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Abstract: In this paper, we give sufficient conditions to ensure the existence of the best proximity
point of monotone relatively nonexpansive mappings defined on partially ordered Banach spaces.
An example is given to illustrate our results.
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1. Introduction

Let X be a Banach space and (A, B) a pair of nonempty subsets of X. A cyclic mapping on A ∪ B
is a mapping T : A ∪ B → A ∪ B such that T(A) ⊆ B and T(B) ⊆ A. In case A ∩ B = ∅, T does
not possess a fixed point, that is, a solution to the equation Tx = x. Therefore, one can consider the
following minimization problem:

(P) :

{
find (x, y) ∈ A× B such that

‖x− Tx‖ = ‖y− Ty‖ = dist(A, B).

A point x ∈ A ∪ B is a best proximity point of T if x is a solution of the minimization problem (P).
The best proximity point notion can be seen as a generalization of fixed point notion since most fixed
point theorems can be derived as corollaries of best proximity point theorems.

The first significant result of best proximity points was studied in [1], using the proximal normal
structure, the authors proved that every cyclic relatively nonexpansive mapping from A ∪ B to itself
has a best proximity point provided that A and B are weakly compact and convex. Furthermore,
we find in [2] a similar result without invoking Zorn’s lemma, i.e., without proximal normal structure.
Recently, Chaira and Lazaiz [3] gave an extension of this last result in modular spaces. For a recent
account of the theory we refer the reader to [4–6]. We can also find in ([7], pp. 27–31) an application of
a best proximity point theorem to a system of differential equations.

On the other hand, the combination of metric fixed point theory and order theory allows
Ran and Reurings in [8] to give a Banach Contraction Principle in partially ordered metric spaces.
As consequence, they solved a matrix equation. Nieto and Rodríguez-López [9], extended the
Ran–Reurings theorem in order to obtain a periodic solution for a first-order ordinary differential
equation with periodic boundary conditions.
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Recently, many authors studied the existence of fixed points of monotone nonexpansive mappings
defined on partially ordered Banach spaces (see for example [10–15]). Recall that a self mapping T
on X is said to be monotone nonexpansive if T is monotone and ‖Tx − Ty‖ ≤ ‖x − y‖, for every
comparable elements x and y. We should mention that monotone nonexpansive mappings may not be
continuous. The interested reader can consult the book of Carl and Heikkilä [16] for many applications
of fixed point results of monotone mappings.

In this work, motivated by the recent study of a fixed point for monotone mappings, we investigate
the existence of the best proximity point of monotone relatively nonexpansive mappings in partially
ordered Banach spaces.

2. Preliminaries and Basic Results

Let (X, ‖.‖) be a Banach space endowed with a partial order �. Throughout, we assume that the
order intervals are closed and convex. Recall that an order interval is any of the subsets

[a,→) = {x ∈ X; a � x} , (←, a] = {x ∈ X; x � a}

for any a ∈ X. As a direct consequence of this, the subset

[a, b] = {x ∈ X; a � x � b} = [a,→) ∩ (←, b]

is also closed and convex for any a, b ∈ X.
We will say that x, y ∈ X are comparable whenever x � y or y � x. The linear structure of X is

assumed to be compatible with the order structure in the following sense:

(i) x � y implies x + z � y + z for all x, y, z ∈ X;
(ii) x � y implies αx � αy for all x, y ∈ X and α ∈ R+.

Let us recall the definition of a uniformly convex Banach space.

Definition 1. Let (X, ‖.‖) be a Banach space. We say that X is uniformly convex (in short, UC) if for every
ε > 0 we have δ(ε) > 0 such that

δ(ε) = in f
{

1−
∥∥∥∥ x + y

2

∥∥∥∥ ; ‖x‖ ≤ 1; ‖y‖ ≤ 1; ‖x− y‖ ≥ ε

}
.

The function δ is known as the modulus of uniform convexity of X. Note that any UC Banach space is reflexive.

A sequence {xn}n∈N in a partially ordered set (X,�) is said to be

(i) monotone increasing if xn � xn+1, for all n ∈ N;
(ii) monotone decreasing if xn+1 � xn, for all n ∈ N;
(iii) monotone sequence if it is either monotone increasing or decreasing.

The following technical lemmas will be useful to establish the main results.

