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Abstract: In this paper, we investigate the Wick-type stochastic (3+1)-dimensional modified
Benjamin–Bona–Mahony (BBM) equations. We present a generalised version of the modified
tanh–coth method. Using the generalised, modified tanh–coth method, white noise theory, and
Hermite transform, we produce a new set of exact travelling wave solutions for the (3+1)-dimensional
modified BBM equations. This set includes solutions of exponential, hyperbolic, and trigonometric
types. With the help of inverse Hermite transform, we obtained stochastic travelling wave solutions
for the Wick-type stochastic (3+1)-dimensional modified BBM equations. Eventually, by application
example, we show how the stochastic solutions can be given as white noise functional solutions.

Keywords: modified BBM equations; (3+1)-dimensional equations; white noise; Brownian motion;
travelling wave solutions; wick-type stochastic

MSC: 60H15; 60H35; 35C07; 60H40

1. Introduction

In this paper, with the help of white noise theory, Hermite transform and a generalised, modified
tanh–coth method, we deduce stochastic travelling wave solutions for the Wick-type stochastic
(3+1)-dimensional modified BBM equations as the forms:

Ut + R1(t) �Uz + R2(t) �U�2 �Ux + R3(t) �Uxyt = 0, (1)

Vt + R4(t) �Vx + R5(t) �V�2 �Vy + R6(t) �Vxzt = 0, (2)

and
Wt + R7(t) �Wy + R8(t) �W�2 �Wz + R9(t) �Wxxt = 0, (3)
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where (x, y, z, t) ∈ R3 × R+, Ri(i = 1, 2, ...9) are non-zero integrable functions from R+ to the
Kondrative distribution space (S)−1, which was defined by Holden et al. in [1] as a Banach algebra
with the Wick-product�Equations (1)–(3) are the perturbations of the (3+1)-dimensional modified BBM
equations with variable coefficients:

ut + r1(t)uz + r2(t)u2ux + r3(t)uxyt = 0, (4)

vt + r4(t)vx + r5(t)v2vy + r6(t)vxzt = 0, (5)

and
wt + r7(t)wy + r8(t)w2wz + r9(t)wxxt = 0, (6)

where ri(i = 1, 2, ...9) are non-zero integrable functions o nR+. The modified BBM equation:

ut + k(t)ux + l(t)u2ux + m(t)uxxx = 0. (7)

which describes the surface long waves in nonlinear dispersive media. It is also used as a character
to acoustic-gravity waves in compressible fluids, hydromagnetic waves in cold plasma, and acoustic
waves in anharmonic crystals [2]. The study of (3+1)-dimensional nonlinear equations is promising
because these equations model the real features in a wide assortment of science, technology, fluid
mechanics, wave propagations, electrodynamics, and engineering fields [3–6]. For this reason,
Hereman [4,5] proposed the (3+1)-dimensional nonlinear modified KdV equation. Analogously,
and by the same sense, Wazwaz [7] introduced Equations (4)–(6). Moreover, if Equations (4)–(6) are
considered in a random environment, we have random (3+1)-dimensional modified BBM equations.
In order to obtain the exact solutions of random (3+1)-dimensional modified BBM equations, we
only consider them in a white noise environment; that is, we will discuss the Wick-type, stochastic,
(3+1)-dimensional modified BBM Equations (1)–(3).

Recently, the study of solutions to nonlinear partial differential equations (PDEs) is prospering [8–10].
Many authors have researched the subject of the random travelling wave, which is a significant subject
of stochastic partial differential equations (SPDEs). Wadati [11] first proposed and discussed the
stochastic KdV equation and gave the propagation of soliton of the KdV equation under the effect of
Gaussian noise. Furthermore, Ghany and Hyder [12–15], Ghany, Hyder and Zakarya [16,17], Chen
and Xie [18–20], Hyder and Zakarya [21,22], Hyder [23,24], and Agarwal, Hyder and Zakarya [25]
investigated a wide class of Wick-type stochastic evolution equations by using different extension
methods and white noise analysis.

There are many methods to obtain travelling wave solutions to nonlinear PDEs, such as the
inverse scattering method [26], the Newton’s method [27], the tanh method [28], the Sinc–Galerkin
method [29], the residual power series method [30], the semi-inverse variational principle and the first
integral method [31], and the Daftardar-Gejji and Jafari method [32]. The tanh method, established
by Malfliet [33], pursues a specially straightforward and effective algorithm to obtain exact solutions
for a wide class of nonlinear PDEs. Moreover, a variety of research papers have focused on the
different applications and extensions of the tanh method. Fan [34] has introduced an extended
tanh method and gave new travelling wave solutions that cannot be obtained by the tanh method.
Also, Wazwaz extended the tanh method and named it the tanh–coth method [35]. Furthermore,
El-Wakil [36] and Soliman [37] modified the tanh–coth method and presented new, exact solutions for
some nonlinear PDEs.

