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Abstract: This paper presents the first five variable model of mutualism motivated by the interaction
between ants and homopterans. In this mutualism, homopterans benefit both directly through
increased feeding rates and indirectly through predator protection. Results of our analyses show
oscillatory, complex, and chaotic dynamic behavior. In addition, we show that intraspecies
interactions are crucial for closing trophic levels and stabilizing the dynamic system from potential
“chaotic” behavior.
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1. Introduction

Despite calls throughout the past half-century for a more general perspective on the importance
of mutualism in ecological systems [1], relatively few studies have explored the effects of mutualism
on the dynamics of ecological systems. While modeling efforts have been a dominant focus of
studies on predator–prey or competitive interactions [2], recent studies of mutualism have focused on
understanding the context-dependency of outcomes [3] or on expanding the scope of participants to
include multiple partners [4]. In this paper, we consider the population dynamic consequences of a
protection-based mutualism that includes multiple mechanisms of benefit. In protection mutualism, a
protector species helps a host species in return for a resource reward. This assistance by the protector
species can take several forms, such as removal of the host species’ predator, tending the young of the
host species, or protection against parasites. Protection mutualism is both geographically widespread
and considers a diverse range of taxa, including interactions between cleaner fish and their hosts [5],
ants and plants that produce extrafloral nectar [6], and ants and herbivores [7,8].

The interaction between ants and homopterans has become a model system for studies of
protection mutualism. In this interaction, ants protect homopterans by removing their predators
(e.g., lady beetles and spiders) in exchange for honeydew, a sugary waste-product excreted by
homopterans [7,8]. Because ants remove accumulated honeydew, many homopterans benefit from
ant-tending both directly, via enhanced feeding efficiency [9–12], as well as indirectly, via predator
removal [11,13].

The interaction between ants and homopterans is considered conditional [14] in part because
the degree to which treehoppers benefit depends on the level of ant-tending, which depends itself
on the density of homopterans [11,13,15]. This density-dependent effect of mutualism follows from
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the consumer-resource basis of the interaction—in this system ants are consuming honeydew and
provide by-product benefits to homopterans in return [16]. Recent modeling approaches have
leveraged the consumer-resource basis of this interaction by using modified consumer-resource
models that incorporate saturating functional “responses” by consumers to characterize patterns
of density-dependent benefit resulting from consumer “satiation” [17]. We follow this approach here.

The structure of this paper is as follows: Section 2 introduces the model’s mechanism, constructs
the mathematical foundation for the model, and analyzes the model utilizing linear stability analysis
of a system of ordinary differential equations (ODEs). Section 3 looks at time series and phase plane
diagrams for different combinations of variables. Section 4 examines Poincare sections of maxima as
bifurcation diagrams. We conclude in Section 5 with a discussion of the implications of our results,
mainly the importance of intraspecies interaction terms and mathematical chaos in ecological models.

2. Minimal Model of Protection-Based Mutualism

The analysis of population dynamics in ecological systems is credited to Alfred Lotka’s work
on autocatalytic steps in chemical oscillations [18]. Independently, Vito Volterra utilized similar
differential equations in studying the relationship between fish and shark in the Adriatic Sea [19].
The model later became known as the Lotka–Volterra Model (LVM) and has remained the basis for
much of population dynamics analysis for the past century. However, the LVM is a highly restricted
model that, while still used greatly today, has been replaced by several other models that better model
ecological reality.

In this section, we propose a mechanism for some of the interactions between homopterans
and ants on a single plant. We consider five variables in this model: Plant quality (G), Untended
homopterans (I), Tended homopterans (Im), Ants (A), and uncollected honeydew, or Waste (W), which
interact according to the following set of interactions:

G ko→G + G (1a)

G + I
kn1→I + I (1b)

I kw→I + W (1c)

A + W kr→A + A (1d)

A + I
k+mk−m

 Im (1e)

G + Im
kn2→Im + I (1f)

I + I
k f→I (1g)

Im + Im
k f m→ Im (1h)

I
kd→φ (1i)

Im
kdm→φ (1j)

W
kq→φ (1k)

Notice that, for each mechanistic step, the actual functional form of interaction requires an
ecological interpretation, like in the MacArthur–Rosenweig [20] model, which used Holling-type
functional responses to describe satiation of the predators.

