
axioms

Article

GRSA Enhanced for Protein Folding Problem in the
Case of Peptides

Juan Frausto-Solís 1 , Juan Paulo Sánchez-Hernández 1,2,* , Fanny G. Maldonado-Nava 1 and
Juan J. González-Barbosa 1

1 División de estudios de posgrado e investigación, Tecnológico Nacional de México, Instituto Tecnológico de
Ciudad Madero, Madero 89440, Mexico; juan.frausto@gmail.com (J.F.-S.);
fanny_mn@hotmail.com (F.G.M.-N.); jjgonzalezbarbosa@hotmail.com (J.J.G.-B.)

2 Dirección de Informática, Electrónica y Telecomunicaciones, Universidad Politécnica del Estado de Morelos,
Boulevard Cuauhnáhuac 566, Jiutepec 62574, Mexico

* Correspondence: juan.paulosh@upemor.edu.mx

Received: 19 September 2019; Accepted: 28 November 2019; Published: 4 December 2019 ����������
�������

Abstract: Protein folding problem (PFP) consists of determining the functional three-dimensional
structure of a target protein. PFP is an optimization problem where the objective is to find the
structure with the lowest Gibbs free energy. It is significant to solve PFP for use in medical and
pharmaceutical applications. Hybrid simulated annealing algorithms (HSA) use a kind of simulated
annealing or Monte Carlo method, and they are among the most efficient for PFP. The instances of
PFP can be classified as follows: (a) Proteins with a large number of amino acids and (b) peptides
with a small number of amino acids. Several HSA have been positively applied for the first case,
where I-Tasser has been one of the most successful in the CASP competition. PEP-FOLD3 and golden
ratio simulated annealing (GRSA) are also two of these algorithms successfully applied to peptides.
This paper presents an enhanced golden simulated annealing (GRSA2) where soft perturbations
(collision operators), named “on-wall ineffective collision” and “intermolecular ineffective collision”,
are applied to generate new solutions in the metropolis cycle. GRSA2 is tested with a dataset
for peptides previously proposed, and a comparison with PEP-FOLD3 and I-Tasser is presented.
According to the experimentation, GRSA2 has an equivalent performance to those algorithms.

Keywords: simulated annealing; hybrid simulated annealing; protein folding problem; peptides

1. Introduction

Protein folding problem (PFP) consists of determining the functional three-dimensional structure
or native structure (NS) of a target protein. This problem represents an enormous challenge for
the scientific community, and although there are significant advances and applications of PFP [1],
this problem is far from being solved.

In 1962, Anfinsen developed the thermodynamic hypothesis (TH), which explains how the NS is
achieved in every single protein. Anfinsen showed that this structure is, thermodynamically, the most
stable; it is entirely determined by the corresponding interatomic interactions. Moreover, TH establishes
that the NS is reached when Gibbs free energy is the lowest [2]. The incorrect folding or misfolding of
proteins is a relevant factor in diseases produced by infectious agents and neurodegenerative diseases
such as Alzheimer’s, Parkinson’s, cystic fibrosis, amyloidosis, and Gaucher disease [3–5]. However,
for a small set of proteins, the energy of the native structure is not the lowest [6], and probably some
constraints are not completely known.

In 1968, the challenge of PFP was made evident by the publication of the so-called Levinthal
paradox, which talks about two issues in general: (a) The computational effort of PFP algorithms

Axioms 2019, 8, 136; doi:10.3390/axioms8040136 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0001-9307-0734
https://orcid.org/0000-0002-9448-1946
http://dx.doi.org/10.3390/axioms8040136
http://www.mdpi.com/journal/axioms
https://www.mdpi.com/2075-1680/8/4/136?type=check_update&version=2

Axioms 2019, 8, 136 2 of 23

represents an extremely long execution time for most of the instances, even for very powerful computers;
but, (b) in nature, the same instances can be solved almost instantaneously [7]. Thus, to design more
efficient algorithms, it is important to solve this challenge.

Traditionally, the experimental methods for finding the tertiary protein structure are X-ray
crystallography and nuclear magnetic resonance (NMR). The bad news is that these processes are
regularly too expensive and can take a very long time [8]. This kind of experimental method can result
in accurate solutions when a computational algorithm provides a close solution to the NS.

NS computational prediction belongs to the NP-hard class, and exact algorithms can take an
unacceptable execution time [9]. The problems of this class are considered at least as hard as the
hardest NP problems. As a consequence, heuristic algorithms are currently used. These algorithms
are focused on finding approximate solutions with fast execution times, but they require an adequate
set of their parameters. Thus, designing and tuning heuristic algorithms have become a major PFP
challenge in this area.

The algorithms for PFP can be applied in two kinds of instances: (a) Proteins, with 50 or more
amino acids, and (b) peptides with a small number of amino acids (2–50). Hybrid simulated annealing
algorithms (HSA) use a kind of simulated annealing (SA) or Monte Carlo method, and they are among
the most efficient for PFP. Several HSA have been positively applied for the first case, where I-Tasser
has shown to be one of the most successful in the CASP competition. In recent years, small proteins or
peptides have become very important in pharmaceutical research [10], drug design [11,12], and venom
analysis [13]. In this sense, to design algorithms for finding NS with reasonable processing time for
peptides is relevant. PEP-FOLD3 [12], and golden ratio simulated annealing (GRSA) [14] are two HSA
algorithms successfully applied to peptides. However, the original GRSA only obtain good results
in small instances. Also, we note that other very good algorithms reported in CASP competition as
Rosetta [15] and Quark [16,17] cannot be easily applied to peptides. In contrast, for I-Tasser [18] and
PEP-FOLD3, there are automated protein structure prediction servers available; then, these algorithms
can be easily executed for peptides. Other algorithms without a kind of Monte Carlo method have not
yet published better results for peptides, and are not considered within the confines of this paper.

This paper presents an enhancement GRSA named GRSA2 for the general application of peptides;
we show a comparison of this algorithm with I-Tasser [18] and PEP-FOLD3 [12]. According to the
experimentation, the proposed algorithm has an equivalent performance to those algorithms.

The paper is organized as follows: In Section 1, we give a brief explanation of the problem.
In Section 2, a background of the area and the main work related to this research are presented.
In Section 3, a formal definition of ab initio is discussed. In Section 4, the GRSA algorithm and the soft
perturbations are presented. In Section 5, we describe the experimentation made with the selected
dataset, and we analyze the results obtained by the proposed algorithms. Finally, Section 6 contains
our conclusions.

2. Background

Nowadays, PFP is one of the most critical problems due to its complexity and implications in
optimization, computer science, and bioinformatics [19]. According to Dill and MacCallum [20], this
problem consists of three different enigmas:

1. To design the physical code that aims to determine the interatomic forces of the protein structure
for a given amino acid sequence.

2. To solve the computational problem of designing an algorithm to predict the native structure
from a given amino acid sequence.

3. To perform an algorithm for the folding process by nature, which rapidly finds the routes or
pathways from an initial solution to the NS or functional structure.

This paper is related to the second of these problems, commonly known in computer science as
the protein folding problem, or PFP.

Axioms 2019, 8, 136 3 of 23

The strategy for solving PFP using only information from the amino acid sequences is known
as ab initio and relies on the TH of Anfinsen: This is the approach used in this paper. As we have
mentioned before, there are other successful strategies; nevertheless, they cannot be considered as ab
initio because they use additional data from the secondary structure or other fragments of proteins.
Besides, I-Tasser [18], PEPFOLD3, and Rosetta [15,21] have servers that use these strategies; the former
has obtained first place in the CASP12 competition and has a free solver for proteins and peptides.
The second server permits the execution of peptides until 36 amino acids. Finally, the last server does
not permit the execution of small peptides.

2.1. Computational Methods in PFP

The computational methods applied to the protein folding problem are designed under different
approaches, such as homology, threading, and ab initio. The homology method determines a first
three-dimensional structure comparing the linear sequence of amino acids’ sequence of the target
protein with sequences of other proteins previously solved. This step is usually performed through
multiple alignments of the target versus the candidate protein. Once the best homolog structure
is found, this pattern is used as a template to determine the final structure of the target protein.
In consequence, several homology-modeling tools software for proteins and peptides have been
developed [22–24]. However, the homology models do not guarantee to solve the whole problem due
to the necessity of having an amino acid sequence very similar to the target. When a homologous
protein is not found, the threading method (fold recognition) may be used. This method uses templates
of known structures already solved and published in databases such as PDB (Proteins Database). There
is a set of approaches where threading is applied, for instance: Prospect [25], Hhpred [26], Raptor [27],
Eigenthreader [28], and Lomet [29], which is a phase of the I-Tasser suite [18,30]. Nevertheless,
homology and threading need patterns information about other proteins previously solved and, in this
case, the complete solution of the problem is not guaranteed. In contrast to homology and threading,
the ab initio strategy is not limited to the templates because the amino acid sequence is the unique
information used for predicting the tertiary structure. Moreover, ab initio represents a real challenge to
the scientific community due to its computational complexity, which is NP-hard [31].

There have been many types of computational algorithms applied to the PFP using the ab
initio approach [32,33]. Among the most successful are Monte Carlo and SA algorithms. In this
sense, HSA algorithms have been used for small peptides obtaining acceptable results [34]. These
algorithms are chaotic multi-quenching annealing [35]; the classical simulated annealing using Monte
Carlo methods [36]; multiphase simulated annealing algorithm using Boltzmann and Bose–Einstein
distributions (MPSABBE) [37]; golden ratio simulated annealing [14]; and parallel evolutionary
multi-quenching annealing for protein folding problem [38]. However, all these HSA algorithms have
found acceptable solutions only for some peptides. To find the best way to improve this algorithm
is not an easy task. Moreover, chemical reaction optimization is a successful metaheuristic for other
NP-hard problems [39], which deals with perturbation methods for generating new solutions based on
high and low energy particles. These perturbation methods were not used before in ab initio and are
considered in this paper.

Additionally, other strategies add the ab initio approach that improves the structure prediction,
for instance, Rosetta [15], Touchstone II [40], Quark [16,17], I-Tasser [18], and PEP-FOLD [41]. In this
paper, the I-Tasser [18] and PEP-FOLD3 [12] servers for protein structure prediction were used. Also,
I-Tasser is one of the most successful in CASP [42]. Additionally, PEP-FOLD3 is a server specialized in
peptides [12].

2.2. Simulated Annealing

Kirkpatrick proposed the original simulated annealing algorithm, which uses the metropolis
algorithm applied to optimization problems [43]. SA uses an analogy of the process of annealing a
metal, and the mechanical statistics approach to solve these problems. Essentially, SA uses the initial

Axioms 2019, 8, 136 4 of 23

and the final temperature parameters Ti and T f , respectively. Classical SA (Algorithm 1) consists of
two cycles; an external cycle that is controlled by the temperature parameter and the metropolis cycle,
where a new solution is generated by modifying the previous cycle with a perturbation function (row 6).
In Algorithm 1, the next temperature is determined in row 14, where α is the parameter for decreasing
the current temperature. Simulated annealing introduces a random stage for the acceptance criterion of
new solutions (rows 8 to 12), and the difference of energy ∆E of two configurations is calculated. At this
point, a new solution S j is accepted when ∆E is less than zero; otherwise, a probability distribution
function (row 10) is applied to decide whether the solution S j is accepted or not. As is well known,
the complexity of SA is

(
n2 + n

)
logn, where n depends on the instance size (in our case, the number of

variables in each peptide) [44].