Our aim in this work was to obtain new stochastic travelling wave solutions for the Wick-type
stochastic (3+1)-dimensional modified BBM equations. Firstly, we give a generalised version of
the modified tanh–coth method to make it convenient for the nonlinear (3+1)-dimensional and
multi dimensional PDEs. Secondly, we use the generalised, modified tanh–coth method, white
noise theory, and Hermite transform to produce a new set of exact travelling wave solutions for the
(3+1)-dimensional modified BBM equations, this set includes solutions of exponential, hyperbolic, and
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trigonometric types. Finally, we use the inverse Hermite transform to obtain stochastic travelling wave
solutions for the Wick-type stochastic (3+1)-dimensional modified BBM equations. Moreover, by an
application example, we show how the stochastic solutions can be given as white noise functional
solutions. In our work, the modified BBM equation describes the surface long waves in nonlinear
dispersive media. It is also used as a character of acoustic gravity waves in compressible fluids,
hydromagnetic waves in cold plasma, and acoustic waves in harmonic crystals [2]. The study of
(3+1)-dimensional nonlinear equations is prospering because these equations model the real features
in a wide assortment of science, technology, fluid mechanics, wave propagations, electrodynamics,
and engineering fields [3–6]. The origin and references of Equation (1) are given in Holden [1].
Ghany and Fathallah studied white-noise functional solutions for wick-type stochastic time-fractional
Benjamin–Bona–Mahony (BBM) equation in [38]. Recently, Sahoo and Saha Ray studied by other
methods the stochastic solutions of wick-type stochastic time-fractional BBM equation for modeling
long surface gravity waves of small amplitude, in [39]. The PDE of Benjamin et al. [2] is now often
called the BBM equation, although it is also known as the regularised long wave (RLW) equation.
Morrison et al proposed the one-dimensional PDE, as an equally valid and accurate model for the same
wave phenomena simulated by the KdV and RLW equations [40]. Random waves are an important
subject of random PDEs. In essence, to investigate the exact solutions of random BBM equation, we
restricted our attention to consider this problem in white noise environment [38].

This paper is organized as follows: In Section 2, we recall some requisites from Gaussian white
noise analysis. In Section 3, we give a generalisation to the modified tanh–coth method to make it
convenient for the nonlinear (3+1)-dimensional equations. In Section 4, we employ the generalised,
modified tanh–coth method, white noise theory, and Hermite transform to obtain a new set of exact
travelling wave solutions for the (3+1)-dimensional modified BBM equations. In Section 5, we apply the
inverse Hermite transform to explore stochastic travelling wave solutions for the Wick-type stochastic
(3+1)-dimensional modified BBM equations. In Section 5, we give some examples to show that the
stochastic solutions can be given as Brownian motion functional solutions and white noise functional
solutions. In Section 6, we give a summary and discussion.

2. Requisites from Gaussian White Noise Analysis

The Gaussian white noise analysis starts with the rigging S(Rd) ⊂ L2(Rd) ⊂ S∗(Rd), where
S(Rd) is the Schwartz space of rapidly decreasing, infinite differentiable functions on Rd, and
S∗(Rd) is the space of tempered distributions. From the Bochner–Minlos theorem [1], we have
a unique white noise measure µ, on

(
S∗(Rd), β

(
S∗(Rd)

))
. Assume that ξn(x) = π−1/4((n −

1)!)−1/2e−x2/2hn−1(
√

2x), n ∈ N are the Hermite functions, where hn(x) denotes the Hermite
polynomials. It is well known that the collection (ξn)n∈N forms an orthonormal basis for L2(R).
Let α = (α1, ..., αd) be a d-dimensional multi-indices with α1, ..., αd ∈ N; then, the family of tensor
products ξα := ξ(α1,...,αd)

= ξα1 ⊗ ...⊗ ξαd , α ∈ Nd constitutes an orthonormal basis for L2(Rd). Now,
introduce an ordering in Nd by

i < j⇒
d

∑
k=1

α
(i)
k ≤

d

∑
k=1

α
(j)
k , where α(i) =

(
α
(i)
k

)d

k=1
, α(j) =

(
α
(j)
k

)d

k=1
∈ Nd . (8)

Using this ordering, we define ηi := ξα(i) = ξ
α
(i)
1
⊗ ...⊗ ξ

α
(i)
d

, i ∈ N. Let J =
(
NN

0
)

c be the set of all

sequences α = (αi)i∈N with αi ∈ N0 and with compact support. For α ∈ J, we define

Hα(ω) =
∞

∏
i=1

hαi (〈ω, ηi〉), ω ∈ S∗(Rd) . (9)
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Let n ∈ N, the Kondrative space of stochastic test functions (S)n
1 is defined by:

(S)n
1 =

{
f = ∑

α

cαHα ∈
n⊕

k=1

L2(µ) : cα ∈ Rn and ‖ f ‖2
1,k := ∑

α

c2
α(α!)2(2N)kα < ∞ ∀k ∈ N

}
, (10)

and the Kondrative space of stochastic distributions (S)n
−1 is defined by:

(S)n
−1 =

{
F = ∑

α

bα Hα : bα ∈ Rn and ‖F‖2
−1,k := ∑

α

b2
α(2N)−qα < ∞ for some q ∈ N

}
. (11)

The family of seminorms ‖ f ‖1,k, k ∈ N produces a topology on (S)n
1 and (S)n

−1 can be represented
as the dual of (S)n

1 under the action 〈F, f 〉 = ∑α(bα, cα)α!, where F = ∑α bα Hα ∈ (S)n
−1, f = ∑α cα Hα ∈

(S)n
1 and (bα, cα) is the usual scalar product on Rn.

