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Abstract: In this work, a study is conducted on the Hermite-Hadamard inequality using a class of
generalized convex functions that involves a generalized and parametrized class of special functions
within the framework of quantum calculation. Similar results can be obtained from the results found
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method used to obtain the results is classic in the study of quantum integral inequalities.
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1. Introduction

In the eighteenth century (1707-1783), Euler started some studies about what we know now as
quantum calculus (1707-1783). As T. Ernst says in [1], it was John von Neumann who first proposed
that group representation theory can be used in quantum mechanics. In [2], F. J. Jackson started a
systematic study of g-calculus and introduced the g-definite integrals. Some branches of mathematics
and physics, such as number theory, orthogonal polynomials, combinatory, basic hypergeometric
functions, mechanics, and quantum and relativity theory, have been enriched by the research work of
various authors as T. Ernst [3,4], H. Gauchman [5], V. Kac and P. Cheung [6], and M.E.H. Ismail [7,8].
Also, certain famous integral inequalities have been studied in the frame of g-calculus [9,10].

Convex functions have played an important role in the development of inequalities, as it is
evidenced in functional analysis, harmonic analysis, specifically in interpolation theory, control theory
and optimization, and it is shown in the following works C.P. Niculescu [11], C. Bennett and R.
Sharpley [12], N.A. Nguyen et al. [13], $. Mititelu and S. Trenta [14], S. Trentd [15-17]. This property
was defined by J.L.W.V. Jensen in the following works [18,19] as follows.

Definition 1 ([20]). A function f : I C R — R is said to be convex on I, if

F(A=1)p1 +1902) < (1—1)f(p1) +1f(2)

holds for every (1, 92 € Land 1 € [0,1].
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The concept of convexity has been extended and generalized in several directions. Various types
of generalized convexity have appeared in different research works, some of them modify the domain
or range of the function, always maintaining the basic structure of a convex function. Among them are:
s-convexity in the first and second sense [21], P-convexity [22], MT-convexity [23], and others [24-31].
The well-known inequality of Hermite-Hadamard is famous throughout mathematical literature,
being of interest in the relationship between arithmetic means, as an argument and as an image of the
ends of the interval where a convex function is defined. It was established as follows.

Theorem 1. Let f : I € R — R be a convex function on I and 1, g2 € 1 with o1 < po. Then the following

inequality holds:
1 2
f <@1 —; m) < — /gf f(x)dx < flo1) + fp2) ;f(m) 1)

This inequality (1) is also known as trapezium inequality.

The trapezium type inequality has remained a subject of great interest due to its wide applications in
the field of mathematical analysis. For other recent results which generalize, improve and extend the
inequality (1) through various classes of convex functions interested readers are referred to [32-39].
Let K be a non empty closed set in R" and ¢ : K — R a continuous function.

Noor, in [35], introduced a new class of non-convex functions, the so-called ¢-convex as follows:

Definition 2. The function f : K — R on the ¢-convex set K is said to be ¢-convex, if

flor+1e? (02— 1)) < (A= 1)f(p1) +1f(92), V1,02 €K, 1€[0,1].

The function f is said to be ¢-concave iff (—f) is ¢-convex. Note that every convex function is ¢-convex
but the converse does not hold in general.
Raina, in [40], introduced a class of functions defined by

o ok
]:g,/\(z) _ ]:;7’%0)/‘7(1)/ (Z) _ Z - ( ) k

LTk + )" @

where p, A > 0, |z| < R and
o= (0(0),...,0(k),...)

is a bounded sequence of positive real numbers. Note that, if we takein (2) p = 1,A = 1 and
o(k) = M for k=0,1,2,...,
(7)k

where &, B, and < are parameters which can take arbitrary real or complex values (provided that
v #0,—1,-2,...), and the symbol (a); denotes the quantity

(@) = H{f(j;)k) =a(a+1)...(a+k-1), k=0,1,2,...,

and restrict its domain to |z| < 1 (with z € C), then we have the classical hypergeometric function,

that is B
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Also, ifoc = (1,1,...) with p = &, (Re(a) > 0), A = 1 and restricting its domain to z € C in (2) then we
have the classical Mittag-Leffler function

+0o0 1
E,(z) = .
2) k;) I'(1+ ak)

Finally, let recall the new class of set and new class of function involving Raina’s function introduced
by Vivas-Cortez et al. in [38], the so-called generalized ¢-convex set and also the generalized
¢-convex function.

