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Abstract: Protein folding problem (PFP) consists of determining the functional three-dimensional
structure of a target protein. PFP is an optimization problem where the objective is to find the
structure with the lowest Gibbs free energy. It is significant to solve PFP for use in medical and
pharmaceutical applications. Hybrid simulated annealing algorithms (HSA) use a kind of simulated
annealing or Monte Carlo method, and they are among the most efficient for PFP. The instances of
PFP can be classified as follows: (a) Proteins with a large number of amino acids and (b) peptides
with a small number of amino acids. Several HSA have been positively applied for the first case,
where I-Tasser has been one of the most successful in the CASP competition. PEP-FOLD3 and golden
ratio simulated annealing (GRSA) are also two of these algorithms successfully applied to peptides.
This paper presents an enhanced golden simulated annealing (GRSA2) where soft perturbations
(collision operators), named “on-wall ineffective collision” and “intermolecular ineffective collision”,
are applied to generate new solutions in the metropolis cycle. GRSA2 is tested with a dataset
for peptides previously proposed, and a comparison with PEP-FOLD3 and I-Tasser is presented.
According to the experimentation, GRSA2 has an equivalent performance to those algorithms.

Keywords: simulated annealing; hybrid simulated annealing; protein folding problem; peptides

1. Introduction

Protein folding problem (PFP) consists of determining the functional three-dimensional structure
or native structure (NS) of a target protein. This problem represents an enormous challenge for
the scientific community, and although there are significant advances and applications of PFP [1],
this problem is far from being solved.

In 1962, Anfinsen developed the thermodynamic hypothesis (TH), which explains how the NS is
achieved in every single protein. Anfinsen showed that this structure is, thermodynamically, the most
stable; it is entirely determined by the corresponding interatomic interactions. Moreover, TH establishes
that the NS is reached when Gibbs free energy is the lowest [2]. The incorrect folding or misfolding of
proteins is a relevant factor in diseases produced by infectious agents and neurodegenerative diseases
such as Alzheimer’s, Parkinson’s, cystic fibrosis, amyloidosis, and Gaucher disease [3–5]. However,
for a small set of proteins, the energy of the native structure is not the lowest [6], and probably some
constraints are not completely known.

In 1968, the challenge of PFP was made evident by the publication of the so-called Levinthal
paradox, which talks about two issues in general: (a) The computational effort of PFP algorithms
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represents an extremely long execution time for most of the instances, even for very powerful computers;
but, (b) in nature, the same instances can be solved almost instantaneously [7]. Thus, to design more
efficient algorithms, it is important to solve this challenge.

Traditionally, the experimental methods for finding the tertiary protein structure are X-ray
crystallography and nuclear magnetic resonance (NMR). The bad news is that these processes are
regularly too expensive and can take a very long time [8]. This kind of experimental method can result
in accurate solutions when a computational algorithm provides a close solution to the NS.

NS computational prediction belongs to the NP-hard class, and exact algorithms can take an
unacceptable execution time [9]. The problems of this class are considered at least as hard as the
hardest NP problems. As a consequence, heuristic algorithms are currently used. These algorithms
are focused on finding approximate solutions with fast execution times, but they require an adequate
set of their parameters. Thus, designing and tuning heuristic algorithms have become a major PFP
challenge in this area.

The algorithms for PFP can be applied in two kinds of instances: (a) Proteins, with 50 or more
amino acids, and (b) peptides with a small number of amino acids (2–50). Hybrid simulated annealing
algorithms (HSA) use a kind of simulated annealing (SA) or Monte Carlo method, and they are among
the most efficient for PFP. Several HSA have been positively applied for the first case, where I-Tasser
has shown to be one of the most successful in the CASP competition. In recent years, small proteins or
peptides have become very important in pharmaceutical research [10], drug design [11,12], and venom
analysis [13]. In this sense, to design algorithms for finding NS with reasonable processing time for
peptides is relevant. PEP-FOLD3 [12], and golden ratio simulated annealing (GRSA) [14] are two HSA
algorithms successfully applied to peptides. However, the original GRSA only obtain good results
in small instances. Also, we note that other very good algorithms reported in CASP competition as
Rosetta [15] and Quark [16,17] cannot be easily applied to peptides. In contrast, for I-Tasser [18] and
PEP-FOLD3, there are automated protein structure prediction servers available; then, these algorithms
can be easily executed for peptides. Other algorithms without a kind of Monte Carlo method have not
yet published better results for peptides, and are not considered within the confines of this paper.

This paper presents an enhancement GRSA named GRSA2 for the general application of peptides;
we show a comparison of this algorithm with I-Tasser [18] and PEP-FOLD3 [12]. According to the
experimentation, the proposed algorithm has an equivalent performance to those algorithms.

The paper is organized as follows: In Section 1, we give a brief explanation of the problem.
In Section 2, a background of the area and the main work related to this research are presented.
In Section 3, a formal definition of ab initio is discussed. In Section 4, the GRSA algorithm and the soft
perturbations are presented. In Section 5, we describe the experimentation made with the selected
dataset, and we analyze the results obtained by the proposed algorithms. Finally, Section 6 contains
our conclusions.

2. Background

Nowadays, PFP is one of the most critical problems due to its complexity and implications in
optimization, computer science, and bioinformatics [19]. According to Dill and MacCallum [20], this
problem consists of three different enigmas:

1. To design the physical code that aims to determine the interatomic forces of the protein structure
for a given amino acid sequence.

2. To solve the computational problem of designing an algorithm to predict the native structure
from a given amino acid sequence.