The Wick product of two distributions F = ∑α aαHα, G = ∑β bβ Hβ ∈ (S)n
−1 with aα, bβ ∈ Rn is

defined by:
F � G = ∑

α,β
(aα, bβ)Hα+β . (12)

Let F = ∑α aαHα ∈ (S)n
−1 with aα ∈ Rn. The Hermite transform of F is defined by:

HF(w) = F̃(w) = ∑
α

aαwα ∈ Cn (when convergent) , (13)

where w = (w1, w2, ...) ∈ CN and wα = Π∞
i=1wαi

i , with α = (α1, α2, ...) ∈ J and w0
i = 1.

For F, G ∈ (S)n
−1, by the definition of Hermite transform, we get:

F̃ � G(w) = F̃(w)G̃(w) , (14)

for all w such that F̃(w) and G̃(w) exist. The multiplication on the right hand side of the above equality
is the complex bilinear multiplication in Cn which is defined by (w1

1, ...w1
n)(w2

1, ..., w2
n) = ∑n

i=1 w1
i w2

i ,
where wk

i ∈ C. Hence, The Hermite transform converts the Wick product into the usual product and
convergence in (S)n

−1 into pointwise and bounded convergence in a specific neighbourhood of zero in
Cn. For more details about stochastic Kondrative spaces, Wick product, and Hermite transform we
refer the reader to [1].

3. Generalization of the Modified Tanh–Coth Method

Consider a multi dimensional, nonlinear PDE of wave propagation:

P
(

u, ut, uxi , uxixj , uxixjxk , ...
)
= 0 , (15)

where u is the dependent variable and t = x0, x1, x2, ..., xm are the independent variables. Introduce
the wave transformation:

u = u(ξ), ξ =
m

∑
i=0

aixi , (16)

where ai(i = 0, 1, 2, ..., m) are unknown constants. Therefore, Equation (15) can be transformed into a
nonlinear ordinary differential equation (NODE):

Q(u, u′, u′′, u′′′, ...) = 0. (17)
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For simplicity, we integrate the NODE (17), provided that all terms include derivatives, and set
the integration constants to be zero. Subsequently, the transformed Equation (17) can be solved by
expanding its general solution in finite series as follows:

u(ξ) =
N

∑
k=0

AkΦk(ξ) +
N

∑
k=1

BkΦ−k(ξ), (18)

where Φ solves the first order Riccati equation [41]:

Φ′(ξ) = α0 + α1Φ(ξ) + α2Φ2(ξ), (19)

where α0,α1, and α2 are constants to be determined. The positive constant N can be specified by
balancing the linear and nonlinear terms of highest order in Equation (17). Inserting Equations (18)
and (19) into Equation (17), yields an algebraic equation in Φ and its powers. Equating the coefficients
of Φk to zero, gives an algebraic system of equations in Ak and Bk. With the help of the computer
symbolic system Mathematica, we can obtain Ak and Bk. The Riccati Equation (19) has the following
particular solutions [42]:

Φ(ξ) = eξ − 1, α0 = 1, α1 = 1, α2 = 0,

Φ(ξ) = coth(ξ)± (ξ), tanh(ξ)± i (ξ), α0 = 1
2 , α1 = 0, α2 = − 1

2 ,

Φ(ξ) = tan(ξ), − cot(ξ), α0 = 1, α1 = 0, α2 = 1,

Φ(ξ) = 1
2 cot(2ξ), 1

2 tan(2ξ), α0 = 1, α1 = 0, α2 = 4.

(20)

4. The Wick-Type, Stochastic, (3+1)-Dimensional Modified BBM Equations

We first investigate the model (1) of the Wick-Type, stochastic, (3+1)-dimensional modified BBM
equations. Applying Hermite transform to Equation (1), gets the deterministic equation:

Ũt(x, y, z, t, w) + R̃1(t, w)Ũz(x, y, z, t, w) + R̃2(t, w)Ũ2(x, y, z, t, w)Ux(x, y, z, t, w)+

+ R̃3(t, w)Ũxyt(x, y, z, t, w) = 0 , (21)

where w = (w1, w2, ...) ∈
(
CN)

c. To obtain travelling wave solutions to Equation (21), we introduce
the transformations R̃1(t, w) = r1(t, w),R̃2(t, w) = r2(t, w),R̃3(t, w) = r3(t, w), and Ũ(x, y, z, t, w) =

u(x, y, z, t, w) = u(ξ(x, y, z, t, w)) with

ξ(x, y, z, t, w) = a1x + a2y + a3z + b
∫ t

0
χ(τ, w)dτ, (22)

where ai (i = 1, 2, 3), b, and c are arbitrary constants satisfying aib 6= 0 and χ is a non-zero function to
be determined. Hence, Equation (21) can be converted to the following NODE:

(bχ + a3r1)u +
1
3

a1r2u3 + a1a2bχr2u′′ = 0. (23)

Balancing u3 with u′′, gives N = 1. Therefore, we put the solution of Equation (21) in the form:

u(x, y, z, t, w) = A0(t, w) + A1(t, w)Φ(ξ) +
B1(t, w)

Φ(ξ)
, (24)

where Φ is the solution of Equation (19). Substituting Equations (24) and (19) into Equation (23),
collecting the coefficients of Φk (k = −3,−2,−1, 0, 1, 2, 3), and equating them to zero, gives the
following system of seven algebraic equations in A0, A1, B1, and χ.
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

(bχ + a3r1)A0 +
1
3 a1r2 I0 + a1a2bχr3E0 = 0,

(bχ + a3r1)A1 +
1
3 a1r2 I1 + a1a2bχr3E1 = 0,

(bχ + a3r1)B1 +
1
3 a1r2 J1 + a1a2bχr3F1 = 0,

1
3 a1r2 I2 + a1a2bχr3E2 = 0,
1
3 a1r2 I3 + a1a2bχr3E3 = 0,
1
3 a1r2 J2 + a1a2bχr3F2 = 0,
1
3 a1r2 J3 + a1a2bχr3F3 = 0.

