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Abstract: A submanifold of a Riemannian manifold is called a parallel submanifold if its
second fundamental form is parallel with respect to the van der Waerden–Bortolotti connection.
From submanifold point of view, parallel submanifolds are the simplest Riemannian submanifolds
next to totally geodesic ones. Parallel submanifolds form an important class of Riemannian
submanifolds since extrinsic invariants of a parallel submanifold do not vary from point to point.
In this paper, we provide a comprehensive survey on this important class of submanifolds.
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1. Introduction

In Riemannian geometry, parallel transport is a way of transporting geometrical data along
smooth curves in a Riemannian manifold. Following an important idea of T. Levi-Civita [1] in 1917,
one can transport vectors of a Riemannian manifold along curves so that they stay parallel with respect
to the Levi-Civita connection (or Riemannian connection). Afterwards, a general theory of parallel
transportation of tensor fields in Riemannian geometry was studied in the 1920s by T. Levi-Civita, J. A.
Schouten, J. D. Struik, H. Weyl, E. Cartan, B. L. van der Waerden and E. Bortolotti among others (cf.,
e.g., Reference [2]).

For an immersed submanifold M of a Riemannian manifold (N, g̃), there exist two important
symmetric tensor fields; namely, the first fundamental form which is the induced metric tensor field g
of M and the second fundamental form h which is a normal bundle valued (1, 2)-tensor field.

It is well known that the first fundamental form g is a parallel tensor field with respect to the
Levi-Civita connection. The submanifold M is called a parallel submanifold if its second fundamental
form h is a parallel tensor field with respect to the van der Waerden–Bortolotti connection. Thus,
the extrinsic invariants of a parallel submanifold M do not vary from point to point. Obviously,
parallel submanifolds are natural extensions of totally geodesic submanifolds for which the second
fundamental form vanishes identically.

Parallel surfaces in a Euclidean 3-space E3 are classified in 1948 by V. F. Kagan in Reference [3].
Kagan’s result states that open parts of planes E2, of spheres S2 and of round cylinders S1 ×E1 are the
only parallel surfaces in E3. For n > 2, parallel hypersurfaces in Euclidean spaces are classified by U.
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Simon and A. Weinstein in Reference [4]. A general classification theorem of parallel submanifolds in
any Euclidean space is archived in 1974 by D. Ferus [5]. Since then, the study of parallel submanifolds
became a very interesting and important research subject in differential geometry.

In this paper, we provide a comprehensive survey on this important subject in differential
geometry from classical results to the most recent ones.

2. Preliminaries

An immersion from a manifold M into a pseudo-Riemannian manifold (N, g̃) is called a
pseudo-Riemannian submanifold if the induced metric g on M is a pseudo-Riemannian metric. For a
pseudo-Riemannian submanifold M of N, let ∇ and ∇̃ be the Levi-Civita connection of g and g̃,
respectively. Let us denote the Riemann curvature tensors of M and N by R and R̃, respectively and let
〈 , 〉 denote the associated inner product for both g and g̃. A pseudo-Riemannian manifold is called a
Lorentzian manifold if its index is one at each point.

A tangent vector v of a pseudo-Riemannian manifold is called space-like (respectively, time-like) if
v = 0 or 〈v, v〉 > 0 (respectively, 〈v, v〉 < 0). A vector v is called light-like or null if 〈v, v〉 = 0 and v 6= 0.
A pseudo-Riemannian submanifold M is called spatial (or space-like) if each tangent vector vector of M
is space-like.

A submanifold M of a pseudo-Riemannian manifold is called non-degenerate if the induced metric
on M is non-degenerate. In particular, a non-degenerate surface of a pseudo-Riemannian manifold is
either spatial or Lorentzian. Throughout this article, we assume that every parallel surface M is non-degenerate,
that is, the induced metric on M is non-degenerate.

2.1. Basic Definitions, Formulas and Equations

The formulas of Gauss and Weingarten of a pseudo-Riemannian submanifold M of a pseudo-
Riemannian manifold (N, g̃) are given respectively by (cf. References [6–8])

∇̃XY = ∇XY + h(X, Y),

∇̃Xξ = −Aξ X + DXξ

for vector fields X, Y tangent to M and ξ normal to M, where h, A and D are the second fundamental
form, the shape operator and the normal connection of M. The shape operator and the second
fundamental form are related by

g̃(h(X, Y), ξ) = g(Aξ X, Y)

for vector fields X, Y tangent to M and ξ normal to M. The equations of Gauss, Codazzi and Ricci of
M in N are given respectively by

g(R(X, Y)Z, W) = g̃(R̃(X, Y)Z, W) + 〈h(X, W), h(Y, Z)〉 − 〈h(X, Z), h(Y, W)〉 ,

(R̃(X, Y)Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Yh)(X, Z),

g̃(RD(X, Y)ξ, η) = R̃(X, Y; ξ, η) + g̃([Aξ , Aη ]X, Y),

for vectors X, Y, Z, W tangent to M and vector ξ, η normal to M, where RD is the normal curvature
tensor defined by

RD(X, Y) = [DX , DY]− D[X,Y],
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and ∇̄h denotes the covariant derivative of h with respect to the van der Waerden–Bortolotti connection
∇̄ = ∇⊕ D defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

The mean curvature vector H of M in N is given by

H =

(
1
n

)
Trace h =

(
1
n

) n

∑
i=1

εih(ei, ei), n = dim M,

where {e1, . . . , en} is an orthonormal frame of M such that
〈
ej, ek

〉
= εjδjk.

The relative null subspace Np of a pseudo-Riemannian submanifold M in N at p ∈ M is defined by

Np = {X ∈ Tp M : h(X, Y) = 0 ∀Y ∈ Tp M}.

The dimension νp of Np is called the relative nullity at p.
The first normal space at a point p of a pseudo-Riemannian submanifold M in M̃ is, by definition,

the image space, Im h(p), of the second fundamental form of M at p, that is,

Im h(p) = {h(X, Y) : X, Y ∈ Tp M}.

2.2. Indefinite Real Space Forms

Let (N, g̃) be a pseudo-Riemannian manifold. At a point p ∈ N, a 2-dimensional linear subspace
π of the tangent space TpN is called a plane section. For a given basis {v, w} of a plane section π,
we define a real number by

Q(v, w) = 〈v, v〉 〈w, w〉 − 〈v, w〉2 .

A plane section π is called nondegenerate if Q(u, v) 6= 0. For a non-degenerate plane section
π ⊂ TpN at p, the number

K̃(u, v) =
〈R̃(u, v)v, u〉

Q(u, v)

is independent of the choice of basis {u, v} for π and is called the sectional curvature K̃(π) of π.
A pseudo-Riemannian manifold is said to have constant curvature if its sectional curvature function

is constant. It is well known that if a pseudo-Riemannian manifold N is of constant curvature c, then its
curvature tensor R̃ satisfies

R̃(X, Y)Z = c{〈Y, Z〉X− 〈X, Z〉Y}.

Example 1. (see, e.g., Reference [6]) Let En
t denote the pseudo-Euclidean n-space equipped with the canonical

pseudo-Euclidean metric of index t given by

g0 = −
t

∑
i=1

du2
i +

n

∑
j=t+1

du2
j ,

where (u1, . . . , un) is a rectangular coordinate system of En
t . For a non-zero real number c, we put

Sk
s (x0, c) =

{
x ∈ Ek+1

s : 〈x− x0, x− x0〉 = c−1 > 0
}

, s > 0,

Hk
s (x0, c) =

{
x ∈ Ek+1

s+1 : 〈x− x0, x− x0〉 = c−1 < 0
}

, s > 0,

Hk(c) =
{

x ∈ Ek+1
1 : 〈x, x〉 = c−1 < 0 and x1 > 0

}
,
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where 〈 , 〉 is the associated scalar product. Sk
s (x0, c) and Hk

s (x0, c) are pseudo-Riemannian manifolds of
constant curvature c with index s, known as a pseudo-sphere and a pseudo-hyperbolic space, respectively.
The point x0 is called the center of Sm

s (x0, c) and Hm
s (x0, c). If x0 is the origin o of the pseudo-Euclidean

spaces, we denote Sk
s (o, c) and Hk

s (o, c) by Sk
s (c) and Hk

s (c), respectively. The pseudo-Riemannian manifolds
Ek

s , Sk
s (c), Hk

s (c) are the standard models of the indefinite real space forms. In particular, Ek
1, Sk

1(c), Hk
1(c) are

the standard models of Lorentzian space forms.
The Riemannian manifolds Ek, Sk(c) and Hk(c) (with s = 0) are of constant curvature, called real

space forms. The Euclidean k-space Ek, the k-sphere Sk(c) and the hyperbolic k-space Hk(c) are complete
simply-connected Riemannian manifolds of constant curvature 0, c > 0 and c < 0, respectively. A complete
simply-connected pseudo-Riemannian k-manifold, k ≥ 3, of constant curvature c and with index s is isometric
to Ek

s , or Sk
s (c) or Hk

s (c) according to c = 0, or c > 0 or c < 0, respectively.

In the following, we denote a k-dimensional indefinite space form of constant curvature c and
index s by Rk

s(c). Also we denote an indefinite space form Rk
0(c) (with index s = 0) simply by Rk(c).

For a pseudo-Riemannian submanifold M of a pseudo-Riemannian manifold Rk
s(c) of constant

curvature c with index s, the equations of Gauss, Codazzi and Ricci reduce to (see, e.g., Reference [6])

〈R(X, Y)Z, W〉 = c (〈X, W〉 〈Y, Z〉 − 〈X, Z〉 〈Y, W〉)
+ 〈h(X, W), h(Y, Z)〉 − 〈h(X, Z), h(Y, W)〉 ,

(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z),〈
RD(X, Y)ξ, η

〉
=
〈
[Aξ , Aη ]X, Y

〉
for vectors X, Y, Z, W tangent to M and ξ, η normal to M.

2.3. Gauss Image

The classical Gauss map of a surface in E3 was introduced by C. F. Gauss in his fundamental
paper on the theory of surfaces [9]. He used it to define the Gauss curvature. Since then the Gauss
maps became one of the important tools in differential geometry. The classical Gauss map can be
extended to arbitrary Euclidean submanifolds as follows:

Let G(n, m− n) denote the Grassmann manifold consisting of linear n-subspaces of Em. Then the
Grassmann manifold G(n, m− n) admits a canonical Riemannian metric via Plücker embedding which
makes G(n, m− n) into a symmetric space. For an n-dimensional submanifold M of Em, the Gauss
map Γ of M in Em is defined to be the mapping

Γ : M→ G(n, m− n)

which carries a point p ∈ M into the linear n-subspace of Em obtained via the parallel displacement of
the tangent space Tp M of M at p. The image Γ(M) of M in G(n, m− n) via Γ is called the Gauss image
of M (cf. References [10,11]). In the following, we shall assume that the Gauss maps are regular maps.

The following result of B.-Y. Chen and S. Yamaguchi in Reference [10] provides a simple
characterization of Euclidean submanifolds having totally geodesic Gauss image.

Theorem 1. A submanifold M of a Euclidean space has totally geodesic Gauss image if and only if its second
fundamental form h satisfies

(∇̄Xh)(Y, Z) = h(∇G
XY, Z)− h(∇XY, Z)

for any vector fields X, Y, Z tangent to M, where∇ is the Levi-Civita connection of M and∇G is the Levi-Civita
connection of the Gauss image with the induced metric via Γ.
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3. Some General Properties of Parallel Submanifolds

In this section, we present some basic properties of parallel submanifolds.

Definition 1. A pseudo-Riemannian submanifold M of a pseudo-Riemannian submanifold (N, g̃) is called a
curvature-invariant submanifold if each tangent space of M is invariant under the curvature transformation,
that is, R̃(X, Y)(Tp M) ⊂ Tp(M) for any vector fields X, Y tangent to M.

The following is an immediate consequence of the equation of Codazzi.

Lemma 1. Any parallel pseudo-Riemannian submanifold M of a pseudo-Riemannian manifold (N, g̃) is
curvature-invariant.

The following properties of parallel submanifolds are also well-known.

Lemma 2. Every parallel submanifold M of a Riemannian manifold (N, g̃) has constant relative nullity, that
is, the dimension of the relative null subspace is constant.

Lemma 3. Every parallel submanifold M of a Riemannian symmetric space (N, g̃) is locally symmetric, that is,
the Riemannian curvature tensor R of M satisfies ∇R = 0.

Further, every parallel submanifold in Em is of finite type in the sense of Chen (cf. e.g.,
References [12–14]). Also, if a rank one compact symmetric space N is regarded as a submanifold of a
Euclidean space Em via its first standard embedding, then any parallel submanifold of N via its first
standard embedding is of finite type in Em (see, e.g., References [13,14]).

4. Parallel Submanifolds of Euclidean Spaces

In this section, we present basic properties, characterizations and classification of parallel
submanifolds of Euclidean spaces.

4.1. Gauss Map and Parallel Submanifolds

As before, let G(n, m− n) denote the Grassmann manifold of n-planes through the origin in Em

endowed with its natural Riemannian symmetric space metric and let G(Em) denote the group of
Euclidean motions on Em.

The following result was obtained by J. Vilms in Reference [15].

Theorem 2. Assume that M is an n-dimensional parallel submanifold of Em. If M is complete, then we have:

(i) If the relative nullity ν = 0, then M is a complete totally geodesic submanifold of G(n, m− n).
(ii) If ν ≥ 1, then there exists a (G(Em),Em)-fibration π : M → B, where B is a complete totally geodesic

submanifold of G(n, m− n) and the fibres are the leaves of the relative nullity foliation. The metric of M
is composed from those on base and fibre and the fibration admits an integrable connection with totally
geodesic horizontal leaves (i.e., it is a totally geodesic Riemannian submersion).

(iii) The original Riemannian connection of M or its projection onto B, respectively, coincides with the
connection induced from G(n, m− n).

(iv) M has nonnegative curvature and is locally symmetric.

As an application of Theorem 1, Chen and S. Yamaguchi [10] classified surfaces with totally
geodesic Gauss image as follows.

Theorem 3. Let M be a surface of Em. If M has totally geodesic Gauss image in G(2, m− 2), then M is one of
the following surfaces:
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(a) A surface in an affine 3-space E3 of Em.
(b) A surface of Em with parallel second fundamental form, that is, M is a parallel surface.
(c) A surface in an affine 4-space E4 of Em which is locally the Riemannian product of two plane curves of

non-zero curvature.
(d) A complex curve lying fully in C2, where C2 denotes an affine E4 endowed with some orthogonal almost

complex structure.

Another application of Theorem 1 is the following result of Chen and Yamaguchi obtained in
Reference [11].

Theorem 4. A submanifold M of Em is locally the product of some hypersurfaces if and only if M has totally
geodesic Gauss image and has flat normal connection.

Yu A. Nikolaevskij [16] extended Theorem 3 in 1993 to the following.

Theorem 5. Let M be an n-dimensional submanifold of Em. Then M has totally geodesic Gauss image in
G(n, m− n) if and only if M is the product of submanifolds such that each of the factors is either

(a) a real hypersurface or
(b) a parallel submanifold or
(c) a complex hypersurface.

4.2. Normal Sections and Parallel Submanifolds

Let M be an n-dimensional submanifold in a Euclidean m-space Em. For a given point p ∈ M and
a given unit vector t at p tangent to M, the vector t and the normal space T⊥p M of M determine an
(m− n+ 1)-dimensional subspace E(p, t) in Em. The intersection of M and E(p, t) gives a curve γt (in a
neighborhood of p) which is called the normal section of M at p in the direction t (cf. References [8,17,18]).
In general, the normal section γt is a space curve in E(p, t).

For normal sections, Chen proved the following result in References [8,17].