In contrast with chemical reaction, our set of interactions does not follow the Mass Action Laws.
Consequently, for each interaction, we need to propose a phenomenological expression for the rate
of each process. We start with Equation (1a), which represents plant growth and considers a logistic
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growth, where the rate is a function of the plant density G, a rate constant k◦, and the carrying capacity,
G◦, yielding the following rate:

r1a = k◦

(
1− G

G◦

)
G (2)

In Equation (1b), we represent the interaction between the insects (I) and the plants (G). In this
case, it is known that the insects produce waste (W) that interfere with their development. To model
the rate, we consider a Holling-type function for the interaction between the insect and the plant,
which shows saturation or satiation, represented by KG. To consider the negative effect of the waste
(W), we include a term (Kz + W) in the denominator, yielding the following expression for the rate:

r1b =
k1mKZ GI

(Kz + W)(KG + G)
(3)

where the term αr1b represents the rate of plant consumption. The next step, Equation (1c), considers
the production of waste by the insect, which is proportional to the insect population. Thus, we use
a simple term for the rate, kw I. Equation (1d) models the consumption of waste by the ants, which
represents an additional source of food for the ants. For this process, we consider a simple Holling-type
function that shows satiation, Kr, with the following rate:

krWA
Kr + W

(4)

Additional parameters, γ and δ, are associated with the net effect on ant population, (A), and
waste (W).

The interaction of ants and insects yields the so-called tended insects. Here, we consider a simple
one to one reversible interaction, represented by the rates k+m AI, and K−m Im. The next step, Equation (1f),
represents the growth of the tended insects (Im), with a rate that follows a Holling-type function,

kn2GIm

KG + G
(5)

This rate, if multiplied by α or β, determines the effects on the plants (G) and the insect populations
(I). Notice that there is no negative effect due to the accumulation of waste, because the ants
remove the waste around the tended insects. Next, Equations (1g) and (1h) represent the intraspecies
interaction, which can be interpreted as a “fighting” term or a “cannibalistic” interaction, found when
the populations reach large values. This interaction has a simple rate proportional to the square of the
population. In contrast, insect death rate, represented by Equation (1i), is proportional to its population.
For the waste degradation, Equation (1k), however, the process reaches a maximum rate for large
values of the waste. Therefore, we propose a simple waste degradation rate,

kqW
Kq + W

(6)

Finally, we consider a logistic growth for the ants, independent of the waste, in which the rate is
characterized by a carrying capacity of A◦ and a rate constant rA.

In this new model, we, in particular, consider plant quality which increases at a rate of ko, and
reflects the primary food source for both Untended and Tended homopterans. Thus, homopterans
reproduction is inherently dependent on ko. As the homopterans feed on plants, they produce waste
(honeydew) at a rate of kw that is both proportional to the number of homopterans present in the
system and also serves to attract ants. In the presence of ants, the population of untended homopterans
decreases as the two species enter into a mutualistic relationship to form a paired species, Im, at a rate
of k+m. Dissociation of the paired species (k−m) is possible, albeit at a significantly lower rate than k+m.
The waste the tended homopterans produce is not accumulated in the system, as the tending ants
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consume any waste produced as a secondary food source. The homopterans reproduce unimpeded
by their waste and the next generation of nymphal homopterans are eventually tended by the ants.
As the population of untended and tended homopterans increase, intraspecies interactions reduce the
population size at rates of k f and k f m, respectively. These intraspecies interactions can be understood
as intraspecific competition for resources [21]. Untended homopterans die at a rate of kd and tended
homopterans die at a rate of kdm. Honeydew, (W), that is not consumed is degraded at a rate of kq.

From this mechanism, we construct the following system of ordinary differential equations
(ODEs) to express the system’s dynamics. Below we provide the dimensional ODEs characterizing
the mechanism described above. This model can be considered a modified mechanism based upon
the MacArthur–Rosenweig model, which includes the effect of waste on the growth of untended
homopterans, as well the relevance of the intraspecies interactions.

dG
dt

= ko

(
1− G

Go

)
G− α kn1 Kz G I

(Kz + W)(KG + G)
− α kn2 G Im

(KG + G)
(7a)

dI
dt

=
β kn1 Kz G I

(Kz + W)(KG + G)
− kd I − k f I2 +

β kn2 G Im

(KG + G)
− k+m A I + k−m Im (7b)

dIm

dt
= k+m A I − k−m Im − kdm Im − k f m I2

m (7c)

dA
dt

= rA

(
1− A

Ao

)
A +

γ kr W A
Kr + W

− k+m A I + k−m Im (7d)

dW
dt

= kw I −
kq W

Kq + W
− δ kr W A

Kr + W
(7e)

For a thorough “translation” from a mechanism to a system of ODEs, we recommend our previous
work [21].