(25)

where I0 = A0G0 + A1H1 + B1G1, I1 = A0G1 + A1G0 + B1G2, I2 = A0G2 + A1G1, I3 = A1G2,

J1 = A0H1 + A1H2 + B1G0, J2 = A0H2 + B1H1, J3 = B1H2, G0 = A2
0 + 2A1B1, G1 = 2A0 A1,

G2 = A2
1, H1 = 2A0B1, H2 = B2

1 , E0 = α0C1 − α2D1, E1 = α1C1 + 2α0C2, E2 = α2C1 + 2α1C2,

E3 = 2α2C2, F1 = −α1D1 − 2α2D2, F2 = −α0D1 − 2α1D2, F3 = −2α0D2, C0 = α0 A1 − α2B1,

C1 = α1 A1, C2 = α2 A1, D1 = −α1B1, D2 = −α0B1.

Now, we solve the system (25) for some cases relating to the Riccati equation (19).

4.1. Case I

We reduce the system (25) by using α0 = α1 = 1 and α2 = 0. By using Mathematica, we can find a
set of solutions for the reduced system as follows:

A0 = ±i

√
3a3r1

a1r2
, A1 = 0, B1 = ±

√
3a2a3r1

a1a2r2r3 − 2
, χ =

2a3r1

b(a1a2r3 − 2)
. (26)

Substituting the values (26) in Equation (24) and using (20), yields a travelling wave solution of
Equation (21) of exponential type:

u1(x, y, z, t, w) =

=
±i
√

3a3r1(t, w)(a1a2r2(t, w)r3(t, w)− 2)(exp(ξ1(x, y, z, t, w))− 1)±
√

3a1a2a3r1(t, w)r2(t, w)√
a1r2(t, w)(a1a2r2(t, w)r3(t, w)− 2)(exp(ξ1(x, y, z, t, w))− 1)

,
(27)

where

ξ1(x, y, z, t, w) = a1x + a2y + a3z + 2a3

∫ t

0

r1(τ, w)

a1a2r3(τ, w)− 2
dτ . (28)

4.2. Case II

We reduce the system (25) by using α0 = 1
2 , α1 = 0, and α2 = − 1

2 . By using Mathematica, we can
find a set of solutions for the reduced system as follows:

A0 = 0, A1 = ±
√

3a2a3r1r3

r2(2− a1a2r3)
, B1 = ±i

√
3a1a2r1

2r2r3
, χ = − 4a3r1

b(4 + a1a2r3)
. (29)
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Substituting the values (29) in Equation (24) and using (20), yields travelling wave solutions of
Equation (21) of hyperbolic type:

u2(x, y, z, t, w) = ±

√
3a2a3r1(t, w)r3(t, w)

r2(t, w)(2− a1a2r3(t, w))
(coth(ξ2(x, y, z, t, w))± (ξ2(x, y, z, t, w)))

± i
√

3ba2r1(t, w)√
2r2(t, w)r3(t, w) (coth(ξ2(x, y, z, t, w))± (ξ2(x, y, z, t, w)))

, (30)

u3(x, y, z, t, w) = ±

√
3a2a3r1(t, w)r3(t, w)

r2(t, w)(2− a1a2r3(t, w))
(tanh(ξ2(x, y, z, t, w))± i (ξ2(x, y, z, t, w)))

± i
√

3ba2r1(t, w)√
2r2(t, w)r3(t, w) (tanh(ξ2(x, y, z, t, w))± i (ξ2(x, y, z, t, w)))

, (31)

where

ξ2(x, y, z, t, w) = a1x + a2y + a3z− 4a3

∫ t

0

r1(τ, w)

4 + a1a2r3(τ, w)
dτ . (32)

4.3. Case III

We reduce the system (25) by putting α0 = α2 = 1 and α1 = 0. By using Mathematica, we can find
a set of solutions for the reduced system as follows:

A0 = ±

√
3a2a3r1

1− a1a2r2r3
, A1 = B1 = ±

√
6a2a3r1r3

1 + 2a1a2r2r3
, χ =

−a3r1

b(1 + 2a1a2r3)
. (33)

Substituting the values (33) in Equation (24) and using (20), yields travelling wave solutions of
Equation (21) of trigonometric type:

u4(x, y, z, t, w) = u5(x, y, z, t, w) =

= ±
√

3a2a3r1(t,w)
1−a1a2r2(t,w)r3(t,w)

±
√

6a2a3r1(t,w)r3(t,w)
1+2a1a2r2(t,w)r3(t,w) (sec(ξ3(x, y, z, t, w)) csc(ξ3(x, y, z, t, w))) ,

(34)

where

ξ3(x, y, z, t, w) = a1x + a2y + a3z− a3

∫ t

0

r1(τ, w)

1 + 2a1a2r3(τ, w)
dτ . (35)

4.4. Case IV

We reduce the system (25) by putting α0 = 1, α1 = 0 and α2 = 4. By using Mathematica, we can
find a set of solutions for the reduced system as follows:

A0 = ±3
√

3a2a3r1
9a1a2r2r3−2 , A1 = ±8

√
3a2a3r1r3

2+15a1a2r2r3
, B1 = ±i

√
3a3r1
a1r2r3

, χ = − 2a3r1
b(9a1a2r2r3−2) . (36)