Theorem 6. Let M be an n-dimensional (n > 2) submanifold of a Euclidean m-space Em. Then M has planar
normal sections if and only if the second fundamental form h and its covariant derivative ∇̄h satisfy

h(t, t) ∧ (∇̄th)(t, t) = 0

for any unit vector t tangent to M.

An immediate consequence of this theorem is the following.

Theorem 7. Every parallel submanifold M of Em with n = dim M > 2 has planar normal sections.

By a vertex of a planar curve γ(s) we mean a point x on the curve such that the curvature function
κ(s) of γ satisfies dκ2

ds = 0 at x.
Another application of Theorem 6 is the following simple geometric characterization of parallel

submanifolds obtained by Chen in References [8,17].

Theorem 8. An n-dimensional (n > 2) submanifold M of a Euclidean space is a parallel submanifold if and
only if, for each p ∈ M, each normal section of M at any point p is a planar curve with p as one of its vertices.

For further applications of normal sections, see, for example, References [18–28].
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4.3. Symmetric Submanifolds and Parallel Submanifolds

The notion of extrinsic symmetric submanifolds was defined by D. Ferus in Reference [29]. More
precisely, an isometric immersion ψ : M → Em is called extrinsic symmetric if for each p ∈ M there
exists an isometry φ of M into itself such that φ(p) = p and ψ ◦ φ = σp ◦ ψ, where σp denotes the
reflection at the normal space T⊥p M at p, that is, the motion of Em which fixes the space through ψ(p)
normal to ψ∗(Tp M) and reflects ψ(p) + ψ∗(Tp M) at ψ(p). The immersed submanifold ψ : M → Em

is said to be extrinsic locally symmetric if each point p ∈ M has a neighborhood U and an isometry φ

of U into itself such that φ(p) = p and ψ ◦ φ = σp ◦ ψ on U. In other words, a submanifold M of Em

is extrinsic locally symmetric if each point p ∈ M has a neighborhood which is invariant under the
reflection of Em with respect to the normal space at p.

D. Ferus [29] proved the following result.

Theorem 9. Extrinsic locally symmetric submanifolds of Euclidean spaces have parallel second fundamental
form and vice versa.

Symmetric submanifolds were classified completely by D. Ferus in Reference [5] as being a very
special class of orbits of isotropy representations of semisimple symmetric spaces. For some symmetric
spaces N, a distinguished class of isotropy orbits (the symmetric R-spaces) are symmetric spaces.
They are symmetric submanifolds in the corresponding tangent space To N of N. If N is non-compact,
the projection of these symmetric submanifolds from To N into N via the exponential map at o provides
examples of symmetric submanifolds in N.

In Reference [30], J. Berndt et al. extended these symmetric submanifolds to larger one-parameter
families of symmetric submanifolds and proved that if N is irreducible and of rank greater than or equal
to 2, then every symmetric submanifold of N arises in this way. This result yields the full classification
of symmetric submanifolds in Riemannian symmetric spaces. For symmetric submanifolds in non-flat
Riemannian manifolds of constant curvature, see References [31–33].

4.4. Extrinsic K-Symmetric Submanifolds as ∇c-Parallel Submanifolds

A canonical connection on a Riemannian manifold (M, g) is defined as any metric connection
∇c on M such that the difference tensor D̂ between ∇c and the Levi-Civita connection ∇ of (M, g)
is ∇c-parallel. An embedded submanifold M of Em is said to be extrinsic homogeneous with constant
principal curvatures if, for any given p, q ∈ M and a given piecewise differentiable curve γ from p
to q, there is an isometry φ of Em satisfying (1) φ(M) = M, (2) φ(p) = q and (3) φ∗p : T⊥p M → T⊥q M
coincides with the D̂-parallel transport along γ.

C. Olmos and C. Sánchez extended Ferus’ result in Reference [34] to the following.

Theorem 10. Let M be a compact Riemannian submanifold fully in Em and let h be its second fundamental
form. Then the following three statements are equivalent:

(1) M admits a canonical connection ∇c such that ∇ch = 0,
(2) M is an extrinsic homogeneous submanifold with constant principal curvatures,
(3) M is an orbit of an s-representation, that is, of an isotropy representation of a semisimple Riemannian

symmetric space.

Furthermore, C. Sánchez defined in Reference [35] the notion of extrinsic k-symmetric submanifolds
of Em and classified such submanifolds for odd k. Moreover, he proved in Reference [36] that the
extrinsic k-symmetric submanifolds are essentially characterized by the property of having parallel
second fundamental form with respect to the canonical connection of k-symmetric space. In particular,
the above result implies that every extrinsic k-symmetric submanifold of a Euclidean space is an orbit
of an s-representation.
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5. Symmetric R-Spaces and Parallel Submanifolds of Real Space Forms

Symmetric spaces are the most beautiful and important Riemannian manifolds. Such spaces arise
in a wide variety of situations in both mathematics and physics. This class of spaces contains many
prominent examples which are of great importance for various branches of mathematics, like compact
Lie groups, Grassmannians and bounded symmetric domains. Symmetric spaces are also important
objects of study in representation theory, harmonic analysis as well as in differential geometry.

We refer to References [37–41] for general information on compact symmetric spaces.

5.1. Symmetric R-Spaces and Borel Subgroups

An isometry s of a Riemannian manifold is called an involutive if s2 = id. A Riemannian manifold
M is called a symmetric space if for each p ∈ M there is an involutive isometry sp such that p is an
isolated fixed point of sp; the involutive isometry sp 6= id is called the symmetry at p.

Let M be a symmetric space. Denote by G = GM the closure of the group of isometries on M
generated by {sp : p ∈ M} in the compact-open topology. Then G is a Lie group which acts transitively
on the symmetric space. Thus, the typical isotropy subgroup K, say at a point o ∈ M, is compact and
M = G/K. Let I0(M) denote the connected group of isometries of a compact symmetric Riemannian
manifold M.

A symmetric R-space is a special type of compact symmetric space for which several
characterizations were known. Originally in 1965, T. Nagano defined in Reference [42] a symmetric
R-space as a compact symmetric space M which admits a Lie transformation group P which is
non-compact and contains the identity component of the isometric group I0(M) of M as a subgroup.

In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a maximal Zariski
closed and connected solvable algebraic subgroup (cf. References [43,44]). Subgroups between a Borel
subgroup B and the ambient group G are called parabolic subgroups. Working over algebraically closed
fields, the Borel subgroups turn out to be the minimal parabolic subgroups in this sense. Thus, B is a
Borel subgroup when the homogeneous space G/B is a complete variety which is as large as possible.

In 1965, M. Takeuchi used the terminology symmetric R-space for the first time in Reference [45].
He gave a cell decomposition of an R-space in Reference [45], which is a kind of generalization of a
symmetric R-space. Here, by an R-space we mean M = G/U where G is a connected real semisimple
Lie group without center and U is a parabolic subgroup of G. A compact symmetric space M is said to
have a cubic lattice if a maximal torus of M is isometric to the quotient of Er by a lattice of Er generated
by an orthogonal basis of the same length.

In 1985, O. Loos [46] provided another intrinsic characterization of symmetric R-spaces which
states that a compact symmetric space M is a symmetric R-spaces if and only if the unit lattice of the
maximal torus of M is a cubic lattice. The proof of Loos is based on the correspondence between the
symmetric R-spaces and compact Jordan triple systems.

5.2. Classification of Symmetric R-Spaces

An affine subspace of Em or a symmetric R-space M ⊂ Em, which is minimally embedded in
a hypersphere of Em as described in Reference [47] by M. Takeuchi and S. Kobayashi, is a parallel
submanifold of Em. The class of symmetric R-spaces includes (see Reference [47]):

(a) all Hermitian symmetric spaces of compact type,
(b) Grassmann manifolds O(p + q)/O(p)×O(q), Sp(p + q)/Sp(p)× Sp(q),
(c) the classical groups SO(m), U(m), Sp(m),
(d) U(2m)/Sp(m), U(m)/O(m),
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(e) (SO(p+ 1)× SO(q+ 1))/S(O(p)×O(q)), where S(O(p)×O(q)) is the subgroup of SO(p+ 1)×
SO(q + 1) consisting of matrices of the form

ε 0
0 A

ε 0
0 B

 , ε = ±1, A ∈ O(p), B ∈ O(q),

(f) the Cayley projective plane OP2 and
(g) the three exceptional spaces E6/Spin(10)× T, E7/E6 × T, and E6/F4.

5.3. Ferus’ Theorem

A classification theorem of parallel submanifolds in Euclidean spaces was obtained in 1974 by
D. Ferus [5]. He proved that essentially these submanifolds mentioned above exhaust all parallel
submanifolds of Em in the following sense.

Theorem 11. A complete full parallel submanifold of the Euclidean m-space Em is congruent to

(1) M = Em0 ×M1 × · · · ×Ms ⊂ Em0 ×Em1 × · · · ×Ems = Em, s ≥ 0, or to
(2) M = M1 × · · · ×Ms ⊂ Em1 × · · · ×Ems = Em, s ≥ 1,

where each Mi ⊂ Emi is an irreducible symmetric R-space. Notice that in case (1) M is not contained in any
hypersphere of Em but in case (2) M is contained in a hypersphere of Em.

5.4. Parallel Submanifolds in Spheres

For the standard inclusion of a unit hypersphere Sm−1 in a Euclidean m-space Em, a submanifold
M ⊂ Sm−1 is a parallel submanifold if and only if M ⊂ Sm−1 ⊂ Em is a parallel submanifold of Em.
Hence, Ferus’ classification theorem given in Section 5.3 implies that M is a parallel submanifold of
Sm−1 if and only if M is obtained by a submanifold of type (2).

For parallel submanifolds of spaces of constant curvature, see also References [48,49].

5.5. Parallel Submanifolds in Hyperbolic Spaces

Parallel submanifolds of a hyperbolic space were classified by M. Takeuchi [49] in 1981 as follows.

Theorem 12. Let Hm(c̄) be the hyperbolic m-space defined by

Hm(c̄) = {(x0, . . . , xm) ∈ Em+1 : −x2
0 + x2

1 + · · ·+ x2
m = c̄−1, x0 > 0}, c̄ < 0.

If M is a parallel submanifold of Hm(c̄), then we have:

(1) If M is not contained in any complete totally geodesic hypersurface of Hm(c̄), then M is congruent to the
product

Hm0(c0)×M1 × · · · ×Ms ⊂ Hm0(c0)× Sm−m0−1(c′) ⊂ Hm0(c̄)

with c0 < 0, c′ > 0, 1/c0 + 1/c′ = 1/c̄, s ≥ 0, where M1 × · · · ×Ms ⊂ Sm−m0−1(c′) is a parallel
submanifold as described in Ferus’ result.

(2) If M is contained in a complete totally geodesic hypersurface N of Hm(c̄), then N is isometric to an
(m− 1)-sphere or to a Euclidean (m− 1)-space or to a hyperbolic (m− 1)-space. Consequently, such
parallel submanifolds reduce to the parallel submanifolds described before.

6. Parallel Kaehler Submanifolds

By a complex space form M̃m(4c), we mean a complex m-dimensional Kaehler manifold of constant
holomorphic sectional curvature 4c. It is well known that a complete simply-connected complex
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space form M̃m(4c) is holomorphically isometric to a complex projective m-space CPm(4c), a complex
Euclidean m-space Cm or a complex hyperbolic m-space CHm(4c) depending on c > 0, c = 0 or
c < 0, respectively.

6.1. The Segre and Veronese Maps

Let (zi
0, . . . , zi

ni
) (1 ≤ i ≤ s) denote the homogeneous coordinates of CPni . Define a map:

Sn1···ns : CPn1 × · · · × CPns → CPn, n =
s

∏
i=1

(ni + 1)− 1,

which maps a point ((z1
0, . . . , z1

n1
), . . . , (zs

0, . . . , zs
ns)) of the product Kaehler manifold CPn1 × · · · ×CPns

to the point (z1
i1
· · · zs

is)0≤i1≤n1, ... ,0≤is≤ns in CPn. Is it well known that the map Sn1···ns is a Kaehler
embedding, known as the Segre embedding.

B.-Y. Chen [50] and Chen and W. E. Kuan [51,52] proved the following simple characterization for
Segre embeddings for n = 2 and for n ≥ 3, respectively (see also References [8,53–55]).

Theorem 13. Let M1, . . . , Ms be Kaehler manifolds of complex dimensions n1, . . . , ns, respectively. Then every
Kaehler immersion

φ : M1 × · · · ×Ms → CPn, n =
s

∏
i=1

(ni + 1)− 1,

of M1 × · · · × Ms into CPn is locally the Segre embedding, that is, M1, . . . , Ms are open portions of
CPn1 , . . . , CPns , respectively and moreover, the Kaehler immersion φ is congruent to the Segre embedding.

A complex projective n-space CPn(c) of constant holomorphic sectional curvature c can be
holomorphically isometrically embedded into an

(
(n+ν

ν )− 1
)
-dimensional complex projective space of

constant holomorphic sectional curvature µc as

(z0, . . . , zn)→
(

zν
0,
√

νzν−1
0 z1, . . . ,

√
ν!

α0! · · · αn!
zα0

0 · · · z
αn
n , . . . , zν

n

)
,

n

∑
i=0

αi = ν,

which is called the ν-th Veronese embedding of CPn(c). The degree of the ν-th Veronese embedding is ν

(cf. e.g., page 83 of Reference [56]).
The Veronese embeddings were characterized by A. Ros [57] in terms of holomorphic sectional

curvature H in the following result.

Theorem 14. If a compact n-dimensional Kaehler submanifold M immersed in CPm(c) satisfies

c
ν + 1

< H ≤ c
ν

,

then M = CPn( c
ν ) and the immersion is given by the ν-th Veronese embedding.

6.2. Classification of Parallel Kaehler Submanifolds of CPm and CHm

In 1972, K. Ogiue classified parallel complex space forms in complex space forms in Reference [58].
More precisely, he proved the following.

Theorem 15. Let Mn(c) be a complex space form holomorphically isometrically immersed in another complex
space form Mm(c̄). If the second fundamental form of the immersion is parallel, then either the immersion is
totally geodesic or c̄ > 0 and the immersion is given by the second Veronese embedding.
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All complete parallel Kaehler submanifolds of a complex projective space were classified by H.
Nakagawa and R. Tagaki [59] in 1976 (also [60] by M. Takeuchi in 1978).

Theorem 16. Let M be a complete parallel Kaehler submanifold in CPm(c). If M is irreducible, then M is
congruent to one of the following six kinds of Kaehler submanifolds:

CPn(c), CPn
( c

2

)
, Qn = SO(n + 2)/SO(n)× SO(2),

SU(r + 2)/S(U(r)×U(2)), r ≥ 3, SO(10)/U(5),

E6/Spin(10)× SO(2).

If M is reducible, then M is congruent to CPn1 × CPn2 with n = n1 + n2 and the embedding is given by
the Segre embedding.

On the other hand, M. Kon [61] proved in 1974 the following result for parallel Kaehler
submanifolds in complex hyperbolic spaces.

Theorem 17. Every parallel Kaehler submanifold of CHm(−4) is totally geodesic.

6.3. Parallel Kaehler Submanifolds of Hermitian Symmetric Spaces

Parallel submanifolds of Hermitian symmetric spaces were studied in 1985 by K. Tsukada [62]
as follows.

Theorem 18. Let φ : M → M̃ be a parallel Kaehler immersion of a connected complete Kaehler manifold M
into a simply connected Hermitian symmetric space M̃. Then M is the direct product of a complex Euclidean
space and semi-simple Hermitian symmetric spaces. Moreover, φ = φ2 ◦ φ1, where φ1 is a direct product of
identity maps and (not totally geodesic) parallel Kaehler embeddings into complex projective spaces and φ2 is a
totally geodesic Kaehler embedding.