Algorithm 1 Classical Simulated Annealing.

1: SA (Ti, T f p, T f , α)
2: Tk = Ti
3: Sold = generateSolution()
4: while Tk ≥ T f do
5: while Metropolis do
6: Snew = perturbation(Sold)

7: ∆E = E(Snew) − E(Sold)

8: if ∆E ≤ 0 then
9: Snew = Sold
10: else if e−∆E/Ti > random[0; 1) then
11: Sold = Snew

12: end
13: end
14: Tk+1 = α ∗ Tk
15: end
16: end

2.3. Chemical Reaction Optimization

Chemical reaction optimization algorithm (CRO) is a metaheuristic for optimization, inspired by
the process of the chemical reactions [39]. A chemical reaction is a change of a substance called reactant
into a new one with a different chemical identity. The resulting products have different properties
than the reactants. These products will be more stable, and then their energy will be lower. When the
substance is heated, the molecules move faster, and when it is cooled, they move slower. A chemical
reaction between two molecules can only occur when those molecules collide with each other. If the
molecules have a large amount of energy, they will move around faster; when the particles move very
fast, they collide with each other. Therefore, if the energy is transferred to the particles, the number of
times that the molecules collide with each other will increase. There are two types of collisions [39,45]:

• Unimolecular collisions: When the molecule hits the wall of the container.
• Intermolecular collision: When a molecule collides with other molecules.

CRO presents four different reactions or ways to generate new solutions when a perturbation
function is used with an old solution. These collisions are [39]:

1. Unimolecular collision (low energy collisions). In this group, we find two reactions:

a. On-wall ineffective collision is established as follows [39]:

“It represents the situation when a molecule collides with a wall of the container and then
bounces away remaining in one single unit”.

Axioms 2019, 8, 136 5 of 23

In GRSA2, the current solution Sold is changed by a new solution Snew obtained by a
perturbation function. This operation is equivalent to the classical SA perturbation. Thus,
the complexity of GRSA2 is not modified. This operation is implemented in line seven
of Algorithm 3, which calls the function soft perturbation or Algorithm 2, explained in
Section 4. As we will see, this operation does not add complexity to the classical SA.

b. Decomposition. In this case, a molecule (solution) hits a wall and then is divided into
several parts. In the GRSA2 algorithm, decomposition is a perturbation operation that
generates two new solutions from the current solution. This perturbation is implemented
in GRSA2 in lines sixth and seven of Algorithms 2 and 3, respectively. Again, to include this
operation in SA for obtaining GRSA2 does not increase the complexity of the new algorithm.

2. Intermolecular collision (high energy collisions). This collision has the next elementary reactions:

a. Intermolecular ineffective collision. These kinds of reactions occur when multiple molecules
collide with each other and then bounce away. The number of molecules remains the same.

b. Synthesis. In this reaction, several molecules are fused into a single one.

In this paper, we apply low energy collisions because, according to our previous experimentation,
they are the only ones with good performance.

2.4. Analytical Tuning Method

Simulated annealing uses a random walk, which consists of a sequence of possible solutions to
the problem. Simulated annealing, like many other algorithms, behaves well when its parameters
are correctly tuned. The main parameters are the initial temperature (Ti also designed T0) and the
final temperature (T f). In the classical SA, the temperatures for two consecutive iterations have the
relation of the Equation (1) where α is another parameter 0.7 ≤ α < 1. There are n temperatures and a
metropolis cycle for each of them. In SA, every time the temperature changes a new metropolis cycle is
started; for the kthcycle the length of this cycle is Lk. This parameter is the length of the Markov chain
(i.e., k times the solution space is explored).

T1 = αT0; T2 = αT1, . . . , Tk = αTk−1; . . .Tn = αTn−1 . . . (1)

Moreover, an acceptable solution in the metropolis cycle should satisfy the Boltzmann distribution,
given by Equation (2). In this equation ri is a random number from the [0, 1] range, which is used to
determine if the ith solution in the iterative process is or is not accepted as part of the random walk
of the algorithm. In other words, ri represents the acceptance probability of the ith solution for the
current temperature Ti and a given ∆Z variation of the ith solution and the previous one [46].

ri = P (Si) = e−∆Z/Ti (2)

In this analytical tuning method, the calculations for Ti and T f are based on the acceptance
probability of a new solution P (Sj) and the maximum and minimum cost deterioration (∆Zmax, ∆Zmin).
Therefore, to obtain Ti and T f the calculation is as follows in Equations (3) and (4):

Ti =
−∆Zmax

ln(P(∆Zmax))
, (3)

T f =
−∆Zmin

ln(P(∆Zmin))
. (4)

In SA, the metropolis cycle can be considered as a homogeneous Markov chain where the length
of the Markov chain Lk means the number of iteration for each k-temperature and the increment in
each k-temperature is determined by Lk+1 = βLk, where β determines the increment for this parameter

Axioms 2019, 8, 136 6 of 23

in the next iteration of the Metropolis cycle. Lk is modified until T f is reached. When the geometrical
cooling schedule of Equations (1) is applied, we can establish Equations (5) and (6):

Tn = αnT0, (5)

ln Tn = n lnα+ ln T0. (6)

Then, the number of metropolis cycles can be determined by the variable n as follows in
Equation (7):

n =
ln Tn − ln T1

lnα
. (7)

Now, we obtain the β parameter from Equation (8):

Lk+1 = βLk. (8)

For the last temperature, the length of the metropolis cycle is the longest and is represented by the
variable Lmax defined by Equation (9):

Lmax = βnL1. (9)

Then:
ln Lmax = n ln β+ ln L1. (10)

Finally, from Equation (10) the β parameter is determined by Equation (11)

β = exp(
ln Lmax − ln L1

n
). (11)

In this case, the analytical tuning method can be applied to the algorithms proposed in this paper.

3. Ab Initio Definition

In this section, the ab initio definition and the force field used in the protein folding problem
are presented.

3.1. Ab Initio Problem in PFP

Protein folding problem is the process of finding the tertiary structure of a protein known as
native structure, in which the proteins perform their biological functions correctly. In this paper, ab
initio is applied, which is defined as follows [35]:

• Given a sequence of n amino acids; a1, a2, a3, . . . , an, which represents the primary structure of a
protein with a set of dihedral anglesσ = {σ1, σ2, σ3, . . . , σm}, and an energy function f (σ1, σ2, . . . , σm)

which represents the free energy or Gibbs energy (G).
• Find the native structure of the protein, such that f (σ) represents the minimum energy value,

where the optimal solution σ defines the best three-dimensional configuration. The PFP variables
are the set σ of dihedral angles.

There are four types of torsion angles or dihedral angles as presented in Figure 1. The PFP
variables are the set of dihedral angles that satisfy the minimum energy value. Protein atoms are
represented in three-dimensional Cartesian coordinates.

Axioms 2019, 8, 136 7 of 23

Axioms 2019, 8, x FOR PEER REVIEW 6 of 22

Then, the number of metropolis cycles can be determined by the variable n as follows in Equation

(7):

݊ ൌ
௟௡ ೙்ି௟௡ భ்

௟௡ ఈ
. (7)

Now, we obtain the β parameter from Equation (8):

௞ାଵܮ ൌ .௞ܮߚ (8)

For the last temperature, the length of the metropolis cycle is the longest and is represented by

the variable ௠௔௫ܮ defined by Equation (9):

௠௔௫ܮ ൌ .ଵܮ௡ߚ (9)

Then:

݈݊ ௠௔௫ܮ ൌ ݊ ݈݊ ߚ ൅ ݈݊ .ଵܮ (10)

Finally, from Equation (10) the ߚ parameter is determined by Equation (11)

ߚ ൌ ሺ	݌ݔ݁
௟௡ ௅೘ೌೣି௟௡ ௅భ

௡
ሻ. (11)

In this case, the analytical tuning method can be applied to the algorithms proposed in this

paper.

3. Ab Initio Definition

In this section, the ab initio definition and the force field used in the protein folding problem are

presented.

3.1. Ab Initio Problem in PFP

Protein folding problem is the process of finding the tertiary structure of a protein known as

native structure, in which the proteins perform their biological functions correctly. In this paper, ab

initio is applied, which is defined as follows [35]:

 Given a sequence of ݊ amino acids; ܽଵ, ܽଶ, ܽଷ, … , ܽ௡, which represents the primary structure of

a protein with a set of dihedral angles ߪ ൌ ሼߪଵ, ,ଶߪ ,ଷߪ … , ௠ሽߪ , and an energy function
݂ሺߪଵ, ,ଶߪ … , .௠ሻ which represents the free energy or Gibbs energy (G)ߪ

 Find the native structure of the protein, such that ݂ሺߪሻ represents the minimum energy value,

where the optimal solution ߪ defines the best three‐dimensional configuration. The PFP

variables are the set ߪ of dihedral angles.

There are four types of torsion angles or dihedral angles as presented in Figure 1. The PFP

variables are the set of dihedral angles that satisfy the minimum energy value. Protein atoms are

represented in three‐dimensional Cartesian coordinates.

Figure 1. Representation of the four dihedral angles.

The dihedral angles are defined as follows:

Figure 1. Representation of the four dihedral angles.

The dihedral angles are defined as follows:

• Phi (φ) is the angle between the amino group and the alpha carbon.
• Psi (ψ) is the angle between the alpha carbon and the carboxyl group.
• Omega (ω) is defined for each two consecutive amino acids.
• Chi (χ) is defined between the two planes conformed by two consecutive carbon atoms in the

radical group.

3.2. Force Field

Force fields or energy functions are used to represent the energy of the protein [47]; examples of
these are CHARMM [48], AMBER [47], ECEPP/2 [49], and ECEPP/3 [50]; the latter and ECEPP/2 are
the most common. In these force fields, the potential energy is given by the sum of the electrostatic
energy, Lennard–Jones, and hydrogen-bond energy for all pairs of atoms in the peptide chain together
with the torsion energy for all torsion angles [49]. These terms are shown in Equation (12) through
which energy function ECEPP/2 should be minimized to find the NS [49].

Etotal =
∑

j>i

(
Ai j

r12
i j
−

Bi j

r6
i j

)
+ 332

∑
j>i

qiq j
εri j

+
∑

j>i

(
Ci j

r12
i j
−

Di j

r10
i j

)
+

∑
n Un(1± cos(knϕn)) (12)

where:

• ri j is the distance in Å between the atoms i and j.
• Ai j, Bi j, Ci j and Di j are the parameters of the empirical potentials.
• qi and q j are the partial charges on the atoms i and j, respectively.
• ε is the dielectric constant, which is usually set to ε = 2.
• 332 is a factor used to obtain the energy in kcal/mol.
• Un is the energetic torsion barrier of rotation about the bond n.
• kn is the multiplicity of the torsion angle ϕn.