3. To perform an algorithm for the folding process by nature, which rapidly finds the routes or
pathways from an initial solution to the NS or functional structure.

This paper is related to the second of these problems, commonly known in computer science as
the protein folding problem, or PFP.
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The strategy for solving PFP using only information from the amino acid sequences is known
as ab initio and relies on the TH of Anfinsen: This is the approach used in this paper. As we have
mentioned before, there are other successful strategies; nevertheless, they cannot be considered as ab
initio because they use additional data from the secondary structure or other fragments of proteins.
Besides, I-Tasser [18], PEPFOLD3, and Rosetta [15,21] have servers that use these strategies; the former
has obtained first place in the CASP12 competition and has a free solver for proteins and peptides.
The second server permits the execution of peptides until 36 amino acids. Finally, the last server does
not permit the execution of small peptides.

2.1. Computational Methods in PFP

The computational methods applied to the protein folding problem are designed under different
approaches, such as homology, threading, and ab initio. The homology method determines a first
three-dimensional structure comparing the linear sequence of amino acids’ sequence of the target
protein with sequences of other proteins previously solved. This step is usually performed through
multiple alignments of the target versus the candidate protein. Once the best homolog structure
is found, this pattern is used as a template to determine the final structure of the target protein.
In consequence, several homology-modeling tools software for proteins and peptides have been
developed [22–24]. However, the homology models do not guarantee to solve the whole problem due
to the necessity of having an amino acid sequence very similar to the target. When a homologous
protein is not found, the threading method (fold recognition) may be used. This method uses templates
of known structures already solved and published in databases such as PDB (Proteins Database). There
is a set of approaches where threading is applied, for instance: Prospect [25], Hhpred [26], Raptor [27],
Eigenthreader [28], and Lomet [29], which is a phase of the I-Tasser suite [18,30]. Nevertheless,
homology and threading need patterns information about other proteins previously solved and, in this
case, the complete solution of the problem is not guaranteed. In contrast to homology and threading,
the ab initio strategy is not limited to the templates because the amino acid sequence is the unique
information used for predicting the tertiary structure. Moreover, ab initio represents a real challenge to
the scientific community due to its computational complexity, which is NP-hard [31].

There have been many types of computational algorithms applied to the PFP using the ab
initio approach [32,33]. Among the most successful are Monte Carlo and SA algorithms. In this
sense, HSA algorithms have been used for small peptides obtaining acceptable results [34]. These
algorithms are chaotic multi-quenching annealing [35]; the classical simulated annealing using Monte
Carlo methods [36]; multiphase simulated annealing algorithm using Boltzmann and Bose–Einstein
distributions (MPSABBE) [37]; golden ratio simulated annealing [14]; and parallel evolutionary
multi-quenching annealing for protein folding problem [38]. However, all these HSA algorithms have
found acceptable solutions only for some peptides. To find the best way to improve this algorithm
is not an easy task. Moreover, chemical reaction optimization is a successful metaheuristic for other
NP-hard problems [39], which deals with perturbation methods for generating new solutions based on
high and low energy particles. These perturbation methods were not used before in ab initio and are
considered in this paper.

Additionally, other strategies add the ab initio approach that improves the structure prediction,
for instance, Rosetta [15], Touchstone II [40], Quark [16,17], I-Tasser [18], and PEP-FOLD [41]. In this
paper, the I-Tasser [18] and PEP-FOLD3 [12] servers for protein structure prediction were used. Also,
I-Tasser is one of the most successful in CASP [42]. Additionally, PEP-FOLD3 is a server specialized in
peptides [12].

2.2. Simulated Annealing

Kirkpatrick proposed the original simulated annealing algorithm, which uses the metropolis
algorithm applied to optimization problems [43]. SA uses an analogy of the process of annealing a
metal, and the mechanical statistics approach to solve these problems. Essentially, SA uses the initial
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and the final temperature parameters Ti and T f , respectively. Classical SA (Algorithm 1) consists of
two cycles; an external cycle that is controlled by the temperature parameter and the metropolis cycle,
where a new solution is generated by modifying the previous cycle with a perturbation function (row 6).
In Algorithm 1, the next temperature is determined in row 14, where α is the parameter for decreasing
the current temperature. Simulated annealing introduces a random stage for the acceptance criterion of
new solutions (rows 8 to 12), and the difference of energy ∆E of two configurations is calculated. At this
point, a new solution S j is accepted when ∆E is less than zero; otherwise, a probability distribution
function (row 10) is applied to decide whether the solution S j is accepted or not. As is well known,
the complexity of SA is

(
n2 + n

)
logn, where n depends on the instance size (in our case, the number of

variables in each peptide) [44].

Algorithm 1 Classical Simulated Annealing.

1: SA (Ti, T f p, T f , α)
2: Tk = Ti
3: Sold = generateSolution()
4: while Tk ≥ T f do
5: while Metropolis do
6: Snew = perturbation(Sold)

7: ∆E = E(Snew) − E(Sold)

8: if ∆E ≤ 0 then
9: Snew = Sold
10: else if e−∆E/Ti > random[0; 1) then
11: Sold = Snew

12: end
13: end
14: Tk+1 = α ∗ Tk
15: end
16: end

2.3. Chemical Reaction Optimization

Chemical reaction optimization algorithm (CRO) is a metaheuristic for optimization, inspired by
the process of the chemical reactions [39]. A chemical reaction is a change of a substance called reactant
into a new one with a different chemical identity. The resulting products have different properties
than the reactants. These products will be more stable, and then their energy will be lower. When the
substance is heated, the molecules move faster, and when it is cooled, they move slower. A chemical
reaction between two molecules can only occur when those molecules collide with each other. If the
molecules have a large amount of energy, they will move around faster; when the particles move very
fast, they collide with each other. Therefore, if the energy is transferred to the particles, the number of
times that the molecules collide with each other will increase. There are two types of collisions [39,45]:

• Unimolecular collisions: When the molecule hits the wall of the container.
• Intermolecular collision: When a molecule collides with other molecules.