All non-totally geodesic parallel Kaehler embeddings into complex projective spaces have been
classified earlier by H. Nakagawa and R. Takagi [59] in 1976. More precisely, these are the Veronese
maps and the Segre maps applied to complex projective spaces and the first standard embeddings
applied to rank two compact irreducible Hermitian symmetric spaces.

6.4. Parallel Kaehler Manifolds in Complex Grassmannian Manifolds

Let GC(n, p) denote the complex Grassmannian manifold of complex p-planes in Cn. We denote
by S → GC(n, p) the tautological vector bundle over GC(n, p) (cf. e.g., Reference [63]). Since the
taulogical bundle S→ GC(n, p) is a subbundle of a trivial bundle GC(n, p)×Cn → GC(n, p), one has
the quotient bundle Q→ GC(n, p), which is called the universal quotient bundle.

The holomorphic tangent bundle T1,0(GC(n, p)) over GC(n, p) can be identified with the tensor
product of holomorphic vector bundles S∗ and Q, where S∗ → GC(n, p) is the dual bundle of S →
GC(n, p). If Cn has a Hermitian inner product, S, Q have Hermitian metrics and Hermitian connections
and so GC(n, p) has a Hermitian metric induced by the identification of T1,0(GC(n, p)) and S∗ ⊗Q is
called the standard metric on GC(n, p).

In Reference [64], I. Koga and Y. Nagatomo proved the following result for parallel Kaehler
manifolds in a complex Grassmannian manifold.

Theorem 19. Let GC(n, p) be the complex Grassmannian manifold of complex p-planes in Cn with the standard
metric hGr induced from a Hermitian inner product on Cn and φ be a holomorphic isometric immersion of a
compact Kaehler manifold (M, hM) with a Hermitian metric hM into GC(n, p). We denote by Q→ GC(n, p)
the universal quotient bundle over GC(n, p) of rank n− p. Assume that the pull-back bundle of Q→ GC(n, p)
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is projectively flat. Then φ has parallel second fundamental form if and only if the holomorphic sectional
curvature of M is greater than or equal to 1.

7. Parallel Totally Real Submanifolds

7.1. Basics on Totally Real Submanifolds

A totally real submanifold M of an almost Hermitian manifold M̃ is a submanifold such that the
almost Hermitian structure J of M̃ carries each tangent vector of M into the corresponding normal space
of M in M̃, that is, J(Tp M) ⊆ T⊥p M for any point p ∈ M (cf. Reference [65]). When dimR M = dimC M̃,
the totally real submanifold N in M is also known as a Lagrangian submanifold.

The following result of Chen and K. Ogiue in Reference [65] is well-known.

Theorem 20. A parallel submanifold M of dimension ≥ 2 of a non-flat complex space form is either a Kaehler
submanifold or a totally real submanifold.

H. Naitoh [66] proved in 1981 that the classification of complete totally real parallel submanifolds
in complex projective spaces is reduced to that of certain cubic forms of n-variables. Further, H. Naitoh
and M. Takeuchi [67] classified in 1982 these submanifolds by the theory of symmetric bounded
domains of tube type.

In 1983, H. Naitoh [68,69] proved the following reduction theorem.

Theorem 21. A parallel totally real submanifold of a complex space form M̃n(c) with c 6= 0 is either a totally
real submanifold which is contained in a totally real totally geodesic submanifold or a totally real submanifold
which is contained in a totally geodesic Kaehler submanifold whose dimension is twice of the dimension of
the submanifold.

The classifications of Naitoh and Naitoh-Takeuchi given above rely heavily on the theory of Lie
groups and symmetric spaces.

Remark 1. Theorem 21 implies that the classification of complete parallel submanifolds of complex projective
space CPm(c) is reduced to those of D. Ferus [29] and H. Naitoh and M. Takeuchi [67].

Remark 2. For parallel totally real submanifolds in a complex hyperbolic space CHm, Theorem 21 implies that
the classification reduces to those of M. Takeuchi [49].

7.2. Parallel Lagrangian Submanifolds of CPn

F. Dillen, H. Li, L. Vrancken and X. Wang gave in Reference [70] explicitly and geometrically
classification of parallel Lagrangian submanifolds in CPn(4) using a different method, which applies
the warped products of Lagrangian immersions, called Calabi products and the characterization of
parallel Lagrangian submanifolds by the Calabi products. For the definition of Calabi products and
their characterization, see, for example, References [71,72].

The advantage of this classification given by Dillen et al. is that it allows the study of details
for these submanifolds. In particular, for the reduced cases, they obtained the classification theorem
as follows:

Theorem 22. Let M be a parallel Lagrangian submanifold in CPn(4). Then either M is totally geodesic or

(1) M is locally the Calabi product of a point with a lower-dimensional parallel Lagrangian submanifold;
(2) M is locally the Calabi product of two lower-dimensional parallel Lagrangian submanifolds; or
(3) M is congruent to one of the following symmetric spaces: (a) SU(k)/SO(k) with n = k(k + 1)/2− 1

and k ≥ 3, (b) SU(k) with n = k2 − 1 and k ≥ 3, SU(2k)/Sp(k) with n = 2k2 − k− 1 and k ≥ 3
or (c) E6/F4 with n = 26.
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7.3. Parallel Surfaces of CP2 and CH2

For the explicit classification of parallel surfaces in CP2 (see Reference [73]).

Theorem 23. If M is a parallel surface in the complex projective plane CP2(4), then it is either holomorphic or
Lagrangian in CP2(4).

(a) If M is holomorphic, then locally either

(a.1) M is a totally geodesic complex projective line CP1(4) in CP2(4) or
(a.2) M is the complex quadric Q1 embedded in CP2(4) as

{
(z0, z1, z2) ∈ CP2(4) | z2

0 + z2
1 + z2

2 = 0
}

,
where z0, z1, z2 are complex homogeneous coordinates on CP2(4).

(b) If M is Lagrangian, then locally either

(b.1) M is a totally geodesic real projective plane RP2(1) in CP2(4) or
(b.2) M is a flat surface and the immersion is congruent to π ◦ L, where π : S5(1) → CP2(4) is the

Hopf-fibration and L : M→ S5(1) ⊆ C3 is given by

L(x, y) =

(
a e−ix/a
√

1 + a2
,

ei(ax+by)
√

1 + a2 + b2
sin
(√

1 + a2 + b2 y
)

,

ei(ax+by)
√

1 + a2

(
cos

(√
1 + a2 + b2 y

)
− ib√

1 + a2 + b2
sin
(√

1 + a2 + b2 y
)))

,

where a and b are real numbers with a 6= 0.

For parallel surfaces in CH2, we have the following result from Reference [73].

Theorem 24. If M is a parallel surface in the complex hyperbolic plane CH2(−4), then it is either holomorphic
or Lagrangian in CH2(−4).

(a) If M2 is holomorphic, then it is an open part of a totally geodesic complex submanifold CH1(−4) in
CH2(−4).

(b) If M is Lagrangian, then locally either

(b.1) M is a totally geodesic real hyperbolic plane RH2(−1) in CH2(−4) or
(b.2) M is flat and the immersion is congruent to π ◦ L, where π : H5

1(−1)→ CH2(−4) is the Hopf
fibration and L : M2 → H5

1(−1) ⊆ C3
1 is one of the following six maps:

(1) L =

(
ei(ax+by)
√

1− a2

cosh
(√

1− a2 − b2 y
)
−

ib sinh
(√

1− a2 − b2 y
)

√
1− a2 − b2

 ,

ei(ax+by)
√

1− a2 − b2
sinh

(√
1− a2 − b2 y

)
,

a eix/a
√

1− a2

)
, a, b ∈ R, a 6= 0, a2 + b2 < 1;

(2) L(x, y) =

((
i
b
+ y
)

ei(
√

1−b2x+by), yei(
√

1−b2x+by),

√
1− b2

b
eix/
√

1−b2

)
, b ∈ R, 0 <

b2 < 1;

(3) L(x, y) =

(
ei(ax+by)
√

1− a2

cos
(√

a2 + b2 − 1 y
)
−

ib sin
(√

a2 + b2 − 1 y
)

√
a2 + b2 − 1

 ,

ei(ax+by)
√

a2 + b2 − 1
sin

(√
a2 + b2 − 1 y

)
,

a eix/a
√

1− a2

)
, a, b ∈ R, 0 < a2 < 1, a2 + b2 > 1;
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(4) L(x, y) =

(
a eix/a
√

a2 − 1
,

ei(ax+by)
√

a2 + b2 − 1
sin
(√

a2 + b2 − 1 y
)

,

ei(ax+by)
√

a2 − 1

cos
(√

a2 + b2 − 1 y
)
−

ib sin
(√

a2 + b2 − 1 y
)

√
a2 + b2 − 1

, a, b ∈ R, a2 > 1;

(5) L(x, y) =
eix

8b2

(
i + 8b2(i + x)− 4by, i + 8b2x− 4by, 4be2iby

)
, R 3 b 6= 0;

(6) L(x, y) = eix
(

1 +
y2

2
− ix, y,

y2

2
− ix

)
.

7.4. Parallel Totally Real Submanifolds in Nearly Kaehler S6

Let O denote the Cayley numbers. E. Calabi [74] showed in 1958 that any oriented submanifold
M6 of the hyperplane ImO of the imaginary octonions carries a U(3)-structure, that is, an almost
Hermitian structure J.

The almost Hermitian structure J on S6(1) ⊂ ImO is a nearly Kaehler structure in the sense that
the (2,1)-tensor field G on S6(1), defined by G(X, Y) = (∇̃X J)(Y), is skew-symmetric, where ∇̃ is the
Riemannian connection on S6(1). The group of automorphisms of this nearly Kähler structure is the
exceptional simple Lie group G2 which acts transitively on S6 as a group of isometries.

In 1969, A. Gray proved in Reference [75] the following.

Theorem 25. (1) Every almost complex submanifold of the nearly Kaehler S6(1) is a minimal submanifold and
(2) the nearly Kaehler S6(1) has no 4-dimensional almost complex submanifolds.

N. Ejiri proved in Reference [76] that a 3-dimensional totally real submanifold of the nearly
Kaehler S6(1) is minimal and orientable.

It was proved by B. Opozda in Reference [77] that every 3-dimensional parallel Lagrangian
submanifold (respectively, a 2-dimensional totally real and minimal submanifold) of the nearly
Kaehler S6(1) is totally geodesic (see also Reference [78]). Opozda also proved in Reference [77]
that a 2-dimensional parallel totally real, minimal surface of the nearly Kaehler S6(1) is also totally
geodesic. The same result holds for Lagrangian submanifolds of the nearly Kaehler S3 × S3; namely, a
(3-dimensional) parallel Lagrangian submanifold of the nearly Kaehler S3 × S3 is totally geodesic (see,
e.g., B. Dioos’s PhD thesis [79]).

8. Parallel Slant Submanifolds of Complex Space Forms

8.1. Basics on Slant Submanifolds

Besides Kaehler and totally real submanifolds in a Kaehler manifold M̃, there is another important
family of submanifolds, called slant submanifolds (cf. References [80,81]).

Let N be a submanifold of a Kähler manifold (or an almost Hermitian manifold) (M, J, g). For any
vector X tangent to M, we put

JX = PX + FX,

where PX and FX denote the tangential and the normal components of JX, respectively. Then P is an
endomorphism of the tangent bundle TN. For any non-zero vector X ∈ TpN at p ∈ N, the angle θ(X)

between JX and the tangent space TpN is called the Wirtinger angle of X.
In 1990, the author of Reference [80] introduced the notion of slant submanifolds as follows.
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Definition 2. A submanifold N of an almost Hermitian manifold (M, J, g) is called a slant submanifold if the
Wirtinger angle θ(X) is independent of the choice of X ∈ TpN and of p ∈ N. The Wirtinger angle of a slant
submanifold is called the slant angle. A slant submanifold with slant angle θ is simply called θ-slant.

Complex submanifolds and totally real submanifolds are exactly θ-slant submanifolds with θ = 0
and θ = π

2 , respectively. A slant submanifold is called proper slant if it is neither complex nor totally real.
The following basic result on slant submanifolds was proved in Reference [82] by Chen and

Y. Tazawa.

Theorem 26. Let M be a slant submanifold in a complex Euclidean m-space Cm. If M is not totally real,
then M is non-compact. In particular, there do not exist compact proper slant submanifolds in any complex
Euclidean m-space.

The next result on slant surface was proved in Reference [83] by Chen and Y. Tazawa.

Theorem 27. Every proper slant surface of CP2 or of CH2 is non-minimal.

8.2. Classification of Parallel Slant Submanifolds

For parallel slant surfaces in Cm, we have the following classification result.

Theorem 28. Let M be a slant surface of Cm. Then M is a parallel surface if and only if M is one of the
following surfaces:

(a) An open portion of a slant plane in C2 ⊂ Cm;
(b) An open portion of the product surface of two plane circles;
(c) An open portion of a circular cylinder which is contained in a hyperplane of C2 ⊂ Cm.

If case (b) or case (c) occurs, the M is totally real.

Theorem 28 follows from Theorem 1.2 of Reference [81] and that every parallel surface of a
Euclidean space lies in affine 4-space of the ambient space.

For higher dimensional parallel slant submanifolds, we have the following result by applying
Theorem 19, the list of symmetric R-spaces and Ferus’ Theorem.

Theorem 29. A proper slant submanifold of Cm is parallel if and only if it is an open part of a slant n-plane
of Cm.

For further results on slant submanifolds, see, for example, References [6,81,84–86].

9. Parallel Submanifolds of Quaternionic Space Forms and Cayley Plane

9.1. Parallel Submanifolds of Quaternionic Space Forms

K. Tsukada [87] classified in 1985 all parallel submanifolds of a quaternionic projective m-space
HPm. Tsukada’s results states that such submanifolds are either parallel totally real submanifolds
in a totally real totally geodesic submanifold RPm or parallel totally real submanifolds in a totally
complex totally geodesic submanifold CPm or parallel complex submanifolds in a totally complex
totally geodesic submanifold CPm or parallel totally complex submanifolds in a totally geodesic
quaternionic submanifold HPk whose dimension is twice the dimension of the parallel submanifold.
In Reference [87], K. Tsukada also classified parallel submanifolds of the non-compact dual of HPm.
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9.2. Parallel Submanifolds of the Cayley Plane

A result of K. Tsukada [88] in 1985 states that parallel submanifolds of the Cayley plane OP2 are
contained either in a totally geodesic quaternion projective plane HP2 as parallel submanifolds or in a
totally geodesic 8-sphere as parallel submanifolds. Hence, all these immersions are completely known.

The non-compact case is treated in a similar way.

10. Parallel Spatial Submanifolds in Pseudo-Euclidean Spaces

The first classification result of parallel submanifolds in indefinite real space forms was given
by M. A. Magid [89] in 1984 in which he classified parallel immersions of En → En+k

1 , En
1 → En+2

1
and En

1 → En+k
2 . He showed that such immersions are either quadratic in nature, like the flat

umbilical immersion with light-like mean curvature vector or the product of the identity map and
previously determined low dimensional maps. In this section, we survey known results on parallel
pseudo-Riemannian submanifolds in indefinite real space forms.

First we recall the next lemma which is an easy consequence of Erbacher–Magid’s reduction
theorem (see Lemma 3.1 of Reference [90]).

Lemma 4. Let ψ : Mn
i → Em

s be an isometric immersion of a pseudo-Riemannian n-manifold Mn
i into Em

s .
If M is a parallel submanifold, then there exists a complete (n + k)-dimensional totally geodesic submanifold E∗

such that ψ(M) ⊂ E∗, where k is the dimension of the first normal spaces.

