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Abstract: In this paper, local fractional cylindrical wave solutions on Signorini hyperelastic materials
are studied. In particular, we focus on the so-called Signorini potential. Cantor-type cylindrical
coordinates are used to analyze, both from dynamical and geometrical point of view, wave solutions,
so that the nonlinear fundamental equations of the fractional model are explicitly given. In the special
case of linear approximation we explicitly compute the fractional wave profile.

Keywords: elastic cylindrical waves; signorini hyperelastic potential; nonlinearity; Cantor-type
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1. Introduction

In this paper, the fractional differential equations for cylindrical waves in hyperelastic materials
are given. From mechanical point of view, the considered hyperelastic material is described by
the equations of elastic deformation when the stress tensor can be derived from a potential [1–4].
Among the several choices of elastic potentials, we focus on the so-called Signorini potential, which
is characterized by the well known Lamé constants (λ, µ) and by a third parameter c [1,5–7], thereby
opening new perspectives on the definition and analysis of new hyperelastic materials. There exist
many different approaches to describing hyperelastic materials. The theory of hyperelastic materials is
mainly based on the assumption that the deformations might be represented by some potential energy
or elastic potential. These potentials depend on finite strain-tensor or its fundamental invariants, so
that there exist in the literature several different definitions of potentials named after the discoverers:
Rivlin-Sanders, John, Murnaghan, Signorini, etc. The differences among them are due both to the
order of invariants and to the presence of different phenomenological constants. In the simplest case
we have the classical Lamé constants. In the following we will consider hyperelastic materials with
the Signorini potential (see (8)). The existence of a potential is a powerful method to analyze complex
phenomena. In a recent paper [8] (see also references therein) the authors proposed a geometrical
potential to explain the cell orientation in nanofibers.

In the following we are interested on the cylindrical wave solutions, and for this reason it is
assumed that there is an axial symmetry in the material, and as a consequence, that there exists a
privileged coordinate system; i.e., cylindrical coordinates. These coordinates enable one to simplify
the structure of the differential equations for hyperelastic materials as a consequence of symmetries in
the corresponding equations. The solutions of a such kinds of equations are in short called cylindrical
waves. In [9–11] cylindrical waves are explicitly computed and some nonlinear effects are also
shown. In particular, in [9], cylindrical waves in Signorini materials are studied up to the third order
nonlinearity. In the papers [9–11] it is also shown that cylindrical waves are obtained as solutions
of some generalized Weber equation [4], and they can be easily expressed in terms of some special
functions; e.g., the Bessel functions [4,12]. Moreover, cylindrical waves can be studied by using some
more generalized differential operators, such as the fractional operators.
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In recent papers there has been increasing interest for the so-called fractional differential operators
(and fractional differential equations). Indeed the idea that the ordinary differential operator can
be generalized to a fractional order derivative was already discovered at the birth of differential
calculus by Cauchy, but only recently has fractional calculus significantly grown (see, e.g., [13–16]
and references therein). However aside from the many perspectives opened by the fractional calculus,
the main drawback is the existence of many families of fractional differential operators, because the
fractional derivative is not univocally defined. In the following, we focus on the Yang local fractional
derivative [13,15], also known as fractal derivative, which has been successfully applied to the
solutions of many interesting problems (see, e.g., [13,17,18]).

The local fractional calculus is somehow based on a quite natural definition of the differential
operator which naturally inherits almost all properties of the ordinary differential calculus. The local
fractional differential operators are computed, however, in a cylindrical coordinate system defined
on local trigonometric functions, also called a Cantor system of coordinates [13,18]. In some recent
papers it has been also shown that a fractional differential model can be suitably represented by a a
fractal variational model so that it is possible to define a suitable variational principle expressing the
stationarity of a physical potential.

This paper is organized as follows: Section 1 deals with some preliminary remarks on Cantor
cylindrical coordinates; in Sections 2 and 3, local fractional derivative and local fractional covariant
derivative are defined for cylindrical coordinates. In Section 4 the hyperelastic Signorini material is
defined and the local fractional covariant equations are derived. Cylindrical waves are computed in
Section 5, where the solution of the linear case is explicitly computed and discussed.