Definition 3. Let p,A > 0and o = (0(0),...,0(k),...) are bounded sequence of positive real numbers. A
non empty set K is said to be generalized ¢-convex set, if

p1+1F7 (2 — 1) €K, Vr,0 € K and 1€ [0,1], 3)
where ]-"g/ () is Raina’s function.

Definition 4. Let p, A > 0and 0 = (¢(0),...,0(k),...) are bounded sequence of positive real numbers. If a
function f : K — R satisfies the following inequality

flo1+1F5 (02 — 1)) < (1= 1)f (1) +1f (02), 4)

forall1 € [0,1] and 1, pp € K, then f is called generalized ¢p-convex.

Remark 1. For A = 0,p = 1 and 0 = (0,1,0,0, - - - ) in Definition 4, then we have ]:g/\(m — 1) =
©2 — 01 > 050 we recapture Definition 1. Also, under suitable choice offg/\(), we get Definition 2.

Recently, several authors have utilized quantum calculus as a strong tool in establishing new extensions
of trapezium-type and other inequalities, see [6,41—47] and the references therein.

We recall now some concepts from quantum calculus. Let I = [p1, p2] € Rbeanintervaland 0 < g < 1
be a constant.

Definition 5 ([46]). Let f : I — R be a continuous function and x € 1. Then g-derivative of f on I at x is
defined as

flx) = flgx+ (1 —q)p1)
(1—9)(x—p1)

We say that f is q-differentiable on I provided ,, D, f(x) exists for all x € I. Note that if o1 = 0 in (5), then
o1 Dgf = Dy f, where Dy is the well-known q-derivative of the function f(x) defined by

Dyf(x) = LE =S

mef(x) = ;X F o1, mef(@l) = xlijgl mef(x). %)

Definition 6 ([46]). Let f : I — R be a continuous function. Then the q-integral on I is defined by

X +00
[ F@ gt = (=) =) L 4" (g + (1 =4")en).
Y91 n=0
for x € I. Note that if o1 = 0, then we have the classical g-integral, which is defined by

x 400
| F@odsr = (1= Y- " (g")

n=0
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for x € [0, +0).

Theorem 2 ([46]). Assume that f, g : I — R are continuous functions, c € R. Then, for x € I, we have

AxUm+gﬁﬂm%wzéﬁﬁm¢w+42aom@u

)1

[ en0ndn=c [ £0) oyt

1
Definition 7 ([6]). For any real number (1,

_ qg)l -1

is called the g-analogue of p1. In particular, if n € Z, we deonte

[n] = =q¢" '+ +g+1.

Definition 8 ([6]). Ifn € Z, the g-analogue of (x — p1)" is the polynomial

1, n=020;
(x—p1)(x—qp1) - (x—q"1p1), n>1

(x—p1)g = {
Definition 9 ([6]). Foranyt,s >0,
! t—1 s—1
By(t,s) = /0 1 (1= qu)g odgt
is called the g-Beta function. Note that
1 1
-1
Bq(t1) = /0 i odgt = i’
where [t] is the g-analogue of t.

Theorem 3 ([46]). (g-Hermite—Hadamard) Let f : I — R be a convex continuous function on I and
0 < q < 1. Then the following inequality holds:

P14 2 1 2 qaf(p1) + f(2)
f( 2 ) = 92— 1 Jon UCRLIE 1+¢ ' ©

Sudsutad et al. in [45], established the following three g-integral identities to be used in this paper.
Lemma 1. Let 0 < g < 1 be a constant. Then the following equality holds:

q(1 449 +4%)
14+q+4%)(1+9)%

1
1-(1+ dgt =
J) = gxlodg = ¢
Lemma 2. Let 0 < g < 1 be a constant. Then the following equality holds:

q(1+ 34 +24°)
(1+q+4*)(1+4q)°%

/01(1 — )1 = (14 q)1] odgt =
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Lemma 3. Let f : [p1, p2] € R — R be a g-differentiable function on (o1, p2) with ,, Dy f be continuous
and integrable on [, p2], where 0 < q < 1. Then the following identity holds:

1 o _af(p1) + f(p2)
pr—p1 Jpy T e L+g
_ 1
_ W | (1= 0+ 90 0 Daf 12+ (1= 1)1) ot @)

Motivated by the above literatures, the paper is structured as follows: In Section 2, an identity
for a g-differentiable functions involving Raina’s generalized special function will be established.
Applying this result, we develop some new quantum estimates inequalities for the generalized
¢-convex functions. Some known results will be recaptured as special cases. Also, new quantum
Hermite-Hadamard type inequality for the product of two generalized ¢-convex functions will be
derived. In Section 3, a briefly conclusion is given as well.

2. Some Quantum Trapezium-Type Inequalities

Throughout this paper the following notations are used:

O = [p1, 01+ Fg (92— 1)] for Fy,(p2—p1) >0,

wherep, A > 0and o = (¢(0),...,0(k),...) are bounded sequence of positive real numbers. Let denote
O° the interior of O. Also, for convenience we write dqz for Odql, where 0 < g < 1.

Lemma4. Let f : O — R be a q-differentiable function on O° with ,, Dy f be continuous and integrable on O.
Then the following identity holds:

qF g (92 = 1)

1
W (91, 02;9) = 147 ./0 (1= (1 +9)1) o, Dgf (1 + 17 5 (02 — 01))dqt,
where
1 o1+ T A2 1) qaf (o1) + f(o1+ F ) (92 = 91))
W) = o [T Aoz o)
(91, 02:9) F 02— 1) Jon (1) o1dq T4q

Proof. Using Definitions 5 and 6, we have

0= 0 0Py on + 15002~ 1)
_ /1 (f(pl +1F (02 = 1)) — flor + g1 F7 ) (92 — @1))) .
0 (1= )7\ (92 — 1) !
C(4q) /11 (f(@l + 157, (92 :@1)) ;f(mj— qF (92— @1))) iy
0 (1= )77 (92 — 1)
oS0 flor +a"FF (92 — 1)) — 35 f (o1 + 3" S\ (92 — 91))
- Forlpz — 1)
L 20 flor +a" g, (02 — 91)) — .5 f (o1 + 3" S (92 — m))]
Forlpz— 1)
_afle) + flpr+ 7, (92— 91) N (149) /wﬁfﬁ,A(MKn) N
1Foa (92— 91) 9[F3, (02— o)) o

- (1+q)

o1
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972\ (p2-p1)]

Multiplying both sides of above equality by T+

Lemma 4 is completed. O

, we get the desired result. The proof of

Remark 2. Taking q — 17 in Lemma 4, we obtain the following new identity:

FO (o2 —p1) f1
We(p1, 92) = p'f/o (1=20)f (91 +1F 7 (92— p1))d,
where
1 P11F9\ (92—91) flp1) + flo1 + F7 \ (92 — 1))
We(p1,02) = ]_*(r(—_/ ! f(1)di— 5 pA )
oA 82 ©1) o1

Remark 3. Taking .7-"’;', A (92 = 91) = 92 — 1 in Lemma 4, we get Lemma 3.

Theorem 4. Let f : O — R be a g-differentiable function on O° with ,, D, f be continuous and integrable on
O.If |, Dy f| is generalized ¢-convex on O, then the following inequality holds:

(Wi (o1, 02:0)| < P Fgp(92— 1) {A(Q)Mqu(@l” + B(‘?)|p1qu(@2)|}r ®)

where
1449+ ¢?
(I+g+g*)(1+g)*

q(1+ 3q2 + 2q3)
(14+g9+45)1+9)*

Alg) = B(q) =

Proof. Using Lemmas 1, 2 and 4, the fact that |, D, f| is generalized ¢-convex function, we have

172\ (92— p1)

1+q /ll—(l—i—q 1] oy Dgf( 1+1.7-" A2 — 1)) |dg

fo(m,pz;q)l <

qf A WZ - pl

< i = @ @ [ 1) Lo Do) 1, D (52 |
= 2T (92— 91) [A@)] o Dy (91)] + B@) o Daf (92)]]-

The proof of Theorem 4 is completed. O

Remark 4. Taking ‘7:;77, A (92 = 91) = 92 — o1 in Theorem 4, we get ([45], Theorem 4.1).