10.1. Marginally Trapped Surfaces

Now, we recall the notion of marginally trapped surfaces for later use.
The concept of trapped surfaces, introduced R. Penrose in Reference [91] plays very important

role in the theory of cosmic black holes. If there is a massive source inside the surface, then close
enough to a massive enough source, the outgoing light rays may also be converging; a trapped surface.
Everything inside is trapped. Nothing can escape, not even light. It is believed that there will be
a marginally trapped surface, separating the trapped surfaces from the untrapped ones, where the
outgoing light rays are instantaneously parallel. The surface of a black hole is the marginally trapped
surface. As times develops, the marginally trapped surface generates a hypersurface in space-time, a
trapping horizon.

Spatial surfaces in pseudo-Riemannian manifolds play important roles in mathematics and
physics, in particular in general relativity theory. For instance, a marginally trapped surface in a
space-time is a spatial surface with light-like mean curvature vector field. In this article, we also
call a Lorentzian surfaces in a pseudo-Riemannian manifold marginally trapped (or quasi-minimal) if it
has light-like mean curvature vector field (cf., e.g., References [92,93]). A non-degenerate surface in a
pseudo-Riemannian manifold is called trapped (respectively, untrapped) if it has time-like (respectively,
space-like) mean curvature vector field.

10.2. Classification of Parallel Spatial Surfaces in Em
s

In this subsection, we provide the classification of parallel spatial surfaces in indefinite space
forms with arbitrary index and arbitrary dimension obtained by Chen in Reference [90] as follows.

Theorem 30. Let L : M→ Em
s be a parallel isometric immersion of a spatial surface into the pseudo-Euclidean

m-space Em
s . Then up to dilations and rigid motions of Em

s , we have either

(A) the surface is an open part of one of the following 11 surfaces:

(i) a totally geodesic Euclidean 2-plane E2 ⊂ Em
s given by (0, . . . , 0, u, v);

(ii) a totally umbilical S2(1) in a totally geodesic E3 given by
(
0, . . . , 0, cos u, sin u cos v, sin u sin v

)
;

(iii) a flat cylinder E1 × S1 lying in a totally geodesic E3 ⊂ Em
s given by

(
0, . . . , 0, u, cos v, sin v

)
;
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(iv) a flat torus S1 × S1 in a totally geodesic E4 given by
(
0, . . . , 0, a cos u, a sin u, b cos v, b sin v

)
with a, b > 0;

(v) a real projective plane of curvature 1
3 lying in a totally geodesic E5 ⊂ Em

s given by(
0, . . . , 0, vw√

3
,

uw√
3

,
uv√

3
,

u2 − v2

2
√

3
,

1
6

(
u2 + v2 − 2w2

))
, u2 + v2 + w2 = 3;

(vi) a hyperbolic 2-plane H2 in a totally geodesic E3
1 as

(
cosh u, 0, . . . , 0, sinh u cos v, sinh u sin v

)
;

(vii) a flat cylinder H1 ×E1 lying in a totally geodesic E3
1 ⊂ E4

1 given by
(

cosh u, 0, . . . , 0, sinh u, v
)
;

(viii) a flat surface H1 × S1 in a totally geodesic E4
1 ⊂ Em

s given by(
a cosh u, 0, . . . , 0, a sinh u, b cos v, b sin v

)
with a, b > 0;

(ix) a flat totally umbilical surface of a totally geodesic E4
1 ⊂ Em

s defined by(
u2 + v2 +

1
4

, 0, . . . , 0, u, v, u2 + v2 − 1
4

)
;

(x) a flat surface H1 × H1 lying in a totally geodesic E4
2 ⊂ Em

s given by(
a cosh u, b cosh v, 0, . . . , 0, a sinh u, b sinh v

)
, a, b > 0;

(xi) a surface of curvature − 1
3 lying in a totally geodesic E5

3 ⊂ Em
s given by

(
sinh

( 2s√
3

)
− t2

3
−
(

7
8
+

t4

18

)
e

2s√
3 , t +

(
t3

3
− t

4

)
e

2s√
3 , 1

2
+

t2

2
e

2s√
3 ,

0, . . . , 0, t +
(

t3

3
+

t
4

)
e

2s√
3 , sinh

( 2s√
3

)
− t2

3
−
(

1
8
+

t4

18

)
e

2s√
3

)
, or

(B) L = ( f1, . . . , f`, φ, f`, . . . , f1), where φ is a surface given by (i), (iii), (iv), (vii), (viii), (ix), or (x) from
(A) and f1, . . . , f` are polynomials of degree ≤ 2 in u, v.

10.3. Special Case: Parallel Spatial Surfaces in E3
1

For parallel surfaces in E3
1, Theorem 30 implies the following.

Corollary 1. A parallel spatial surface in E3
1 is congruent to an open part of one of the following eight types

of surfaces:

(1) the Euclidean plane E2 given by (0, u, v);
(2) a hyperbolic plane H2 given by a(cosh u cosh v, cosh u sinh v, sinh u) a > 0;
(3) a cylinder H1 ×E1 defined by (a cosh u, a sinh u, v), a > 0;

Remark 3. The surfaces (1) is totally geodesic, the surfaces (2) is totally umbilical but not totally geodesic and
surfaces (1) and (3) are products of parallel curves in totally geodesic subspaces.

11. Parallel Spatial Surfaces in Sm
s

11.1. Classification of Parallel Spatial Surfaces in Sm
s

For parallel spatial surfaces in a pseudo-sphere Sm
s , we have the following classification theorem

proved in Reference [90].

Theorem 31. Let ψ : M→ Sm
s (1) be a parallel immersion of a spatial surface into the unit pseudo-Riemannian

m-sphere Sm
s (1) and L = ι : ψ : M → Em+1

s be the composition of ψ and the inclusion ι : Sm
s (1) → Em+1

s .
Then either
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(A) the surface is congruent to an open part of one of the following 18 surfaces:

(1) a totally geodesic 2-sphere S2(1) ⊂ Sm
s (1);

(2) a totally umbilical S2 immersed in Sm
s (1) ⊂ Em+1

s as(
0, . . . , 0, r sin u, r cos u cos v, r cos u sin v,

√
1− r2

)
, 0 < r < 1;

(3) a totally umbilical S2 immersed in Sm
s (1) ⊂ Em+1

s as(√
r2 − 1, 0, . . . , 0, r sin u, r cos u cos v, r cos u sin v

)
, r > 1 s ≥ 1;

(4) a flat torus S1 × S1 immersed in Sm
s (1) ⊂ Em+1

s as(
0, . . . , 0, b cos u, b sin u, c cos v, c sin v,

√
1− b2 − c2

)
, b, c > 0, b2 + c2 ≤ 1;

(5) a flat torus S1 × S1 immersed in Sm
s (1) ⊂ Em+1

s as(√
b2 + c2 − 1, 0, . . . , 0, b cos u, b sin u, c cos v, c sin v

)
, b, c, s > 0, b2 + c2 > 1;

(6) a real projective plane RP2 immersed in Sm
s (1) ⊂ Em+1

s as(
0, . . . , 0, rvw√

3
,

ruw√
3

,
ruv√

3
,

r(u2 − v2)

2
√

3
,

r
6
(u2 + v2 − 2w2),

√
1− r2

)
with u2 + v2 + w2 = 3 and 0 < r ≤ 1;

(7) a real projective plane RP2 immersed in Sm
s (1) ⊂ Em+1

s as(√
r2 − 1, 0, . . . , 0, rvw√

3
,

ruw√
3

,
ruv√

3
,

r(u2 − v2)

2
√

3
,

r
6
(u2 + v2 − 2w2)

)
with u2 + v2 + w2 = 3 and r > 1, s ≥ 1;

(8) a hyperbolic 2-plane H2 immersed in Sm
s (1) ⊂ Em+1

s as(
r cosh u, 0, . . . , 0, r sinh u cos v, r sinh u sin v,

√
1 + r2

)
, r, s > 0;

(9) a flat surface H1 × H1 immersed in Sm
s (1) ⊂ Em+1

s as(
b cosh u, c cosh v, 0, . . . , 0, b sinh u, c sinh v,

√
1 + b2 + c2

)
, b, c > 0, s ≥ 2;

(10) a flat surface H1 × S1 immersed in Sm
s (1) ⊂ Em+1

s as(
b cosh u, 0, . . . , 0, b sinh u, c cos v, c sin v,

√
1 + b2 − c2

))
, b, c, s > 0, c2 ≤ 1 + b2;

(11) a flat surface H1 × S1 immersed in Sm
s (1) ⊂ Em+1

s as(√
c2 − b2 − 1, b cosh u, 0, . . . , 0, b sinh u, c cos v, c sin v

)
, c2 > 1 + b2 > 1;

(12) a flat surface immersed in Sm
s (1) ⊂ Em+1

s as

r
(

u2 + v2 + b + 1
4

, 0, . . . , 0,
√

1 + br2

r
, u, v, u2 + v2 + b− 1

4

)
, r, s > 0, b ≥ −r−2;

(13) a flat surface immersed in Sm
s (1) ⊂ Em+1

s as

r
(

u2 + v2 − b + 1
4

,
√

br2 − 1
r

, 0, . . . , 0, u, v, u2 + v2 − b− 1
4

)
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with r > 0, s ≥ 2, b > r−2;
(14) a flat surface immersed in Sm

s (1) ⊂ Em+1
s as

r
(

u2 + b− 3
4

, 0, . . . , 0,
√

1− (1− b + c2)r2

r
, u, c cos v, c sin v, u2 + b− 5

4

)
with r, s > 0 and b ≥ 1 + c2 − r−2;

(15) a flat surface immersed in Sm
s (1) ⊂ Em+1

s as

r
(

u2 + b− 3
4

,
√
(1− b + c2)r2 − 1

r
, 0, . . . , 0, u, c cos v, c sin v, u2 + b− 5

4

)
with r > 0, s ≥ 2 and b < 1 + c2 − r−2;

(16) a flat surface immersed in Sm
s (1) ⊂ Em+1

s as

r

(
v2 − b +

5
4

, c cosh u, 0, . . . , 0,

√
1+(1−b+c2)r2

r
, c sinh u, v, v2 − b +

3
4

)

with c, r > 0, s ≥ 2 and b ≤ 1 + c2 + r−2;
(17) a flat surface immersed in Sm

s (1) ⊂ Em+1
s as

r

(
v2 − b +

5
4

, c cosh u,

√
(b−c2−1)r2−1

r
, 0, . . . , 0, c sinh u, v, v2 − b +

3
4

)

with c, r > 0, s ≥ 3 and b > 1 + c2 + r−2;
(18) a surface of constant negative curvature immersed in Sm

s (1) ⊂ Em+1
s as

r
(

sinh
( 2s√

3

)
− t2

3
−
(

7
8
+

t4

18

)
e

2s√
3 , t +

(
t3

3
− t

4

)
e

2s√
3 ,

1
2
+

t2

2
e

2s√
3 ,

0, . . . , 0, t +
(

t3

3
+

t
4

)
e

2s√
3 , sinh

( 2s√
3

)
− t2

3
−
(

1
8
+

t4

18

)
e

2s√
3 ,

√
1 + r2

r

)

with r > 0 and s ≥ 3 or

(B) L = ( f1, . . . , f`, φ, f`, . . . , f1), where φ is a surface given by (4), (5) or (9)–(17) from (A) and f1, . . . , f`
are polynomials of degree ≤ 2 in u, v or

(C) L = (r, φ, r), where r ∈ R+ and φ is a surface given by (1), (2), (3), (6), (7), (8) or (18) from (A).

11.2. Special Case: Parallel Spatial Surfaces in S3
1

For parallel spatial surfaces in a de Sitter space-time S3
1, Theorem 31 implies the following.

Corollary 2. If M is a parallel spatial surface in S3
1(1) ⊂ E4

1, then M is congruent to one of the following ten
types of surfaces:

(1) a totally umbilical sphere S2 given locally by (a, b sin u, b cos u cos v, b cos u sin v), b2 − a2 = 1;
(2) a totally umbilical hyperbolic plane H2 given by (a cosh u cosh v, a cosh u sinh v, a sinh u, b) with

b2 − a2 = 1;
(3) a flat surface H1 × S1 given by (a cosh u, a sinh u, b cos v, b sin v) with a2 + b2 = 1.
(4) a totally umbilical Euclidean E2 plane given by

1√
c

(
u2 + v2 − 3

4
, u2 + v2 − 5

4
, u, v

)
;
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Remark 4. The surfaces (1), (2) and (4) are totally umbilical; the surfaces (1) with a = 0 and (2) with b = 0 are
totally geodesic; the surfaces (3) and (4) are flat. And the surface (4) is a totally umbilical isometric immersion of
E2 into S3

1(c).

12. Parallel Spatial Surfaces in Hm
s

12.1. Classification of Parallel Spatial Surfaces in Hm
s

For parallel spatial surfaces in a pseudo-hyperbolic space Hm
s , we have the following classification

theorem also proved in Reference [90].

Theorem 32. Let ψ : M → Hm
s (−1) be a parallel immersion of a spatial surface into the pseudo-hyperbolic

m-space Hm
s (−1) and let L = ι : ψ : M → Em+1

s+1 be the composition of ψ and the inclusion ι : Hm
s (−1) →

Em+1
s+1 . Then either

(A) the surface is congruent to an open part of one of the following 18 surfaces:

(1) a totally geodesic H2(−1) immersed in Hm
s (−1) as (cosh u, 0, . . . , 0, sinh u cos v, sinh u sin v)

with b > 0;
(2) a totally umbilical H2 immersed in Hm

s (−1) ⊂ Em+1
s+1 as(

r cosh u, 0, . . . , 0, r sinh u cos v, r sinh u sin v,
√

r2 − 1
)

r > 1;

(3) a totally umbilical H2 immersed in Hm
s (−1) ⊂ Em+1

s+1 as(
r cosh u,

√
1− r2, 0, . . . , 0, r sinh u cos v, r sinh u sin v

)
, s ≥ 1, 0 < r < 1;

(4) a totally umbilical S2 immersed in Hm
s (−1) ⊂ Em+1

s+1 as(√
1 + r2, 0, . . . , 0, r sin u, r cos u cos v, r cos u sin v

)
, r > 0;

(5) a flat torus S1 × S1 in Hm
s (−1) ⊂ Em+1

s+1 as (
√

1 + b2 + c2 , 0, . . . , 0, b cos u, b sin u, c cos v,
c sin v, ), with b, c > 0;

(6) a surface of constant positive curvature immersed in Hm
s (−1) ⊂ Em+1

s+1 as(√
1 + r2, 0, . . . , 0, rvw√

3
,

ruw√
3

,
ruv√

3
,

r(u2 − v2)

2
√

3
,

r
6
(u2 + v2 − 2w2)

)
with u2 + v2 + w2 = 3 and r > 0;

(7) a flat surface H1 × H1 in Hm
s (−1) as

(
b cosh u, c cosh v, 0, . . . , 0, b sinh u, c sinh v,

√
b2 + c2 − 1

)
with b, c, s > 0 and b2 + c2 ≥ 1;

(8) a flat surface H1 × H1 in Hm
s (−1) as

(√
1− b2 − c2 , b cosh u, c cosh v, 0, . . . , 0, b sinh u, c sinh v

)
with b, c > 0, s ≥ 2 and b2 + c2 < 1;

(9) a flat surface H1 × S1 in Hm
s (−1) ⊂ Em+1

s+1 as (b cosh u, 0, . . . , 0, b sinh u, c cos v, c sin v,√
b2 − c2 − 1) with b, c > 0 and b2 ≥ c2 + 1;

(10) a flat surface H1 × S1 immersed in Hm
s (−1) as (

√
1− b2 + c2 , b cosh u, 0, . . . , 0, b sinh u, c cos v,

c sin v) with b, c, s > 0 and b2 < c2 + 1;
(11) a flat surface immersed in Hm

s (−1) ⊂ Em+1
s+1 as

r
(

u2 + v2 + b + 1
4

, 0, . . . , 0,
√

br2 − 1
r

, u, v, u2 + v2 + b− 1
4

)
, r > 1, b ≥ r−2;