In our set of ODES, we define α, β, δ, and γ as the turnover constants, Go and Ao are carrying
capacities for plant quality and ants (respectively), and KG, Kz, Kr, and Kq are satiation constants for
plant quality and waste. The inclusion of logistic growth terms for both plant quality and ants is due
to their nonuniform reliance on variables within the system as necessary for growth or death. That is,
their rates of reproduction and death are not dependent on variables within the mutualistic system;
even if the homopterans stop producing waste to attract and feed the ants, the waste is a secondary
food source for the ants (i.e., they have a primary food source that has greater control on their growth
and death rates).

As is common practice, to reduce the number of parameters, we scale Equations (8a)–(8e) by using
the following definitions: τ ≡ tkd, s ≡ KG, X ≡ G/s, Y ≡ I/s, Ym ≡ Im/s, M ≡ A/s, Z ≡W/s, r ≡
ko/kd, rm ≡ rA/kd, Xo ≡ Go/s, Mo ≡ Ao/s, k1 ≡ αkn1/kd = αkn2/kd, k2 ≡ β kn1/kd = β kn2/kd, k′r ≡
γkr/kd, krr ≡ δkr/kd, K′r ≡ Kr/s, K′z ≡ Kz/s, K′q ≡ Kq/s, k′q ≡ kq/kds, kmp ≡ k+mKG/kd, kmm ≡
k−m/kd, k′f ≡ k f KG/kd, k′f m ≡ k f mKG/kd, k′dm ≡ kdm/kd, k′w ≡ kw/kd. This scaling yields the following
dimensionless set of ODEs:

dX
dτ

= r
(

1− X
Xo

)
X− k1 Kz X Y

(Kz + Z)(1 + X)
− k1 X Ym

(1 + X)
(8a)

dY
dτ

=
k2 Kz X Y

(Kz + Z)(1 + X)
−Y− k f Y2 +

k2 X Ym

(1 + X)
− kmp M Y + kmmYm (8b)

dYm

dτ
= kmp M Y − kmmYm − kdmYm − k f mY2

m (8c)

dM
dτ

= rm

(
1− M

Mo

)
M +

kr Z M
Kr + Z

− kmp M Y + kmmYm (8d)

dZ
dτ

= kw Y−
kq Z

Kq + Z
− krr Z M

Kr + Z
(8e)
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where we have dropped the primes for simplicity. Notice that all terms that take the form Kα + Z are
production terms that, per the MacArthur–Rosenweig model, take into account satiation of waste,
whereas all terms that take the form 1 + X are production terms that take into account satiation of
plant quality.

In order to perform analytic and numerical analyses, we use linear stability analysis to understand
what happens to the system when it is slightly perturbed [22]. In the first step of linear stability analysis
we set the right-hand side of the differential equations equal to zero and solve for the steady state
values, XSS, YSS, YSS

m , MSS, and ZSS. Once these steady-state solutions are obtained, we study what
would happen to the dynamic variables when the solutions are slightly perturbed, as to see if the
perturbations would grow or die out. In this approach we calculate the relaxation matrix associated
with the set of ODEs in Equation (8a):

For our analysis we consider parameter values, in Table 1, used in our previous work [21,23]
(Table 1):

Table 1. Dimensionless parameter values.

r = 4.8 Xo = 8.0 Mo = 2, 0 kmp = 6.0
k f = 0.001 k f m = 0.001 kw = 12.0 Kq = 0.2
kmm = 1.0 kdm = 1.0 Kr = 0.2 rm = 2.0

k′r = krr = 5.0 kq = 10.0 k1 = k2 = 1.3 Kz = 5.0

The steady state solutions of the ODEs yield multiple solutions, and we consider only the
physically relevant ones, which are real and positive. Of these six physical solutions, only one is
consistent with the coexistence of all the five species. The other five steady solutions imply the
extinction of one, or several of the species, including total extinction. If we consider a notation
(X, Y, Ym, M, Z) for the steady solutions of (Plants, Untended, Tended, Ants, and Waste), the
steady state solutions for the parameters in Table 1, are: (0,0,0,0,0), (8,0,0,0,0), (8,0,0,2,0), (0,0,0,2,0),
(7.86,0.66,0,0,0.76), and (3.82,1.37,8.14,1.99,0.93).

For the coexistence steady state : (3.82,1.37,8.14,1.99,0.93), the determinant is −88.7421 and of
the five eigenvalues associated with the relaxation matrix, one is real negative and four are complex
with negative real part: −21.360,−0.959752 ± i 2.98211, −0.170365 ± i 0.627922i. Therefore, for this
particular set of parameters the coexistence steady state is stable.

Since our main goal is to show that our model can sustain simple and complex dynamics, we
select a reduced set of parameters and initial conditions that we have used before [21,23]. By no means
is our analysis extensive, because our model is the first to address the conditions for protection-based
mutualism, and we want to show that its dynamic properties are worth analyzing.