CRO presents four different reactions or ways to generate new solutions when a perturbation
function is used with an old solution. These collisions are [39]:

1. Unimolecular collision (low energy collisions). In this group, we find two reactions:

a. On-wall ineffective collision is established as follows [39]:

“It represents the situation when a molecule collides with a wall of the container and then
bounces away remaining in one single unit”.
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In GRSA2, the current solution Sold is changed by a new solution Snew obtained by a
perturbation function. This operation is equivalent to the classical SA perturbation. Thus,
the complexity of GRSA2 is not modified. This operation is implemented in line seven
of Algorithm 3, which calls the function soft perturbation or Algorithm 2, explained in
Section 4. As we will see, this operation does not add complexity to the classical SA.

b. Decomposition. In this case, a molecule (solution) hits a wall and then is divided into
several parts. In the GRSA2 algorithm, decomposition is a perturbation operation that
generates two new solutions from the current solution. This perturbation is implemented
in GRSA2 in lines sixth and seven of Algorithms 2 and 3, respectively. Again, to include this
operation in SA for obtaining GRSA2 does not increase the complexity of the new algorithm.

2. Intermolecular collision (high energy collisions). This collision has the next elementary reactions:

a. Intermolecular ineffective collision. These kinds of reactions occur when multiple molecules
collide with each other and then bounce away. The number of molecules remains the same.

b. Synthesis. In this reaction, several molecules are fused into a single one.

In this paper, we apply low energy collisions because, according to our previous experimentation,
they are the only ones with good performance.

2.4. Analytical Tuning Method

Simulated annealing uses a random walk, which consists of a sequence of possible solutions to
the problem. Simulated annealing, like many other algorithms, behaves well when its parameters
are correctly tuned. The main parameters are the initial temperature (Ti also designed T0) and the
final temperature (T f ). In the classical SA, the temperatures for two consecutive iterations have the
relation of the Equation (1) where α is another parameter 0.7 ≤ α < 1. There are n temperatures and a
metropolis cycle for each of them. In SA, every time the temperature changes a new metropolis cycle is
started; for the kthcycle the length of this cycle is Lk. This parameter is the length of the Markov chain
(i.e., k times the solution space is explored).

T1 = αT0; T2 = αT1, . . . , Tk = αTk−1; . . .Tn = αTn−1 . . . (1)

Moreover, an acceptable solution in the metropolis cycle should satisfy the Boltzmann distribution,
given by Equation (2). In this equation ri is a random number from the [0, 1] range, which is used to
determine if the ith solution in the iterative process is or is not accepted as part of the random walk
of the algorithm. In other words, ri represents the acceptance probability of the ith solution for the
current temperature Ti and a given ∆Z variation of the ith solution and the previous one [46].

ri = P (Si) = e−∆Z/Ti (2)

In this analytical tuning method, the calculations for Ti and T f are based on the acceptance
probability of a new solution P (Sj) and the maximum and minimum cost deterioration (∆Zmax, ∆Zmin).
Therefore, to obtain Ti and T f the calculation is as follows in Equations (3) and (4):

Ti =
−∆Zmax

ln(P(∆Zmax))
, (3)

T f =
−∆Zmin

ln(P(∆Zmin))
. (4)

In SA, the metropolis cycle can be considered as a homogeneous Markov chain where the length
of the Markov chain Lk means the number of iteration for each k-temperature and the increment in
each k-temperature is determined by Lk+1 = βLk, where β determines the increment for this parameter
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in the next iteration of the Metropolis cycle. Lk is modified until T f is reached. When the geometrical
cooling schedule of Equations (1) is applied, we can establish Equations (5) and (6):

Tn = αnT0, (5)

ln Tn = n lnα+ ln T0. (6)

Then, the number of metropolis cycles can be determined by the variable n as follows in
Equation (7):

n =
ln Tn − ln T1

lnα
. (7)

Now, we obtain the β parameter from Equation (8):

Lk+1 = βLk. (8)

For the last temperature, the length of the metropolis cycle is the longest and is represented by the
variable Lmax defined by Equation (9):

Lmax = βnL1. (9)

Then:
ln Lmax = n ln β+ ln L1. (10)

Finally, from Equation (10) the β parameter is determined by Equation (11)

β = exp(
ln Lmax − ln L1

n
). (11)

In this case, the analytical tuning method can be applied to the algorithms proposed in this paper.

3. Ab Initio Definition

In this section, the ab initio definition and the force field used in the protein folding problem
are presented.

3.1. Ab Initio Problem in PFP

Protein folding problem is the process of finding the tertiary structure of a protein known as
native structure, in which the proteins perform their biological functions correctly. In this paper, ab
initio is applied, which is defined as follows [35]:

• Given a sequence of n amino acids; a1, a2, a3, . . . , an, which represents the primary structure of a
protein with a set of dihedral anglesσ = {σ1, σ2, σ3, . . . , σm}, and an energy function f (σ1, σ2, . . . , σm)

which represents the free energy or Gibbs energy (G).
• Find the native structure of the protein, such that f (σ) represents the minimum energy value,

where the optimal solution σ defines the best three-dimensional configuration. The PFP variables
are the set σ of dihedral angles.