Substituting the values (36) in Equation (24) and using (20), yields travelling wave solutions of
Equation (21) of trigonometric type:

u6(x, y, z, t, w) = ±3

√
3a2a3r1(t, w)

9a1a2r2(t, w)r3(t, w)− 2
± 4

√
3a2a3r1(t, w)r3(t, w)

2 + 15a1a2r2(t, w)r3(t, w)
(cot(2ξ4(x, y, z, t, w))

±i
√

3a3r1(t, w)

2
√

a1r2(t, w)r3(t, w)(cot(2ξ4(x, y, z, t, w)))
, (37)
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u7(x, y, z, t, w) = ±3

√
3a2a3r1(t, w)

9a1a2r2(t, w)r3(t, w)− 2
± 4

√
3a2a3r1(t, w)r3(t, w)

2 + 15a1a2r2(t, w)r3(t, w)
(tan(2ξ4(x, y, z, t, w))

±i
√

3a3r1(t, w)

2
√

a1r2(t, w)r3(t, w)(tan(2ξ4(x, y, z, t, w)))
, (38)

where

ξ4(x, y, z, t, w) = a1x + a2y + a3z + 2a3

∫ t

0

r1(τ, w)

9a1a2r3(τ, w)− 2
dτ . (39)

Obviously, there are several particular solutions for the system (25) with the Riccati equation (19),
coming from many different cases. In the above cases we just clarified how far our technique is
applicable.

Now, for q < ∞, r > 0, consider the infinite dimensional neighbourhoods Kq(r) = {(w1, w2, ...) ∈
CN : ∑α 6=0 |wα|2(2N)qα < r2} of zero in CN [1]. The properties of exponential, hyperbolic, and
trigonometric functions yield that there exists a bounded open set D ⊂ R3×R+, q < ∞, r > 0, such that
the solution u(x, y, z, t, w) of Equation (21) and all its derivatives which are involved in Equation (21)
are uniformly bounded for (x, y, z, t, w) ∈ D× Kq(r), continuous with respect to (x, y, z, t) ∈ D for all
w ∈ Kq(r) and analytic with respect to w ∈ Kq(r), for all (x, y, z, t) ∈ D. From Theorem 4.1.1 in [1], there
exists U(x, y, z, t) ∈ (S)−1 such that u(x, y, z, t, w) = Ũ(x, y, z)(w) for all (x, y, z, t, w) ∈ D × Kq(r)
and U(x, y, z, t) solves Equation (1) in (S)−1. Hence, by applying the inverse Hermite transform to
Equations (27), (30), (31), (34), (37), and (38), we obtain the solutions of Equation (1) as follows:

(I) Stochastic Travelling Wave Solution of Exponential Type:

U1(x, y, z, t) =

±i
√

3a3R1(t) � (a1a2R2(t) � R3(t)− 2) � (exp�(Ξ1(x, y, z, t))− 1)±
√

3a1a2a3R1(t) � R2(t)√
a1R2(t) � (a1a2R2(t) � R3(t)− 2)(exp�(Ξ1(x, y, z, t))− 1)

, (40)

with

Ξ1(x, y, z, t) = a1x + a2y + a3z + 2a3

∫ t

0

R1(τ)

a1a2R3(τ)− 2
dτ . (41)

(II) Stochastic Travelling Wave Solutions of Hyperbolic Type:

U2(x, y, z, t) = ±

√
3a2a3R1(t) � R3(t)

R2(t) � (2− a1a2R3(t))
� (coth�(Ξ2(x, y, z, t))±� (Ξ2(x, y, z, t)))

± i
√

3ba2R1(t)√
2R2(t) � R3(t) � (coth�(Ξ2(x, y, z, t))±� (Ξ2(x, y, z, t)))

, (42)

U3(x, y, z, t) = ±

√
3a2a3R1(t) � R3(t)

R2(t) � (2− a1a2R3(t))
� (tanh�(Ξ2(x, y, z, t))± i �(Ξ2(x, y, z, t)))

± i
√

3ba2R1(t)√
2R2(t) � R3(t) � (tanh�(Ξ2(x, y, z, t))± i �(Ξ2(x, y, z, t)))

, (43)

with

Ξ2(x, y, z, t) = a1x + a2y + a3z− 4a3

∫ t

0

R1(τ)

4 + a1a2R3(τ)
dτ . (44)
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(III) Stochastic Travelling Wave Solutions of Trigonometric Type:

U4(x, y, z, t) = U5(x, y, z, t) = ±

√
3a2a3R1(t)

1− a1a2R2(t) � R3(t)
±

√
6a2a3R1(t) � R3(t)

1 + 2a1a2R2(t) � R3(t)

� (sec�(Ξ3(x, y, z, t)) � csc�(Ξ3(x, y, z, t))) , (45)

with

Ξ3(x, y, z, t) = a1x + a2y + a3z− a3

∫ t

0

R1(τ)

1 + 2a1a2R3(τ)
dτ . (46)

U6(x, y, z, t) = ± 3

√
3a2a3R1(t)

9a1a2R2(t) � R3(t)− 2
± 4

√
3a2a3R1(t) � R3(t)

2 + 15a1a2R2(t) � R3(t)
� (cot�(2Ξ4(x, y, z, t))

