication is helpful. Even though
it does not help the complete elimination of disease, the rate of disease spread can be controlled.
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From Figure 4, we can conclude that individuals in Pre-AIDS class for a longer duration get AIDS
at faster rate than the individuals who have just joined the pre-AIDS class.
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Figure 5 indicates that individuals suffering from HIV suffer from TB also, and both the
compartments stabilize after some time. Figure 6 shows that individuals in the pre-AIDS class
also suffer from TB. The trajectory is stable.Axioms 2019, 8, x FOR PEER REVIEW 14 of 17 
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Figure 8 shows that the newly HIV-TB infected individuals and individuals in Pre-AIDS TB
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From Figure 9, it can be observed that, of the total population, 21% are HIV infected and 13% are
HIV-TB infected, whereas the percentage of individuals in pre-AIDS and pre-AIDS TB stage is 16%
and 6%, respectively. A total of 15% of the population undergoes treatment for both diseases. Since
HIV-AIDS is not curable, even after taking treatment, 17% of cases lead to AIDS infections and 12% are
infected by TB, moving towards the AIDS TB class.
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4. Conclusions

In this paper, a mathematical model of HIV-TB considering the HIV-infected population is studied.
Using data tabulated in Table 1, we have R0 = 2.262 > 1, which shows the persistence of the disease in
the society. HIV-AIDS cannot be eradicated completely from the infected population. Next, global
stability is shown for the equilibrium points where there is no co-infection, and instances when there is
no individual in the pre-AIDS TB class are shown using Castillo Chavez method. The equilibrium
points where there is no co-infection and no individual in the pre-AIDS TB class proved to be globally
unstable and is said to exhibit bifurcation. The endemic point is proven to be globally stable using
Lyapunov function. Backward bifurcation analysis is studied, which indicates that a minimum of 95%
of individuals join the pre-AIDS class. Numerical simulation is done to validate the model, which
concludes that the medication plays a vital role in controlling disease spread. Here, we can observe
that if treatment is provided at the initial stage of disease, its further progression can be prevented,
and survival of individuals can be extended. The value of the reproduction number is highly affected
by the rate at which individuals join the AIDS TB class. The pie-chart exhibits the distribution of the
population in various compartments in the model.
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