There are four types of torsion angles or dihedral angles as presented in Figure 1. The PFP
variables are the set of dihedral angles that satisfy the minimum energy value. Protein atoms are
represented in three-dimensional Cartesian coordinates.
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The dihedral angles are defined as follows:

• Phi (φ) is the angle between the amino group and the alpha carbon.
• Psi (ψ) is the angle between the alpha carbon and the carboxyl group.
• Omega (ω) is defined for each two consecutive amino acids.
• Chi (χ) is defined between the two planes conformed by two consecutive carbon atoms in the

radical group.

3.2. Force Field

Force fields or energy functions are used to represent the energy of the protein [47]; examples of
these are CHARMM [48], AMBER [47], ECEPP/2 [49], and ECEPP/3 [50]; the latter and ECEPP/2 are
the most common. In these force fields, the potential energy is given by the sum of the electrostatic
energy, Lennard–Jones, and hydrogen-bond energy for all pairs of atoms in the peptide chain together
with the torsion energy for all torsion angles [49]. These terms are shown in Equation (12) through
which energy function ECEPP/2 should be minimized to find the NS [49].

Etotal =
∑

j>i

(
Ai j

r12
i j
−

Bi j

r6
i j

)
+ 332

∑
j>i

qiq j
εri j

+
∑

j>i

(
Ci j

r12
i j
−

Di j

r10
i j

)
+

∑
n Un(1± cos(knϕn)) (12)

where:

• ri j is the distance in Å between the atoms i and j.
• Ai j, Bi j, Ci j and Di j are the parameters of the empirical potentials.
• qi and q j are the partial charges on the atoms i and j, respectively.
• ε is the dielectric constant, which is usually set to ε = 2.
• 332 is a factor used to obtain the energy in kcal/mol.
• Un is the energetic torsion barrier of rotation about the bond n.
• kn is the multiplicity of the torsion angle ϕn.

4. An Enhancement of Golden Ratio Simulated Annealing

Metaheuristic applications to PFP have been increasing their importance in the computational
biology area due to the large number of conformations that a protein can take. The NS computational
prediction can lead to a more efficient and inexpensive process; in fact, the problem belongs to
the NP-hard class. As a consequence, metaheuristic algorithms are currently used. These are
high-performance methods focused on finding approximate solutions using low execution times.
Thus, the correct design and tuning of metaheuristic algorithms have become a significant challenge
in the optimization area [9]. Moreover, experimental methods can find more accurate solutions
when a computational algorithm provides an approximate solution close to the functional solution.
Therefore, it is very advantageous to design heuristics for PFP using ab initio. We describe the proposed
GRSA2 below.
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4.1. The Enhancement of GRSA

As was mentioned earlier, hybrid simulated annealing algorithms have been used to solve PFP
with remarkable results; one of them is the golden ratio (GR) search method. GR is an irrational number
known as the aura ratio and represented by the letter Φ used in antiquity to design architectural
masterpieces. In modern times, GR has been used as a search strategy [51]. GRSA algorithm is a
hybridization of the SA algorithm and the GR method, which has been applied to NP-hard problems
such as scheduling [52] and SAT [53]. GRSA was also successfully applied to PFP, obtaining good
quality solutions for some peptides [14]. GRSA divides the solution space into sections using the
golden number Φ [14].

A remarkable difference between SA and GRSA is the cooling scheme behavior. GRSA uses
different values of the parameter α, depending on the current temperature, which is cut in some cut-off

temperatures T f pn calculated using the golden number Φ. This temperature is decremented through
the geometric cooling function Tk+1 = αTk, and once T f pn is reached, a new phase begins where the
value of the parameter α is updated and another T f p is recalculated. This procedure remains until
the number of cuts (T f pn) is reached. The last phase is executed until the final temperature is reached.
In Algorithm 3, we can observe this procedure. GRSA uses two strategies for better performance: Stop
criterion and reheat strategy. The reheat strategy (RH) is applied in two phases: (a) At the end of the
last GR section, and (b) when the equilibrium is detected.

Experimentally, we observed that every time a golden section is executed, the time involved
decreases; this reduction is because the GRSA cooling function reaches the final temperature faster.
At the top of Figure 2, we have the equation of the number n of iterations required in general for SA;
in this equation, for a particular instance, the numerator is a C0 constant determined by the final and
initial temperature T f and T0 respectively. Thus, for any specific instance, the number of iterations is a
function of the α parameter; then, the execution time decreases by reducing this parameter. To give
an idea, with α = 0.7, the time required will be less than 15% of the time used for SA with a normal
cooling scheme (using α = 0.95). On Figure 2 the exact proportion is represented by nSA−0.70/nSA−0.95,
and is given as 14.38%. Notice that this relation considers the complete iterations from the T0 to T f
temperatures. In other words, nSA−0.7/nSA−0.95 gives the proportion of randomly executed SA two
times, both of them until SA converges.