± i
√

3a3R1(t)
2
√

a1R2(t) � R3(t) � (cot�(2Ξ4(x, y, z, t))
, (47)

U7(x, y, z, t) = ± 3

√
3a2a3R1(t)

9a1a2R2(t) � R3(t)− 2
± 4

√
3a2a3R1(t) � R3(t)

2 + 15a1a2R2(t) � R3(t)
� (tan�(2Ξ4(x, y, z, t)))

± i
√

3a3R1(t)
2
√

a1R2(t) � R3(t) � (tan�(2Ξ4(x, y, z, t)))
, (48)

with

Ξ4(x, y, z, t) = a1x + a2y + a3z + 2a3

∫ t

0

R1(τ)

9a1a2R3(τ)− 2
dτ . (49)

For the other two forms of the Wick-type, stochastic, (3+1)-dimensional modified BBM
equations (2) and (3), we can follow the same technique as presented for the first form (1). Therefore,
we just list the stochastic travelling wave solutions for each form. For Equation (2) one obtains the
following stochastic travelling wave solution:

(I) Stochastic Travelling Wave Solution of Exponential Type:

V1(x, y, z, t) =
±i
√

3b3R4(t)�(b1b2R5(t)�R6(t)−2)�(exp�(Λ1(x,y,z,t))−1)±
√

3b1b2b3R4(t)�R5(t)√
b1R5(t)�(b1b2R5(t)�R6(t)−2)(exp�(Λ1(x,y,z,t))−1)

,
(50)

with

Λ1(x, y, z, t) = b1x + b2y + b3z + 2b3

∫ t

0

R4(τ)

b1b2R6(τ)− 2
dτ . (51)

(II) Stochastic Travelling Wave Solutions of Hyperbolic Type:

V2(x, y, z, t) = ±

√
3b2b3R4(t) � R6(t)

R5(t) � (2− b1b2R6(t))
� (coth�(Λ2(x, y, z, t))±� (Λ2(x, y, z, t)))

± i
√

3b∗b2R4(t)√
2R5(t) � R6(t) � (coth�(Λ2(x, y, z, t))±� (Λ2(x, y, z, t)))

, (52)

V3(x, y, z, t) = ±

√
3b2b3R4(t) � R6(t)

R5(t) � (2− b1b2R6(t))
� (tanh�(Λ2(x, y, z, t))± i �(Λ2(x, y, z, t)))

± i
√

3b∗b2R4(t)√
2R5(t) � R6(t) � (tanh�(Λ2(x, y, z, t))± i �(Λ2(x, y, z, t)))

, (53)
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with

Λ2(x, y, z, t) = b1x + b2y + b3z− 4b3

∫ t

0

R4(τ)

4 + b1b2R6(τ)
dτ . (54)

(III) Stochastic Travelling Wave Solutions of Trigonometric Type:

V4(x, y, z, t) = V5(x, y, z, t) = ±

√
3b2b3R4(t)

1− b1b2R5(t) � R6(t)
±

√
6b2b3R4(t) � R6(t)

1 + 2b1b2R5(t) � R6(t)

� (sec�(Λ3(x, y, z, t)) � csc�(Λ3(x, y, z, t))) , (55)

with

Λ3(x, y, z, t) = b1x + b2y + a3z− b3

∫ t

0

R4(τ)

1 + 2b1b2R6(τ)
dτ . (56)

V6(x, y, z, t) = ± 3

√
3b2b3R4(t)

9b1b2R5(t) � R6(t)− 2
± 4

√
3b2b3R4(t) � R6(t)

2 + 15b1b2R5(t) � R6(t)
� (cot�(2Λ4(x, y, z, t))

± i
√

3b3R4(t)
2
√

b1R5(t) � R6(t) � (cot�(2Λ4(x, y, z, t)))
, (57)

V7(x, y, z, t) = ± 3

√
3b2b3R4(t)

9b1b2R5(t) � R6(t)− 2
± 4

√
3b2b3R4(t) � R6(t)

2 + 15b1b2R5(t) � R6(t)
� (tan�(2Λ4(x, y, z, t))

± i
√

3b3R4(t)
2
√

b1R5(t) � R6(t) � (tan�(2Λ4(x, y, z, t)))
, (58)

with

Λ4(x, y, z, t) = b1x + b2y + b3z + 2b3

∫ t

0

R4(τ)

9b1b2R6(τ)− 2
dτ , (59)

where bi (i = 1, 2, 3) and b∗ are arbitrary constants satisfying bib 6= 0.
For Equation (3) one obtains the following stochastic travelling wave solution:

(I) Stochastic Travelling Wave Solution of Exponential Type:

W1(x, y, z, t) =

±i
√

3c1R7(t)�(c1c2R8(t) diamondR9(t)−2)�(exp�(∆1(x,y,z,t))−1)±
√

3c2
1c2R7(t)�R8(t)√

c1R8(t)�(c1c2R8(t)�R9(t)−2)(exp�(∆1(x,y,z,t))−1)
,

(60)

with

∆1(x, y, z, t) = c1x + c2y + c3z + 2c1

∫ t

0

R7(τ)

c1c2R9(τ)− 2
dτ . (61)

(II) Stochastic Travelling Wave Solutions of Hyperbolic Type:

W2(x, y, z, t) = ±

√
3c1c2R7(t) � R9(t)

R8(t) � (2− c1c2R9(t))
� (coth�(∆2(x, y, z, t))±� (∆2(x, y, z, t)))