4. An Enhancement of Golden Ratio Simulated Annealing

Metaheuristic applications to PFP have been increasing their importance in the computational
biology area due to the large number of conformations that a protein can take. The NS computational
prediction can lead to a more efficient and inexpensive process; in fact, the problem belongs to
the NP-hard class. As a consequence, metaheuristic algorithms are currently used. These are
high-performance methods focused on finding approximate solutions using low execution times.
Thus, the correct design and tuning of metaheuristic algorithms have become a significant challenge
in the optimization area [9]. Moreover, experimental methods can find more accurate solutions
when a computational algorithm provides an approximate solution close to the functional solution.
Therefore, it is very advantageous to design heuristics for PFP using ab initio. We describe the proposed
GRSA2 below.

Axioms 2019, 8, 136 8 of 23

4.1. The Enhancement of GRSA

As was mentioned earlier, hybrid simulated annealing algorithms have been used to solve PFP
with remarkable results; one of them is the golden ratio (GR) search method. GR is an irrational number
known as the aura ratio and represented by the letter Φ used in antiquity to design architectural
masterpieces. In modern times, GR has been used as a search strategy [51]. GRSA algorithm is a
hybridization of the SA algorithm and the GR method, which has been applied to NP-hard problems
such as scheduling [52] and SAT [53]. GRSA was also successfully applied to PFP, obtaining good
quality solutions for some peptides [14]. GRSA divides the solution space into sections using the
golden number Φ [14].

A remarkable difference between SA and GRSA is the cooling scheme behavior. GRSA uses
different values of the parameter α, depending on the current temperature, which is cut in some cut-off

temperatures T f pn calculated using the golden number Φ. This temperature is decremented through
the geometric cooling function Tk+1 = αTk, and once T f pn is reached, a new phase begins where the
value of the parameter α is updated and another T f p is recalculated. This procedure remains until
the number of cuts (T f pn) is reached. The last phase is executed until the final temperature is reached.
In Algorithm 3, we can observe this procedure. GRSA uses two strategies for better performance: Stop
criterion and reheat strategy. The reheat strategy (RH) is applied in two phases: (a) At the end of the
last GR section, and (b) when the equilibrium is detected.

Experimentally, we observed that every time a golden section is executed, the time involved
decreases; this reduction is because the GRSA cooling function reaches the final temperature faster.
At the top of Figure 2, we have the equation of the number n of iterations required in general for SA;
in this equation, for a particular instance, the numerator is a C0 constant determined by the final and
initial temperature T f and T0 respectively. Thus, for any specific instance, the number of iterations is a
function of the α parameter; then, the execution time decreases by reducing this parameter. To give
an idea, with α = 0.7, the time required will be less than 15% of the time used for SA with a normal
cooling scheme (using α = 0.95). On Figure 2 the exact proportion is represented by nSA−0.70/nSA−0.95,
and is given as 14.38%. Notice that this relation considers the complete iterations from the T0 to T f
temperatures. In other words, nSA−0.7/nSA−0.95 gives the proportion of randomly executed SA two
times, both of them until SA converges.

If the SA algorithm is executed normally, that is, slowly from T0 to T f with a high value of alpha
(i.e., α = 0.95), the number of iterations is nSA−0.95 = −C0/Ln0.95. In GRSA, the process is executed a
certain nGolden number of phases (see Algorithm 3) depending on the number of cut-off temperatures
T f p. Figure 2 is an example of GRSA where any cut-off is represented by T f p (updated on line 5 of
Algorithm 3). We want to know if a GRSA algorithm with one or more cut-off temperatures makes the
processing time greater, lower, or equivalent to SA. As is shown in Figure 2, one cut-off temperature T f p
divides the process into phases A and B, which are executed with α = 0.70 and α = 0.95, respectively.
The time of GRSA will be, in this case, the total processing times of both phases. GRSA for several cuts
has the following execution times:

1. GRSA with one cut-off temperature:

a. The processing time of phase A is −C0/Ln0.7 multiplied by the fraction of iterations where
this phase is executed (1− 0.618). Let µ1 be the proportion of time of phase A concerning
the normal execution time of SA (α = 0.95); as is shown in Figure 2, µ1 = 5.48% of nSA−0.95.

b. The processing time of phase B is given by [−C/Ln0.95] × 0.618. Now, the time proportion
of phase B for the normal execution of SA is µ2 = 61.8% of nSA−0.95.

c. The total proportion of GRSA processing time compared to SA is µ1 + µ2 = 67.28%.

2. GRSA with two or more cut-off temperatures

a. Phase A is the same process as case 1 (with α = 0.7) and uses µ1 = 5.48% of nSA−0.95.

Axioms 2019, 8, 136 9 of 23

b. Phase B is divided into nGolden sections. For instance, if nGolden equals 2, phase B is
divided into two subphases. The new α values for the next subsections can be again 0.7
and 0.95 for the next subphases. In other words, each time a subdivision is made, the
last subphase will have a new α parameter equal to 0.95. The division process continues
until nGolden parameter is reached. When nGolden equals 2, the two new subphases
(with α = 0.70 and α = 0.95) will have µ1 + µ2 = 67.28% of the execution time of phase B.
The proportion of the total processing time (time of phase A plus time of new subphases
generated from B) will be (0.6728)2 + 0.0548 = 50.7% of the execution time of SA.

c. When nGolden is increased, a reduction of the time is obtained.
d. The alpha values can be changed in several ways. Instead of using the last numbers

(0.7, 0.95) to divide the subsections, a linear or exponential function for the alphas can be
used. In our case, the linear approach was used [14], which gives similar reductions to
those previously presented. Experimentation reveals that, in general, a nGolden value
lower or equal to five gives good results in the case of peptides.

Axioms 2019, 8, x FOR PEER REVIEW 9 of 22

Figure 2. Example using two ߙ values and a cut‐off temperature.

4.2. Soft Perturbation in GRSA

In this work, the goal was to improve the quality of solutions obtained by GRSA for peptides.

Thus, we designed an enhancement of this algorithm by using soft perturbations described before.

Next, we present the GRSA2 (Algorithm 3), which takes the amino acid sequences of the target

protein ܽଵ, ܽଶ, ܽଷ, … , ܽ௡ (primary structure), to generate an initial solution, which will be modified

during the process by the perturbation function. This function is implemented in the metropolis cycle.

As was mentioned earlier, GRSA divides the space solution using the GR number, making cuts in the

temperature parameter. For each temperature range, the ߙ variable is set with a different value in a

range of 0.7 ൑ ߙ ൏ 1. The main difference between GRSA and GRSA2 is the perturbation process.

In the GRSA, the perturbation function randomly chose an angle of the current solution. As a

consequence, the new solution is accepted if the energy is better than the current solution. In GRSA2,

the current solution is modified with the perturbation function (Algorithm 2. Soft perturbation).

In Algorithm 2, line 2, the variables moleColl and b are used for deciding what type of

perturbation will be performed in the metropolis Cycle. In the former, moleColl is defined with a value

that will be compared with the variable b using a random number in the range [0,1]. We have two

cases: (a) If ܾ ൐ ݈݈݋ܥ݈݁݋݉ , only one molecule is chosen for the perturbance process, and a

unimolecular collision will be performed in this case. (b) Otherwise, a high energy perturbation can

be applied. In case (a), the Decomposition criterion statement (line 5) is used to allow the algorithm to

explore other regions of the solution space after enough local search by soft collisions. If the algorithm

has not located a better minimum, it explores other regions of the solution space using

decomposition. Otherwise, a soft collision is applied.

The perturbation called decomposition involves a molecule that hits the wall, and it is divided into

two new molecules. In the GRSA2, decomposition is performed by applying a circular permutation

to the molecule, and two new molecules are created; in other words, two new solutions will be

evaluated and their energies are compared with the original molecule energy. SoftCollision involves

a molecule that hits the wall and results in a new molecule. In GRSA2, this perturbation is randomly

made by selecting the angle of the vector solution; then, the complexity of this operation is O(1). Once

a perturbation is applied, the energy of the new molecule (solution) is calculated and compared with

the original molecule. Only one of the new solutions generated by the different perturbations is

selected (i.e., the solution with the lowest energy), and it continues in the next iteration.

Algorithm 2. Soft perturbation

1: SoftPertubation (ܵ௢௟ௗ)
,݈݈݋ܥ݈݁݋݉ :2 ܾ

Figure 2. Example using two α values and a cut-off temperature.

4.2. Soft Perturbation in GRSA

In this work, the goal was to improve the quality of solutions obtained by GRSA for peptides.
Thus, we designed an enhancement of this algorithm by using soft perturbations described before.
Next, we present the GRSA2 (Algorithm 3), which takes the amino acid sequences of the target
protein a1, a2, a3, . . . , an (primary structure), to generate an initial solution, which will be modified
during the process by the perturbation function. This function is implemented in the metropolis cycle.
As was mentioned earlier, GRSA divides the space solution using the GR number, making cuts in the
temperature parameter. For each temperature range, the α variable is set with a different value in a
range of 0.7 ≤ α < 1. The main difference between GRSA and GRSA2 is the perturbation process. In the
GRSA, the perturbation function randomly chose an angle of the current solution. As a consequence,
the new solution is accepted if the energy is better than the current solution. In GRSA2, the current
solution is modified with the perturbation function (Algorithm 2. Soft perturbation).

Axioms 2019, 8, 136 10 of 23

In Algorithm 2, line 2, the variables moleColl and b are used for deciding what type of perturbation
will be performed in the metropolis Cycle. In the former, moleColl is defined with a value that will be
compared with the variable b using a random number in the range [0, 1]. We have two cases: (a) If
b > moleColl, only one molecule is chosen for the perturbance process, and a unimolecular collision
will be performed in this case. (b) Otherwise, a high energy perturbation can be applied. In case (a),
the Decomposition criterion statement (line 5) is used to allow the algorithm to explore other regions
of the solution space after enough local search by soft collisions. If the algorithm has not located a
better minimum, it explores other regions of the solution space using decomposition. Otherwise, a soft
collision is applied.

The perturbation called decomposition involves a molecule that hits the wall, and it is divided into
two new molecules. In the GRSA2, decomposition is performed by applying a circular permutation to
the molecule, and two new molecules are created; in other words, two new solutions will be evaluated
and their energies are compared with the original molecule energy. SoftCollision involves a molecule
that hits the wall and results in a new molecule. In GRSA2, this perturbation is randomly made
by selecting the angle of the vector solution; then, the complexity of this operation is O(1). Once a
perturbation is applied, the energy of the new molecule (solution) is calculated and compared with the
original molecule. Only one of the new solutions generated by the different perturbations is selected
(i.e., the solution with the lowest energy), and it continues in the next iteration.

Algorithm 2 Soft perturbation.