Corollary 1. Taking q — 1~ in Theorem 4, we get

! + !
e £ 5t ],
Corollary 2. Taking |, Dy f| < K in Theorem 4, we get
[Wi(p1, 02:4)| < Kg*Fy (92 — p1) [Alg) + B(q)]. (10)

Theorem 5. Let f : O — R be a g-differentiable function on O° with ,, D, f be continuous and integrable on
O.If |, Dyf|" is generalized ¢-convex on O for r > 1 and % + 1 =1, then the following inequality holds:

qFy 1 (92 — 1) q+1) |K)1D2f 1)+ [, D3f (02)]"
W (o1, 92:9)| < —2———{/B( . ;o
|W (1, 902:9)| < 11q \/ T+q (11)
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where )
B(pia) = [ 11— (1+q)ldye

Proof. Using Lemmas 1, 2 and 4, Holder’s inequality and the fact that |, D, f|" is generalized ¢-convex
function, we have

qF 5, (92— 1)
1+g

qFor (92— 1) [ 11 v
< = _ 4
< (/0 11— (1+q) dqz)

1
[We(p1, 02:9)| < /o 11— (1 +q)t]] o, Daf (91 +1Fp 1 (92 — 91)) |dgt

1

-1
([ 1Paf 01 415562~ o))

qFg (92— 1) [ 11 v
< _ 14
< = (/O 1= (1+q)1] dql)

1

< ([ (A=l +il Dyfto) )

q]:pA P2 — 1) z/ q+1)|p, Dygf(p1)]" +|1<91qu(@2)|
1+g \/ 1+¢q

The proof of Theorem 5 is completed. [

Corollary 3. Taking g — 17 in Theorem 5, we get

Forloz =01 2| ()| + I (p2) I
Wi(or,02)] < ;m¢ AT

Corollary 4. Taking |, Dy f| < K in Theorem 5, we get

(W1, 929 1+q\/1+ B(p; q) Fg (02 — 1) (13)

Theorem 6. Let f : O — R be a g-differentiable function on O° with ,, Dy f be continuous and integrable on
O. If |, Dy f|" is generalized ¢-convex on O, then for r > 1, the following inequality holds:

(12)

[Wi(p1, 02:9)| < 7F(q)Fy (02 — 1) (14)
X {/C(@) oy Daf (91)I" + D(@) o1 Dof (02)I",

where

1434 +2¢°
(1+q+¢*)(2+q+q%)

1+4q+ ¢?
(1+q+q*)2+q+4q%)

24q+¢*

= 1+

D(q) =

F(q) =
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Proof. Using Lemmas 1, 2 and 4, the well-known power mean inequality and the fact that |, D, f|" is
generalized ¢-convex function, we have

qF (02 — 1) 1
plT/o 11— (1+)t]| 6y Dof (1 + 1Fp 5 (92 — 1)) |dgt

q7 ;’A(@z—pl) 1 -7
< /= — +
- 1449 </0 1-a q)1|dqz>

Wi (91, 92;9)| <

1
r

1 r
([ 1= 0l Pufon + 1752 — o))

A (92— 1) /1 -1
< = —
< (/O I (1+q)z|dqz>

1

7

1 T r
() 1= @ [ Dl Daf (o0l + 1l Py )

= *F(q)Fg (92 — 391)\’/C(07)|g3173qf(€91)|7 + D(@) o1 Do f (02)]"-

The proof of Theorem 6 is completed. [
Remark 5. Taking fg 2 (92 = 91) = 92 — 1 in Theorem 6, we get ([45], Theorem 4.2).