Lemma 1. Let X be a Banach space endowed with a partial order �. Assume that {xn} and {yn} are two
sequences on X which are weakly convergent to x̄ and ȳ respectively and xn � yn for any n ∈ N, then

x̄ � ȳ.

Proof. Note that the positive sequence {yn − xn}n converges weakly to ȳ− x̄. Since closed convex
subsets are also weakly closed, the positive cone is weakly closed and so we conclude that ȳ− x̄ is
positive.
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Lemma 2. [17] Let {xn} be a bounded monotone sequence in X, and assume that X is reflexive. Then {xn} is
weakly convergent.

Lemma 3. [18] Let C be a nonempty closed convex subset of a UC Banach space (X, ‖.‖). Let τ : C → [0, ∞)

be a type function, i.e., there exists a bounded sequence {xn} ∈ X such that

τ (x) = lim sup
n→∞

‖xn − x‖ ,

for every x ∈ C. Then τ has a unique minimum point z ∈ C such that

τ (z) = inf {τ (x) ; x ∈ C} = τ0.

Moreover, if {zn} is a minimizing sequence in C, i.e., lim
n→∞

τ(zn) = τ0, then {zn} converges strongly to z.

The norm ‖.‖ of X is said to be monotone if

u � v � w implies max {‖w− v‖ , ‖v− u‖} ≤ ‖w− u‖ ,

for any u, v, w ∈ X. If the norm is monotone and {xn} is monotone increasing (respectively, decreasing),
then the sequence {‖xn − y‖} is decreasing for any y such that xn � y (respectively, y � xn ), for any
n ∈ N. In this case,

lim inf
n→∞

‖xn − y‖ = lim
n→∞

‖xn − y‖ = inf
n∈N
‖xn − y‖ .

Recall that a mapping T : X → X is said to be

(i) monotone increasing if x � y implies T(x) � T(y), for all x, y ∈ X;
(ii) monotone decreasing if x � y implies T(y) � T(x), for all x, y ∈ X.

We conclude this section by extending the concept of relatively cyclic nonexpansive mapping to
monotone relatively cyclic nonexpansive mapping as follows:

Definition 2. Let (X, ‖.‖,�) be a Banach space endowed with a partially order and (A, B) a pair of nonempty
subset of X. The mapping T : A ∪ B → A ∪ B is said to be monotone increasing (respectively decreasing)
relatively cyclic nonexpansive if

1. T(A) ⊆ B and T(B) ⊆ A,
2. T is monotone increasing (respectively decreasing),
3. ‖Tx− Ty‖ ≤ ‖x− y‖, whenever x ∈ A and y ∈ B are comparables.

3. Main Result

Throughout we assumed that (X, ‖.‖,�) is a Banach space endowed with a partial order for
which order intervals are convex and closed and the linear structure of X is assumed to be compatible
with the order structure.

The following result gives sufficient conditions to obtain a fixed point theorem for a monotone
increasing relatively cyclic nonexpansive mapping.

Theorem 1. Let (A, B) be a nonempty bounded closed convex pair in a partially ordered Banach space (X, ‖.‖,�
). Assume that (X, ‖.‖) is UC. Let T : A∪ B→ A∪ B be a monotone increasing relatively cyclic nonexpansive
mapping such that x0 � Tx0 for some x0 ∈ A, then A ∩ B 6= ∅ and there exists a∗ ∈ A ∩ B such that
Ta∗ = a∗.
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Proof. We assume that x0 � Tx0 and we define the sequence {xn} by xn+1 = Txn for all n ≥ 0.
By using the monotonicity of T we get

x0 � x1 � · · · � xn � xn+1 � · · · .

Since A and B are bounded and closed, the sequence {xn} is bounded increasing in the reflexive
space X. By Lemma 2,

x2n
w
⇀ x̄1 ∈ A and x2n+1

w
⇀ x̄2 ∈ B.

By uniqueness of the weak limit, x̄ = x̄1 = x̄2. We claim that A ∩ B 6= ∅.
Let K = {x ∈ A ∩ B, xn � x for all n ∈ N}. It is clear that K is nonempty, closed and convex

set. Since {xn} is a bounded sequence in X, we can define the type function as follows

τ (x) = lim sup
n→∞

‖xn − x‖,

for any x ∈ K. From Lemma 3, it follows that there exists a unique a∗ ∈ K such that

τ (a∗) = inf
x∈K

τ (x) .