1: SoftPertubation (Sold)
2: moleColl, b
3: if b > moleColl then
4: Randomly select one particle Mω

5: if Decompositioncriterionmet then
6: Decomposition()
7: else if
8: So f tCollision()
9: end
10: end
11: end

In Algorithm 3, we can see the external cycle similar to classical SA. However, the main difference
is in the metropolis cycle, which made soft perturbation (explained in Algorithm 2). In particular, the
acceptance criterion is given by the potential energy (EP) which is the energy function of the current
solution (Enew) and is compared with the current energy (Eold) plus the kinetic energy (EK), which
is later updated (line 11, Algorithm 3), in a certain way similar to the threshold accepting algorithm
(TA) [54] to accept bad solutions. However, the acceptance criterion is slightly different and is inspired
by the CRO algorithm [39]. In addition, the GRSA2 algorithm has a stop criterion based on the least
square method wherein a low temperature time window (Tf) is established and the slope (m) of a set
of energies is calculated, and when m is lower than a tolerance parameter ε (0.001 in our case), the
algorithm is ended. Finally, the alpha value (α) is updated depending on how many golden sections
(defined by the variable nGolden) are used. Note that the number of cuts of temperature (Tfp) is
indirectly defined in Algorithm 3 by the nGolden parameter are used.

Axioms 2019, 8, 136 11 of 23

Algorithm 3. GRSA2

1: GRSA2 (Ti, T f p, T f , E, S, α, KE, EP nGolden)
2: Tk = Ti
3: Sold = generateSolution()
4: while Tk ≥ T f do
5: T f p = T f p ∗Φ
6: while Metropolis do
7: Snew = So f tPertubation(Sold)

8: EP = Enew
9: if EP ≤ Eold + KE then
10: Sold = Snew

11: KE = ((Eold+KE)-EP)*random [0, 1]
12: end if
13: end while
14: if Tk ≤ T f then
15: m = slope()
16: if m < ε then
17: Tk = T f (the algorithm is stopped)
18: end if
19: end if
20: if

(
Tk ≤ T f por nGolden

)
then

21: α = αnew

22: Tk+1 = α ∗ Tk
23: else
24: Tk+1 = α ∗ Tk
25: end if
26: end while
27: end

In general, GRSA2 has two main contributions that improve the performance of GRSA. Firstly,
the collision operators used to generate new solutions; specifically, soft perturbations are applied; and
finally, the acceptance criterion (similar to threshold annealing algorithm [54]) inspired in the CRO
algorithm and used in the metropolis cycle.

The complexity of the GRSA and GRSA2 algorithms is related to the number of iterations for
generating new solutions, which is equal or lower than the classical SA; also, the perturbations to
generate new solutions for all the three algorithms belong to O(1), the complexity of GRSA and GRSA2
is the same as SA. Note that the acceptance criterion taken from threshold accepting does not modify the
complexity of GRSA2. Experimentally, we verified this situation for the case of peptides in the results
section (Figure 6) and the processing time of the proposed algorithm is generally shorter than SA.

5. Results

In this section, the experimentation results of the proposed algorithms for peptides and small
proteins are discussed. Essentially, we present the instances used to evaluate the proposed algorithms
and comparing GRSA2 versus SA, I-Tasser, and PEP-FOLD3 algorithms. The previous comparison has
not been made previously.

Axioms 2019, 8, 136 12 of 23

5.1. Experimental Description

The algorithms presented in this paper were tested with a set of 18 peptides; some of them are
very common in the literature, such as the Met-enkephalin (The PDB code is 2LWC) and the Human
Proinsulin C-Peptide (1T0C). In Table 1, we show the number of amino acids and variables for these
peptides. Met-enkephalin is a very small peptide, which is included here because it is commonly used
to test new algorithms for peptides, due to its number of amino acids and the size of the solution space.
The Met-enkephalin can be taken as a benchmark for evaluating the efficiency of new algorithms [55].
All the algorithms were executed 30 times for statistical validation. The energy function ECEPP/2
implemented in SMMP is used [49]. The initial and final temperatures used by the algorithms tested
were tuned analytically (Section 2.2).

Table 1. Peptide instances test set.

Number Instance (PDB Code) Number of Amino Acids Number of Variables

1 2LWC 5 19
2 1EGS 9 49
3 1UAO 10 47
4 1L3Q 12 62
5 2EVQ 12 66
6 1IN3 12 74
7 1RNU 13 68
8 1LCX 13 81
9 1GJF 14 79
10 1K43 14 84
11 2BTA 15 100
12 1LE3 16 91
13 1PEF 18 124
14 1L2Y 20 100
15 1DU1 210 134
16 1PEI 22 143
17 1WZ4 23 123
18 2MLT 26 158
19 1T0C 31 132

For the SA algorithm, the parameter alpha(α) was set at 0.95. In the case of GRSA, alpha was
tuned using values from 0.75 to 0.95 with five golden ratio sections. The ω angle used by all the
assessed algorithms was fixed at 180◦. Furthermore, in addition to the minimal energy quality value,
we used two metrics of structural quality usually used for PFP algorithms, the RMSD (Root Mean
Square Deviation) and the TM-Score (Template Modeling Score) [56]. RMSD is a structural measure
between the native structure and the best-found solution. When RMSD is close to zero, there is a
perfect structural similarity between the two compared structures. However, when RMSD is greater
than zero, the structural quality is reduced. The metric TM-Score is also used to measure the similarity
of structures. Protein pairs with a TM − Score > 0.5 would indicate that they are mostly within the
same fold, while those with a TM − Score < 0.5 would indicate that they are mainly not within the
same fold [57]. RMSD and TM-Score were calculated using TM-Align Server [58], which employs the
backbone (Cα).

5.2. Results and Discussion

The results obtained by the proposed algorithms are shown in Tables 2–4. Tables 2 and 3 include
information about the average energy of each protein (kcal/mol), average processing time (minutes),
RMSD, and TM-Score. In Table 2, the results obtained with the SA algorithm are presented.

Axioms 2019, 8, 136 13 of 23

Table 2. Average results of the simulated annealing (SA) algorithm.

Instances Average Energy (kcal/mol) Average RMSD Average TM-Score

2LWC −7.7386 0.5538 0.5007
1EGS −1.0498 2.9325 0.2816
1UAO −34.2519 2.7139 0.2818
1L3Q −49.5822 4.2446 0.2116
2EVQ −53.3023 1.5843 0.2663
1IN3 −70.1176 3.6054 0.2748

1RNU −73.6159 1.4122 0.3526
1LCX −61.9788 1.3277 0.2436
1GJF −67.6448 1.76 0.2820
1K43 −74.1248 2.46 0.2276
2BTA −98.6907 3.3561 0.1992
1LE3 −78.0697 2.0468 0.1791
1PEF −68.1363 1.9766 0.1780
1L2Y −92.8494 2.126 0.1805
1DU1 −123.4410 2.0280 0.1760
1PEI −111.8189 2.351 0.1435

1WZ4 −112.8309 2.75 0.1572
2MLT −86.3540 2.8553 0.1666
1T0C −109.1762 3.1829 0.1970

Table 3. Average results of the enhanced golden simulated annealing (GRSA2) algorithm.

Instances Average Energy (kcal/mol) Average RMSD Average TM-Score

2LWC −5.7567 0.5593 0.4970
1EGS 3.5779 2.2703 0.2830
1UAO −49.4173 1.1766 0.2718
1L3Q −66.6739 2.784 0.2203
2EVQ −69.7577 1.5208 0.2576
1IN3 −96.1027 1.2333 0.3469

1RNU −70.9097 1.4382 0.2534
1LCX −60.4809 1.5791 0.2205
1GJF −93.3798 1.2517 0.3989
1K43 −98.7355 1.9287 0.1730
2BTA −153.3692 2.6587 0.2075
1LE3 −93.4192 1.89333 0.1773
1PEF −57.2994 2.0026 0.1534
1L2Y −125.3933 2.4276 0.1734
1DU1 −134.8380 1.5084 0.1695
1PEI −114.1452 2.315 0.1936

1WZ4 −125.0288 2.0323 0.1453
2MLT −150.0441 2.1519 0.2899
1T0C −110.1145 3.5264 0.1999

Finally, the results of GRSA2 algorithm are shown in Table 3. This table shows an improvement in
the average energy in most cases.

In Tables 2 and 3, we can observe how the improvements in energy, RMSD, and TM-Score are
not always in favor of a particular algorithm. This situation often occurs in optimization problems,
as underlined in the non-free lunch theorem [59].

Figure 3 shows the average energy results for nineteen instances. We note that GRSA2 outperforms
SA in most cases.

Axioms 2019, 8, 136 14 of 23

Axioms 2019, 8, x FOR PEER REVIEW 13 of 22

1L2Y −125.3933 2.4276 0.1734

1DU1 −134.8380 1.5084 0.1695

1PEI −114.1452 2.315 0.1936

1WZ4 −125.0288 2.0323 0.1453

2MLT −150.0441 2.1519 0.2899

1T0C −110.1145 3.5264 0.1999

In Tables 2 and 3, we can observe how the improvements in energy, RMSD, and TM‐Score are

not always in favor of a particular algorithm. This situation often occurs in optimization problems,

as underlined in the non‐free lunch theorem [59].

Figure 3 shows the average energy results for nineteen instances. We note that GRSA2

outperforms SA in most cases.

Figure 3. SA and GRSA2 algorithms performance with energy average results.

Figure 4 shows the average RMSD results for 19 instances. We note that GRSA2 outperforms SA

in most cases.

Figure 4. RMSD performance with average results of SA and GRSA2.

Figure 5 shows the TM‐Score average results for nineteen instances. We can observe that GRSA2

and SA algorithms have a similar performance. However, in some cases, GRSA2 outperforms SA.

Figure 3. SA and GRSA2 algorithms performance with energy average results.

Figure 4 shows the average RMSD results for 19 instances. We note that GRSA2 outperforms SA
in most cases.

Axioms 2019, 8, x FOR PEER REVIEW 13 of 22

1L2Y −125.3933 2.4276 0.1734

1DU1 −134.8380 1.5084 0.1695

1PEI −114.1452 2.315 0.1936

1WZ4 −125.0288 2.0323 0.1453

2MLT −150.0441 2.1519 0.2899

1T0C −110.1145 3.5264 0.1999

In Tables 2 and 3, we can observe how the improvements in energy, RMSD, and TM‐Score are

not always in favor of a particular algorithm. This situation often occurs in optimization problems,

as underlined in the non‐free lunch theorem [59].

Figure 3 shows the average energy results for nineteen instances. We note that GRSA2

outperforms SA in most cases.

Figure 3. SA and GRSA2 algorithms performance with energy average results.

Figure 4 shows the average RMSD results for 19 instances. We note that GRSA2 outperforms SA

in most cases.

Figure 4. RMSD performance with average results of SA and GRSA2.

Figure 5 shows the TM‐Score average results for nineteen instances. We can observe that GRSA2

and SA algorithms have a similar performance. However, in some cases, GRSA2 outperforms SA.