(12) a flat surface immersed in Hm
s (−1) ⊂ Em+1

s+1 as

r
(

u2 + v2 − b + 1
4

,
√

br2 + 1
r

, 0, . . . , 0, u, v, u2 + v2 − b− 1
4

)
, r, s > 0, b ≥ −r−2;
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(13) a flat surface immersed in Hm
s (−1) ⊂ Em+1

s+1 as

r
(

u2 + b− 3
4

, 0, . . . , 0,
√
(b−c2−1)r2−1

r
, c cos v, c sin v, u, u2 + b− 5

4

)
with r > 0, and b ≥ 1 + c2 + r−2;

(14) a flat surface immersed in Hm
s (−1) ⊂ Em+1

s+1 as

r
(

u2 + b− 3
4

,
√

1+(1−b+c2)r2

r
, 0, . . . , 0, c cos v, c sin v, u, u2 + b− 5

4

)
with r, s > 0 and b < 1 + c2 + r−2;

(15) a flat surface immersed in Hm
s (−1) ⊂ Em+1

s+1 as

r

(
v2 + b +

5
4

, b cosh u, 0, . . . , 0,

√
(1+b+c2)r2−1

r
, b sinh u, v, v2 + b +

3
4

)

with b, r > 0, s ≥ 1 and b ≥ r−2 − 1− c2;
(16) a flat surface immersed in Hm

s (−1) ⊂ Em+1
s+1 as

r

(
v2 + b +

5
4

, b cosh u,

√
1−(a+b+c2)r2

r
, 0, . . . , 0, b sinh u, v, v2 + b +

3
4

)

with b, r > 0, s ≥ 2 and b < r−2 − 1− c2;
(17) a surface of constant negative curvature immersed in Hm

s (−1) ⊂ Em+1
s+1 as

r
(

sinh
( 2u√

3

)
− v2

3
−
(

7
8
+

v4

18

)
e

2u√
3 , v +

(
v3

3
− v

4

)
e

2u√
3 ,

1
2
+

v2

2
e

2u√
3 ,

0, . . . , 0, v +

(
v3

3
+

v
4

)
e

2u√
3 , sinh

( 2u√
3

)
− v2

3
−
(

1
8
+

v4

18

)
e

2u√
3 ,

√
r2 − 1

r

)

with r ≥ 1 and s ≥ 2;
(18) a surface of constant negative curvature immersed in H4

2(−1) ⊂ Hm
s (−1) ⊂ Em+1

s+1 defined as

r
(

sinh
( 2u√

3

)
− v2

3
−
(

7
8
+

v4

18

)
e

2u√
3 , v +

(
v3

3
− v

4

)
e

2u√
3 ,

1
2
+

v2

2
e

2u√
3 ,

√
1− r2

r
, 0, . . . , 0, v +

(
v3

3
+

v
4

)
e

2u√
3 , sinh

( 2u√
3

)
− v2

3
−
(

1
8
+

v4

18

)
e

2u√
3

)

with r < 1 and s ≥ 3 or

(B) L = ( f1, . . . , f`, φ, f`, . . . , f1), where f1, . . . , f` are polynomials of degree ≤ 2 in u, v and φ is a surface
given by (5), (7), (8) or (11)–(18) from (A) or

(C) L = (r, φ, r), where r is a positive number and φ is a surface given by (1)–(4), (6), (9) or (10) from (A).

12.2. A Parallel Spatial Surfaces in H4
2

There is a famous minimal immersion of the 2-sphere S2( 1
3 ) of curvature 1

3 into the unit 4-sphere
S4(1), known as the Veronese surface, which is constructed by using spherical harmonic homogeneous
polynomials of degree two defined as(

vw√
3

,
uw√

3
,

uv√
3

,
u2 − v2

2
√

3
,

u2 + v2 − 2w2

6

)
, u2 + v2 + w2 = 3. (1)
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It is well known that the Veronese surface is the only minimal parallel surface lying fully in
S4(1) (see, e.g., References [94–96]). On the other hand, it was also known that there does not
exist minimal surface of constant Gauss curvature lying fully in the hyperbolic 4-space H4(−1) (cf.
References [95–97]). Furthermore, it was known from Reference [98] that there exist no minimal spatial
parallel surfaces lying fully in H4

1(−1).
B.-Y. Chen discovered in Reference [99] a minimal immersion of the hyperbolic plane H2(− 1

3 ) of
Gauss curvature − 1

3 into the unit neutral pseudo-hyperbolic 4-space H4
2(−1) as follows:

The following map B : R2 → E5
3:

B(s, t) =

(
sinh

( 2s√
3

)
− t2

3
−
(

7
8
+

t4

18

)
e

2s√
3 , t +

(
t3

3
− t

4

)
e

2s√
3 ,

1
2
+

t2

2
e

2s√
3 , t +

(
t3

3
+

t
4

)
e

2s√
3 , sinh

( 2s√
3

)
− t2

3
−
(

1
8
+

t4

18

)
e

2s√
3

) (2)

was introduced in Reference [99]. It is direct to verify that the position vector field x of B satisfies

〈x, x〉 = −1 and the induced metric is given by g = ds2 + e
2s√

3 dt2. Thus, B defines an isometric
immersion ψB : H2(− 1

3 )→ H4
2(−1) of the hyperbolic plane H2(− 1

3 ) of curvature − 1
3 into H4

2(−1).
In Reference [99], Chen characterized this parallel immersion ψB : H2(− 1

3 ) → H4
2(−1) as

the following.

Theorem 33. Up to rigid motions, the isometric immersion ψB : H2(− 1
3 ) → H4

2(−1) defined via (2) is the
only minimal parallel spatial surface lying fully in H4

2(−1).

Remark 5. Although our construction of this minimal surface in H4
2(−1) is quite different from the Veronese

surface given by (1), we show in Reference [99] that this parallel surface defined by (2) does share several
important geometric properties with Veronese surface.

12.3. Special Case: Parallel Surfaces in H3
1

Theorem 32 implies the following classification of parallel surfaces in H3
1 .

Corollary 3. A parallel spatial surface in H3
1(−1) ⊂ E4

2 is congruent to an open part of one of the following
two types of surfaces:

(i) a hyperbolic plane H2 defined by (a, b cosh u cosh v, b cosh u sinh v, b sinh u), a2 + b2 = 1;
(ii) a surface H1 × H1 defined by (a cosh u, b cosh v, a sinh u, b sinh v), a2 + b2 = 1.

Remark 6. The surfaces (i) of Corollary 3 are totally umbilical and (i) with a = 0 is totally geodesic. Further,
the surfaces (ii) are flat and surface (ii) with a2 = b2 = 1

2 is minimal.

13. Parallel Lorentz Surfaces in Pseudo-Euclidean Spaces

Lorentzian geometry is a vivid field that represents the mathematical foundation of the general
theory of relativity, which is probably one of the most successful and beautiful theories of physics. An
interesting phenomenon for Lorentzian surfaces in Lorentzian Kaehler surfaces states that Ricci
equation is a consequence of the Gauss and the Codazzi equations (see Reference [100]). This
indicates that Lorentzian surfaces have many interesting properties which are different from surfaces
in Riemannian manifolds. In particular, Lorentzian surfaces in indefinite real space forms behaved
differently from surfaces in Riemannian space forms. For instance, the family of minimal surfaces in
Euclidean spaces is huge (see, e.g., Chapter 5 of Reference [95]). In contrast, all Lorentzian minimal
surfaces in a pseudo-Euclidean m-space Em

s were completely classified in Reference [101] (see also
Reference [102]) as the following.
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Theorem 34. A Lorentzian surface in a pseudo-Euclidean m-space Em
s is minimal if and only if the immersion

takes the form
L(x, y) = z(x) + w(y),

where z and w are null curves satisfying 〈z′(x), w′(y)〉 6= 0.

13.1. Classification of Parallel Lorentzian Surfaces in Em
s

In Reference [103], we have the following classification theorem for parallel Lorentzian surfaces
in an arbitrary pseudo-Euclidean space.

Theorem 35. Let M be a parallel Lorentzian surface into the pseudo-Euclidean m-space Em
s , s ≥ 1. Then up to

dilations and rigid motions of Em
s , we have either

(A) the surface is an open portion of one of the following fifteen types of surfaces:

(1) a totally geodesic plane E2
1 ⊂ Em

s given by (x, y) ∈ E2
1 ⊂ Em

s ;
(2) a totally umbilical de Sitter space S2

1 in a totally geodesic E3
1 ⊂ Em

s given by

(sinh x, cosh x cos y, cosh x sin y);

(3) a flat cylinder E1
1 × S1 in a totally geodesic E3

1 ⊂ Em
s given by

(
x, cos y, sin y

)
;

(4) a flat cylinder S1
1 ×E1 in a totally geodesic E3

1 ⊂ Em
s given by

(
sinh x, cosh x, y

)
;

(5) a flat minimal surface in a totally geodesic E3
1 ⊂ Em

s given by(
1
6
(x− y)3 + x,

1
6
(x− y)3 + y,

1
2
(x− y)2

)
;

(6) a flat surface S1
1 × S1 in a totally geodesic E4

1 ⊂ Em
s given by

(
a sinh x, a cosh x, b cos y, b sin y

)
,

with a, b > 0;
(7) an anti-de Sitter space H2

1 in a totally geodesic E3
2 ⊆ Em

s given by (sin x, cos x cosh y, cos x sinh y);
(8) a flat minimal surface in a totally geodesic E3

2 ⊆ Em
s defined by(

a2x2

2
,

x
2
− a4x2

6
+ y,

x
2
+

a4x2

6
− y
)

, a > 0;

(9) a non-minimal flat surface in a totally geodesic E3
2 ⊆ Em

s defined by(
1
2b

cos

(√
2b
a

(a2x + by)

)
,

1
2b

sin

(√
2b
a

(a2x + by)

)
,

a2x− by
a
√

2b

)
, a, b > 0;

(10) a non-minimal flat surface in a totally geodesic E3
2 ⊆ Em

s defined by(
a2x + by

a
√

2b
,

1
2b

cosh

(√
2b
a

(a2x− by)

)
,

1
2b

sinh

(√
2b
a

(a2x− by)

))
, a, b > 0;

(11) a flat surface H1
1 ×H1 in a totally geodesic E4

2 ⊂ Em
s given by

(
a sinh x, b cosh v, a cosh x, b sinh y

)
with a, b > 0;

(12) a marginally trapped flat surface in a totally geodesic E4
2 ⊆ Em

s defined by(
a cos x cosh y + b sin x sinh y, a sin x cosh y− b cos x sinh y,

b cos x cosh y− a sin x sinh y, b sin x cosh y + a cos x sinh y
)
, a, b ∈ R;

(13) a marginally trapped flat surface in a totally geodesic E4
2 ⊆ Em

s given by(
(1 + a) sin y− (x + ay) cos y, (1 + a) cos y + (x + ay) sin y,

(1− a) sin y + (x + ay) cos y, (1− a) cos y− (x + ay) sin y
)
, a ∈ R;
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(14) a non-minimal flat surface in a totally geodesic E4
3 ⊆ Em

s defined by(
cos

(√
b(a3x + by)

a5/2

)
, sin

(√
b(a3x + by)

a5/2

)
, cosh

(√
b(a3x− by)

a5/2

)
, sinh

(√
b(a3x− by)

a5/2

))
,

with a, b > 0;
(15) a non-minimal flat surface in a totally geodesic E4

3 ⊆ Em
s defined by(

4√
δ2 + ϕ2 cos

(
λ
(
bx +

√
δ2 + ϕ2y

))
√

2b
√√

δ2 + ϕ2 + δ
,

4√
δ2 + ϕ2 sin

(
λ
(
bx +

√
δ2 + ϕ2y

))
√

2b
√√

δ2 + ϕ2 + δ
,

4√
δ2 + ϕ2 cosh

(
µ
(
bx− sqrtδ2 + ϕ2y

))
√

2b
√√

δ2 + ϕ2 − δ
,

4√
δ2 + ϕ2 sin

(
µ
(
bx−

√
δ2 + ϕ2y

))
√

2b
√√

δ2 + ϕ2 − δ

)

with δ, ϕ 6= 0, b > 0 and

λ =

√
b
√

δ2 + ϕ2 + bδ√
δ2 + ϕ2

, µ =

√
b
√

δ2 + ϕ2 − bδ√
δ2 + ϕ2

,

or
(B) M2

1 is a flat surface and the immersion takes the form: ( f1, . . . , f`, φ(x, y), f`, . . . , f1), where φ = φ(x, y)
is given by one of (1), (3)–(6), (8)–(15) and f1, . . . , f` (` ≥ 1) are polynomials of degree ≤ 2 in x, y.

13.2. Classification of Parallel Lorentzian Surfaces in E3
1

Theorem 35 implies the following.

Corollary 4. A parallel Lorentzian surface in the Minkowski 3-space E3
1 is congruent to an open part of one of

the following five types of surfaces:

(1) the Lorentzian plane E2
1 : L(u, v) = (u, v, 0);

(2) a de Sitter space S2
1 : L(u, v) = a(sinh u, cosh u cos v, cosh u sin v), a > 0;

(3) a cylinder E1
1 × S1 : L(u, v) = (u, a cos v, a sin v), a > 0;

(4) a cylinder S1
1 ×E1 : L(u, v) = (a sinh u, a cosh u, v), a > 0;

(5) the null scroll N2
1 with rulings in the direction of (1, 1, 0) of the null cubic given by

α(u) =
(

4
3 u3 + u, 4

3 u3 − u, 2u2
)

.

Remark 7. The surface (1) is totally geodesic; the surface is totally umbilical but not totally geodesic, all others
are flat; the surfaces (1), (3) and (4) are products of parallel curves in totally geodesic subspaces; the surface (5) is
flat and minimal but not totally geodesic.

14. Parallel Surfaces in a Light Cone LC

The light cone LC of a pseudo-Euclidean (n + 1)-space En+1
s is defined by

LCn
s = {x ∈ En+1

s : 〈x, x〉 = 0}.

A curve in a pseudo-Riemannian manifold is called a null curve if its velocity vector is a light-like
at each point.

14.1. Light Cones in General Relativity

In physics, a space-time is a time-oriented 4-dimensional Lorentz manifold. As with any
time-oriented space-time, the time-orientation is called the future and its negative is called the past.
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A tangent vector in a future time-cone is called future-pointing. Similarly, a tangent vector in the past
time-cone is called past-pointing.

Light cones play a very important role in general relativity. Since signals and other causal
influences cannot travel faster than light, the light cone plays an essential role in defining the concept
of causality: for a given event E, the set of events that lie on or inside the past light cone of E would
also be the set of all events that could send a signal that would have time to reach E and influence it in
some way. Likewise, the set of events that lie on or inside the future light cone of E would also be the
set of events that could receive a signal sent out from the position and time of E, so the future light
cone contains all the events that could potentially be causally influenced by E. Events which lie neither
in the past or future light cone of E cannot influence or be influenced by E in relativity.

14.2. Parallel Surfaces in LC3
1 ⊂ E4

1

Parallel surfaces in the light cone LC3
1 ⊂ E4

1 were classified by Chen and J. Van der Veken in
Reference [98] as follows.

Theorem 36. Let M be a parallel surface of E4
1. If M lies in the light cone LC3

1 ⊂ E4
1, then M is congruent to

an open part of one of the following four types of surfaces:

(1) a totally umbilical surface of positive curvature given by a(1, cos u cos v, cos u sin v, sin u), a > 0;
(2) totally umbilical surface of negative curvature given by a(cosh u cosh v, cosh u sinh v, sinh u, 1), a > 0;
(3) a flat totally umbilical surface given by

(
u2 + v2 + 1

4 , u2 + v2 − 1
4 , u, v

)
;

(4) a flat surface given by a(cosh u, sinh u, cos v, sin v), a > 0.