If the SA algorithm is executed normally, that is, slowly from T0 to T f with a high value of alpha
(i.e., α = 0.95), the number of iterations is nSA−0.95 = −C0/Ln0.95. In GRSA, the process is executed a
certain nGolden number of phases (see Algorithm 3) depending on the number of cut-off temperatures
T f p. Figure 2 is an example of GRSA where any cut-off is represented by T f p (updated on line 5 of
Algorithm 3). We want to know if a GRSA algorithm with one or more cut-off temperatures makes the
processing time greater, lower, or equivalent to SA. As is shown in Figure 2, one cut-off temperature T f p
divides the process into phases A and B, which are executed with α = 0.70 and α = 0.95, respectively.
The time of GRSA will be, in this case, the total processing times of both phases. GRSA for several cuts
has the following execution times:

1. GRSA with one cut-off temperature:

a. The processing time of phase A is −C0/Ln0.7 multiplied by the fraction of iterations where
this phase is executed (1− 0.618). Let µ1 be the proportion of time of phase A concerning
the normal execution time of SA (α = 0.95); as is shown in Figure 2, µ1 = 5.48% of nSA−0.95.

b. The processing time of phase B is given by [−C/Ln0.95] × 0.618. Now, the time proportion
of phase B for the normal execution of SA is µ2 = 61.8% of nSA−0.95.

c. The total proportion of GRSA processing time compared to SA is µ1 + µ2 = 67.28%.

2. GRSA with two or more cut-off temperatures

a. Phase A is the same process as case 1 (with α = 0.7) and uses µ1 = 5.48% of nSA−0.95.
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b. Phase B is divided into nGolden sections. For instance, if nGolden equals 2, phase B is
divided into two subphases. The new α values for the next subsections can be again 0.7
and 0.95 for the next subphases. In other words, each time a subdivision is made, the
last subphase will have a new α parameter equal to 0.95. The division process continues
until nGolden parameter is reached. When nGolden equals 2, the two new subphases
(with α = 0.70 and α = 0.95) will have µ1 + µ2 = 67.28% of the execution time of phase B.
The proportion of the total processing time (time of phase A plus time of new subphases
generated from B) will be (0.6728)2 + 0.0548 = 50.7% of the execution time of SA.

c. When nGolden is increased, a reduction of the time is obtained.
d. The alpha values can be changed in several ways. Instead of using the last numbers

(0.7, 0.95) to divide the subsections, a linear or exponential function for the alphas can be
used. In our case, the linear approach was used [14], which gives similar reductions to
those previously presented. Experimentation reveals that, in general, a nGolden value
lower or equal to five gives good results in the case of peptides.
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4.2. Soft Perturbation in GRSA

In this work, the goal was to improve the quality of solutions obtained by GRSA for peptides.
Thus, we designed an enhancement of this algorithm by using soft perturbations described before.
Next, we present the GRSA2 (Algorithm 3), which takes the amino acid sequences of the target
protein a1, a2, a3, . . . , an (primary structure), to generate an initial solution, which will be modified
during the process by the perturbation function. This function is implemented in the metropolis cycle.
As was mentioned earlier, GRSA divides the space solution using the GR number, making cuts in the
temperature parameter. For each temperature range, the α variable is set with a different value in a
range of 0.7 ≤ α < 1. The main difference between GRSA and GRSA2 is the perturbation process. In the
GRSA, the perturbation function randomly chose an angle of the current solution. As a consequence,
the new solution is accepted if the energy is better than the current solution. In GRSA2, the current
solution is modified with the perturbation function (Algorithm 2. Soft perturbation).
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In Algorithm 2, line 2, the variables moleColl and b are used for deciding what type of perturbation
will be performed in the metropolis Cycle. In the former, moleColl is defined with a value that will be
compared with the variable b using a random number in the range [0, 1]. We have two cases: (a) If
b > moleColl, only one molecule is chosen for the perturbance process, and a unimolecular collision
will be performed in this case. (b) Otherwise, a high energy perturbation can be applied. In case (a),
the Decomposition criterion statement (line 5) is used to allow the algorithm to explore other regions
of the solution space after enough local search by soft collisions. If the algorithm has not located a
better minimum, it explores other regions of the solution space using decomposition. Otherwise, a soft
collision is applied.

The perturbation called decomposition involves a molecule that hits the wall, and it is divided into
two new molecules. In the GRSA2, decomposition is performed by applying a circular permutation to
the molecule, and two new molecules are created; in other words, two new solutions will be evaluated
and their energies are compared with the original molecule energy. SoftCollision involves a molecule
that hits the wall and results in a new molecule. In GRSA2, this perturbation is randomly made
by selecting the angle of the vector solution; then, the complexity of this operation is O(1). Once a
perturbation is applied, the energy of the new molecule (solution) is calculated and compared with the
original molecule. Only one of the new solutions generated by the different perturbations is selected
(i.e., the solution with the lowest energy), and it continues in the next iteration.

Algorithm 2 Soft perturbation.

1: SoftPertubation (Sold)
2: moleColl, b
3: if b > moleColl then
4: Randomly select one particle Mω

5: if Decompositioncriterionmet then
6: Decomposition()
7: else if
8: So f tCollision()
9: end
10: end
11: end

In Algorithm 3, we can see the external cycle similar to classical SA. However, the main difference
is in the metropolis cycle, which made soft perturbation (explained in Algorithm 2). In particular, the
acceptance criterion is given by the potential energy (EP) which is the energy function of the current
solution (Enew) and is compared with the current energy (Eold) plus the kinetic energy (EK), which
is later updated (line 11, Algorithm 3), in a certain way similar to the threshold accepting algorithm
(TA) [54] to accept bad solutions. However, the acceptance criterion is slightly different and is inspired
by the CRO algorithm [39]. In addition, the GRSA2 algorithm has a stop criterion based on the least
square method wherein a low temperature time window (Tf) is established and the slope (m) of a set
of energies is calculated, and when m is lower than a tolerance parameter ε (0.001 in our case), the
algorithm is ended. Finally, the alpha value (α) is updated depending on how many golden sections
(defined by the variable nGolden) are used. Note that the number of cuts of temperature (Tfp) is
indirectly defined in Algorithm 3 by the nGolden parameter are used.
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Algorithm 3. GRSA2