Figure 4. RMSD performance with average results of SA and GRSA2.

Figure 5 shows the TM-Score average results for nineteen instances. We can observe that GRSA2
and SA algorithms have a similar performance. However, in some cases, GRSA2 outperforms SA.
Axioms 2019, 8, x FOR PEER REVIEW 14 of 22

Figure 5. TM‐Score performance with average results.

The average processing times for SA and GRSA2 are shown in Figure 6. As we can observe,

GRSA2 has a better processing time than the SA algorithm, except in the last instance.

Figure 6. Average processing time of SA and GRSA2.

We take a set of 15 peptides of Table 1 ordered by the number of variables to compare the

performance of SA with GRSA and GRSA2. Figure 7a,b shows the RMSD and TM‐SCORE of the

algorithms. We can observe that GRSA and GRSA2, in most cases, have better results than SA.

However, according to Figure 7c, it is clear that GRSA2 outperforms SA and GRSA. Finally, Figure

7d shows the execution time f1(n), f2(n), and f3(n) of the three algorithms, SA, GRSA, and GRSA2,

respectively. Because f2(n) and f3(n) are lower or equal than f1(n), they belong to the same complexity

class [60].

Figure 5. TM-Score performance with average results.

The average processing times for SA and GRSA2 are shown in Figure 6. As we can observe,
GRSA2 has a better processing time than the SA algorithm, except in the last instance.

Axioms 2019, 8, 136 15 of 23

Axioms 2019, 8, x FOR PEER REVIEW 14 of 22

Figure 5. TM‐Score performance with average results.

The average processing times for SA and GRSA2 are shown in Figure 6. As we can observe,

GRSA2 has a better processing time than the SA algorithm, except in the last instance.

Figure 6. Average processing time of SA and GRSA2.

We take a set of 15 peptides of Table 1 ordered by the number of variables to compare the

performance of SA with GRSA and GRSA2. Figure 7a,b shows the RMSD and TM‐SCORE of the

algorithms. We can observe that GRSA and GRSA2, in most cases, have better results than SA.

However, according to Figure 7c, it is clear that GRSA2 outperforms SA and GRSA. Finally, Figure

7d shows the execution time f1(n), f2(n), and f3(n) of the three algorithms, SA, GRSA, and GRSA2,

respectively. Because f2(n) and f3(n) are lower or equal than f1(n), they belong to the same complexity

class [60].

Figure 6. Average processing time of SA and GRSA2.

We take a set of 15 peptides of Table 1 ordered by the number of variables to compare the
performance of SA with GRSA and GRSA2. Figure 7a,b shows the RMSD and TM-SCORE of the
algorithms. We can observe that GRSA and GRSA2, in most cases, have better results than SA. However,
according to Figure 7c, it is clear that GRSA2 outperforms SA and GRSA. Finally, Figure 7d shows
the execution time f 1(n), f 2(n), and f 3(n) of the three algorithms, SA, GRSA, and GRSA2, respectively.
Because f 2(n) and f 3(n) are lower or equal than f 1(n), they belong to the same complexity class [60].

Axioms 2019, 8, x FOR PEER REVIEW 14 of 22

The average processing times for SA and GRSA2 are shown in Figure 6. As we can observe,
GRSA2 has a better processing time than the SA algorithm, except in the last instance.

Figure 6. Average processing time of SA and GRSA2.

We take a set of 15 peptides of Table 1 ordered by the number of variables to compare the
performance of SA with GRSA and GRSA2. Figure 7a,b shows the RMSD and TM-SCORE of the
algorithms. We can observe that GRSA and GRSA2, in most cases, have better results than SA.
However, according to Figure 7c, it is clear that GRSA2 outperforms SA and GRSA. Finally, Figure
7d shows the execution time f1(n), f2(n), and f3(n) of the three algorithms, SA, GRSA, and GRSA2,
respectively. Because f2(n) and f3(n) are lower or equal than f1(n), they belong to the same complexity
class [60].

Figure 7. Performance of the SA, golden ratio simulated annealing (GRSA), and GRSA2.

Table 4 shows the results for 19 instances for peptides reported by PEP-FOLD3 in its server.
These peptides have between 5 and 50 amino acids in aqueous solution [12]. Column one contains
the instances used for testing the proposed algorithms and PEP-FOLD3. In columns two and three,
we present the RMSD average of the five best instances of PEP-FOLD3 and GRSA. Note that in most
cases, GRSA2 obtained the best results with respect to RMSD (bold). In columns four and five, we
present the TM-Score obtained by these algorithms. Once again, we verify that GRSA obtained the
best results. We do not show the processing time of the results obtained by I-Tasser and PEP-FOLD3
servers. This is because these servers do not include this information.

Figure 7. Performance of the SA, golden ratio simulated annealing (GRSA), and GRSA2.

Table 4 shows the results for 19 instances for peptides reported by PEP-FOLD3 in its server.
These peptides have between 5 and 50 amino acids in aqueous solution [12]. Column one contains
the instances used for testing the proposed algorithms and PEP-FOLD3. In columns two and three,
we present the RMSD average of the five best instances of PEP-FOLD3 and GRSA. Note that in most
cases, GRSA2 obtained the best results with respect to RMSD (bold). In columns four and five, we
present the TM-Score obtained by these algorithms. Once again, we verify that GRSA obtained the
best results. We do not show the processing time of the results obtained by I-Tasser and PEP-FOLD3
servers. This is because these servers do not include this information.

Axioms 2019, 8, 136 16 of 23

Table 4. The five best RMSD and TM-Score of PEP-FOLD and the enhancement GRSA algorithms.

Instances RMSD GRSA2 RMSD PEP-FOLD3 TM-Score GRSA2 TM-Score PEP-FOLD3

2LWC 0.134 0.49915802 0.622022 0.63645887
1EGS 0.174 0.73379194 0.363588 0.28297143
1UAO 0.218 1.43239212 0.379374 0.40506025
1L3Q 0.49 2.11590502 0.304162 0.24278709
2EVQ 0.842 0.82452263 0.332682 0.46217599
1IN3 0.604 0.92708461 0.436492 0.39695857

1RNU 0.352 0.80774343 0.435094 0.62276608
1LCX 0.552 1.22937939 0.287596 0.33622833
1GJF 0.308 0.65046896 0.562328 0.58219463
1K43 0.782 1.50581118 0.258046 0.33411994
2BTA 0.594 2.43201208 0.27246 0.18155674
1LE3 0.826 1.96238744 0.263946 0.24700389
1PEF 0.712 0.61298789 0.20271 0.66990523
1L2Y 1.312 1.86484044 0.247734 0.3428772
1DU1 1.286 1.29916825 0.256142 0.25837997
1PEI 1.198 1.29391279 0.313088 0.35394815

1WZ4 3.034 2.74149027 0.191944 0.23998161
2MLT 0.972 1.57230256 0.462832 0.43948739
1T0C 0.352 3.21218634 0.435094 0.22636347

Figure 8 shows the five best RMSD results for 19 instances. We note that GRSA2 outperforms
PEP-FOLD3 in most cases.

Axioms 2019, 8, x FOR PEER REVIEW 15 of 22

Table 4. The five best RMSD and TM-Score of PEP-FOLD and the enhancement GRSA algorithms.

Instances RMSD GRSA2 RMSD PEP-FOLD3 TM-Score GRSA2 TM-Score PEP-FOLD3
2LWC 0.134 0.49915802 0.622022 0.63645887
1EGS 0.174 0.73379194 0.363588 0.28297143
1UAO 0.218 1.43239212 0.379374 0.40506025
1L3Q 0.49 2.11590502 0.304162 0.24278709
2EVQ 0.842 0.82452263 0.332682 0.46217599
1IN3 0.604 0.92708461 0.436492 0.39695857

1RNU 0.352 0.80774343 0.435094 0.62276608
1LCX 0.552 1.22937939 0.287596 0.33622833
1GJF 0.308 0.65046896 0.562328 0.58219463
1K43 0.782 1.50581118 0.258046 0.33411994
2BTA 0.594 2.43201208 0.27246 0.18155674
1LE3 0.826 1.96238744 0.263946 0.24700389
1PEF 0.712 0.61298789 0.20271 0.66990523
1L2Y 1.312 1.86484044 0.247734 0.3428772
1DU1 1.286 1.29916825 0.256142 0.25837997
1PEI 1.198 1.29391279 0.313088 0.35394815

1WZ4 3.034 2.74149027 0.191944 0.23998161
2MLT 0.972 1.57230256 0.462832 0.43948739
1T0C 0.352 3.21218634 0.435094 0.22636347

Figure 8 shows the five best RMSD results for 19 instances. We note that GRSA2 outperforms
PEP-FOLD3 in most cases.

Figure 8. RMSD performance of the five best solutions.

Figure 9 shows the TM-Score of the five best results for 19 instances. We note that GRSA2 and
PEP-FOLD have similar performance, although PEP-FOLD3 is the best in most cases.

Figure 9. TM-Score performance of the five best solutions.

Figure 8. RMSD performance of the five best solutions.

Figure 9 shows the TM-Score of the five best results for 19 instances. We note that GRSA2 and
PEP-FOLD have similar performance, although PEP-FOLD3 is the best in most cases.

Axioms 2019, 8, x FOR PEER REVIEW 15 of 22

Table 4. The five best RMSD and TM-Score of PEP-FOLD and the enhancement GRSA algorithms.

Instances RMSD GRSA2 RMSD PEP-FOLD3 TM-Score GRSA2 TM-Score PEP-FOLD3
2LWC 0.134 0.49915802 0.622022 0.63645887
1EGS 0.174 0.73379194 0.363588 0.28297143
1UAO 0.218 1.43239212 0.379374 0.40506025
1L3Q 0.49 2.11590502 0.304162 0.24278709
2EVQ 0.842 0.82452263 0.332682 0.46217599
1IN3 0.604 0.92708461 0.436492 0.39695857

1RNU 0.352 0.80774343 0.435094 0.62276608
1LCX 0.552 1.22937939 0.287596 0.33622833
1GJF 0.308 0.65046896 0.562328 0.58219463
1K43 0.782 1.50581118 0.258046 0.33411994
2BTA 0.594 2.43201208 0.27246 0.18155674
1LE3 0.826 1.96238744 0.263946 0.24700389
1PEF 0.712 0.61298789 0.20271 0.66990523
1L2Y 1.312 1.86484044 0.247734 0.3428772
1DU1 1.286 1.29916825 0.256142 0.25837997
1PEI 1.198 1.29391279 0.313088 0.35394815

1WZ4 3.034 2.74149027 0.191944 0.23998161
2MLT 0.972 1.57230256 0.462832 0.43948739
1T0C 0.352 3.21218634 0.435094 0.22636347

Figure 8 shows the five best RMSD results for 19 instances. We note that GRSA2 outperforms
PEP-FOLD3 in most cases.

Figure 8. RMSD performance of the five best solutions.