3. Time Series and Phase Plane Diagrams

In this section we consider time series as well as phase planes diagrams of different combinations
of the five variables. For the numerical integration we use XXPAUT [24] with adaptive Runge–Kutta,
Gear, stiff integrators, and an error tolerance of 1× 10−8. We consider the effect of the rate constants kw

(the rate of production of waste by untended homopterans), kmp (the rate of conversion of untended
homopterans and ants into tended homopterans), k f (the intraspecies interaction rate for untended
homopterans), and k f m (the intraspecies interaction rate for tended homopterans). In particular, we
focus on the effect of these rate constants on Y (untended homopterans), Ym (tended homopterans),
and M (ants). Using the integration software AUTO [24] and the parameters in Table 1, we observe
three separate bifurcations for kw occurring in this system: a transcritical bifurcation at kw = 3.974,
a period doubling Poincare–Andronov–Hopf (PAH) bifurcation between kw = 8.653, and a period
doubling bifurcation at kw = 8.845. These values are of particular interest, and as such subsequent
analysis of the time series and phase planes diagrams is based upon and around these values.
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3.1. Time Series for Different Values of the Rate Constant of Waste Production, kw

For different values of kw, we set the following initial conditions for the five variables, as in our
previous work [21]: X = 4.7, Y = 0.6, Ym = 0, M = 2, Z = 0. For simplicity and as the first analysis
of a new five variable model of protection-based mutualism, all integrations utilize the same initial
conditions, as well as the parameter values specified in Table 1, unless noted otherwise. Definitely,
other initial conditions should be considered, but given our goals, the novelty of the model, and length
of the analysis, we defer such analysis to future publications. As we mentioned before, we want to
show some of the complex dynamics of the model that are relevant and comparable to the dynamics of
other ecological models.

First, we vary kw. For low rates of waste production (0 < kw < 4.7), the concentration of all
variables reach and stay at their steady states. As kw increases from 4.7, oscillations quickly begin
to occur. While the oscillations are both periodic and stable, as kw approaches 6.12, the oscillations
become more complex. Period doubling occurs at kw = 7.288, and a variety of complex oscillations
are displayed, along with additional period doubling, in Figure 1a. The time series exhibit the most
complex and aperiodic oscillations around kw = 8.76, seen in Figure 1b, but subsequently decrease in
complexity and return to stable periodic behavior as kw increases to 9.658. As kw increases further, the
oscillations decrease in amplitude size, increase in frequency, and, by kw = 11, all of the oscillations
had died out and all the variables returned to their corresponding steady state values.

(a) Waste production rate constant kw = 7.44. (b) Waste production rate constant kw = 8.76.

Figure 1. Time series for the tended insects population Ym and ant population, M, with all other
parameters from Table 1.

3.2. Phase Planes for kw

To understand the interdependence of the variables on one another, we look at the phase plane
diagrams of different combinations of variables. We first consider M, Ym and Y as to understand
the central variables for the mutualistic relationship. For the initial and reference value, kw = 0,
all three variables reach their corresponding steady state levels and maintained steady values until
kw reaches approximately 4. As kw increases to 4.8, oscillations begin to occur, as seen in Figure 2a.
The oscillations become more complex as kw reaches 6.8. We also observe multiple period doubling
incidents in Figure 2b. As with the time series, after kw = 9.7, the complexity of the oscillations
decrease, followed by spiraling into a stable steady state around kw = 11.

Next we look at phase diagrams for M, Ym, and Z, so as to look at the dynamics of waste in
relation to its ability to entice the ants to enter the mutualistic relationship and tend the homopterans.
Compared to the previous phase diagram of Y, Ym, and M, the relationship between M, Ym, and Z
exhibits less qualitatively complex oscillations and limit cycles. While the increases in kw varied the
diagram at similar values as with the previous phase diagram, the variations and topological changes
are less drastic (Figure 3a,b). Of note, the oscillatory behavior dies out at slightly lower kw values as
compared with the phase diagrams in Figure 4 (kw = 7.32 instead of kw = 8.4). This might hint at the
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necessity of a stabilized production of waste as a precedent from which the untended homopterans
can return to their steady state.

(a) kw = 4.8. (b) kw = 8.76.

Figure 2. Phase plane diagrams for (M, Ym, Y) for varying kw and same parameters as in Figure 1.

(a) kw = 7.32 (b) kw = 8.6

Figure 3. Phase plane diagrams for (Ym, Y, Z) for varying kw and same parameters as in Figure 1.