14.3. Parallel Surfaces in LC3
2 ⊂ E4

2

For parallel surfaces in the light cone LC3
2 ⊂ E4

2, we have the following result from Reference [98]
as well.

Theorem 37. Let M be a parallel surface of E4
2. If M lies in the light cone LC3

2 ⊂ E4
2, then M is congruent to

an open part of one of the following eight types of surfaces:

(1) a totally umbilical surface of positive curvature given by a(sinh u, 1, cosh u cos v, cosh u sin v), a > 0;
(2) a totally umbilical surface of negative curvature given by a(sin u, cos u cosh v, 1, cos u sinh v), a > 0;
(3) a totally umbilical flat surface defined by(

u, u2 + v2 − 1
4

, u2 + v2 +
1
4

, v
)

;

(4) a flat surface defined by a(sinh u, cosh v, cosh u, sinh v), a > 0;
(5) a flat surface defined by a(sin u, cos u, cos v, sin v), a > 0;
(6) a flat surface defined by

a(sinh u cos v + sinh u sin v, cosh u sin v− sinh u cos v,

cosh u cos v− sinh u sin v, cosh u sin v + sinh u cos v), a > 0;

(7) a flat surface defined by a(cosv− usinv, sinv + ucosv, cosv + usinv, sinv− ucosv), a > 0;
(8) a flat surface defined by a(cosh u− v sinh u, sinh u + v cosh u, cosh u + v sinh u, sinh u− v cosh u)

with a > 0.

15. Parallel Surfaces in De Sitter Space-Time S4
1

The geometry of 4-dimensional space-time is much more complex than that of 3-dimensional
space, due to the extra degree of freedom. Four-dimensional space-times play extremely important
roles in the theory of relativity. In physics, space-time is a mathematical model that combines space and
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time into a single continuum. Space-time is usually interpreted with space being three-dimensional
and time playing the role of a fourth dimension. By combining space and time into a single manifold,
physicists have significantly simplified a large number of physical theories, as well as described in a
more uniform way the workings of the universe at both the super-galactic and subatomic levels.

In recent times, physics and astrophysics have played a central role in shaping the understanding
of the universe through scientific observation and experiment. After Kaluza-Klein’s theory, the term
space-time has taken on a generalized meaning beyond treating space-time events with the normal
3+1 dimensions. It becomes the combination of space and time. Some proposed space-time theories
include additional dimensions, normally spatial but there exist some speculative theories that include
additional temporal dimensions and even some that include dimensions that are neither temporal nor
spatial. How many dimensions are needed to describe the Universe is still a big open question.

15.1. Classification of Parallel Spatial Surfaces in De Sitter Space-Time S4
1

For parallel spatial surfaces in the de Sitter space-time S4
1(1), we have the following classification

theorem proved by Chen and Van der Veken in Reference [98].

Theorem 38. If M is a parallel spatial surface in S4
1(1) ⊂ E5

1, then M is congruent to one of the following ten
types of surfaces:

(1) a totally umbilical sphere S2 given locally by (c, b cos u cos v, b cos u sin v, b sin u, a), a2 + b2− c2 = 1;
(2) a totally umbilical hyperbolic plane H2 given by (a cosh u cosh v, a cosh u sinh v, a sinh u, b, c) with

b2 + c2 − a2 = 1;
(3) a torus S1 × S1 given by (a, b cos u, b sin u, c cos v, c sin v) with b2 + c2 − a2 = 1;
(4) a flat surface H1 × S1 given by (b cosh u, b sinh u, c cos v, c sin v, a) with a2 + c2 − b2 = 1;
(5) a totally umbilical flat surface defined by(

u2 + v2 + a2 +
1
4

, u2 + v2 + a2 − 1
4

, u, v,
√

1 + a2
)

;

(6) a flat surface defined by(
v2 − 3

4
+ a2, a cos u, a sin u, v, v2 − 5

4
+ a2

)
, a > 0;

(7) a flat surface defined by

1√
1 + a2

(
u2 + v2 − 3

4
, u2 + v2 − 5

4
, u, v, a

)
, a ∈ R;

(8) a marginally trapped flat surface defined by 1
2
(
2u2 − 1, 2u2 − 2, 2u, sin v, cos v

)
;

(9) a marginally trapped flat surface defined by(
b√

4− b2
,

cos u√
2− b

,
sin u√
2− b

,
cos v√
2 + b

,
sin v√
2 + b

)
; |b| < 2;

(10) a marginally trapped flat surface defined by(
cosh u√

b− 2
,

sinh u√
b− 2

,
cos v√
2 + b

,
sin v√
2 + b

,
b√

b2 − 4

)
; b > 2.

For parallel spatial surface in S3
1(1) ⊂ E4

1, Theorem 38 implies the following.

Corollary 5. If M is a parallel spatial surface in S3
1(c) ⊂ E4

1, c > 0, then M is congruent to one of the
following four types of surfaces:
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(1) a totally umbilical sphere S2 given locally by (a, b sin u, b cos u cos v, b cos u sin v) with b2 − a2 = c−1;
(2) a totally umbilical Euclidean E2 plane given by 1√

c

(
u2 + v2 − 3

4 , u2 + v2 − 5
4 , u, v

)
;

(3) a totally umbilical hyperbolic plane H2 given by (a cosh u cosh v, a cosh u sinh v, a sinh u, b),
with b2 − a2 = c−1;

(4) a flat surface H1 × S1 given by (a cosh u, a sinh u, b cos v, b sin v) with a2 + b2 = c−1.

15.2. Classification of Parallel Lorentzian Surfaces in De Sitter Space-Time S4
1

For parallel Lorentzian surfaces in S4
1(1), we also have the following result from Reference [98].

Theorem 39. If M is a parallel Lorentzian surface in S4
1(1) ⊂ E5

1, then M is congruent to an open part of one
of the following two types of surfaces:

(1) a totally umbilical de Sitter space S2
1 in S4

1(1) given by (a sinh u, a cosh u cos v, a cosh u sin v, b, 0) with
a2 + b2 = 1;

(2) a flat surface S1
1 × S1 given by (a sinh u, a cosh u, b cos v, b sin v, 0), a2 + b2 = 1.

Conversely, each surface defined above is a Lorentzian parallel surface in S4
1(1)

16. Parallel Surfaces in Anti-De Sitter Space-Time H4
1

16.1. Classification of Parallel Spatial Surfaces in H4
1

Parallel surfaces in the anti-de Sitter space-time H4
1(−1) were also classified by Chen and Van der

Veken in Reference [98].

Theorem 40. If M is a parallel spatial surface in H4
1(−1) ⊂ E5

2, then M is congruent to one of the following
ten types of surfaces:

(1) a totally umbilical sphere S2 given locally by (a, c, b sin u, b cos u cos v, b cos u sin v), a2− b2 + c2 = 1;
(2) a totally umbilical hyperbolic plane H2 given locally by (a, b cosh u cosh v, b cosh u sinh v, b sinh u, c)

with a2 + b2 − c2 = 1;
(3) flat surface H1 × S1 given by (a, b cosh u, b sinh u, c cos v, c sin v) with a2 + b2 − c2 = 1;
(4) a flat surface H1 × H1 given by (b cosh u, c cosh v, b sinh u, c sinh v, a) with b2 + c2 − a2 = 1;
(5) a totally umbilical flat surface defined by(√

1− a2, u2 + v2 + a2 +
1
4

, u2 + v2 + a2 − 1
4

, u, v
)

, a ∈ (0, 1);

(6) a flat surface defined by(
a, b
(

u2 + v2 − 3
4

)
, b
(

u2 + v2 − 5
4

)
, bu, bv

)
, a2 = 1 + b2 > 1;

(7) a flat surface defined by(
v2 +

5
4
− a2, a cosh u, a sinh u, v, v2 +

3
4
− a2

)
, a 6= 0;

(8) the marginally trapped flat surface defined by(
u2 + 1,

1
2

cosh v, u,
1
2

sinh v, u2 +
1
2

)
;

(9) a marginally trapped flat surface defined by(
cosh u√

2− b
,

cosh v√
2 + b

,
sinh u√

2− b
,

sinh v√
2 + b

,
b√

4− b2

)
, |b| < 2;
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(10) a flat marginally trapped surface defined by(
b√

b2 − 4
,

cosh v√
b + 2

,
sinh u√

b + 2
,

cos u√
b− 1b

,
sin u√
b− 2

)
, b > 2.

Conversely, each surface of the ten types given above is spatial and parallel.

For parallel spatial surfaces in H3
1(−1), Theorem 40 implies the following.

Corollary 6. If M is a parallel spatial surface in H3
1(−1) ⊂ E4

1, c > 0, then M is congruent to one of the
following two types of surfaces:

(1) a hyperbolic plane H2 defined by (a, b cosh u cosh v, b cosh u sinh v, b sinh u), a2 + b2 = 1;
(2) a surface H1 × H1 defined by (a cosh u, b cosh v, a sinh u, b sinh v), a2 + b2 = 1.

16.2. Classification of Parallel Lorentzian Surfaces in Anti-De Sitter Space-Time H4
1

Parallel Lorentzian surfaces in H4
1(−1) were classified by Chen and J. Van der Veken in

Reference [98] as follows.

Theorem 41. If M is a parallel Lorentzian surface in H4
1(−1) ⊂ E5

2, then M is congruent to one of the
following twelve types of surfaces:

(1) a totally umbilical de Sitter space S2
1 given by (c, a sinh u cos v, a cosh u cos v, a cosh u sin b, b) with

c2 − a2 − b2 = 1;
(2) a totally umbilical anti-de Sitter space H2

1 given by (a sin u, a cos u cosh v, a cos u sinh v, 0, b) with
a2 − b2 = 1;

(3) a flat surface S1
1 × H1 given by (c, a sinh u, a cosh u cos v, a cosh u sin v, b) with c2 − a2 − b2 = 1;

(4) a flat surface H1
1 × S1 given by (a cos u, a sin u, b cos v, b sin v, c) with a2 + b2 − c2 = 1;

(5) a flat surface S1
1 × S1 given by (a, b sinh u, b cosh u, c cos v, c sin v) with a2 − b2 − c2 = 1;

(6) a totally umbilical flat surface defined by
(
u2 − v2 − 5

4 , au, av, a
(
u2 − v2 − 3

4
)

, b
)

with a2 − b2 = 1;
(7) a flat surface defined by(

a cos v− a(u− v)
2

sin v, a sin v +
a(u− v)

2
cos v,

a(u− v)
2

sin v,
a(u− v)

2
cos v, b

)
, a ∈ R;

(8) a flat surface defined by(
a cosh v− a(u + v)

2
sinh v,

a(u + v)
2

cosh v, a sinh v− a(u + v)
2

cosh v,
a(u + v)

2
sinh v, b

)

with a2 − b2 = 1;
(9) a surface defined by

(a cos u cosh v− a tan k sin u sinh v, a sec k sin u cosh v,

a cos u sinh v− a tan k sin u cosh v, a sec k sin u sinh v, b),

with a2 − b2 = 1, cos k 6= 0;
(10) a surface defined by(

b2(u2 − k2 − 1)− 1
2b2k

, u,
cos bv

b
,

sin bv
b

,
b2(u2 + k2 − 1)− 1

2b2k

)
, b, k 6= 1;
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(11) a surface defined by(
−a2(v2 + k2 + 1) + 1

2a2k
,

sinh au
a

,
cosh au

a
, v,

a2(k2 − v2 − 1)− 1
2a2k

)
, a, k 6= 1;

(12) a surface defined by (
(u− v)4

24k
+

u2 − v2 − k2 − 1
2k

,
1
6
(u− v)3 + u,

1
2
(u− v)2,

1
6
(u− v)3 + v,

(u− v)4

24k
+

u2 − v2 + k2 − 1
2k

)
, k 6= 0.

16.3. Special Case: Parallel Lorentzian Surfaces in H3
1

For parallel Lorentzian surfaces in H3
1(−1), Theorem 41 implies the following.

Corollary 7. If M is a parallel Lorentzian surface in H3
1(−1) ⊂ E4

1, then M is congruent to one of the following
eight types of surfaces:

(1) a de Sitter space S2
1 defined by (a, b sinh u, b cosh u sin v, b cosh u cos v) with a2 − b2 = 1;

(2) the surface
(
u2 − v2 − 5

4 , u, v, u2 − v2 − 3
4
)

;
(3) an anti-de Sitter space H2

1 defined by (a sin u, a cos u cosh v, a cos u sinh v, b) with a2 − b2 = 1;
(4) a surface S1

1 × H1 defined by (a sinh u, b cosh v, a cosh u, b sinh v) with b2 − a2 = 1;
(5) a surface H1

1 × S1 defined by (a cos u, a sin u, b cos v, b sin v) with a2 − b2 = 1;
(6) a surface defined by(

cos u cosh v− tan k sin u sinh v, sec k sin u cosh v,

cos u sinh v− tan k sin u cosh v, sec k sin u sinh v
)
, cos k 6= 0;

(7) the surface defined by(
cos v− u− v

2
sin v, sin v +

u− v
2

cos v,
u− v

2
sin v,

u− v
2

cos v
)

;

(8) the surface defined by(
cosh v− u + v

2
sinh v,

u + v
2

cosh v, sinh v− u + v
2

cosh v,
u + v

2
sinh v

)
.

17. Parallel Spatial Surfaces in S4
2

17.1. Four-Dimensional Manifolds with Neutral Metrics

The metrics of neutral signature (−−++) appear in many geometric and physics problems in
the last 25 years. It has been realized that the theory of integrable systems and the techniques from
the Seiberg–Witten theory can be successfully used to study Kaehler–Einstein and self-dual metrics as
well as the self-dual Yang–Mills equations in neutral signature. Riemannian manifolds with neutral
signature are of special interest since it retains many interesting parallels with Riemannian geometry.
Such parallels are particularly evident in four dimensions, where Hodge’s star operator is involutory for
both positive-definite and neutral signatures. Both signatures possess the decomposition of two-forms
into self-dual and anti-self-dual parts without the need to complexify as in the Lorentzian case.

As an interplay between indefiniteness and parallels with Riemannian geometry for neutral
signature, the curvature decomposition in four dimensions for the two signatures allows one to
deduce a neutral analogue of the Thorpe–Hitchin inequality for compact Einstein 4-manifolds (cf., e.g.,
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Reference [104]). Also, the development of the geometry of neutral signature in the work of H. Ooguri
and C. Vafa [105] showed that neutral signature arises naturally in string theory as well.

Para-Kaehler manifolds provide further interesting examples of metrics of neutral signature. Such
manifolds play some important roles in super-symmetric field theories as well as in string theory (see,
for instance, References [106–109]).

17.2. Classification of Parallel Lorentzian Surfaces in S4
2

Complete classification of parallel Lorentzian surfaces in neutral pseudo-sphere S4
2(1) was

obtained by Chen in Reference [110] as follows.