Figure 9 shows the TM-Score of the five best results for 19 instances. We note that GRSA2 and
PEP-FOLD have similar performance, although PEP-FOLD3 is the best in most cases.

Figure 9. TM-Score performance of the five best solutions.

Figure 9. TM-Score performance of the five best solutions.

Axioms 2019, 8, 136 17 of 23

In Figure 10, a comparison of I-Tasser, and GRSA2 using RMSD is presented. In this case,
17 instances are compared because I-Tasser only accepts proteins greater than 10 amino acids. For
this reason, 2LWC and 1EGS are discarded. The results presented in Figure 10 show the best result
obtained by I-Tasser and GRSA2. We may observe that comparing RMSD results, GRSA2 outperforms
I-Tasser in this set of instances. However, in Figure 11, we observe a similar result between I-Tasser
and GRSA2 comparing only the best TM-Score in both algorithms.

Axioms 2019, 8, x FOR PEER REVIEW 16 of 22

In Figure 10, a comparison of I-Tasser, and GRSA2 using RMSD is presented. In this case, 17
instances are compared because I-Tasser only accepts proteins greater than 10 amino acids. For this
reason, 2LWC and 1EGS are discarded. The results presented in Figure 10 show the best result
obtained by I-Tasser and GRSA2. We may observe that comparing RMSD results, GRSA2
outperforms I-Tasser in this set of instances. However, in Figure 11, we observe a similar result
between I-Tasser and GRSA2 comparing only the best TM-Score in both algorithms.

Figure 10. RMSD comparison of I-Tasser and GRSA2.

Figure 11. TM-Score comparison of I-Tasser versus GRSA2.

The following comparisons (Figures 12 and 13) are made using RMSD and TM-Score with the
best result obtained in the RMSD and I-Tasser algorithms to observe the performance with the set of
instances evaluated.

Figure 12. Best RMSD obtained for I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Figure 10. RMSD comparison of I-Tasser and GRSA2.

Axioms 2019, 8, x FOR PEER REVIEW 16 of 22

In Figure 10, a comparison of I-Tasser, and GRSA2 using RMSD is presented. In this case, 17
instances are compared because I-Tasser only accepts proteins greater than 10 amino acids. For this
reason, 2LWC and 1EGS are discarded. The results presented in Figure 10 show the best result
obtained by I-Tasser and GRSA2. We may observe that comparing RMSD results, GRSA2
outperforms I-Tasser in this set of instances. However, in Figure 11, we observe a similar result
between I-Tasser and GRSA2 comparing only the best TM-Score in both algorithms.

Figure 10. RMSD comparison of I-Tasser and GRSA2.

Figure 11. TM-Score comparison of I-Tasser versus GRSA2.

The following comparisons (Figures 12 and 13) are made using RMSD and TM-Score with the
best result obtained in the RMSD and I-Tasser algorithms to observe the performance with the set of
instances evaluated.

Figure 12. Best RMSD obtained for I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Figure 11. TM-Score comparison of I-Tasser versus GRSA2.

The following comparisons (Figures 12 and 13) are made using RMSD and TM-Score with the
best result obtained in the RMSD and I-Tasser algorithms to observe the performance with the set of
instances evaluated.

Axioms 2019, 8, x FOR PEER REVIEW 16 of 22

In Figure 10, a comparison of I-Tasser, and GRSA2 using RMSD is presented. In this case, 17
instances are compared because I-Tasser only accepts proteins greater than 10 amino acids. For this
reason, 2LWC and 1EGS are discarded. The results presented in Figure 10 show the best result
obtained by I-Tasser and GRSA2. We may observe that comparing RMSD results, GRSA2
outperforms I-Tasser in this set of instances. However, in Figure 11, we observe a similar result
between I-Tasser and GRSA2 comparing only the best TM-Score in both algorithms.

Figure 10. RMSD comparison of I-Tasser and GRSA2.

Figure 11. TM-Score comparison of I-Tasser versus GRSA2.

The following comparisons (Figures 12 and 13) are made using RMSD and TM-Score with the
best result obtained in the RMSD and I-Tasser algorithms to observe the performance with the set of
instances evaluated.

Figure 12. Best RMSD obtained for I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Figure 12. Best RMSD obtained for I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Axioms 2019, 8, 136 18 of 23

In Figure 12, the best RMSD solutions of I-Tasser, PEP-FOLD3, and GRSA2 are compared. Note
that in most cases, GRSA obtains better results than I-Tasser and PEP-FOLD3.

Axioms 2019, 8, x FOR PEER REVIEW 17 of 22

In Figure 12, the best RMSD solutions of I-Tasser, PEP-FOLD3, and GRSA2 are compared. Note
that in most cases, GRSA obtains better results than I-Tasser and PEP-FOLD3.

Figure 13. TM-Score performance of I-Tasser, PEP-FOLD3, and GRSA2.

Finally, in Figure 14, the best TM-Score solutions obtained by I-Tasser, PEP-FOLD3, and GRSA
are compared. We may observe that PEP-FOLD3, in most cases, is better than GRSA and I-Tasser.
However, we should point out that GRSA2 obtain similar or very close results in several instances.

Figure 14 shows a typical alignment of our algorithms and the native structure using the TM-
Align server [58]. Four proteins were chosen (in red), and their native structures (in blue) are
compared with the results obtained by GRSA. As we mentioned before, the quality of the solution is
measured by using energy, the RMSD, and TM-Score values.

Figure 14. TM-align simulation exemplifying the alignment vs. native structure (NS).

Figure 13. TM-Score performance of I-Tasser, PEP-FOLD3, and GRSA2.

Finally, in Figure 14, the best TM-Score solutions obtained by I-Tasser, PEP-FOLD3, and GRSA
are compared. We may observe that PEP-FOLD3, in most cases, is better than GRSA and I-Tasser.
However, we should point out that GRSA2 obtain similar or very close results in several instances.

Axioms 2019, 8, x FOR PEER REVIEW 17 of 22

In Figure 12, the best RMSD solutions of I-Tasser, PEP-FOLD3, and GRSA2 are compared. Note
that in most cases, GRSA obtains better results than I-Tasser and PEP-FOLD3.

Figure 13. TM-Score performance of I-Tasser, PEP-FOLD3, and GRSA2.

Finally, in Figure 14, the best TM-Score solutions obtained by I-Tasser, PEP-FOLD3, and GRSA
are compared. We may observe that PEP-FOLD3, in most cases, is better than GRSA and I-Tasser.
However, we should point out that GRSA2 obtain similar or very close results in several instances.

Figure 14 shows a typical alignment of our algorithms and the native structure using the TM-
Align server [58]. Four proteins were chosen (in red), and their native structures (in blue) are
compared with the results obtained by GRSA. As we mentioned before, the quality of the solution is
measured by using energy, the RMSD, and TM-Score values.

Figure 14. TM-align simulation exemplifying the alignment vs. native structure (NS).

Figure 14. TM-align simulation exemplifying the alignment vs. native structure (NS).

Figure 14 shows a typical alignment of our algorithms and the native structure using the TM-Align
server [58]. Four proteins were chosen (in red), and their native structures (in blue) are compared with
the results obtained by GRSA. As we mentioned before, the quality of the solution is measured by
using energy, the RMSD, and TM-Score values.

Axioms 2019, 8, 136 19 of 23

Compared to the classic SA algorithm, GRSA2 shows the best performance in virtually all instances
using RMSD and TM-Score as a quality metric, as shown in Figures 3–5.

Although GRSA2 is an algorithm that does not use any biological information, as mentioned above,
the results obtained are competitive and sometimes better than those obtained by the PEP-FOLD3 and
I-TASSER servers.

The best RMSD results of GRSA2, I-TASSER, and PEP-FOLD3 are shown in Figure 12, and we can
observe that GRSA2 has the best performance. However, when TM-SCORE is also used as a quality
metric, PEP-FOLD3 has the best performance for most of the instances. Thus, we made a hypothesis
test, and we found that all of the three algorithms are statistically equivalent.

For a better appreciation of the results and the performance of the algorithms, two box diagrams
with the best RMSD and TM-SCORE are presented in Figures 15 and 16, respectively. Note that GRSA2
has a very good performance concerning I-TASSER and PEP-FOLD3 algorithms.

Axioms 2019, 8, x FOR PEER REVIEW 18 of 22

Compared to the classic SA algorithm, GRSA2 shows the best performance in virtually all
instances using RMSD and TM-Score as a quality metric, as shown in Figures 3–5.

Although GRSA2 is an algorithm that does not use any biological information, as mentioned
above, the results obtained are competitive and sometimes better than those obtained by the PEP-
FOLD3 and I-TASSER servers.

The best RMSD results of GRSA2, I-TASSER, and PEP-FOLD3 are shown in Figure 12, and we
can observe that GRSA2 has the best performance. However, when TM-SCORE is also used as a
quality metric, PEP-FOLD3 has the best performance for most of the instances. Thus, we made a
hypothesis test, and we found that all of the three algorithms are statistically equivalent.

For a better appreciation of the results and the performance of the algorithms, two box diagrams
with the best RMSD and TM-SCORE are presented in Figures 15 and 16, respectively. Note that
GRSA2 has a very good performance concerning I-TASSER and PEP-FOLD3 algorithms.

Figure 15. Best RMSD obtained of I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Figure 16. Best RMSD obtained of I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Despite the good performance shown by GRSA2, we should mention that this algorithm
outperforms I-TASSER and PEP-FOLD3 servers but not in all cases. For instance, in Figure 8, when
the TM-SCORE metric is used, a downward trend is observed for cases of less than 10 amino acids,
compared to the results obtained by PEP-FOLD3. Also, by comparing it to I-Tasser and PEP-FOLD3,
the quality measured with the TM-Score metric for GRSA2 is not the best in most cases (Figures 13
and 16).

6. Conclusions

In this paper, we present the GRSA2 algorithm for the protein folding problem applied to
peptides. This algorithm combines the classical features of SA with soft perturbation and acceptance

Figure 15. Best RMSD obtained of I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Axioms 2019, 8, x FOR PEER REVIEW 18 of 22

Compared to the classic SA algorithm, GRSA2 shows the best performance in virtually all
instances using RMSD and TM-Score as a quality metric, as shown in Figures 3–5.

Although GRSA2 is an algorithm that does not use any biological information, as mentioned
above, the results obtained are competitive and sometimes better than those obtained by the PEP-
FOLD3 and I-TASSER servers.

The best RMSD results of GRSA2, I-TASSER, and PEP-FOLD3 are shown in Figure 12, and we
can observe that GRSA2 has the best performance. However, when TM-SCORE is also used as a
quality metric, PEP-FOLD3 has the best performance for most of the instances. Thus, we made a
hypothesis test, and we found that all of the three algorithms are statistically equivalent.

For a better appreciation of the results and the performance of the algorithms, two box diagrams
with the best RMSD and TM-SCORE are presented in Figures 15 and 16, respectively. Note that
GRSA2 has a very good performance concerning I-TASSER and PEP-FOLD3 algorithms.