We have
τ (Ta∗) = lim sup

n→∞
‖xn − Ta∗‖ = lim sup

n→∞
‖Txn−1 − Ta∗‖.

Since xn−1 � a∗ and T is monotone relatively cyclic nonexpansive mapping,

τ (Ta∗) ≤ lim sup
n→∞

‖xn−1 − a∗‖ = τ (a∗) .

Hence, τ (Ta∗) = τ (a∗). Thus Ta∗ = a∗, which completes the proof.

If B = A, we get the next result for a monotone nonexpansive mapping.

Corollary 1. Let A be a nonempty bounded closed convex set in a partially ordered Banach space (X, ‖.‖,�).
Let T : A→ A be a monotone increasing nonexpansive mapping. Assume that (X, ‖.‖) is UC and there exists
x0 ∈ A such that x0 � Tx0, then there exists a∗ ∈ A such that Ta∗ = a∗.

Now let (A�0 ,B�0 ) denotes the pair obtained from (A, B) upon setting

A�0 = {x ∈ A; ‖x− y‖ = dist (A, B) for some y ∈ B ∩ [x,→)}
B�0 = {y ∈ B; ‖y− x‖ = dist (A, B) for some x ∈ A ∩ (←, y]} .

Lemma 4. Let (A, B) be a nonempty bounded closed convex pair in a partially ordered reflexive Banach space
(X, ‖.‖,�). Then,

(i) A�0 6= ∅ if and only if B�0 6= ∅;
(ii) dist

(
A�0 ,B�0

)
= dist (A, B);

(iii)
(
A�0 ,B�0

)
is a closed pair;

(iv)
(
A�0 ,B�0

)
is a convex pair.

Proof. Using the definitions of A�0 and B�0 , we can easily derive (i) and (ii).

(iii) Let {xn} ⊂ A�0 be a sequence which converges to some x̄ in A. Then there exists a sequence
{yn} ⊂ B such that

‖xn − yn‖ = dist(A, B) and xn � yn.
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Since B is closed and bounded in a reflexive Banach space, there exists a subsequence {yϕ(n)} of

{yn} such that yϕ(n)
w
⇀ ȳ ∈ B. From Lemma 1, it follows that x̄ � ȳ. On the other hand,

‖x̄− ȳ‖ ≤ lim inf
n→∞

‖xϕ(n) − yϕ(n)‖ = dist(A, B).

Therefore, we have x̄ ∈ A�0 , and hence, A�0 is closed. By the same arguments we get that B�0 is
also closed.

(iv) Let x and x′ in A�0 . Then there exist y and y′ in B such that

{ ‖x− y‖ = dist(A, B) and x � y,
‖x′ − y′‖ = dist(A, B) and x′ � y′.

By using the fact that the linear structure of X is compatible with the order structure, we get for
any t ∈ [0, 1]

‖tx + (1− t)x′ − ty− (1− t)y′‖ = ‖t(x− y) + (1− t)(x′ − y′)‖
≤ t‖x− y‖+ (1− t)‖x′ − y′‖
= dist(A, B).

This implies that tx + (1− t)x′ ∈ A�0 . It follows that A�0 is convex, as claimed. Similarly we
prove that B�0 is also convex.

Remark 1. Note that if T is a monotone decreasing relatively cyclic nonexpansive mapping, we have T
(
A�0
)
⊂

B�0 and T
(
B�0
)
⊂ A�0 . Indeed, let x ∈ A�0 then there exists y ∈ B such that

‖x− y‖ = dist(A, B) and x � y.

Thus,
‖Tx− Ty‖ ≤ ‖x− y‖ = dist(A, B) and Ty � Tx.

This implies Tx ∈ B�0 . Consequently T
(
A�0
)
⊂ B�0 .

For the sake of simplicity, we use the following notation

AT =
{
(x0, x

′
0) ∈ A× A; x0 � Tx

′
0; ‖x0 − Tx

′
0‖ = dist (A, B)

}
.

The next lemma gives sufficient conditions such that AT is nonempty.