1: GRSA2 (Ti, T f p, T f , E, S, α, KE, EP nGolden)
2: Tk = Ti
3: Sold = generateSolution()
4: while Tk ≥ T f do
5: T f p = T f p ∗Φ
6: while Metropolis do
7: Snew = So f tPertubation(Sold)

8: EP = Enew
9: if EP ≤ Eold + KE then
10: Sold = Snew

11: KE = ((Eold+KE)-EP)*random [0, 1]
12: end if
13: end while
14: if Tk ≤ T f then
15: m = slope()
16: if m < ε then
17: Tk = T f (the algorithm is stopped)
18: end if
19: end if
20: if

(
Tk ≤ T f por nGolden

)
then

21: α = αnew

22: Tk+1 = α ∗ Tk
23: else
24: Tk+1 = α ∗ Tk
25: end if
26: end while
27: end

In general, GRSA2 has two main contributions that improve the performance of GRSA. Firstly,
the collision operators used to generate new solutions; specifically, soft perturbations are applied; and
finally, the acceptance criterion (similar to threshold annealing algorithm [54]) inspired in the CRO
algorithm and used in the metropolis cycle.

The complexity of the GRSA and GRSA2 algorithms is related to the number of iterations for
generating new solutions, which is equal or lower than the classical SA; also, the perturbations to
generate new solutions for all the three algorithms belong to O(1), the complexity of GRSA and GRSA2
is the same as SA. Note that the acceptance criterion taken from threshold accepting does not modify the
complexity of GRSA2. Experimentally, we verified this situation for the case of peptides in the results
section (Figure 6) and the processing time of the proposed algorithm is generally shorter than SA.

5. Results

In this section, the experimentation results of the proposed algorithms for peptides and small
proteins are discussed. Essentially, we present the instances used to evaluate the proposed algorithms
and comparing GRSA2 versus SA, I-Tasser, and PEP-FOLD3 algorithms. The previous comparison has
not been made previously.
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5.1. Experimental Description

The algorithms presented in this paper were tested with a set of 18 peptides; some of them are
very common in the literature, such as the Met-enkephalin (The PDB code is 2LWC) and the Human
Proinsulin C-Peptide (1T0C). In Table 1, we show the number of amino acids and variables for these
peptides. Met-enkephalin is a very small peptide, which is included here because it is commonly used
to test new algorithms for peptides, due to its number of amino acids and the size of the solution space.
The Met-enkephalin can be taken as a benchmark for evaluating the efficiency of new algorithms [55].
All the algorithms were executed 30 times for statistical validation. The energy function ECEPP/2
implemented in SMMP is used [49]. The initial and final temperatures used by the algorithms tested
were tuned analytically (Section 2.2).

Table 1. Peptide instances test set.

Number Instance (PDB Code) Number of Amino Acids Number of Variables

1 2LWC 5 19
2 1EGS 9 49
3 1UAO 10 47
4 1L3Q 12 62
5 2EVQ 12 66
6 1IN3 12 74
7 1RNU 13 68
8 1LCX 13 81
9 1GJF 14 79
10 1K43 14 84
11 2BTA 15 100
12 1LE3 16 91
13 1PEF 18 124
14 1L2Y 20 100
15 1DU1 210 134
16 1PEI 22 143
17 1WZ4 23 123
18 2MLT 26 158
19 1T0C 31 132

For the SA algorithm, the parameter alpha(α) was set at 0.95. In the case of GRSA, alpha was
tuned using values from 0.75 to 0.95 with five golden ratio sections. The ω angle used by all the
assessed algorithms was fixed at 180◦. Furthermore, in addition to the minimal energy quality value,
we used two metrics of structural quality usually used for PFP algorithms, the RMSD (Root Mean
Square Deviation) and the TM-Score (Template Modeling Score) [56]. RMSD is a structural measure
between the native structure and the best-found solution. When RMSD is close to zero, there is a
perfect structural similarity between the two compared structures. However, when RMSD is greater
than zero, the structural quality is reduced. The metric TM-Score is also used to measure the similarity
of structures. Protein pairs with a TM − Score > 0.5 would indicate that they are mostly within the
same fold, while those with a TM − Score < 0.5 would indicate that they are mainly not within the
same fold [57]. RMSD and TM-Score were calculated using TM-Align Server [58], which employs the
backbone (Cα).

5.2. Results and Discussion

The results obtained by the proposed algorithms are shown in Tables 2–4. Tables 2 and 3 include
information about the average energy of each protein (kcal/mol), average processing time (minutes),
RMSD, and TM-Score. In Table 2, the results obtained with the SA algorithm are presented.
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Table 2. Average results of the simulated annealing (SA) algorithm.

Instances Average Energy (kcal/mol) Average RMSD Average TM-Score

2LWC −7.7386 0.5538 0.5007
1EGS −1.0498 2.9325 0.2816
1UAO −34.2519 2.7139 0.2818
1L3Q −49.5822 4.2446 0.2116
2EVQ −53.3023 1.5843 0.2663
1IN3 −70.1176 3.6054 0.2748

1RNU −73.6159 1.4122 0.3526
1LCX −61.9788 1.3277 0.2436
1GJF −67.6448 1.76 0.2820
1K43 −74.1248 2.46 0.2276
2BTA −98.6907 3.3561 0.1992
1LE3 −78.0697 2.0468 0.1791
1PEF −68.1363 1.9766 0.1780
1L2Y −92.8494 2.126 0.1805
1DU1 −123.4410 2.0280 0.1760
1PEI −111.8189 2.351 0.1435

1WZ4 −112.8309 2.75 0.1572
2MLT −86.3540 2.8553 0.1666
1T0C −109.1762 3.1829 0.1970

Table 3. Average results of the enhanced golden simulated annealing (GRSA2) algorithm.