Figure 15. Best RMSD obtained of I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Figure 16. Best RMSD obtained of I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Despite the good performance shown by GRSA2, we should mention that this algorithm
outperforms I-TASSER and PEP-FOLD3 servers but not in all cases. For instance, in Figure 8, when
the TM-SCORE metric is used, a downward trend is observed for cases of less than 10 amino acids,
compared to the results obtained by PEP-FOLD3. Also, by comparing it to I-Tasser and PEP-FOLD3,
the quality measured with the TM-Score metric for GRSA2 is not the best in most cases (Figures 13
and 16).

6. Conclusions

In this paper, we present the GRSA2 algorithm for the protein folding problem applied to
peptides. This algorithm combines the classical features of SA with soft perturbation and acceptance

Figure 16. Best RMSD obtained of I-Tasser, PEP-FOLD3, and GRSA2 algorithms.

Despite the good performance shown by GRSA2, we should mention that this algorithm
outperforms I-TASSER and PEP-FOLD3 servers but not in all cases. For instance, in Figure 8,
when the TM-SCORE metric is used, a downward trend is observed for cases of less than 10 amino
acids, compared to the results obtained by PEP-FOLD3. Also, by comparing it to I-Tasser and
PEP-FOLD3, the quality measured with the TM-Score metric for GRSA2 is not the best in most cases
(Figures 13 and 16).

Axioms 2019, 8, 136 20 of 23

6. Conclusions

In this paper, we present the GRSA2 algorithm for the protein folding problem applied to peptides.
This algorithm combines the classical features of SA with soft perturbation and acceptance criterion
taken CRO algorithm, and for generating new solutions, we use soft particle perturbations proposed
in the CRO algorithm. As a result, the simulation process for peptides leads to the tertiary structure
close to the native structure and with equivalent quality as the best PFP algorithms.

The proposed algorithms were compared against the classical simulated annealing algorithm,
PEP-FOLD3, and I-Tasser. According to the experimentation, the proposed algorithms overpass SA,
PEP-FOLD3, and I-Tasser when RMSD is compared. However, when TM-Score is used, the results are
similar in some cases, and others are very close. Moreover, according to the experimentation, GRSA2
is statistically equivalent to the other two algorithms PEP-FOLD3 and I-Tasser. In addition, GRSA2 has
the advantage that it is simpler and easier to implement than the other algorithms. To be precise, to
use GRSA2 is more friendly because this algorithm does not require machine learning techniques or a
fragments database.

The GRSA2 algorithm is a simple algorithm because it only uses the sequence of amino acids as
input information, which for certain users can be considered advantageous compared to PEP-FOLD3
and I-Tasser, which depend on biological information. On the contrary, it is necessary to further
improve the proposed algorithm in such a way that we can obtain better results using the TM-Score
metric. Finally, we showed that this new enhancement of GRSA is useful for protein folding problems
in the case of peptides. Therefore, we consider the proposed algorithms are relevant because these
proteins have many applications in medicine, biotechnology, and other areas. As part of our ongoing
work, we are developing a server using GRSA2 for small peptides and other proteins.

Author Contributions: Authors J.F.-S., and J.P.S.-H. contributed equally to the development of this paper.
Conceptualization, J.P.S.-H. and J.F.-S.; methodology J.F.-S., J.P.S.-H., and J.J.G.-B.; Software J.P.S.-H., and F.G.M.-N.;
validation, J.P.S.-H. and J.F.-S.; formal analysis, F.G.M.-N., and J.J.G.-B.; writing—original draft J.F.-S., and J.P.S.-H.;
writing—review and editing, J.F.-S., F.G.M.-N., and J.P.S.-H.

Funding: This research received no external funding.

Acknowledgments: The authors would like to acknowledge with appreciation and gratitude CONACYT and
TecNM/Instituto Tecnológico de Ciudad Madero. Also, we acknowledge Laboratorio Nacional de Tecnologías
de la Información (LaNTI) for the access to the cluster. Fanny Gabriela Maldonado-Nava would like to thank
CONACYT for the PhD. scholarship. Juan Paulo Sánchez Hernández thanks CONACYT for the postdoctoral
scholarship program.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Khoury, G.A.; Smadbeck, J.; Kieslich, C.A.; Floudas, C.A. Protein Folding and de Novo Protein Design for
Biotechnological Applications. Trends Biotechnol. 2014, 32, 99–109. [CrossRef] [PubMed]

2. Anfinsen, C.B. Principles that Govern the Folding of Protein Chains. Science 1973, 181, 223–230. [CrossRef]
[PubMed]

3. Shin, M.H.; Lim, H.S. Screening Methods for Identifying Pharmacological Chaperones. Mol. Biosyst. 2017,
13, 638–647. [CrossRef] [PubMed]

4. Hou, Z.S.; Ulloa-Aguirre, A.; Tao, Y.X. Pharmacoperone Drugs: Targeting Misfolded Proteins Causing
Lysosomal Storage-, ion Channels-, and G protein-coupled receptors-associated conformational disorders.
Expert Rev. Clin. Pharmacol. 2018, 11, 611–624. [CrossRef] [PubMed]

5. Valastyan, J.S.; Lindquist, S. Mechanisms of Protein-folding Diseases at a Glance. Dis. Model. Mech. 2014, 7,
9–14. [CrossRef] [PubMed]

6. Sohl, J.L.; Jaswal, S.S.; Agard, D.A. Unfolded Conformations of α-lytic Protease are More Stable Than its
Native State. Nature 1998, 395, 817–819. [CrossRef]

7. Levinthal, C. Are There Pathways for Protein Folding. J. Chim. Phys. 1968, 65, 44–45. [CrossRef]

http://dx.doi.org/10.1016/j.tibtech.2013.10.008
http://www.ncbi.nlm.nih.gov/pubmed/24268901
http://dx.doi.org/10.1126/science.181.4096.223
http://www.ncbi.nlm.nih.gov/pubmed/4124164
http://dx.doi.org/10.1039/C6MB00866F
http://www.ncbi.nlm.nih.gov/pubmed/28265599
http://dx.doi.org/10.1080/17512433.2018.1480367
http://www.ncbi.nlm.nih.gov/pubmed/29851355
http://dx.doi.org/10.1242/dmm.013474
http://www.ncbi.nlm.nih.gov/pubmed/24396149
http://dx.doi.org/10.1038/27470
http://dx.doi.org/10.1051/jcp/1968650044

Axioms 2019, 8, 136 21 of 23

8. Yee, A.A.; Savchenko, A.; Ignachenko, A.; Lukin, J.; Xu, X.; Skarina, T.; Edwards, A.M. NMR and X-ray
crystallography, complementary tools in structural proteomics of small proteins. J. Am. Chem. Soc. 2005, 127,
16512–16517. [CrossRef]

9. Hart, W.E.; Istrail, S. Robust Proofs of NP-Hardness for Protein Folding: General Lattices and Energy
Potentials. J. Comput. Biol. 1997, 4, 1–22. [CrossRef]

10. Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Verhaert, P. The Emergence of
Peptides in the Pharmaceutical Business: From Exploration to Exploitation. EuPA Open Proteom. 2014, 4,
58–69. [CrossRef]

11. Fosgerau, K.; Hoffmann, T. Peptide Therapeutics: Current Status and Future Directions. Drug Discov. Today
2015, 20, 122–128. [CrossRef] [PubMed]

12. Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de Novo
Structure Prediction for Linear Peptides in Solution and in Complex. Nucleic Acids Res. 2016, 44, W449–W454.
[CrossRef] [PubMed]

13. Vetter, I.; Davis, J.L.; Rash, L.D.; Anangi, R.; Mobli, M.; Alewood, P.F.; King, G.F. Venomics: A New Paradigm
for Natural Products-based Drug Discovery. Amino Acids 2011, 40, 15–28. [CrossRef] [PubMed]

14. Frausto-Solis, J.; Sánchez-Hernández, J.P.; Sánchez-Pérez, M.; García, E.L. Golden Ratio Simulated Annealing
for Protein Folding Problem. Int. J. Comput. Methods 2015, 12, 1550037. [CrossRef]

15. Rohl, C.A.; Strauss, C.E.M.; Misura, K.M.S.; Baker, D. Protein Structure Prediction Using Rosetta. In Methods
in Enzymology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 383, pp. 66–93.

16. Xu, D.; Zhang, Y. Ab initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized
Knowledge-based Force Field. Proteins Struct. Funct. Bioinform. 2012, 80, 1715–1735. [CrossRef] [PubMed]

17. Xu, D.; Zhang, Y. Toward Optimal Fragment Generations for ab initio Protein Structure Assembly.
Proteins Struct. Funct. Bioinform. 2013, 81, 229–239. [CrossRef]

18. Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein Structure and Function
Prediction. Nat. Methods 2015, 12, 7–8. [CrossRef]

19. Kennedy, D.; Norman, C. What Don’t We Know? American Association for the Advancement of Science.
Science 2005, 309, 75. [CrossRef]

20. Dill, K.A.; MacCallum, J.L. The Protein-Folding Problem, 50 Years On. Science 2012, 338, 1042–1046. [CrossRef]
21. Kaufmann, K.W.; Lemmon, G.H.; DeLuca, S.L.; Sheehan, J.H.; Meiler, J. Practically Useful: What the Rosetta

Protein Modeling Suite Can Do for You. Biochemistry 2010, 49, 2987–2998. [CrossRef]
22. Bienert, S.; Waterhouse, A.; de Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL

Repository-new Features and Functionality. Nucleic Acids Res. 2017, 45, D313–D319. [CrossRef] [PubMed]
23. Nielsen, M.; Lundegaard, C.; Lund, O.; Petersen, T.N. CPHmodels-3.0—Remote Homology Modeling Using

Structure-guided Sequence Profiles. Nucleic Acids Res. 2010, 38, W576–W581. [CrossRef] [PubMed]
24. Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 Web Portal for Protein

Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10, 845–858. [CrossRef] [PubMed]
25. Xu, Y.; Xu, D. Protein Threading Using PROSPECT: Design and Evaluation. Proteins Struct. Funct. Genet.

2000, 40, 343–354. [CrossRef]
26. Soding, J. Protein Homology Detection by HMM-HMM Comparison. Bioinformatics 2005, 21, 951–960.

[CrossRef]
27. Xu, J.; Li, M.; Kim, D.; Xu, Y. RAPTOR: Optimal Protein Threading by Linear Programming. J. Bioinform.

Comput. Biol. 2003, 1, 95–117. [CrossRef]
28. Buchan, D.W.A.; Jones, D.T. EigenTHREADER: Analogous Protein Fold Recognition by Efficient Contact

Map Threading. Bioinformatics 2017, 33, 2684–2690. [CrossRef]
29. Wu, S.; Zhang, Y. LOMETS: A Local Meta-threading-server for Protein Structure Prediction. Nucleic Acids Res.