2. Cantor Metric Tensor

Let (ξ, η, ζ), be the Lagrangian cylindrical coordinate system defined with respect to a fixed
coordinate system as

x = ξ cos η , y = ξ sin η , z = ζ .

The Cantor-type cylindrical coordinates ξ = rα, η = ϑα, ζ = zα are defined as [13,18,19]:
xα = rα cosα (ϑα) ,
yα = rα sinα (ϑα) ,
zα = zα,

(1)

where α ∈ (0, 1], rα ∈ (0,+∞), zα ∈ (−∞,+∞), ϑ ∈ (0, 2π], x2α + y2α = r2α. This definition depends
on the additional fractional order parameter α, so that when α = 1 we get the ordinary cylindrical
coordinates. The functions sinα (ϑα) , cosα (ϑα) are defined, according to [13,18,19], as power series
with Gamma function coefficients

sinα (ϑ
α) =

∞

∑
n=0

(−1)n ϑ(2n+1)α

Γ (1 + (2n + 1)α)

cosα (ϑ
α) =

∞

∑
n=0

(−1)n ϑ2nα

Γ (1 + 2nα)
.

The Euler’s gamma function is defined as

Γ (1 + α) =

∞∫
0

xα−1e−xdx .
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It goes also, by definition (
α

i

)
=

Γ (1 + α)

Γ (1 + i) Γ (1 + α− i)
.

By using the Mittag Leffler function

Eα (ϑ
α) =

∞

∑
n=0

ϑnα

Γ (1 + nα)
,

we can also write

sinα (ϑ
α) =

Eα (iαϑα)− Eα (−iαϑα)

2iα

cosα (ϑ
α) =

Eα (iαϑα) + Eα (−iαϑα)

2
The infinitesimal fundamental form is

(ds)2 = gikdθidθk i, k = 1, 2, 3

with cylindrical coordinates
θ1 = r , θ2 = ϑ , θ3 = z .

By assuming the Cantor-type cylindrical coordinates (1), and the cylindrical symmetry

gik = 0 i 6= k

we have the fundamental Cantor form in cylindrical coordinates

(ds)2 = gikdαθidαθk = (dαr)2 + r2 (dαϑ)2 + (dαz)2 (2)

where the Cantor metric tensor of cylindrical coordinates is defined as

‖gik‖ =

∥∥∥∥∥∥∥
1 0 0
0 r2 0
0 0 1

∥∥∥∥∥∥∥ ,
∥∥∥gik

∥∥∥ =

∥∥∥∥∥∥∥
1 0 0
0 1

/
r2 0

0 0 1

∥∥∥∥∥∥∥ . (2′)

In order to study the differential properties of the manifold, we need to define the partial
derivative. We assume, as fractional operator the Yang local fractional derivative model (see,
e.g., [13,17,18]). In the next section, the main properties of this operator are briefly summarized.

3. Local Fractional Calculus

3.1. Yang Local Fractional Derivative

The local fractional derivative of the function fα (θ) of order α (0 < α < 1) at the fixed value
θ = θ0 is defined by [13,18]:

D(α) fα (θ) =
dα fα (θ)

dθα

∣∣∣
θ=θ0

= lim
θ→θ0

∆α ( fα (θ)− fα (θ0))

(θ − θ0)
α , (3)

being
∆α ( fα (θ)− fα (θ0)) ∼= Γ (1 + α)∆ ( fα (θ)− fα (θ0)) ,
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and the forward difference ∆ defined as

∆ f (θ) = f (θ)− f (θ0)

so that
∆ [ f (θ)− f (θ0)] = f (θ)− f (θ0) .

It is also
dθα ∼= Γ (1 + α) dθ

According to the definition (3), it can be easily shown (see, e.g., [13,18]) that

D(α)θα =
dαθα

dθα
= Γ (1 + α) , dαθα = Γ (1 + α) dθα

D(α)θkα =
dαθkα

dθα
=

Γ (1 + α)

Γ (1 + (k− 1)α)
θ(k−1)α

D(α) sinα θα =
dα

dθα
sinα θα = cosα θα

D(α) cosα θα =
dα

dθα
cosα θα = sinα θα

In some recent papers [20,21] the authors proposed a variational principle to derive some
anisotropic waves, and by using the fractal derivative (3), it is possible to study an interesting
alternative approach to the Yang fractional derivative

3.2. Local Fractional Covariant Derivatives in Cantor Cylindrical Coordinates

In order to define the local fractional equations in Cantor cylindrical coordinates we need to
compute first the local fractional covariant derivative.