Instances Average Energy (kcal/mol) Average RMSD Average TM-Score

2LWC −5.7567 0.5593 0.4970
1EGS 3.5779 2.2703 0.2830
1UAO −49.4173 1.1766 0.2718
1L3Q −66.6739 2.784 0.2203
2EVQ −69.7577 1.5208 0.2576
1IN3 −96.1027 1.2333 0.3469

1RNU −70.9097 1.4382 0.2534
1LCX −60.4809 1.5791 0.2205
1GJF −93.3798 1.2517 0.3989
1K43 −98.7355 1.9287 0.1730
2BTA −153.3692 2.6587 0.2075
1LE3 −93.4192 1.89333 0.1773
1PEF −57.2994 2.0026 0.1534
1L2Y −125.3933 2.4276 0.1734
1DU1 −134.8380 1.5084 0.1695
1PEI −114.1452 2.315 0.1936

1WZ4 −125.0288 2.0323 0.1453
2MLT −150.0441 2.1519 0.2899
1T0C −110.1145 3.5264 0.1999

Finally, the results of GRSA2 algorithm are shown in Table 3. This table shows an improvement in
the average energy in most cases.

In Tables 2 and 3, we can observe how the improvements in energy, RMSD, and TM-Score are
not always in favor of a particular algorithm. This situation often occurs in optimization problems,
as underlined in the non-free lunch theorem [59].

Figure 3 shows the average energy results for nineteen instances. We note that GRSA2 outperforms
SA in most cases.
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The average processing times for SA and GRSA2 are shown in Figure 6. As we can observe,
GRSA2 has a better processing time than the SA algorithm, except in the last instance.
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We take a set of 15 peptides of Table 1 ordered by the number of variables to compare the
performance of SA with GRSA and GRSA2. Figure 7a,b shows the RMSD and TM-SCORE of the
algorithms. We can observe that GRSA and GRSA2, in most cases, have better results than SA. However,
according to Figure 7c, it is clear that GRSA2 outperforms SA and GRSA. Finally, Figure 7d shows
the execution time f 1(n), f 2(n), and f 3(n) of the three algorithms, SA, GRSA, and GRSA2, respectively.
Because f 2(n) and f 3(n) are lower or equal than f 1(n), they belong to the same complexity class [60].
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Table 4 shows the results for 19 instances for peptides reported by PEP-FOLD3 in its server.
These peptides have between 5 and 50 amino acids in aqueous solution [12]. Column one contains
the instances used for testing the proposed algorithms and PEP-FOLD3. In columns two and three,
we present the RMSD average of the five best instances of PEP-FOLD3 and GRSA. Note that in most
cases, GRSA2 obtained the best results with respect to RMSD (bold). In columns four and five, we
present the TM-Score obtained by these algorithms. Once again, we verify that GRSA obtained the
best results. We do not show the processing time of the results obtained by I-Tasser and PEP-FOLD3
servers. This is because these servers do not include this information.
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Table 4. The five best RMSD and TM-Score of PEP-FOLD and the enhancement GRSA algorithms.

Instances RMSD GRSA2 RMSD PEP-FOLD3 TM-Score GRSA2 TM-Score PEP-FOLD3

2LWC 0.134 0.49915802 0.622022 0.63645887
1EGS 0.174 0.73379194 0.363588 0.28297143
1UAO 0.218 1.43239212 0.379374 0.40506025
1L3Q 0.49 2.11590502 0.304162 0.24278709
2EVQ 0.842 0.82452263 0.332682 0.46217599
1IN3 0.604 0.92708461 0.436492 0.39695857

1RNU 0.352 0.80774343 0.435094 0.62276608
1LCX 0.552 1.22937939 0.287596 0.33622833
1GJF 0.308 0.65046896 0.562328 0.58219463
1K43 0.782 1.50581118 0.258046 0.33411994
2BTA 0.594 2.43201208 0.27246 0.18155674
1LE3 0.826 1.96238744 0.263946 0.24700389
1PEF 0.712 0.61298789 0.20271 0.66990523
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Figure 8 shows the five best RMSD results for 19 instances. We note that GRSA2 outperforms
PEP-FOLD3 in most cases.

Axioms 2019, 8, x FOR PEER REVIEW 15 of 22 

Table 4. The five best RMSD and TM-Score of PEP-FOLD and the enhancement GRSA algorithms. 