2007, 35, 3375–3382. [CrossRef]
30. Wang, Y.; Virtanen, J.; Xue, Z.; Tesmer, J.J.G.; Zhang, Y. Using Iterative Fragment Assembly and Progressive

Sequence Truncation to Facilitate Phasing and Crystal Structure Determination of Distantly Related Proteins.
Acta Crystallogr. Sect. D Struct. Biol. 2016, 72, 616–628. [CrossRef]

31. Unger, R.; Moult, J. Finding the Lowest Free Energy Conformation of a Protein is an NP-hard Problem: Proof
and Implications. Bull. Math. Biol. 1993, 55, 1183–1198. [CrossRef]

32. Dorn, M.E.; Silva, M.B.; Buriol, L.S.; Lamb, L.C. Three-dimensional Protein Structure Prediction: Methods
and Computational Strategies. Comput. Biol. Chem. 2014, 53, 251–276. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ja053565+
http://dx.doi.org/10.1089/cmb.1997.4.1
http://dx.doi.org/10.1016/j.euprot.2014.05.003
http://dx.doi.org/10.1016/j.drudis.2014.10.003
http://www.ncbi.nlm.nih.gov/pubmed/25450771
http://dx.doi.org/10.1093/nar/gkw329
http://www.ncbi.nlm.nih.gov/pubmed/27131374
http://dx.doi.org/10.1007/s00726-010-0516-4
http://www.ncbi.nlm.nih.gov/pubmed/20177945
http://dx.doi.org/10.1142/S0219876215500371
http://dx.doi.org/10.1002/prot.24065
http://www.ncbi.nlm.nih.gov/pubmed/22411565
http://dx.doi.org/10.1002/prot.24179
http://dx.doi.org/10.1038/nmeth.3213
http://dx.doi.org/10.1126/science.309.5731.75
http://dx.doi.org/10.1126/science.1219021
http://dx.doi.org/10.1021/bi902153g
http://dx.doi.org/10.1093/nar/gkw1132
http://www.ncbi.nlm.nih.gov/pubmed/27899672
http://dx.doi.org/10.1093/nar/gkq535
http://www.ncbi.nlm.nih.gov/pubmed/20542909
http://dx.doi.org/10.1038/nprot.2015.053
http://www.ncbi.nlm.nih.gov/pubmed/25950237
http://dx.doi.org/10.1002/1097-0134(20000815)40:3<343::AID-PROT10>3.0.CO;2-S
http://dx.doi.org/10.1093/bioinformatics/bti125
http://dx.doi.org/10.1142/S0219720003000186
http://dx.doi.org/10.1093/bioinformatics/btx217
http://dx.doi.org/10.1093/nar/gkm251
http://dx.doi.org/10.1107/S2059798316003016
http://dx.doi.org/10.1016/S0092-8240(05)80169-7
http://dx.doi.org/10.1016/j.compbiolchem.2014.10.001
http://www.ncbi.nlm.nih.gov/pubmed/25462334

Axioms 2019, 8, 136 22 of 23

33. Delarue, M.; Koehl, P. Combined Approaches from Physics, Statistics, and Computer Science for ab initio
Protein Structure Prediction: Ex Unitate Vires (unity is strength)? F1000Research 2018, 7, 1125. [CrossRef]
[PubMed]

34. Melo-Vega, A.; Frausto-Solís, J.; Castilla-Valdez, G.; Liñán-García, E.; González-Barbosa, J.J.; Terán-Villanueva, D.
Protein Folding Problem in the Case of Peptides Solved by Hybrid Simulated Annealing Algorithms. In Fuzzy
Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications; Springer: Cham,
Switzerland, 2018; pp. 141–152.

35. Frausto-Solis, J.; Liñan-García, E.; Sánchez-Pérez, M.; Sánchez-Hernández, J.P. Chaotic Multiquenching
Annealing Applied to the Protein Folding Problem. Sci. World J. 2014, 2014, 1–11. [CrossRef]

36. Li, Z.; Scheraga, H.A. Monte Carlo-minimization Approach to the Multiple-minima Problem in Protein
Folding. Proc. Natl. Acad. Sci. USA 1987, 84, 6611–6615. [CrossRef] [PubMed]

37. Frausto-Solis, J.; Liñán-García, E.; Sánchez-Hernández, J.P.; González-Barbosa, J.J.; González-Flores, C.;
Castilla-Valdez, G. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution
Applied to Protein Folding Problem. Adv. Bioinform. 2016, 2016, 1–16. [CrossRef] [PubMed]

38. Vega, A.M.; Frausto-Solís, J.; García, E.L.; Valdez, G.C.; Barbosa, J.J.G.; Villanueva, D.T.; Hernández, J.P.S.
Parallel Evolutionary Multi-Quenching Annealing for Protein Folding Problem. Int. J. Comb. Optim.
Probl. Inform. 2018, 9, 41–54.

39. Lam, A.Y.S.; Li, V.O.K. Chemical Reaction Optimization: A tutorial. Memetic Comput. 2012, 4, 3–17. [CrossRef]
40. Zhang, Y.; Kolinski, A.; Skolnick, J. TOUCHSTONE II: A New Approach to ab initio Protein Structure

Prediction. Biophys. J. 2003, 85, 1145–1164. [CrossRef]
41. Maupetit, J.; Derreumaux, P.; Tuffery, P. PEP-FOLD: An Online Resource for de Novo Peptide Structure

Prediction. Nucleic Acids Res. 2009, 37, W498–W503. [CrossRef]
42. Kryshtafovych, A.; Monastyrskyy, B.; Fidelis, K.; Moult, J.; Schwede, T.; Tramontano, A. Evaluation of the

Template-based Modeling in CASP12. Proteins Struct. Funct. Bioinform. 2018, 86, 321–334. [CrossRef]
43. Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by Simulated Annealing. Science 1983, 220, 671–680.

[CrossRef] [PubMed]
44. Hansen, P.B. Simulated Annealing. In Electrical Engineering and Computer Science Technical Reports; Syracuse

University: Syracuse, NY, USA, 1992; Volume 170.
45. Alatas, B. ACROA: Artificial Chemical Reaction Optimization Algorithm for Global Optimization.

Expert Syst. Appl. 2011, 38, 13170–13180. [CrossRef]
46. Sanvicente-Sánchez, H.; Frausto-Solís, J. A Method to Establish the Cooling Scheme in Simulated Annealing Like

Algorithms. In International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 755–763.

47. Ponder, J.W.; Case, D.A. Force Fields for Protein Simulations. Adv. Protein Chem. 2003, 66, 27–85. [PubMed]
48. Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A Program

for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217.
[CrossRef]

49. Eisenmenger, F.; Hansmann, U.H.E.; Hayryan, S.; Hu, C.K. [SMMP] A Modern Package for Simulation of
Proteins. Comput. Phys. Commun. 2001, 138, 192–212. [CrossRef]

50. Meinke, J.H.; Mohanty, S.; Eisenmenger, F.; Hansmann, U.H.E. SMMP v. 3.0-Simulating Proteins and Protein
Interactions in Python and Fortran. Comput. Phys. Commun. 2008, 178, 459–470. [CrossRef]

51. Pronzato, L. A Generalized Golden-section Algorithm for Line Search. IMA J. Math. Control Inf. 1998, 15,
185–214. [CrossRef]

52. Frausto-Solis, J.; Martinez-Rios, F. Golden Annealing Method for Job Shop Scheduling Problem.
In Proceedings of the 10th WSEAS International Conference on Mathematical and Computational Methods
in Science and Engineering, Bucharest, Romania, 7–9 November 2008; World Scientific and Engineering
Academy and Society (WSEAS): Stevens Point, WI, USA, 2008; pp. 374–379.

53. Frausto-Solis, J.; Martinez-Rios, F. Golden Ratio Annealing for Satisfiability Problems Using Dynamically Cooling
Schemes. In International Symposium on Methodologies for Intelligent Systems; Springer: Berlin/Heidelberg, Germany,
2008; pp. 215–224.

54. Duek, G.; Scheuer, T. Threshold Accepting: A general Purpose Optimization Algorithm Appearing Superior
to Simulated Annealing. J. Comput. Phys. 1990, 90, 161–175. [CrossRef]

http://dx.doi.org/10.12688/f1000research.14870.1
http://www.ncbi.nlm.nih.gov/pubmed/30079234
http://dx.doi.org/10.1155/2014/364352
http://dx.doi.org/10.1073/pnas.84.19.6611
http://www.ncbi.nlm.nih.gov/pubmed/3477791
http://dx.doi.org/10.1155/2016/7357123
http://www.ncbi.nlm.nih.gov/pubmed/27413369
http://dx.doi.org/10.1007/s12293-012-0075-1
http://dx.doi.org/10.1016/S0006-3495(03)74551-2
http://dx.doi.org/10.1093/nar/gkp323
http://dx.doi.org/10.1002/prot.25425
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1016/j.eswa.2011.04.126
http://www.ncbi.nlm.nih.gov/pubmed/14631816
http://dx.doi.org/10.1002/jcc.540040211
http://dx.doi.org/10.1016/S0010-4655(01)00197-7
http://dx.doi.org/10.1016/j.cpc.2007.11.004
http://dx.doi.org/10.1093/imamci/15.2.185
http://dx.doi.org/10.1016/0021-9991(90)90201-B

Axioms 2019, 8, 136 23 of 23

55. Zhan, L.; Chen, J.Z.Y.; Liu, W.K. Conformational Study of Met-Enkephalin Based on the ECEPP Force Fields.
Biophys. J. 2006, 91, 2399–2404. [CrossRef]

56. Zhang, Y.; Skolnick, J. Scoring Function for Automated Assessment of Protein Structure Template Quality.
Proteins Struct. Funct. Bioinform. 2004, 57, 702–710. [CrossRef]

57. Xu, J.; Zhang, Y. How Significant is a Protein Structure Similarity with TM-score = 0.5? Bioinformatics 2010,
26, 889–895. [CrossRef] [PubMed]

58. Zhang, Y.; Skolnick, J. TM-align: A Protein Structure Alignment Algorithm Based on the TM-score. Nucleic
Acids Res. 2005, 33, 2302–2309. [CrossRef] [PubMed]

59. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997,
1, 67–82. [CrossRef]

60. Papadimitriou, C.H. Computational Complexity; Addison Wesley Longman: Boston, MA, USA, 1994;
ISBN 0-201-53082-1.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1529/biophysj.106.083899
http://dx.doi.org/10.1002/prot.20264
http://dx.doi.org/10.1093/bioinformatics/btq066
http://www.ncbi.nlm.nih.gov/pubmed/20164152
http://dx.doi.org/10.1093/nar/gki524
http://www.ncbi.nlm.nih.gov/pubmed/15849316
http://dx.doi.org/10.1109/4235.585893
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Computational Methods in PFP
	Simulated Annealing
	Chemical Reaction Optimization
	Analytical Tuning Method

	Ab Initio Definition
	Ab Initio Problem in PFP
	Force Field

	An Enhancement of Golden Ratio Simulated Annealing
	The Enhancement of GRSA
	Soft Perturbation in GRSA

	Results
	Experimental Description
	Results and Discussion

	Conclusions
	References