The (ordinary) covariant derivatives of a vector {vi} is

∇ivk =
∂vk

∂θi + vjΓk
ji, ∇ivj =

∂vj

∂θi − vkΓk
ji,

which can be easily computed by means of the Christoffel’s symbols

Γm
ki =

1
2

gmn
(

∂gkn

∂θi +
∂gin

∂θk −
∂gki
∂θn

)
and the metric tensor values (2).

Thanks to (1) the only non-vanishing components of these symbols are

Γ1
22 = −r, Γ2

12 = Γ2
21 = (1/r) .

The covariant fractional derivatives of a vector {vi} are defined as

∇α
i vk =

∂αvk

∂θi
α

+ vj α
Γ k

ji, ∇α
i vj =

∂αvj

∂θi
α

− vk
α
Γ jik

The fractional covariant derivative can be easily computed by means of the fractional
Christoffel’s symbols

α
Γ m

ki =
1
2

gmn
(

∂αgkn

∂θi
α

+
∂αgin

∂θk
α

− ∂αgki
∂θn

α

)
,
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the metric values (2) and the definition (3). Thanks to (1), the only non-vanishing components of these
symbols are

α
Γ 1

22 = −Γ (1 + α) r,
α
Γ 2

12 =
α
Γ 2

21 = Γ (1 + α) (1/r) .

4. Local Fractional Covariant Equations in Cylindrical Coordinates for Signorini
Hyperelastic Materials

In this section we explicitly compute the fundamental covariant equations for a hyperelastic
material, by characterizing first the so-called Signorini materials [2,5–7,9–11].

4.1. Signorini Hyperelastic Materials

In order to write the fundamental equations for an elastic material, we need first to compute the
components of the Cauchy-Green strain tensor, which is defined for a fractional local derivative by

εα
ik =

1
2

(
∇α

i uk +∇α
k ui +∇α

i uj∇α
k uj
)

(4)

~u = {ui} being the displacement vector (in each point of the continuum). When the displacement is
characterized in terms of cylindrical coordinates

~u
(

θ1, θ2, θ3
)
= ~u (r, ϑ, z) = {u1 = ur (r) , u2 = r · uϑ = u3 = uz = 0} (5)

we obtain cylindrical waves [1–7,9–11]. In this case, by taking into account (1)-(5) the only non-zero
components of the strain tensor are

εα
11 = εα

rr = Γ (1 + α) ur,r +
1
2 (Γ (1 + α) ur,r)

2 ,

εα
22 = r2εα

ϑϑ = Γ (1 + α) rur +
1
2 (Γ (1 + α) ur)

2
(6)

where the comma stands for fractional partial derivative.
By using the components of the Cauchy-Green tensor, we can easily compute the three

fundamental invariants. These invariants are the fundamental tools for the computation of
the potential.

By neglecting displacements of order higher than three, we have for the three fundamental
invariants 

Iα
1
(
εα

ik
)
= εα

ikgik
α = εα

11 + εα
22

= Γ (1 + α) ur,r +
1
2 (Γ (1 + α) ur,r)

2 + rur +
1
2 (ur)

2

Iα
2
(
εα

ik
)
= εα

imεα
nkgik

α gnm
α =

(
εα

11
)2

+ 1
r4 (ε

α
22)

2

∼= (Γ (1 + α) ur,r)
2 + (Γ (1 + α) ur,r)

3 + 1
r2 (ur)

2 + 1
r3 (ur)

3

Iα
3
(
εα

ik
)
= εα

pmεα
inεα

kqgim
α gpq

α gkn
α =

(
εα

11
)3

+ 1
r6 (ε

α
22)

3

∼= (Γ (1 + α) ur,r)
3 + 1

r3 (Γ (1 + α) ur)
3 .