Lemma 5. Let (A, B) be a nonempty bounded closed convex pair in a partially ordered Banach space (X, ‖.‖,�)
such that A�0 is nonempty. Let T : A ∪ B → A ∪ B be a monotone relatively cyclic nonexpansive mapping.
Then AT is nonempty.

Proof. Suppose that T is a monotone decreasing relatively cyclic nonexpansive mapping. Since A�0 6=
∅, we can find a x

′
0 in A�0 such that there exists an y ∈ B ∩

[
x
′
0,→

)
satisfying ‖x′0 − y‖ = dist (A, B).

Since x
′
0 � y and T is monotone decreasing relatively cyclic nonexpansive mapping, Ty � Tx

′
0

and ‖Tx
′
0 − Ty‖ ≤ ‖x′0 − y‖ = dist (A, B), give that Tx

′
0 ∈ B

�
0 .

Next, for Tx
′
0 there exists an element x0 ∈ A�0 such that

x0 � Tx
′
0 and ‖x0 − Tx

′
0‖ = dist (A, B) .
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Now, suppose that T is a monotone increasing relatively cyclic nonexpansive mapping. Since
A�0 6= ∅, we can find a x in A�0 such that there exists an y ∈ B�0 satisfying x � y and ‖x − y‖ =

dist (A, B).
Since T is monotone increasing, Tx � Ty and

‖T2x− T2y‖ ≤ ‖Tx− Ty‖ ≤ ‖x− y‖ = dist (A, B) .

Take x0 = T2x ∈ A and x
′
0 = Ty ∈ A. We have clearly,

x0 � Tx
′
0 and ‖x0 − Tx

′
0‖ = dist (A, B) .

Thus AT 6= ∅.

In the following, we give a best proximity result for monotone increasing relatively cyclic
nonexpansive mapping.

Theorem 2. Let (X, ‖.‖ ,�) be a partially ordered Banach space. Assume that (X, ‖.‖) is UC. Let (A, B) be
a nonempty bounded closed convex pair in X. Let T : A ∪ B → A ∪ B be a monotone increasing relatively
cyclic nonexpansive mapping. Assume that T is weakly sequentially continuous, the norm ‖.‖ of X is monotone
and there exists

(
x0, x

′
0

)
∈ AT such that x0 � x

′
0 � T2x0 then there exist x̄ ∈ A and ȳ ∈ B such that

‖x̄− Tx̄‖ = ‖ȳ− Tȳ‖ = dist (A, B).

Proof. Suppose that there exists
(

x0, x
′
0

)
∈ A× A such that

∥∥∥x0 − Tx
′
0

∥∥∥ = dist (A, B) and x0 � x
′
0 � T2x0.

Let {xn} and {yn} be two sequences defined as follows :

{ xn = T2nx0

yn = T2n+1x
′
0

for all n ∈ N.

Note that, since x0 � Tx
′
0 we get T2nx0 � T2n+1x

′
0 for all n ≥ 0, that is, xn � yn for all n ≥ 0.

Since T is monotone increasing relatively cyclic nonexpansive mapping, we get

‖xn − yn‖ =
∥∥∥T2nx0 − T2n+1x

′
0

∥∥∥ ≤ ∥∥∥x0 − Tx
′
0

∥∥∥ = dist (A, B) ,

that is, ‖xn − yn‖ = dist (A, B) , for all n ∈ N.
Since x0 � T2x0, x1 = T2x0 � T4x0 = x2 and by induction on n, we can get

xn � xn+1 for all n ∈ N.

In the same manner, we get

yn � yn+1 for all n ∈ N.

Since {xn} and {yn} are bounded increasing sequences in reflexive space, we get from Lemma 2,
xn

w
⇀ x̄ and yn

w
⇀ ȳ.

Note that x̄ = sup {xn; n ∈ N} and ȳ = sup {yn; n ∈ N}.
Let K = {y ∈ B; yn � y, for any n ∈ N} and define the type function τ : K → [0, ∞) generated

by the sequence {xn}, that is,
τ (y) = lim sup

n→∞
‖xn − y‖ ,
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for y ∈ K. Using the fact that τ is increasing function, we get

τ (ȳ) = inf
y∈K

τ (y) . (1)

Indeed, let z1, z2 ∈ K such that z1 � z2 then for all n ∈ N we have

xn � yn � z1 � z2.