(a) kw = 7.32. (b) kw = 8.4

Figure 4. Phase plane diagrams for (M, Ym, Z) for varying kw and same parameters as in Figure 1.

Finally, we consider the phase diagrams for Y, Ym, and Z as to investigate the indirect relationship
of waste in its conversion of untended homopterans into tended homopterans. Interestingly, these
phase diagrams (Figure 5a,b) show that Y is more sensitive to Z compared to Ym. Even as kw increases
to values that exhibited complex and chaotic behavior and oscillations, unlike Y, Ym do not dramatically
crash but rather remain at relatively stable values (between 4 and 7) throughout the entire range of kw
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values. This may point to an initial dependence of Ym on Z as M increases but, after reaching a high
enough value, Ym might switch its main dependence from the waste production to other parameters.

(a) kmp = 7.25 (b) kmp = 30

Figure 5. Phase plane diagrams for (M, Ym, Y) for varying kmp.

3.3. The Ant Tending Rate Constant kmp

Another parameter of great effect on the dynamic behavior of the system is kmp, the rate at
which untended homopterans and ants are, through the mutualistic relationship, converted into
a paired species. We set kw back to its initial steady state value of 12 and subsequently vary kmp.
For 0 < kmp < 6.6 the concentration of all variables quickly reaches and remains at their steady state
values. As kmp increases from 6.6, oscillations immediately begin to occur. These stable oscillations
become complex at kmp = 6.9 (Figure 6a), but restabilize back to simple, periodic oscillations at
kmp = 8.0 (Figure 6b). These stable oscillations continue until kmp = 7.7 where they become complex
again until kmp = 8.3, whereafter the limit cycle decreases in size and complexity until kmp = 30, where
Ym and M approaches zero and (X, Y, Z) reach their final steady state values. These results point to an
upper limit on the systems capacity to have ants and tended homopterans as the mutualistic system
collapses and/or the results become nonphysical.

(a) kmp = 6.9. (b) kmp = 8.

Figure 6. Phase plane diagrams for (M, Ym, Z) for varying kmp.

Surprisingly, and unlike the previous variation for kw, very small changes in kmp result in swift
qualitative changes in the complexity of the oscillations (Figure 7a,b). Additionally, while for kw there
is a continuous range of values that produce complex oscillations, there are two distinct ranges for kmp

with an inner range where stable oscillations are observed (6.9 < kmp < 8.0) (Figure 8).
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(a) kmp = 6.9. (b) kmp = 8.

Figure 7. Phase plane diagrams for (Ym, Y, Z) for varying kmp.

(a) kw = 8.5 and k f m = 0.001. (b) kw = 9.5 and k f m = 0.001.

Figure 8. Time series for varying kw and k f m values. Other parameter values from Table 1.

As with the phase plane analysis above, we first examine the phase plane of M, Ym, and Y. From
0 < kmp < 6.6 all three variables remain in a stable steady state. Oscillations are exhibited as kmp

increases from 6.6 and quickly become complex by kmp = 6.9 (Figure 8a). While the oscillations
appeared to begin to stabilize and the limit cycles decrease as kmp = 7.25, we observe additional limit
cycles and complex oscillations, when kmp reached 8.0 (Figure 8b). Curiously, these oscillations retain
their general shape as kmp increases up to 30, thereafter the limit cycle brake and the variables return
to their final steady state values.

The phase plane for M, Ym, and Z, and Y, Ym and Z are similar in their general topology and
limit cycle shape with the phase plane of M, Ym, and Y with varying values of kmp. We observe that
the system reaches steady states from the initial values, kmp = 0, until approximately 6.9, complex
oscillations until kmp = 7.3, a small period of stabilization until kmp = 7.7, a small period of additional
complex oscillations until kmp = 8.3, and finally restabilization and decreasing size of limit cycle until
the final steady state values are reached around kmp = 30 (Figure 7a,b).

The variations in kmp, compared to kw, have a smaller range of complex oscillatory behavior
despite a larger range of values after such oscillations until the final steady state is reached. This points
to a narrow but important sensitivity of the system on kmp for both tended and untended homopterans,
as well as for ants. While complex limit cycles are present for a large range of kmp values, the swiftness
in which the complex oscillations and crashing of certain variables to low levels occurs indicates
that shocks to the system (e.g., weather patterns or depletion of a food source) that could increase
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or decrease the rate of kmp to this narrow range might have drastic ecological effects that, while
mathematically would be recuperable, might be otherwise in reality.

3.4. The Rate Constants of Intraspecies Interactions, k f and k f m

Another set of parameters that we investigate are k f and k f m, the intraspecies interaction rates for
untended and tended homopterans, respectively. These interactions are most easily interpreted in this
system as intraspecific competition for resources. As described in previous work, Peacock–López [21]
introduces the intraspecies interaction terms that can close trophic levels for a multi variable system.
As such, we want to explore if similar effects are present for our five variable mutualism system.