(7)

Signorini potential belongs to the family of the polynomial hyperelastic model, and it is defined
as [2,5,9]

W = (1
/√

IA3 )
[
cIA2 + (1/2)(λ + µ− (c/2))(IA1)

2

+(λ + (c/2))(1− IA1)
]
− (µ + (c/2))

(8)
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where we have

IA1 =
I1 + 2 (I1)

2 − 2I2 + 2 (I1)
3 − 6I1 I2 + 4I3

1 + 2I1 + 2 (I1)
2 − 2I2 +

4
3 (I1)

3 − 4I1 I2 +
8
3 I3

IA2 =
1
2
(I1)

2 −
1
2 (I1)

2 − 1
2 I2 + (I1)

3 − 3I1 I2 + 2I3

1 + 2I1 + 2 (I1)
2 − 2I2 +

4
3 (I1)

3 − 4I1 I2 +
8
3 I3

IA3 =
2
3

I1 I2 −
1

4
√

3
(I1)

3 (I1)
3 − I1 I2 + 2I3

1 + 2I1 + 2 (I1)
2 − 2I2 +

4
3 (I1)

3 − 4I1 I2 +
8
3 I3

The corresponding fractional potential can be obtained by replacing the fundamental invariants
with the corresponding fractional invariant. Thus from the previous equation, by taking into account
(7), we have the approximation

Iα
A1
∼=

(
εα

11 + εα
22
)
+ 2εα

11εα
22

Iα
A2
∼= −1

2

(
(εα

11)
2 +

1
r4 (εα

22)
2
)

Iα
A3
∼=

2
3
(εα

11 + εα
22)

(
(εα

11)
2 +

1
r4 (εα

22)
2
) (9)

and, according to (6)

Iα
A1
∼=

(
Γ (1 + α) ur,r +

1
2 (Γ (1 + α) ur,r)

2 + rur +
1
2 (ur)

2
)
+

2
[
Γ (1 + α) ur,r +

1
2 (Γ (1 + α) ur,r)

2
] [

rur +
1
2 (ur)

2
]

Iα
A2
∼= − 1

2

([
Γ (1 + α) ur,r +

1
2 (Γ (1 + α) ur,r)

2
]2

+ 1
r4

[
rur +

1
2 (ur)

2
]2
)

Iα
A3
∼= 2

3

(
Γ (1 + α) ur,r +

1
2 (Γ (1 + α) ur,r)

2 + rur +
1
2 (ur)

2
)
×([

Γ (1 + α) ur,r +
1
2 (Γ (1 + α) ur,r)

2
]2

+ 1
r4

[
rur +

1
2 (ur)

2
]2
)

(10)

4.2. Fractional Covariant Equations

The fundamental fractional equations of motion for hyperelastic materials are

∇α
i Tik

α − ρ∇α
i εik

α =
∂2uk

∂t2 , (11)

where the Piola-Kirchoff stress tensor is defined as Tik
α =

(
∂αW

/
∂εα

ik
)

and W is the
hyperelastic potential.

Taking into account that
∂αW
∂εα

ik
=

3

∑
h=1

∂αW
∂Iα

Ah

∂Iα
Ah

∂εα
ik

and, according to (6)–(10), we can easily obtain the fractional Piola-Kirchoff tensor for the Signorini
model (see also [2,9] for the ordinary model).

Tik
α =

[
λIα

A1 + cIα
A2 +

1
2
(
λ + µ− c

2
) (

Iα
A1
)2
]

gik

+2
[
µ−

(
λ + µ + c

2
)

Iα
A1
]

εik
α + 2c

(
ε

ij
αεα

k
j

)
.
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In the strain components, we are going to neglect those terms with order higher than 3, so that
the only unvanishing components of Tik

α are T11
α , T22

α and T33
α , so that by using Equations (6)–(10) we

finally get the fractional Kirchoff tensor in terms of displacements

T11
α = Trr

α = (λ + 2µ) Γ (1 + α) ur,r + λ
ur

r
+

+
1
4
(−10λ− 4µ + 5c) (Γ (1 + α) ur,r)