Instances RMSD GRSA2 RMSD PEP-FOLD3 TM-Score GRSA2 TM-Score PEP-FOLD3 
2LWC 0.134 0.49915802 0.622022 0.63645887 
1EGS 0.174 0.73379194 0.363588 0.28297143 
1UAO 0.218 1.43239212 0.379374 0.40506025 
1L3Q 0.49 2.11590502 0.304162 0.24278709 
2EVQ 0.842 0.82452263 0.332682 0.46217599 
1IN3 0.604 0.92708461 0.436492 0.39695857 

1RNU 0.352 0.80774343 0.435094 0.62276608 
1LCX 0.552 1.22937939 0.287596 0.33622833 
1GJF 0.308 0.65046896 0.562328 0.58219463 
1K43 0.782 1.50581118 0.258046 0.33411994 
2BTA 0.594 2.43201208 0.27246 0.18155674 
1LE3 0.826 1.96238744 0.263946 0.24700389 
1PEF 0.712 0.61298789 0.20271 0.66990523 
1L2Y 1.312 1.86484044 0.247734 0.3428772 
1DU1 1.286 1.29916825 0.256142 0.25837997 
1PEI 1.198 1.29391279 0.313088 0.35394815 

1WZ4 3.034 2.74149027 0.191944 0.23998161 
2MLT 0.972 1.57230256 0.462832 0.43948739 
1T0C 0.352 3.21218634 0.435094 0.22636347 

Figure 8 shows the five best RMSD results for 19 instances. We note that GRSA2 outperforms 
PEP-FOLD3 in most cases. 

 
Figure 8. RMSD performance of the five best solutions. 

Figure 9 shows the TM-Score of the five best results for 19 instances. We note that GRSA2 and 
PEP-FOLD have similar performance, although PEP-FOLD3 is the best in most cases. 

 
Figure 9. TM-Score performance of the five best solutions. 

Figure 8. RMSD performance of the five best solutions.

Figure 9 shows the TM-Score of the five best results for 19 instances. We note that GRSA2 and
PEP-FOLD have similar performance, although PEP-FOLD3 is the best in most cases.
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In Figure 10, a comparison of I-Tasser, and GRSA2 using RMSD is presented. In this case,
17 instances are compared because I-Tasser only accepts proteins greater than 10 amino acids. For
this reason, 2LWC and 1EGS are discarded. The results presented in Figure 10 show the best result
obtained by I-Tasser and GRSA2. We may observe that comparing RMSD results, GRSA2 outperforms
I-Tasser in this set of instances. However, in Figure 11, we observe a similar result between I-Tasser
and GRSA2 comparing only the best TM-Score in both algorithms.
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In Figure 12, the best RMSD solutions of I-Tasser, PEP-FOLD3, and GRSA2 are compared. Note
that in most cases, GRSA obtains better results than I-Tasser and PEP-FOLD3.
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Figure 14 shows a typical alignment of our algorithms and the native structure using the TM-Align
server [58]. Four proteins were chosen (in red), and their native structures (in blue) are compared with
the results obtained by GRSA. As we mentioned before, the quality of the solution is measured by
using energy, the RMSD, and TM-Score values.
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Compared to the classic SA algorithm, GRSA2 shows the best performance in virtually all instances
using RMSD and TM-Score as a quality metric, as shown in Figures 3–5.

Although GRSA2 is an algorithm that does not use any biological information, as mentioned above,
the results obtained are competitive and sometimes better than those obtained by the PEP-FOLD3 and
I-TASSER servers.

The best RMSD results of GRSA2, I-TASSER, and PEP-FOLD3 are shown in Figure 12, and we can
observe that GRSA2 has the best performance. However, when TM-SCORE is also used as a quality
metric, PEP-FOLD3 has the best performance for most of the instances. Thus, we made a hypothesis
test, and we found that all of the three algorithms are statistically equivalent.

For a better appreciation of the results and the performance of the algorithms, two box diagrams
with the best RMSD and TM-SCORE are presented in Figures 15 and 16, respectively. Note that GRSA2
has a very good performance concerning I-TASSER and PEP-FOLD3 algorithms.
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Despite the good performance shown by GRSA2, we should mention that this algorithm
outperforms I-TASSER and PEP-FOLD3 servers but not in all cases. For instance, in Figure 8,
when the TM-SCORE metric is used, a downward trend is observed for cases of less than 10 amino
acids, compared to the results obtained by PEP-FOLD3. Also, by comparing it to I-Tasser and
PEP-FOLD3, the quality measured with the TM-Score metric for GRSA2 is not the best in most cases
(Figures 13 and 16).
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6. Conclusions

In this paper, we present the GRSA2 algorithm for the protein folding problem applied to peptides.
This algorithm combines the classical features of SA with soft perturbation and acceptance criterion
taken CRO algorithm, and for generating new solutions, we use soft particle perturbations proposed
in the CRO algorithm. As a result, the simulation process for peptides leads to the tertiary structure
close to the native structure and with equivalent quality as the best PFP algorithms.

The proposed algorithms were compared against the classical simulated annealing algorithm,
PEP-FOLD3, and I-Tasser. According to the experimentation, the proposed algorithms overpass SA,
PEP-FOLD3, and I-Tasser when RMSD is compared. However, when TM-Score is used, the results are
similar in some cases, and others are very close. Moreover, according to the experimentation, GRSA2
is statistically equivalent to the other two algorithms PEP-FOLD3 and I-Tasser. In addition, GRSA2 has
the advantage that it is simpler and easier to implement than the other algorithms. To be precise, to
use GRSA2 is more friendly because this algorithm does not require machine learning techniques or a
fragments database.

The GRSA2 algorithm is a simple algorithm because it only uses the sequence of amino acids as
input information, which for certain users can be considered advantageous compared to PEP-FOLD3
and I-Tasser, which depend on biological information. On the contrary, it is necessary to further
improve the proposed algorithm in such a way that we can obtain better results using the TM-Score
metric. Finally, we showed that this new enhancement of GRSA is useful for protein folding problems
in the case of peptides. Therefore, we consider the proposed algorithms are relevant because these
proteins have many applications in medicine, biotechnology, and other areas. As part of our ongoing
work, we are developing a server using GRSA2 for small peptides and other proteins.
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