All of the previous analysis of variations of the value of kw and kmp are for k f and k f m both equal
to 0.001. Setting k f and k f m both equal to zero (open trophic levels) and setting all other parameters to
their initial values, produce marginal changes in the steady state behavior of Y and Ym in comparison
to k f and k f m both equal to 0.001. Next, we change kw and kmp to their respective complex oscillatory
ranges, so as to see what would happen when k f and k f m are increased or decreased. In periods of
complex behavior for varying kw (7.2 < kw < 9.7), changing k f and k f m from 0.001 to 0 produced
virtually the exact same time series and phase diagrams as when one or both of the values are equal to
0.001. Surprisingly, setting k f m equal to 0.001 and varying k f from 0 to 0.01 only slightly narrowed the
range of complex oscillations for the time series of Y and Ym. However, when setting k f equal to 0.001
and varying k f m from 0.001 to 0.005 to 0.007 to 0.01, we observe noticeable changes, as the increase in
k f m reduces the range of complex behavior as well as the oscillatory range in general.

In accordance with the time series, the phase diagram displays similar topological changes in
both the types of limit cycles as well as the existence of limit cycles in general when compared to the
initial parameter values. As k f m increases from 0.001 up to 0.007, the limit cycle reduces in size and
collapses into itself, eventually resulting in a new steady state at a lower kw value. Conversely, k f has
to increase to approximately 0.1 for the complex limit cycles to collapse. These differing sensitivities of
the system on k f and k f m highlight the homopterans’ interactions, both internal and external to the
population, as fundamental for the system’s stability as a whole.

In this section we have shown examples of complex dynamics, and we have centered our
parameter selection around the waste production, the tending, and the intraspecies interactions. These
are relevant to understand the mutualistic relation between the ants and the insects. The interspecies
parameter represents the closing of the trophic levels, which in many models is ignored yielding open
trophic system, showing chaotic dynamics.

4. Bifurcation Diagrams

In this section we consider and examine the Poincare section of maxima. We plot only the
maximum values of the time series using the software package INSITE [25] and evaluate such sections
with an error tolerance of 10−12 and a stiff integrator. Given an initial condition, we fix kw and increase
and decrease parameter values to get both forward and backward direction sections. These sections
enable us to look at more specific and narrowly defined areas of complex or chaotic behavior, so as to
further evaluate how changes in parameter values, mainly k f and k f m, change the range of complex
maxima behavior.

We first examine the Poincare sections of each of the variables plotted against kw to gain a baseline
through which to compare other sections against in regards to the variables’ complexity at different
values. We utilize kw as the main bifurcation parameter throughout due to its large range of complex
behavior in comparison to other parameters such as kmp (Figure 9). This allow for easier comparison
of qualitative differences in the bifurcations diagrams.

The bifurcation diagrams for the initial parameter values are in accordance with the time series
and phase plane diagrams described above, where there are, for kw values between 7.2 and 9.8,
a variety of complex behavior including multiple period doubling and cascading events. However,
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such complex oscillatory behavior is fundamentally temporary, as steady state values occurred both
before and after the period doubling (Figure 10).

Figure 9. Bifurcation diagram for maxima of X for kw (waste production) with other parameters from
Table 1.

Figure 10. Bifurcation diagram of maxima of X for kw and k f = 0, k f m = 0 and other parameters from
Table 1.

While in the time series, changing k f and k f m from 0.001 to 0 has little observable effect,
the Poincare sections for k f and k f m both equal to 0 display interesting changes in complex behavior,
where for all five variables, the boundaries of period doubling and complex behavior change (Figure 11).
Furthermore, the uniformity of the complexity, that is the general structure of the period doubling and
cascading, is more sporadic and complex as k f and k f m both equaled zero.
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Figure 11. Bifurcation diagram of maxima of Ym for kw and k f = 0 and other parameters from Table 1.

As with the time series, we fix either k f or k f m back at its initial parameter value of 0.001 and
vary the other value. First, we fix k f m and vary k f . The resulting Poincare sections are similar to those
in Figure 11, where the difference between setting the intraspecies interaction rates at 0 and 0.001 is
negligible, whereas setting them to a value above 0.005 produces measurable and important differences.
However, of note, the Poincare sections for k f and k f m both equal to zero display a different period
doubling cascade in comparison with k f and k f m both equal to 0.001 (Figures 10 and 11). In particular,
for the initial conditions of k f and k f m both equal to 0.001, the chaotic region is more consistent but
also more structured; the two primary curves for the bifurcation both reach their maxima at the same
kw value and then reverse period double back to the steady state.