Using the fact that the norm ‖.‖ is monotone, we get

‖xn − z1‖ ≤ ‖xn − z2‖ ,

hence,
τ(z1) ≤ τ(z2).

From Lemma 3, it follows that there exists a unique b∗ ∈ K such that :

τ (b∗) = inf
y∈K

τ (y) . (2)

Since ȳ = sup {yn; n ∈ N} and b∗ ∈ K, ȳ � b∗, that is, τ(ȳ) � τ(b∗).
Thus, τ(ȳ) = τ(b∗), i.e., ȳ = b∗.

We have also

τ
(

T2ȳ
)

= lim sup
n→∞

∥∥∥xn − T2ȳ
∥∥∥

= lim sup
n→∞

∥∥∥T2xn−1 − T2ȳ
∥∥∥

≤ lim sup
n→∞

‖xn−1 − ȳ‖

= τ (ȳ) ,

hence, T2ȳ = ȳ.
Furthermore, T is weakly sequentially continuous then Txn

w
⇀ Tx̄ and Tyn

w
⇀ Tȳ. By the lower semi

continuity of the norm, we get

‖x̄− ȳ‖ ≤ lim inf
n→∞

‖xn − yn‖ = dist (A, B) .

Let {x′n} be a sequence defined by x
′
n = T2nx

′
0, for all n ∈ N. We have

yn = T2n+1x
′
0 = T(T2nx

′
0) = Tx

′
n.

Since x
′
0 � T2x

′
0, T2nx

′
0 � T2n+2x

′
0, that is, x

′
n � x

′
n+1, for all n ∈ N. Since {x′n} is bounded increasing

sequence in reflexive space, we get by using Lemma 2 x
′
n

w
⇀ x̄′ . Since T is weakly sequentially

continuous, yn = Tx
′
n

w
⇀ Tx̄′ . By the uniqueness of the limit, Tx̄′ = ȳ, that is,∥∥∥x̄− Tx̄′

∥∥∥ = dist (A, B) . (3)

Note that x0 � x
′
0 � T2x0 � T2x

′
0, that is, x0 � x

′
0 � x1 � x

′
1. Then, by induction on n, we can get

xn � x
′
n � xn+1 � x

′
n+1.
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Define the sequence {zn} as follows

zn =
{ xn if n is even,

x
′
n−1 if n is odd.

Since {zn} is bounded increasing sequence in reflexive space, by using Lemma 2, we get zn
w
⇀ z̄.

In particular, the subsequences {z2n} and {z2n+1} also converge to z̄, that is, z̄ = x̄ = x̄
′
. Thus, by using

(3) we get ‖x̄− Tx̄‖ = dist (A, B).

In the following, we give a best proximity result for monotone decreasing relatively cyclic
nonexpansive mapping without assuming the monotonicity of the norm ‖.‖.

Theorem 3. Let (A, B) be a nonempty bounded closed convex pair in a partially ordered Banach space
(X, ‖.‖,�). Let T : A ∪ B → A ∪ B be a monotone decreasing relatively cyclic nonexpansive mapping.
Assume that (X, ‖.‖) is UC, T is weakly sequentially continuous and there exists

(
x0, x

′
0

)
∈ AT such that

x
′
0 � x0 � T2x

′
0, then there exists (x̄, ȳ) ∈ A× B such that

‖x̄− Tx̄‖ = ‖ȳ− Tȳ‖ = dist (A, B) .

Proof. Let
(

x0, x
′
0

)
∈ AT such that

x
′
0 � x0 � T2x

′
0.

If A ∩ B 6= ∅ then x0 = Tx
′
0 by Lemma 5. Since x

′
0 � x0 � T2x

′
0 and T is decreasing, we get

x0 � Tx0 and Tx0 � Tx
′
0 = x0. Thus, Tx0 = x0.

If A ∩ B = ∅, then we consider the sequences {xn} and {zn} ⊂ A defined by

{ z0 = x
′
0

xn = T2nx0

zn = T2nx
′
0

for all n ∈ N∗.