Theorem 42. There exist 24 families of parallel Lorentzian surfaces in the neutral pseudo 4-sphere S4
2(1) ⊂ E5

2:

(1) a totally geodesic de Sitter space-time S2
1(1) ⊂ S4

2(1) ⊂ E5
2;

(2) a flat surface in a totally geodesic S3
1(1) ⊂ S4

2(1) defined by(√
a2 + b2 − 1, a sinh u, a cosh u, b cos v, b sin v

)
, a, b > 0, a2 + b2 ≥ 1;

(3) a flat surface defined by(
a cos u sinh v + b sin u cosh v,

√
a2 + b2 sin u sinh v,

√
a2 + b2 sin u cosh v,

a cos u cosh v + b sin u sinh v,
√

1− a2
)

, a ∈ (0, 1];

(4) a flat surface defined by
(

a cos u, a sin u, b cos v, b sin v,
√

1 + a2 − b2
)

, a, b > 0, b2 ≤ 1 + a2;
(5) a flat surface defined by(

ku, pu2 +
(1− b2)ϕ

k2 − k2

4ϕ
, b sin v, b cos v, pu2 +

(1− b2)ϕ

k2 +
k2

4ϕ

)
, b, k, p, ϕ 6= 0;

(6) a flat surface defined by
(√

b2 − a2 − 1, a cosh u, a sinh u, b cos v, b sin v
)

, a, b > 0, b2 ≥ 1 + a2;
(7) a flat surface defined by(

pu2 +
(b2 − 1)ϕ

k2 +
k2

4ϕ
, b sinh v, b cosh v, ku, pu2 +

(b2 − 1)ϕ

k2 − k2

4ϕ

)
, b, k, p, ϕ 6= 0;

(8) a flat surface given by
(
a cosh u, b sinh v, a sinh u, b cosh v,

√
1 + a2 − b2

)
, a, b > 0, b2 ≤ 1 + a2;

(9) a marginally trapped surface of constant curvature one defined by(
xy

x + y
,

2
x + y

,
x− y
x + y

,
2 + xy
x + y

, 0
)

, x + y 6= 0;

(10) a flat surface defined by
(

x + xy, y− xy, x− y + xy, 1 + xy, 0
)
;

(11) a surface of positive curvature c2 defined by(
xy− c2

c2(x + y)
,

2
√

1− c2 y
c2(x + y)

,
xy + c2

c2(x + y)
,

c2(x + y)− 2y
c2(x + y)

, 0

)
, c ∈ (0, 1), x + y 6= 0;

(12) a surface of positive curvature c2 defined by(
0,

xy− c2

c2(x + y)
,

xy + c2

c2(x + y)
,

c2(x + y)− 2y
c2(x + y)

,
2
√

c2 − 1 y
c2(x + y)

)
, c > 1, x + y 6= 0;
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(13) a surface of negative curvature −c2 defined by

1
c

(
cosh u− sinh u tanh v, sinh u tanh v, sinh u− cosh u tanh v,

√
1 + c2, 0

)
, c > 0;

(14) a flat surface defined by(
1 + 8c2 + 2v

4c
cos u +

1 + v
2c

sin u,
4c2 − 1

4c
cos u +

(
c +

v
2c

)
sin u,

(
1
4c

+ 2c +
v
2c

)
cos u +

v sin u
2c

,
4c2 + 1

4c
cos u +

1 + 2c2 + v
2c

sin u, 0

)
, c > 0;

(15) a flat surface defined by

(
eu − (2c− v)e−u

8c
,

veu

4
− e−u

2c
, eu +

(2c− v)e−u

8c
,

veu

4
+

e−u

2c
, 0
)

, c > 0;

(16) a flat surface defined by

(
x +

y
2
+

2c2y3

3
, xy +

c2y4

6
, x− y

2
+

2c2y3

3
, cy2, 1 + xy +

c2y4

6

)
, c > 0;

(17) a flat surface defined by(
av sinh u + b cosh u, av cosh u, av cosh u + b sinh u, av sinh u,

√
1 + b2

)
, a, b 6= 0;

(18) a flat surface defined by (a sin u− bv cos u, a cos u + bv cos u, bv cos u, bv sin u,
√

1 + a2), a, b 6= 0;
(19) a flat surface defined by(

v cos u +
sin u

c
, v sin u− cos u

c
, v cos u− sin u

c
, v sin u +

cos u
c

, 1
)

, c > 0;

(20) a flat surface defined by(
cos u cos v− sin u sin v

c
, cos u sin v +

sin u cos v
c

, cos u cos v +
sin u sin v

c
,

cos u sin v− sin u cos v
c

, 1
)

, c > 0;

(21) a flat surface defined by(
ev cos u +

e−v sin u
c

, e−v cos u− ev sin u
c

, ev cos u− e−v sin u
c

, e−v cos u +
ev sin u

c
, 1
)

, c > 0;

(22) a flat surface defined by (eu + ae−uv, euv− ae−u, eu − ae−uv, euv + ae−u, 1) , a 6= 0;
(23) a flat surface defined by (eu − ae−u, ev + ae−v, eu + ae−u, ev − ae−v, 1) , a 6= 0;
(24) a flat surface defined by (a cosh u cos v, a cosh u sin v, a sinh u, cos v, a sinh u sin v,

√
1 + a2), a > 0.

Conversely, every parallel immersion L : M → S4
2(1) ⊂ E5

2 of a Lorentzian surface M into the
pseudo 4-sphere S4

2(1) is congruent to an open portion a surface obtained from one of 24 families of surfaces
described above.

17.3. Classification of Parallel Lorentzian Surfaces in H4
2

Complete classification of parallel Lorentzian surfaces in neutral pseudo-hyperbolic 4-space
H4

2(−1) ⊂ E5
3 was obtained by Chen in Reference [111], in which he proved that there exist 53 families

of parallel Lorentzian surfaces in neutral pseudo hyperbolic 4-space H4
2(−1).
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Among the 53 families we have: one family of totally geodesic anti-de Sitter space-time; one family
of marginally trapped surfaces of curvature one; one family of untrapped flat surfaces; one family
of untrapped surfaces of positive curvature; one family of untrapped surfaces of negative curvature;
two families of trapped surfaces of negative curvature; two families of flat minimal surfaces; 7 families
of untrapped flat surfaces; 8 families of marginally trapped flat surfaces; 9 families of flat surface which
can be either trapped or untrapped; and 20 families of trapped flat surfaces.

Conversely, every parallel Lorentzian surface in H4
2(−1) is congruent to an open portion of a

surface obtained from one of the 53 families.

18. Parallel Spatial Surfaces in S4
3 and in H4

3

Parallel Lorentzian surfaces in S4
3(1) and in H4

3(−1) were completely classified by Chen in
Reference [112].

18.1. Classification of Parallel Spatial Surfaces in S4
3

Chen proved in Reference [112] that there are 21 families of parallel Lorentzian surfaces in
S4

3(1) ⊂ E5
3. Among the 21 families, we have: the totally geodesic de Sitter space-time S2

1(1) ⊂ S4
3(1);

one family of minimal flat surfaces in S4
3(1); a totally umbilical flat surfaces lying in a totally geodesic

S3
2(1) ⊂ S4

2(1); one family of totally umbilical de Sitter space S2
1(c

2) in a totally geodesic S3
2(1) ⊂ S4

2(1);
one family of totally umbilical anti-de Sitter space H2

1(−c2) lying in a totally geodesic S3
2(1) ⊂ S4

2(1);
four families of CMC flat surfaces lying in a totally geodesic S3

2(1) ⊂ S4
2(1); and 12 families of flat

minimal surfaces.
Conversely, every parallel Lorentzian surface in S4

3(1) ⊂ E5
3 is congruent to an open portion of a

surface obtained from one of the 21 families.

18.2. Classification of Parallel Spatial Surfaces in H4
3

For parallel Lorentzian surfaces in H4
3(−1) ⊂ E5

4, Chen proved in Reference [112] the following
classification theorem.

Theorem 43. There are six families of parallel Lorentzian surfaces in H4
3(−1) ⊂ E5

4:

(1) A totally geodesic anti-de Sitter space H2
1(−1) ⊂ H4

3(−1);
(2) A flat minimal surface in a totally geodesic H3

2(−1) ⊂ H4
3(−1) defined by

1√
2

(
sin
(

ax +
y
a

)
, cos

(
ax +

y
a

)
, cosh

(
ax− y

a

)
, sinh

(
ax− y

a

)
, 0

)
, a > 0;

(3) A totally umbilical anti-de Sitter space H2
1(−c2) in a totally geodesic H3

2(−1) ⊂ H4
3(−1) given by

1
c

(
0,
√

c2 − 1, tanh
( cx + cy√

2

)
, sinh(

√
2cy) tanh

( cx + cy√
2

)
− cosh(

√
2cy),

sinh(
√

2cy)− cosh(
√

2cy) tanh
( cx + cy√

2

))
, c > 1;
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(4) A CMC flat surface in a totally geodesic H3
2(−1) given by(√√

1 + b2 − b
√

2
4√

1 + b2
cos
(√√1 + b2 + b(a2x +

√
1 + b2y)

a

)
,√√

1 + b2 − b
√

2
4√

1+b2
sin
(√√1 + b2 + b(a2x +

√
1 + b2y)

a

)
,√√

1 + b2 + b
√

2
4√

1 + b2
cosh

(√√1 + b2 − b(a2x−
√

1 + b2y)
a

)
,√√

1 + b2 + b
√

2
4√

1 + b2
sin
(√√1 + b2 − b(a2x−

√
1 + b2y)

a

))
, a, b, c > 0;

(5) A non-minimal flat surface given by

1√
2(1 + b2)

(
√

2b, cos
(

kx +
k3

γ2 y
)

, sin
(

kx +
k3

γ2 y
)

, cosh
(

kx− k3

γ2 y
)

, sinh
(

kx− k3

γ2 y
))

with k = 4√(1 + b2)γ2, b, γ > 0;
(6) A non-minimal flat surface given by

(
bϕ√

δ2 + (1 + b2)ϕ2
,

√√
1 + b2(δ2 + ϕ2)− bδ

√
δ2 + ϕ2

√
2

4√
1 + b2

√
δ2 + (1 + b2)ϕ2

cos
(
λ(
√

1 + b2x +
√

δ2 + ϕ2y
)
,√√

1 + b2(δ2 + ϕ2)− bδ
√

δ2 + ϕ2

√
2

4√
1+b2

√
δ2 + (1 + b2)ϕ2

sin
(
λ(
√

1 + b2x +
√

δ2 + ϕ2y
)
,√√

1 + b2(δ2 + ϕ2) + bδ
√

δ2 + ϕ2

√
2

4√
1 + b2

√
δ2 + (1 + b2)ϕ2

cosh
(
µ(
√

1 + b2x−
√

δ2 + ϕ2y
)
,√√

1 + b2(δ2 + ϕ2) + bδ
√

δ2 + ϕ2

√
2

4√
1+b2

√
δ2+(1+b2)ϕ2

sinh
(
µ(
√

1 + b2x−
√

δ2 + ϕ2y
))

with δ, ϕ 6= 0, b > 0 and

λ =

√√
1 + b2

√
δ2 + ϕ2 + bδ√

δ2 + ϕ2
, µ =

√√
1 + b2

√
δ2 + ϕ2 − bδ√

δ2 + ϕ2
.

Conversely, every parallel Lorentzian surface in H4
3(−1) is congruent to an open portion of one of the six

families of surfaces described above.

19. Parallel Lorentz Surfaces in C2
1, CP2

1 and CH2
1

19.1. Hopf Fibrations

Let Cn = {(z1, . . . , zn) : z1, . . . , zn ∈ C} be the complex n-space. If Cn endows with the metric
given by the real part of the Hermitian form

bj,n((z1, . . . , zn), (w1, . . . , wn)) = −
j

∑
k=1

z̄kwk +
n

∑
k=j+1

z̄kwk, (3)
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then we obtain a flat indefinite Kaehler manifold of complex index j, denoted by Cn
j . In particular, Cn

1
is a flat Lorentzian Kaehler manifold.

For any real number c > 0, the differentiable manifold

S2n+1
2 (c) = {z ∈ Cn+1

1 : b1,n+1(z, z) = 1/c},

with the induced metric, is an indefinite real space form of constant sectional curvature c > 0.
The Hopf-fibration: π : S2n+1

2 (c)→ CPn
1 (4c) : z 7→ z ·C∗ with C∗ = C \ {0} is a submersion and there

is a unique Lorentzian Kaehler metric on CPn
1 (4c) such that π is a Riemannian submersion. The space

CPn
1 (4c) equipped with this metric is a Lorentzian Kaehler manifold of positive holomorphic sectional

curvature 4c.
Similarly, for any real number c < 0, the differentiable manifold

H2n+1
3 (c) = {z ∈ Cn+1

2 : b2,n+1(z, z) = 1/c},

with the induced metric, is an indefinite real space form of constant sectional curvature c < 0.
The Hopf-fibration: π : H2n+1

3 (c) → CHn
1 (4c) : z 7→ z · C∗ is a submersion and there is a unique

Lorentzian Kaehler metric on CHn
1 (4c) such that π is a Riemannian submersion. The space CHn

1 (4c)
equipped with this metric is a Lorentzian Kaehler manifold of negative holomorphic sectional
curvature 4c.

The manifolds Cn
1 , CPn

1 (4c) and CHn
1 (4c) are called complex Lorentzian space forms. The Riemann

curvature tensor of a complex Lorentzian space form of constant holomorphic sectional curvature 4c
takes the form

R̃(X, Y) = c(X ∧Y + JX ∧ JY− 2 〈JX, Y〉 J),

where X and Y are arbitrary tangent vectors at an arbitrary point and ∧ is defined by

(X ∧Y)Z = 〈Y, Z〉X− 〈X, Z〉Y.

Remark 8. The mapping
ψ : C3

1 → C3
2 : (z1, z2, z3) 7→ (z3, z2, z1)

maps S5
2(c) to H5

3(−c) and, via the Hopf-fibrations, it induces a conformal mapping with factor −1 between
CP2

1 (4c) and CH2
1(−4c).

19.2. Classification of Parallel Lorentzian Surface in C2
1

For parallel Lorentzian surface in C2
1, we have the following result from Reference [73] by Chen,

Dillen and Van der Veken.

Theorem 44. A parallel Lorentzian surface M in C2
1 is isometric to an open part of one of the following nine

types of surfaces:

(1) a Lorentzian totally geodesic surface;
(2) a Lorentzian product of parallel curves;
(3) a complex circle, given by (a + ib)

(
cos(x + iy), sin(x + iy)

)
with a, b ∈ R, (a, b) 6= (0, 0);

(4) a B-scroll over the null cubic in E3
1 ⊆ C2

1;
(5) a B-scroll over the null cubic in E3

2 ⊆ C2
1;

(6) a surface given by

e−iy
√

2

(
i(1 + a)− x− ay, i(1− a) + x + ay

)
, with a ∈ R;

(7) a surface with light-like mean curvature vector given by (q(x, y), x, y, q(x, y)) with q(x, y) = ax2 +

bxy + cy2 + dx + ey + f and a, b, c, d, e, f ∈ R;
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(8) a totally umbilical de Sitter space S2
1 in E3

1 ⊆ C2
1, given by a(0, sinh x, cosh x cos y, cosh x sin y) with

a ∈ R \ {0};
(9) a totally umbilical anti-de Sitter space H2

1 in E3
2 ⊆ C2

1 given by a(sin x, cos x cosh y, cos x sinh y, 0)
with a ∈ R \ {0}.

Conversely, each of the surfaces listed above is a Lorentzian surface with parallel second fundamental form
in C2

1.

19.3. Classification of Parallel Lorentzian Surface in CP2
1

First we mention the following result from Reference [73].

Lemma 5. Every parallel Lorentzian surface in CP2
1 (4) and in CH2

1(−4) is Lagrangian.

The next classification of parallel Lorentzian surface in CP2
1 was obtained by Chen, Dillen and

Van der Veken in Reference [73].