2

+
1
2
(2λ− 2µ− 5c) Γ (1 + α)

1
r

urur,r +
1
4
(6λ + 2µ + c)

1
r2 (ur)

2 +

+
1
2
(6λ + 13c) (Γ (1 + α) ur,r)

3 +
1
4
(70λ− 18µ + c) Γ (1 + α)

1
r

urur,r+

+
1
4
(−42λ + 10µ + 15c)

1
r2 (ur)

2 +
1
2
(4λ− 2µ + 3c)

1
r3 (ur)

3

r2T22
α = r2T33

α = Tϑϑ
α = (λ + 2µ)

ur

r
+ λΓ (1 + α) ur,r+

+
1
4
(−2λ + 2µ + c) (Γ (1 + α) ur,r)

2 +
1
2
(2λ− 2µ− 5c) Γ (1 + α)

1
r

urur,r

+ 1
4 (−2λ− 4µ + 5c) 1

r2 (ur)
2 +

+ (2λ− µ + 4c) (Γ (1 + α) ur,r)
3 +

1
4
(−42λ + 10µ + 15c) Γ (1 + α)

1
r

urur,r+

+
1
4
(70λ− 18µ + c)

1
r2 (ur)

2 + (−λ + 4c)
1
r3 (ur)

3 .

(12)

4.3. Fractional Differential Equations for Longitudinal Waves

From Equations (6), (11) and (12) we get the only non trivial equation

(λ + 2µ)
(

Γ (1 + α)2 ur,rr + Γ (1 + α)
ur,r

r
+ ur −

ur

r2

)
− ρür =

= S1 Γ (1 + α)3 ur,rrur,r + S2Γ (1 + α)2 1
r

ur,rrur

+S3Γ (1 + α)
1
r
(ur,r)

2 + S4Γ (1 + α)
1
r2 ur,rur + S5

1
r3 (ur)

2

+S6 Γ (1 + α)4 ur,rr (ur,r)
2 + S7Γ (1 + α)2 1

r3 ur,rr (ur)
2

+S8 Γ (1 + α)3 1
r

ur,rrur,rur+ + S9
1
r

Γ (1 + α)3 (ur,r)
3 + S10

1
r4 (ur)

3

+S11Γ (1 + α)2 1
r2 (ur,r)

2 ur + S12Γ (1 + α)
1
r3 ur,r (ur)

2 ,

(13)

where the coefficients S1, S2, ..., S12 depend on Signorini parameters λ, µ, c

S1 =
1
2
(−6λ + 4µ + 5c) , S2 =

1
2
(4λ− 2µ− 5c) , S3 =

1
2
(2λ− µ− 3c) ,

S4 =
1
2
(2µ− 5c) , S5 =

1
2
(5µ− 3c) , S6 =

1
4
(9λ− 12µ + 93c) ,

S7 =
1
2
(24λ− 4µ− 7c) , S8 = 36λ− 10µ− 2c , S9 =

1
2
(32λ− 13µ− 2c) ,

S10 = −1
4
(10λ + c) , S11 =

1
4
(−74λ + 26µ + 33c) , S12 =

1
4
(22λ− 18µ + 7c) .
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Equation (13) is a nonlinear, second order, partial differential equation for the unknown function
of two variables ur = ur(r, t). The search of solutions can be greatly simplified by assuming some
further hypotheses on the solution. In particular, the solution can be searched as a product of separable
functions so that the Equation (13) can be split into two nonlinear, second order, ordinary differential
equations; one equation only for the time depending function; and another equation for the radial
dependent function, as shown in the next section.