Since x
′
0 � x0 � T2x

′
0 = z1 and T2 is a monotone increasing mapping, by induction on n, we get

T2nx
′
0 � T2nx0 � T2n+2x

′
0, which implies

zn � xn � zn+1, (4)

for all n ≥ 0. Also, since x0 � Tx
′
0 = Tz0 and T2 is a monotone increasing mapping, by induction on n,

we get T2nx0 � T(T2nx
′
0), which implies

xn � Tzn, (5)

for all n ≥ 0. The sequences {xn} and {zn} are increasing. Indeed, x0 � T2x
′
0 � T2x0 implies by

induction on n that T2nx0 � T2n+2x0. Thus,

xn � xn+1,

for all n ∈ N. Since {xn} and {zn} are bounded increasing sequences in a reflexive space, we get by
Lemma 2, xn

w
⇀ x̄ and zn

w
⇀ z̄. Using the fact that T is weakly sequentially continuous we conclude

that Tzn
w
⇀ Tz̄.
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Since T is relatively cyclic nonexpansive mapping, we get

‖xn − Tzn‖ = ‖T2xn−1 − T3zn−1‖
≤ ‖Txn−1 − T2zn−1‖
≤ ‖xn−1 − Tzn−1‖,

for all n in N∗. By induction on n, we prove that

‖xn − Tzn‖ ≤ ‖x0 − Tx
′
0‖ = dist (A, B) ,

for all n ∈ N. By the lower semi continuity of the norm, we get

‖x̄− Tz̄‖ ≤ lim inf
n→∞

‖xn − Tzn‖ = dist (A, B) . (6)

It follows from the Lemma 1 and the inequality (4) that z̄ � x̄ � z̄, and hence, z̄ = x̄.
Finally, by equation (6) it follows that

‖x̄− Tx̄‖ = dist (A, B) .

Let ȳ = Tx̄, then by inequality (5) and Lemma 1 we have x̄ � ȳ and

‖ȳ− Tȳ‖ = ‖Tx̄− Tȳ‖ ≤ ‖x̄− ȳ‖ = dist (A, B) .

So the proof is complete.
We claim that T2 x̄ = x̄ and T2ȳ = ȳ. Indeed, since xn+1 = T2xn

w
⇀ x̄ and xn+1 = T2xn

w
⇀ T2 x̄, the

uniqueness of the weak limit implies that T2 x̄ = x̄. Furthermore, Tx̄ = ȳ then

T2 x̄ = x̄ =⇒ T(T2 x̄) = Tx̄ =⇒ T2(Tx̄) = ȳ =⇒ T2ȳ = ȳ.

The following example illustrates Theorem 3.

Example 1. Consider X = R2 with usual norm and the partially order defined by:

(a, b) � (c, d) iff (a ≤ c and b ≤ d),

for any (a, b), (c, d) in R2. Suppose that

A =
{
(x, 0) ∈ R2 ; x ∈ [0, 2]

}
and

B =
{
(x, 1) ∈ R2 ; x ∈ [2, 4]

}
,

we can show that dist(A, B) = 1, A�0 = {(2, 0)} and B�0 = {(2, 1)}. Suppose that a mapping T : A ∪ B→
A ∪ B is defined as follows

{ T(x, 0) = (2, 1); for all (x, 0) ∈ A
T(x, 1) = (4− x, 0); for all (x, 1) ∈ B.
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We have T(A) ⊂ B, T(B) ⊂ A and T is a decreasing mapping. Also, for any
(
(x, 0), (x

′
, 1)
)
∈ A× B

we have (x, 0) � (x
′
, 1) and

‖T(x, 0)− T(x
′
, 1)‖ = ‖(2, 1)− (4− x

′
, 0)‖

=
√
(x′ − 2)2 + 1

‖(x, 0)− (x
′
, 1)‖ = ‖(x

′ − x, 1)‖
=

√
(x′ − x)2 + 1,

thus, ‖T(x, 0)−T(x
′
, 1)‖ ≤ ‖(x, 0)− (x

′
, 1)‖. Then T is a monotone decreasing relatively cyclic nonexpansive

mapping.
If we choose x

′
0 = (0, 0) and x0 = (2, 0) in A we get

x0 � Tx
′
0, ‖x0 − Tx

′
0‖ = dist (A, B) and x

′
0 � x0 � T2x

′
0.

Then there exist x̄ = (2, 0) ∈ A and ȳ = (2, 1) ∈ B such that T2 x̄ = x̄, T2ȳ = ȳ and

‖x̄− Tx̄‖ = ‖ȳ− Tȳ‖ = dist (A, B) .
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