± i
√

3b∗∗c2R7(t)√
2R8(t) � R9(t) � (coth�(∆2(x, y, z, t))±� (∆2(x, y, z, t)))

, (62)
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W3(x, y, z, t) = ±

√
3c1c2R7(t) � R9(t)

R8(t) � (2− c1c2R9(t))
� (tanh�(∆2(x, y, z, t))± i �(∆2(x, y, z, t)))

± i
√

3b∗∗c2R7(t)√
2R8(t) � R9(t) � (tanh�(∆2(x, y, z, t))± i �(∆2(x, y, z, t)))

, (63)

with

∆2(x, y, z, t) = c1x + c2y + c3z− 4c1

∫ t

0

R7(τ)

4 + c1c2R9(τ)
dτ . (64)

(III) Stochastic Travelling Wave Solutions of Trigonometric Type:

W4(x, y, z, t) = W5(x, y, z, t) = ±

√
3c1c2R7(t)

1− c1c2R8(t) � R9(t)
±

√
6c1c2R7(t) � R9(t)

1 + 2c1c2R8(t) � R9(t)

� (sec�(∆3(x, y, z, t)) � csc�(∆3(x, y, z, t))) , (65)

with

∆3(x, y, z, t) = c1x + c2y + c3z− c1

∫ t

0

R7(τ)

1 + 2c1c2R9(τ)
dτ . (66)

W6(x, y, z, t) = ± 3

√
3c1c2R7(t)

9c1c2R8(t) � R9(t)− 2
± 4

√
3c1c2R7(t) � R9(t)

2 + 15c1c2R8(t) � R9(t)
� (cot�(2∆4(x, y, z, t))

± i
√

3c1R7(t)
2
√

c1R8(t) � R9(t) � (cot�(2∆4(x, y, z, t)))
, (67)

W7(x, y, z, t) = ± 3

√
3c1c2R7(t)

9c1c2R8(t) � R9(t)− 2
± 4

√
3c1c2R7(t) � R9(t)

2 + 15c1c2R8(t) � R9(t)
� (tan�(2∆4(x, y, z, t))

± i
√

3c1R7(t)
2
√

c1R8(t) � R9(t) � (tan�(2∆4(x, y, z, t)))
, (68)

with

∆4(x, y, z, t) = c1x + c2y + c3z + 2c1

∫ t

0

R7(τ)

9c1c2R9(τ)− 2
dτ , (69)

where ci (i = 1, 2, 3) and b∗∗ are arbitrary constants satisfying cib 6= 0.

5. Example

In this section, we provide a specific application example to demonstrate the effectiveness of our
results and to justify the real contribution of these results. We focus our attention on Equation (1).
Concerning the other two equations, Equations (2) and (3), the procedure is similar. We observe that
the solutions of Equation (1) are strongly depend on the shape of the given functions R1(t) and R2(t).
So, for dissimilar forms of R1(t) and R2(t), we can find dissimilar solutions of Equation (1) which
come from Equations (70)–(78). We illustrate this by giving the following example.

Assume that R2(t) = δ1R1(t), R3(t) = δ2R1(t) and R1(t) = f (t) + δ3Wt, where δ1,δ2, and δ3

are arbitrary constants, f (t) is a bounded measurable function on R+, and Wt is the Gaussian
white noise, which is the time derivative (in the strong sense in (S)−1) of the Brownian motion
Bt. The Hermite transform of Wt is given by W̃t(w) = ∑∞

i=1 wi
∫ t

0 ηi(τ)dτ [1]. Using the definition of
W̃t(w), Equations (70)–(78) yield the white noise functional solution of Equation (1) as follows:
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UW1(x, y, z, t) =

±i
√

3a3(a1a2δ1δ2( f (t) + δ3Wt)2 − 2)(exp(Ω1(x, y, z, t))− 1)±
√

3a1a2a3δ1( f (t) + δ3Wt)√
a1δ1(a1a2δ1δ2( f (t) + δ3Wt)2 − 2)(exp(Ω1(x, y, z, t))− 1)

, (70)

with

Ω1(x, y, z, t) = a1x + a2y + a3z + 2a3

∫ t

0

f (τ) + δ3Wτ

a1a2δ2( f (τ) + δ3Wτ)− 2
dτ , (71)

UW2(x, y, z, t) = ±

√
3a2a3δ2( f (t) + δ3Wt)

δ1(2− a1a2δ2( f (t) + δ3Wt))
(coth(Ω2(x, y, z, t))± (Ω2(x, y, z, t)))

± i
√

3ba2√
2δ1δ2( f (t) + δ3Wt) (coth(Ω2(x, y, z, t))± (Ω2(x, y, z, t)))

, (72)

UW3(x, y, z, t) = ±

√
3a2a3δ2( f (t) + δ3Wt)

δ1(2− a1a2δ2( f (t) + δ3Wt))
(tanh(Ω2(x, y, z, t))± i (Ω2(x, y, z, t)))

± i
√

3ba2√
2δ1δ2( f (t) + δ3Wt) (tanh(Ω2(x, y, z, t))± i (Ω2(x, y, z, t)))

, (73)

with

Ω2(x, y, z, t) = a1x + a2y + a3z− 4a3

∫ t

0

f (τ) + δ3Wτ

4 + a1a2δ2( f (τ) + δ3Wτ)
dτ , (74)

UW4(x, y, z, t) = UW5(x, y, z, t) = ±

√
3a2a3( f (t) + δ3Wt)