5. Local Fractional Longitudinal Waves on Cantor Coordinates

In this section the solution of the Equation (13) ur = ur(r, t) is searched for as a product of two
separable functions, t and r respectively; that is, in the form

ur = eiωtu (r) (14)

where the time-harmonic waves eiωt are separated by the fractional longitudinal waves u (r) , so that

ür = −ω2ur , ω =

√
1− (λ + 2µ)

ρ
(15)

where the two dots stand for the second time derivative. The radial function u (r) is the solution of
the equation (

Γ (1 + α)2 u,rr + Γ (1 + α)
u,r

r
+ u− u

r2

)
=

= a1 Γ (1 + α)3 u,rru,r + a2Γ (1 + α)2 1
r

u,rru + a3Γ (1 + α)2 1
r
(u,r)

2

+a4Γ (1 + α)
1
r2 u,ru + a5

1
r3 (u)2 + a6 Γ (1 + α)4 u,rr (u,r)

2

+a7Γ (1 + α)2 1
r3 u,rr (u)

2 + a8 Γ (1 + α)3 1
r

u,rru,ru

+a9
1
r

Γ (1 + α)3 (u,r)
3 + a10

1
r4 (u)3

+a11Γ (1 + α)2 1
r2 (u,r)

2 u + a12Γ (1 + α)
1
r3 u,r (u)

2 ,

(16)

with ai =
Si

λ + 2µ
, i = 1, ..., 12 and u,r =

du
dr

(r), , u,rr =
d2u
dr2 (r).

Equation (16) gives the more general model of local fractional cylindrical wave propagation for
Signorini hyperelastic materials. This is a nonlinear equation up to the third order in u, u,r, u,rr, while
the coefficients depend both on inverse r up to the 4th power, and for the physical parameters λ, µ, c
the dependence on the local fractional derivatives is expressed by the presence of the Gamma function.
In order to analyze the fractal shape of solution, we consider the linear approximation.

Linear Equation

If we neglect the nonlinear terms of Equation (16), we obtain the linear equation(
Γ (1 + α)2 u,rr + Γ (1 + α)

u,r

r
+ u− u

r2

)
= 0 (17)

which is the well-known (homogeneous) Weber equation [12], and it can be solved by using the Bessel
functions. In fact, the Bessel function Jn(x) of order n is the solution of the Weber equation

x2y′′ + xy′ + (x2 − n2)y = 0 , n ∈ N.
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In particular, when n = 1, the more general solution of

x2y′′ + xy′ + (x2 − 1)y = 0

is
y (x) = c1 J I (x) + c2 J I I (x) .

The Taylor series for the first order Bessel function is

J I
n(x) =

∞

∑
k=0

(−1)k

k!Γ(n + k + 1)

(
1
2

x
)2k+n

, x ∈ (−ε, ε)

By using the Bessel functions, the solution of (17) can be easily obtained.

uα (r) = c1r
α∗−1
2α∗ J I√

5−2α∗+α2∗
4α2∗

(
r

α∗

)
+ c2r

α∗−1
2α∗ J I I√

5−2α∗+α2∗
4α2∗

(
r

α∗

)
,

α∗ = Γ (1 + α)

(18)

In Figure 1 the local fractional solution (18) of Equation (17), with α = 0.7 is compared with
the ordinary solution (i.e., α = 1) , the corresponding longitudinal wave solution on the Cantor set,
by taking into account the time-harmonic contribution given in Equation (14) as well, is shown in
Figure 2, while in Figure 3 the smooth longitudinal wave (α = 1) is given for comparison.

1 2 3 4 5

-0.2

0.2

0.4

Figure 1. The local fractional solution of Equation (17) for the longitudinal displacement on Cantor
coordinates (α = 0.7) compared with the smooth solution (α = 1).

Figure 2. Longitudinal fractional wave on Cantor longitudinal coordinates (α = 0.7).
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Figure 3. Smooth longitudinal wave (with α = 1).

6. Conclusions

In this work, the local, fractional, longitudinal wave propagation on Cantor cylindrical coordinates
has been studied for Signorini hyperelastic materials. By using the local fractional derivative (fractal
derivative), the explicit solution of the linear approximation of the complete equations where third
order nonlinearities appear has been given. As a further step, the second and third order nonlinearities
can be investigated as well. Moreover, it would be interesting to study the same problem, e.g., the
Signorini hyperelastic materials and corresponging fractional waves, by using an integral minimization
as a consequence of a suitable variational principle. In some recent papers, the author gave also a
fractal variational model that could be applied to the Signorini hyperelastic materials as well, thereby
opening up some more general perspectives for the analysis of future smart materials.
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