In contrast, there is little (if any) uniformity to the structure of the period doubling and cascading
for k f and k f m both equal to zero. As shown in Figure 11, while the initial period doubling is similar
to that of the initial conditions, there is an abrupt return to stable/fixed points, followed by multiple
period doubling and cascading, followed by additional chaos before the reverse period doubling back
to the steady state. We can interpret this observation as a period of nonchaotic oscillations in between
two periods of chaotic oscillations. Interestingly, this is similar to the oscillation regions for the time
series with kmp as the varying parameter. The reason is that despite the visual lack of chaos in certain
regions that would be predicted to exhibit chaos otherwise, the additional period doubling cascade
and reverse doubling cascade adds additional layers of complexity to the system and the simulation
that compensate for strictly defined chaotic oscillations.

While it appears that k f has to be increased tenfold to 0.01 to have qualitative changes in the
phase plane diagram and time series, the period doubling boundaries slightly increase for k f = 0
and decrease as k f subsequently increases, where no complex behavior is observed for k f = 0.01
(Figures 12 and 13).
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(a)
.

(b)

Figure 12. Bifurcation diagrams of kw for Ym with (a) k f = 0.005, and (b) k f = 0.010 and other
parameters from Table 1.
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Figure 13. Bifurcation diagram for maxima of Ym with kw and k f m = 0 and other parameters from Table 1.

Next we fix k f back to 0.001 and vary k f m. Similar to the time series and phase plane diagrams
analyzed above, k f m has a greater effect on the system and thus is more sensitive to variation in
regards to the production of both stable and complex oscillations. This increased sensitivity is evident
for k f m = 0.005, where only stable period doubling is observed without any complex oscillations or
additional period redoubling. Furthermore, for k f m = 0.01, we do not observe any period doubling
whatsoever; only steady states and fixed points are exhibited (Figure 14a,b).

(a)

Figure 14. Cont.
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(b)

Figure 14. Bifurcation diagrams of kw for Ym with: (a) k f m = 0.005, and (b) k f m = 0.010 and other
parameters from Table 1.

5. Discussion

Of the seventeen scaled parameter values, we chose kw and kmp as our main bifurcation parameters
and k f and k f m as our secondary bifurcation parameters. Another potential candidate considered was
kr, the rate at which the ants eat the homopterans’ waste and reproduce. Ecologically, an interpretation
of kr is the quality of the waste, as higher quality waste is proportional to increases in tending of
homopterans, as more ants migrate from the nest to engage in the mutualistic encounter. However,
as the waste is only a secondary source of food for the ants and the presence of waste is more
important than the quality of waste for the creation of tended ants (i.e., little amounts of waste will
attract ants, whereas no waste produces no tended homopterans), kw and kmp were considered more
ecologically significant in the model. While kw is only mathematically present in the waste’s rate term,
its ecological implication, that of determining how fast untended homopterans produce waste, is much
greater than just the single term, as the rate at which waste, the ecological-catalyst for this mutualistic
relationship, is produced determines how fast the ants converge to the homopterans, how many ants
converge, and, thus, to a certain extent, how quickly the conversion of untended homopterans to
tended homopterans occurs. Broadly speaking, this rate most likely has implications and effects on
kmp, and the comparatively wide range of values that can produce both stable and complex oscillations
makes kw an important parameter to vary and analyze.

Similarly, while kmp, the rate at which untended homopterans become tended by the ants
(thus enter into the mutualistic relationship) is both more difficult to precisely measure than kw

and produces a narrower range of oscillatory and complex behavior, coupled with kw, kmp broadly
governs the rate at which the system’s mutualistic behavior occurs. While kw deals with the quantity
of waste the homopterans produce, kmp deals more with the quality of that waste. The higher quality
waste produced, the more ants are attracted to the homopterans’ host plants, thus increasing the
likelihood that the ants would tend the homopterans.

A key difference between this model in comparison to previous models [26,27] is that we
incorporate separate terms for intraspecies interaction (k f and k f m) within the system, whereas previous
models that have studied dynamic ecological system either have not included intraspecies interaction
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terms [26,27] or have only included it on one trophic level [28]. These nontrivial intraspecies interaction
terms can be understood in a variety of ways, such as inner population fighting or cannibalism [29–31].
Regardless of the ecological interpretation, the overarching effect is uniform: the trophic levels of the
system becomes closed, that is, the populations cannot grow to infinite levels. In ecological terms, this
could occur when the population reaches a point where it is overconsuming the resources available to
it (plant quality declines) and either part of the population dies off due to disadvantages in fitness.