Corollary 5. Taking g — 1~ in Theorem 6, we get

Fo - / r ! r
Wy(on,0n)| < 2120 [PV 4 F )l 0

Corollary 6. Taking |, D, f| < K in Theorem 6, we get

Wy (91, 92:9)| < Kg*F(q)Fg (92 — 1)1/ C(q) + D(q)- (16)

Theorem 7. Let f : O — R be a g-differentiable function on O° with (,, Dy f be continuous and integrable
on O.If | ,, Dy f|" is generalized ¢-convex on O, then for r > 1, the following inequality holds:

‘7]:;7,)\(@2 — 1)

144 (M| Dof (011 + N(r:9)l o Dof (92)I7 (17)

(W (1, 92:9)| <

where

M(r;q):/01(1—1)|1—(1+q)1|’dq1, N(r,‘q):/011|1—(1+q)1|rdq1.
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Proof. Using Lemmas 1, 2 and 4, the well-known power mean inequality and the fact that |, D, f|" is
generalized ¢-convex function, we have

qF g (92 — 1) 1
plT/o |1—(1+‘7)1||plqu(m—kz]-'g;\(@z—@1))‘%1

Fo _ 1 17%
1 o (92— 1) (/ qu)
1+g 0
1

1 . 1
() 1= @ ], Paston+ 17552 = o) )

F7 (02 — 1 \1-7
< qF g (92— 1) (/ qu>
144 0

1 r r r
() 1= @ (=l P o0+ 1y D (o) )

B qu,)\(K’Z —91)
o 1+9¢

(Wi (1, 02;9)| <

1
;

{/M(30) |y Do f (01)I + N(:0) |y D f (92)1-

The proof of Theorem 7 is completed. [
Corollary 7. Taking q — 1~ in Theorem 7, we get

Forlp2 — 1)

We (01, LA — . 18
Corollary 8. Taking |,, D, f| < K in Theorem 7, we get
K T
[Wr (1, 92:9)| < % gA(pz - Pl)\/M(r;q) + N(r;9). (19)

This lasts Theorems establish two quantum estimates for the product of generalized
¢-convex functions.

Theorem 8. Let f,g : O — R be two non negative g-differentiable functions on O° and generalized ¢-convex
on O. Then the following inequalities hold:

1 p1+75 ) (92—01)
/K P F g (g (20)

ng(pz - @1)

71

< (4 )f(p1)8(p1) +9(1+ ) f(92)8(p2) +4°V (91, 92)
N (1+q9)(1+9+4)

and
201+ FJ (92 — 1) 201+ FJ (92 — 91)
of < o g e @)
1 P12 =) 20°U(p1, 92) + (1 +29 + )V (1, 92)
—_ 1)g(1)dg1 + ,
S F ) /, f0g (), 20+ )1+ g+ )
where

U(p1, 02) = f(91)8(01) + f(92)8(902), V(p1,902) = f(91)8(02) + f(02)g(1)-
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Proof. Using the generalized ¢-convexity of f and g for all 1 € [0, 1], we have

flor+1F (02— 91)) < (1 =1)f(p1) +1f(p2), (22)

g1 177\ (92 — 1)) < (1 —1)8(p1) +18(p2). (23)
Multiplying (22) with (23), we get

flor +1F7 (02 — 91))8 (01 +1F7 5 (92 — 91))

< (1=02f(p1)8(p1) + 2 (92)8(02) +1(1 — 1) [f(91)8(02) + f(92)8(1)]- (24)

Taking g-integral for (24) with respect to 1 on (0,1), and substituting u = ¢, + z]-'g, (2 — 1), we
deduce the desired inequality (20). The proof of inequality (21) is similar so we omit it. [J

Remark 6. Taking J-"g, 2 (92 = 91) = 92 — 1 in Theorem 8, we get ([45], Theorem 4.3).

Corollary 9. Taking g — 1~ in Theorem 8, we get

1 o1+ Fg ) (92— 91) W1, 02) + Vipn, 0)
F7 (o2 — 1) Ne(1)di < ’s
f[ﬁ(m—m)/m f()g(r)dr < . 25)
and
2@1 +]:‘7/\(@2—p1) 2p1+]:0/\(@2—p1)
f . P
2 8 >
; /””Ff%(@rm) U(p1, 92) +2V (01, 92)
= F (2 — 1) 1)g(1)d1 + . 2
Foalo2 = 91) Jon f@)8() . 26)

Theorem 9. Let f,g : O — R be two non negative g-differentiable functions on O° and generalized ¢-convex
on O. Then the following inequality holds:
(1+9)(1+q+¢)
2
[Foalp2 = p1)]
/gaﬁf,;’,A(Wga1)/@1+f,§’,A(mg31)
X