1− a1a2δ1δ2( f (t) + δ3Wt)2 ± ( f (t) + δ3Wt)

×
√

6a2a3δ2

1 + 2a1a2δ1δ2( f (t) + δ3Wt)2 (sec(Ω3(x, y, z, t)) csc(Ω3(x, y, z, t))) , (75)

with

Ω3(x, y, z, t) = a1x + a2y + a3z− a3

∫ t

0

f (τ) + δ3Wτ

1 + 2a1a2δ2( f (τ) + δ3Wτ)
dτ , (76)

UW6(x, y, z, t) = ± 3

√
3a2a3( f (t) + δ3Wt)

9a1a2δ1δ2( f (t) + δ3Wt)2 − 2
± 4( f (t) + δ3Wt)

×
√

3a2a3δ2

2 + 15a1a2δ1δ2( f (t) + δ3Wt)2 (cot(2Ω4(x, y, z, t)))

± i
√

3a3

2
√

a1δ1δ2(cot(2Ω4(x, y, z, t)))
, (77)

UW6(x, y, z, t) = ± 3

√
3a2a3( f (t) + δ3Wt)

9a1a2δ1δ2( f (t) + δ3Wt)2 − 2
± 4( f (t) + δ3Wt)

×
√

3a2a3δ2

2 + 15a1a2δ1δ2( f (t) + δ3Wt)2 (tan(2Ω4(x, y, z, t)))

± i
√

3a3

2
√

a1δ1δ2(tan(2Ω4(x, y, z, t)))
, (78)



Axioms 2019, 8, 134 13 of 15

with

Ω4(x, y, z, t) = a1x + a2y + a3z + 2a3

∫ t

0

f (τ) + δ3Wτ

9a1a2δ2( f (τ) + δ3Wτ)− 2
dτ . (79)

6. Conclusions

Due to the fact that the stochastic models are more realistic than the deterministic models, we
concentrated our study in this paper on the Wick-type, stochastic, (3+1)-dimensional modified BBM
equations. Besides that, we investigated and solve the deterministic, (3+1)-dimensional modified
BBM equations. In this paper, we set up a new and general version of the modified tanh–coth
method to deal with the nonlinear multi dimensional PDEs. By using this generalisation of the
modified tanh–coth method, Hermite transform, and white noise theory, we produced a new set of
exact travelling wave solutions for the variable coefficients and (3+1)-dimensional modified BBM
equations. This set includes solutions of exponential, hyperbolic, and trigonometric types. In [7],
Wazwaz has solved the deterministic, (3+1)-dimensional modified BBM equations with constant
coefficients, So, our results for this model are more general than the results obtained by him. With the
aid of inverse Hermite transform, we obtained stochastic travelling wave solutions for the Wick-type,
stochastic, (3+1)-dimensional modified BBM equations. Furthermore, we showed by an example
how the stochastic solutions can be given as white noise functional solutions. Note that, the schema
proposed in this paper can be used for solving several nonlinear evolution equations in mathematical
physics, both Wick-type stochastic and deterministic. Moreover, the Riccati equation (19) has different
solutions if we chose different values of α0, α1, and α2. Therefore, we can find many other solutions of
the Wick-type stochastic and deterministic (3+1)-dimensional modified BBM equations.

The PDE of Benjamin et al. [2] is now often called the BBM equation, although it is also known
as the regularised long wave (RLW) equation. Morrison et al. proposed the one-dimensional PDE,
as an equally valid and accurate model for the same wave phenomena simulated by the KdV and RLW
equations [40]. Random waves are an important subject of random PDEs. In essence, to investigate the
exact solutions of random Benjamin–Bona–Mahony equation, we restricted our attention to consider
this problem in a white noise environment [38]. The propagation of nonlinear wave in systems with
polarity symmetry can be described by the (3+1)-dimensional modified Benjamin–Bona–Mahony
Equation (7). If the problem is considered in a non-Gaussian stochastic environment, we can get
non-Gaussian, stochastic, (2+1)-dimensional coupled KdV equation. Obviously, the planner which
we have proposed in this paper can be also applied to other non-linear PDEs in mathematical
physics such as KdV-Burgers, modified KdV-Burgers, Zhiber- Shabat and Benjamin–Bona–Mahony
equations. We observe that the F-expansion method we used has many other particular solutions;
this in turn gives many other exact solutions for the considered stochastic, (3+1)-dimensional
modified Benjamin–Bona–Mahony equations. Additionally, in this work, we discussed the solutions
of SPDEs driven by non-Gaussian white noise; this discussion is less detailed than the Gaussian
discussion but more general, because it deals with the dual pairing generated by integration with
respect to a non-Gaussian measure. Furthermore, in future work, we will discuss the solutions of
SPDEs driven by non-Gaussian white noise to get exact stochastic solutions of the non-Gaussian,
stochastic, (3+1)-dimensional modified Benjamin–Bona–Mahony equations; we only considered this
problem in a non-Gaussian white noise environment; that is, we investigated the variable coefficients
of stochastic, (3+1)-dimensional modified Benjamin–Bona–Mahony equations. For this aim, we
developed a non-Gaussian Wick calculus based on the theory of hyper-complex systems to get exact
travelling wave solutions of (3+1)-dimensional modified Benjamin–Bona–Mahony equations and
non-Gaussian white noise functional solutions of Wick-type stochastic (3+1)-dimensional modified
Benjamin–Bona–Mahony equations.
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