Many of the models that do not have an intraspecies interaction term or set it equal to zero
subsequently predict that the overarching system will both become complex but moreover remain
complex and become, in essence, chaotic. We believe that these results are not because the systems,
in reality, become chaotic but because the mathematical foundation of the model itself lends itself
to producing sustained complex behavior that is consequently interpreted as chaotic. Our model
suggests that having a very small rate of intraspecies interactions can have qualitative and quantitative
differences on the system and its ability to both sustain complex behavior as well as become or not
become chaotic. Furthermore, our results indicate that substantially smaller rates, compared to other
parameters (k f m = 0.005 vs. kw = 12) can dramatically change both the oscillatory time scale of the
system but moreover eliminate complex behavior all together. These results are ecologically significant
in that they provide a reason as to why biological systems, while potentially predicted by models to
become chaotic, rarely, if ever, do so in reality. Moreover, these results are mathematically significant
because they give a basis (negative, quadratic terms) for which to stabilize nonlinear, dynamic systems
from potential complex or mathematically chaotic behavior.

Our work is in accordance with previous studies analyzing chaos in dynamic systems [32–34]
in that there is a very narrow parameter range when complex behavior is both present and can be
labeled as “chaotic”. As Hastings [35] astutely notes, it is within these narrow parameter ranges that
the “biology” of the system becomes crucial and empirical studies are necessary to corroborate the
accuracy of the model and its behavior. We believe that many of the issues surrounding “chaos” within
labeling systems, both physical and natural, lie within the differing usages of chaos in the two fields of
ecology and mathematics. While mathematics understands chaos as a sensitivity depending on initial
conditions [35] or as containing a positive Lyapunov exponent, nontheoretically oriented ecologists
may understand or interpret chaos in a less technical manner, such as a general state of disorder or
stochasticity. As we have shown with parameters such as kmp and k f m, small changes in the parameter
value can lead to important qualitative changes in the systems behavior, leading towards or away from
both stable and strange attractors, limit cycles, and oscillations. However, we caution interpreting
these strange attractors and chaotic behavior as implicating the system’s dynamics as chaotic; no
empirical evidence to date in the ant–homopterans system has shown such chaotic behavior in reality.

In regards to mutualism as a method through which to understand our reality, this model
provides a foundation through which to construct multivariate, nonlinear systems without needlessly
sacrificing the necessary complexities to make the model ecologically feasible. Nevertheless, there
are limitations to this model, since we did not include all of the known interactions between ants and
homopterans. For instance, the tended homopterans are treated as the combination of two separate
species through mutualism. There are separate methods through which to understand mutualism and
the differences between the two species in a mutualistic relationship and the process through which
such relationship is brought about. Different understandings of the mutualistic process will inherently
produce different mathematical and theoretical models, in which different dynamics and behaviors are
inevitable. As such, we encourage using our model as a basis through which to explore more complex
mutualistic systems utilizing, in particular, intraspecies interaction terms, satiation terms, and logistic
growth terms.
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6. Conclusions

While predator–prey and competitive models still dominate both field and theoretical
investigations in ecology, mutualism and its corresponding models are important both in their
elucidation of understudied ecological relationships but also in their ability to display the mathematical
effects of different parameters on the model itself. In our analysis, we consider an ecosystem with five
different interacting species and find a wide variety of complex dynamics. While periods of complex
oscillations were observed, the preceding and resulting stable oscillations, as well as steady states,
indicate that the presence of complex behavior in ecological systems is, if anything, fundamentally
temporary in nature and is more due to the class of ecological models used rather than this model in
particular [36]. Furthermore, we have shown that certain terms that close trophic levels are crucial to
both understanding complex behavior in a system as well as stabilizing the system as a whole.

As with other similar and less representative models of mutualistic systems, our model can be
interpreted as displaying chaotic solutions. However, in contrast to other studies, we emphasize the
importance of mutualism in the switch from chaotic trajectories towards simpler and more stable
oscillations. While period doubling and doubling cascades do occur and the system seems to go to
chaos, the occurrence of inverse period doubling and the system’s return simple oscillations (and
eventually back to steady state values) gives us serious pause as to label our system as wholly or even
partially chaotic. We believe that our model mirrors reality in that there are the correct stabilizing terms
through which the system safeguards against such chaos but moreover they will not display chaotic
or complex behavior whatsoever if the system is stabilized to begin with. While chaotic behavior
in ecological systems has not been readily observed [35], chaos and chaotic attractors in ecological
models have and will continue to be contentious points of debate that require scholarly research, both
mathematically and ecologically.
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