1
g g /0 f(x—i—z]-'g/\(y—x))g(x+z.7-'gA(y—x)> dgrdgxdgy  (27)
1 1

< (1+29+4%) /‘@1+f,§7,A(PZ*@1)
o -7:5,)\(@2 — 1) Jo

2%
(1+49)?

f()g(1)dgr

+ [ f(01)8(01) + f(92)8(02) + 9V (91, 92)],

where V (1, p2) is defined as in Theorem 8.
Proof. Using the generalized ¢-convexity of f and g for all 1 € [0, 1], we have
fx+1F(y —x) < (A=) f(x) +1f(y), (28)

gx+1F5,(y—x)) < (1 —1)g(x) +18(y). (29)
Multiplying (28) with (29), we get

fx+1F(y = x))g(x + 177, (y — x))
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< (=02 f(x)g(x) +2f(y)gw) +1(1 = ) [f(x)gW) + f¥)g(x)]- (30)
Taking g-integral for (30) with respect to 7 on (0,1), we obtain
[ £+ T = g4 iy~ )i o)
A0+ g | fy)gly) | ¢LFIsW) +FW)s()]
T (1+q)A+q+g?)  14q+4° 1+q9)(A+q+97)

Next, taking double g-integral to both sides of (31) with respect to x, ¥ on O°, we have

+F7 (p2—01) ro1+F (p2—p
/@1 oA 82761 /K] oA (p2—91) / f x+l]__0 x))g(x—i—zfg/\(y—x)) dqldqxdqy
q(1+ 42)]:3)\(@2 — 1) or+Fo(p2—p1)
| (1) (x)dyx
A+q)A+q+47) Jg
Forlpz2 = 1) /@1+F A(p2—91)
1+g+4?

01

01

o fy)g(y)dqy (32)

qZ

+ X

(1+q9)(1+q+4%)

1+F7 3 (92— 91) P11+ (92—p1)
/ (x)d x/

e &

g(y)dqy

01 01

P1+Fp ) (92— p1) p1+F7 5 (92— 1)

) f@dgy | §(x)dgx].

By applying Theorem 3 on the right hand side of (32) and multiplying both sides of the derived

(1+9)(1+9+¢%)

inequality by the factor - >, we deduce the desired inequality in (??). O
For(9a—g1)

Remark 7. Taking ]-"‘37, 2 (92 = 91) = 92 — 1 in Theorem 9, we get ([45], Theorem 4.4).

Corollary 10. Taking g — 17 in Theorem 9, we get
3
2[Fg (92— o1)]”
y /gﬁm(m@l) ./mﬁf o (92=91) ./Olf (x +1Fo )y — x)) g (x +1F 0y — x)) didxdy  (33)

- 1 /pl ,5',A(§>z—m) U(pl, @2) +V (@1, m)
1 g 1 dl+ .
]:;;7,/\(392—@1) 1 fg() 8

Remark 8. Since Raina’s generalized special function is parametrized, then for different appropriate parameter
values of p, A > 0, and o = (0(0),...,0(k),...) it is possible to obtain new inequalities using the theorems
and their corollaries presented in this work. It is useful to note that the results can be applied to derive some
inequalities using special means and others special functions.

3. Conclusions

In the present text we have found an identity (Lemma 4) that relates the right inequality of Hermite
Hadamard, from which important and new estimates have been established for them in the quantum
calculus scenario, using a new class of generalized convex functions called generalized ¢-convex
functions, see Theorems 4-9. In the proofs the Raina generalized function, the Holder inequality, and
the power mean inequality were used, and as an end result, an esteem for the integral of the product
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of functions that have the property of being ¢-convex. Some corollary and commentary regarding the
main results have also been presented, and as a final note we draw attention to some results involving
the function of Mittag-Leffler and hypergeometric function as cases of the results obtained.

Since quantum calculus has large applications in many areas of mathematics, the class of generalized
¢-convex can be applied to obtain new results in convex analysis, special functions, quantum
mechanics, related optimization theory, mathematical inequalities, and also stimulate further research
in areas of pure and applied sciences.
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