Theorem 45. Let M be a Lorentzian surface in CP2
1 (4) with parallel second fundamental form. Then there are

two possibilities:

(I) M is an open part of the totally geodesic, Lagrangian surface RP2
1 (1) ⊆ CP2

1 (4).
(II) M is flat and the immersion is congruent to π ◦ L, where π : S5

2(1)→ CP2
1 (4) is the Hopf-fibration and

L : M2
1 → S5

2(1) ⊆ C3
1 is locally one of the following twelve maps:

(1) L =
1√
3

(
√

2e
i
2 x sinh

(√
3

2
y

)
,
√

2e
i
2 x cosh

(√
3

2
y

)
, e−ix

)
;

(2) L =

(
e

i
2 (2x+y+

√
1+4ay)

(1 + 4a)1/4 ,
e

i
2 (2x+y−

√
1+4ay)

(1 + 4a)1/4 , eiy

)
, a > −1

4
;

(3) L =

(
(2− ie−

√
4a−1y)eix+ 1

2 (i+
√

4a−1)y

2 4
√

4a− 1
,
(2 + ie−

√
4a−1y)eix+ 1

2 (i+
√

4a−1)y

2 4
√

4a− 1
, eiy

)
, a >

1
4

;

(4) L =
1√
2

(
ei(x+ y

2 )(1 + iy), ei(x+ y
2 )(1− iy),

√
2eiy

)
;

(5) L =

(√
a(2− a− b) ei(bx+ (1−b)y

a(2−a−b) )√
(a− b)(a + 2b− 2)

,

√
b(2− a− b)ei(ax+ (1−a)y

b(2−a−b) )√
(a− b)(2a + b− 2)

,

√
ab ei((2−a−b)x+ a+b−1

ab y)√
(2a + b− 2)(a + 2b− 2)

)
with a > b > 2− a− b > 0 or 0 > a > b > 2− a− b;

(6) L =

(√
b(a + b− 2)ei(ax+ (1−a)y

b(2−a−b) )√
(a− b)(2a + b− 2)

,

√
a(a + b− 2)ei(bx+ (1−b)y

a(2−a−b) )√
(a− b)(a + 2b− 2)

,

√
ab ei((2−a−b)x+ a+b−1

ab y)√
(2a + b− 2)(a + 2b− 2)

)
with a > b > 0 and a + b > 2;

(7) L =

( √
−ab ei((2−a−b)x+ a+b−1

ab y)√
(2a + b− 2)(a + 2b− 2)

,

√
b(2− a− b) ei(ax+ (1−a)y

b(2−a−b) )√
(a− b)(2a + b− 2)

,

√
a(a + b− 2)ei(bx+ (1−b)y

a(2−a−b) )√
(a− b)(a + 2b− 2)

)
,

with a > 0 > b > 2− a− b;

(8) L =

((
2i
√
(2a− 1)(1− a)

2− 3a
+

2a2(a− 1)x + (2a− 1)y
2a
√
(2a− 1)(1− a)

)
ei(ax+ y

2a ),

(2a2(a− 1)x + (2a− 1)y)ei(ax+ y
2a )

2a
√
(2a− 1)(1− a)

,
a ei(2(1−a)x+ 2a−1

a2 y)

3a− 2

, a ∈ ( 1
2 , 1) \ { 2

3};

(9) L =

(
(2a2(a− 1)x + (2a− 1)y)ei(ax+ y

2a )

2a
√
(2a− 1)(a− 1)

,

(
2a2(a− 1)x + (2a− 1)y

2a
√
(2a− 1)(a− 1)

+
2i
√
(2a− 1)(a− 1)

3a− 2

)

×ei(ax+ y
2a ),

a ei(2(1−a)x+ 2a−1
a2 y)

3a− 2

, a ∈ R \ ([ 1
2 , 1] ∪ {0});



Axioms 2019, 8, 120 38 of 64

(10) L =
e

i
12 (8x+9y)

24

(
1 + (8x− 9y)2 + 432iy, 2(8x− 9y + 12i), 1− (8x− 9y)2 − 432iy

)
;

(11) L =

 √1− a e
i(ax+ (a2−b2−a)y

2(a−1)(a2+b2)
)

b
√

2a− 1
√
(3a− 2)2 + b2

(
2b(1− 2a) cosh

(
bx +

b(2a− 1)y
2(a− 1)(a2 + b2)

)

+i(3a2 − b2 − 2a) sinh
(
bx +

b(2a− 1)y
2(a− 1)(a2 + b2)

))
,

√
1− a

√
a2 + b2 e

i(ax+ (a2−b2−a)y
2(a−1)(a2+b2)

)

b
√

2a− 1
sinh

(
bx +

b(2a− 1)y
2(a− 1)(a2 + b2)

)
,

√
a2 + b2 ei(2(1−a)x+ 2a−1

a2+b2 y)√
(3a− 2)2 + b2

, with a ∈ ( 1
2 , 1) and b ∈ R \ {0};

(12) L =

√ a− 1
2a− 1

e
i(ax+ (a2−b2−a)y

2(a−1)(a2+b2)
)

b
√
(3a− 2)2 + b2

(
2b(1− 2a) sinh

(
bx +

b(2a− 1)y
2(a− 1)(a2 + b2)

)

+i(3a2 − b2 − 2a) cosh
(
bx +

b(2a− 1)y
2(a− 1)(a2 + b2)

))
,

√
a− 1

2a− 1

√
a2 + b2 e

i(ax+ (a2−b2−a)y
2(a−1)(a2+b2)

)

b
cosh

(
bx +

b(2a− 1)y
2(a− 1)(a2 + b2)

)
,

√
a2 + b2 ei(2(1−a)x+ 2a−1

a2+b2 y)√
(3a− 2)2 + b2

, with a ∈ R \ [ 1
2 , 1] and b ∈ R \ {0}.

19.4. Classification of Parallel Lorentzian Surface in CH2
1

It follows from Remark 8 that one obtains immediately the classification of parallel Lorentzian
surfaces in CH2

1(−4) from Theorem 45 via the mapping:

ψ : C3
1 → C3

2 : (z1, z2, z3) 7→ (z3, z2, z1)

since ψ gives rise to a conformal mapping with factor −1 between CP2
1 (4) and CH2

1(−4). Hence,
besides totally geodesic Lagrangian surface RH2

1(−1) ⊂ CH2
1(−4), there are twelve families of flat

parallel Lorentzian surfaces in CH2
1(−4).

20. Parallel Surfaces in Warped Product I × f Rn(c)

20.1. Basics on Robertson–Walker Space-Times

In the theory of general relativity, a Robertson–Walker space-time is a warped product

L4
1(c, f ) = (I × R3(c), g), g = −dt2 + f 2(t)gc,

of an open interval I and a Riemannian 3-manifold (R3(c), gc) of constant curvature c, while the
warping function f describes the expanding or contracting of our Universe (cf. References [113,114]).

A Robertson–Walker space-time possesses two relevant geometrical features. On one hand,
its fibers have constant curvature. Hence, the space-time is spatially homogeneous. On the other hand,
it has a time-like vector field K = f (t)∂t which satisfies ∇XK = f ′(t)X for any X. In particular,
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we have LKg = 2 f ′g, where LK is the Lie derivative along K. Hence, the canonical time-like vector
field K is a conformal vector field. These properties of K show a certain symmetry on Ln

1 (c, f ).
One may also consider a higher dimensional Robertson–Walker space-time as

Ln
1 (c, f ) := (I × Rn−1(c), g), g = −dt2 + f 2(t)gc,

where Rn−1(c) is a Riemannian (n− 1)-manifold of constant curvature c for n > 5.
A rest space or a space-like slice in Ln

1 (c, f ) is a space-like hypersurface given by t constant. Thus,
a rest space in Ln

1 (c, f ) is a fiber

S(t0) = {t0} × f (t0)
Rn(c), t0 ∈ I.

Hence a rest space S(t0) in Ln
1 (c, f ) is an (n− 1)-manifold of constant curvature whose metric tensor is

given by f 2(t0)gk.
A pseudo-Riemannian submanifold N of a Robertson–Walker space-time Ln

1 (c, f ) is called
transverse if it is contained in a rest space S(t0) for some t0 ∈ I. A pseudo-Riemannian submanifold N of
Ln

1 (c, f ) is called aH-submanifold if the tangent field ∂
∂t , known as the comoving observer field, is tangent

to N at each point on N.

20.2. Parallel Submanifolds of Robertson–Walker Space-Times

For parallel submanifolds of Ln
1 (c, f ), we have the next classification result from

References [114,115].

Theorem 46. If a Robertson–Walker space-time Ln
1 (c, f ) does not contain any open subsets of constant

curvature, then a k-dimensional pseudo-Riemannian submanifold of Ln
1 (c, f ) is a parallel submanifold if and

only if it is one of the following:

(a) A transverse submanifold lying in a rest space S(t0) of Ln
1 (c, f ) as a parallel submanifold.

(b) AnH-submanifold which is locally a warped product I × f Pk−1, where I is an open interval and Pk−1 is
a submanifold of Rn−1(c). Further,

(b.1) if f ′ 6= 0 on I, then I × f Pk−1 is totally geodesic in Lm
1 (k, f );

(b.2) if f ′ = 0 on I, then Pk−1 is a parallel submanifold of Rn−1(c).

A similar result holds for submanifolds in a warped product I × f Rn−1(c) with the Riemannian
warped product metric g = dt2 + f 2(t)gc (cf. References [116,117]).

21. Thurston’s Eight Three-Dimensional Model Geometries

The uniformization theorem for 2-dimensional surfaces says that every simply-connected Riemann
surface is conformally equivalent to one of the three Riemann surfaces: the open unit disk, the complex
plane or the Riemann sphere. This result implies that every Riemann surface admits a Riemannian
metric of constant curvature.

Roughly speaking, for closed 3-manifolds W. Thurston’s Geometrization Conjecture states that
every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight
types of geometric structure locally (see Reference [118]). In 2005, G. Perelman [119] provided a proof
of Thurston’s geometrization conjecture via Ricci flow with surgery.

The eight Thurston’s 3-dimensional model geometries are the following.

(1) Euclidean geometry E3.
(2) Spherical geometry S3.
(3) Hyperbolic geometry H3.
(4) The geometry of S2 ×R.
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(5) The geometry of H2 ×R.
(6) The geometry S̃L2(R). The 3-dimensional Lie group of all 2× 2 real matrices with determinant one

is denoted by SL2(R); and S̃L2(R) denotes its universal covering. S̃L2(R) is a unimodular Lie
group with a special left invariant metric. Examples of these manifolds in this geometry include
the manifold of unit vectors of the tangent bundle of a hyperbolic surface and, more generally,
the Brieskorn homology spheres.

(7) Nil geometry Nil3. The group Nil3 is a 3-dimensional unimodular Lie group with a special left
invariant metric consisting of real matrices of the form1 x y

0 1 z
0 0 1


under multiplication. This group, also known as the Heisenberg group, is nilpotent.

(8) Sol geometry Sol3. This group Sol3 has the least symmetry of all the eight geometries as the
identity component of the stabilizer of a point is trivial.

We mentioned earlier in Section 1 that the complete classification of parallel surfaces in E3 was
obtained by V. F. Kagan; the complete classifications of parallel surfaces in S3 and in H3 were given in
Sections 5.4 and 5.5, respectively; the classifications of parallel surfaces in S2 ×R and in H2 ×R3 were
given in Sections 24.1 and 25.1.

In this section, we will deal the classification of parallel surfaces in Sol3, S̃L2(R) and Nil3 in
Sections 22.2, 22.4 and 22.5, respectively.

22. Parallel Surfaces in Three-Dimensional Lie Groups

22.1. Milnor’s Classification of 3-Dimensional Unimodular Lie Groups

A Lie group G is called unimodular if its left-invariant Haar measure is also right-invariant. In
Reference [120], J. Milnor provides an infinitesimal reformulation of unimodularity for 3-dimensional
Lie groups. We recall it briefly as follows:

Let g be a 3-dimensional oriented Lie algebra equipped with an inner product 〈 , 〉. Define the
vector product operation × : g × g → g as the skew-symmetric bilinear map which is uniquely
determined by the following three conditions:

(a) 〈X, X×Y〉 = 〈Y, X×Y〉 = 0,
(b) |X×Y|2 = 〈X, X〉 〈Y, Y〉 − 〈X, Y〉2,
(c) if X and Y are linearly independent, then det(X, Y, X×Y) > 0,

for all X, Y ∈ g. The Lie-bracket [ · , · ] on g is a skew-symmetric bilinear map. By comparing these
two operations, one obtains a linear endomorphism Lg which is uniquely determined by the formula

[X, Y] = Lg(X×Y), X, Y ∈ g.

If G is an oriented 3-dimensional Lie group equipped with a left-invariant Riemannian metric,
then the metric induces an inner product on the Lie algebra g. With respect to the orientation on g

induced from G, the endomorphism field Lg is uniquely determined.
J. Milnor proved in Reference [120] that the unimodularity of G is characterized as follows.

Theorem 47. Let G be an oriented 3-dimensional Lie group with a left-invariant Riemannian metric. Then G
is unimodular if and only if the endomorphism Lg is self-adjoint with respect to the metric.
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If G is a 3-dimensional unimodular Lie group with a left-invariant metric, then there exists an
orthonormal basis {e1, e2, e3} of the Lie algebra g such that

[e1, e2] = c3e3, [e2, e3] = c1e1, [e3, e1] = c2e2, ci ∈ R.

Milnor obtained the following Table 1 classification of 3-dimensional unimodular Lie groups.

Table 1. Three-dimensional unimodular Lie groups classified by J. Milnor.

(c1, c2, c3) Simply-Connected Lie Group Property

(+,+,+) SU(2) Compact and simple
(+,+,−) S̃L(2,R) Non-compact and simple
(+,+, 0) Ẽ(2) Solvable
(+,−, 0) E(1, 1) Solvable
(+, 0, 0) Heisenberg group Nilpotent
(0, 0, 0) (E3,+) Abelian

Here E(1, 1) denotes the the group of orientation-preserving rigid motions of Minkowski plane,
E(2) denotes the group of orientation-preserving rigid motions of Euclidean plane and Ẽ(2) is the
universal covering of E(2).

22.2. Parallel Surfaces in the Motion Group E(1, 1)

Let E(1, 1) be the motion group of the Minkowski plane:

E(1, 1) =


 ez 0 x

0 e−z y
0 0 1

 : x, y, z ∈ R

 .

The Lie algebra e(1, 1) is given by e(1, 1) =


 w 0 u

0 −w v
0 0 0

 : u, v, w ∈ R

 .

Consider the basis

F1 =

 0 0 1
0 0 0
0 0 0

 , F2 =

 0 0 0
0 0 1
0 0 0

 , F3 =

 1 0 0
0 −1 0
0 0 0


of e(1, 1). Then the left-translated vector fields of {F1, F2, F3} are given by

f1 = ez ∂

∂x
, f2 = e−z ∂

∂y
, f3 =

∂

∂z
.

The dual coframe field is ω1 = e−zdx, ω2 = ezdy, ω3 = dz.
Now we take the following left-invariant vector fields u1, u2, u3:

u1 =
1√
2
(− f1 + f2), u2 =

1√
2
( f1 + f2), u3 = f3.

This left-invariant frame field satisfies the relations [u1, u2] = 0, [u2, u3] = u1, [u3, u1] = −u2.
We equip E(1, 1) with a left-invariant Riemannian metric such that {e1, e2, e3}, with ei = ui/λi,

is orthonormal, where λ1, λ2, λ3 are positive constants. The resulting Riemannian metric is

g(λ1,λ2,λ3)
=

λ2
1

2
(−ω1 + ω2)2 +

λ2
2

2
(ω1 + ω2)2 + λ2

3(ω
3)2.
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V. Patrangenaru proved the following result in Reference [121].

Theorem 48. A left-invariant metric on E(1, 1) is isometric to one of the metrics g(λ1,λ2,λ3)
with λ1 ≥ λ2 > 0

and λ3 = 1
λ1λ2

.

22.3. Parallel Surfaces in Sol3

If we put g(λ1, λ2) = g(λ1,λ2, 1
λ1λ2

), then the homogeneous 3-manifold Sol3 = (E(1, 1), g(1,1)) is

one of Thurston’s eight model spaces. Hence, Sol3 has a natural 2-parametric deformation family
{(E(1, 1), g(λ1, λ2)) | λ1 ≥ λ2 > 0}.

In Reference [122], J. Inoguchi and J. Van der Veken classified parallel surfaces in
Sol3 = (E(1, 1), g(λ1, λ2)) as follows.

Theorem 49. Let M be a parallel surface in Sol3 = (E(1, 1), g(λ1, λ2)). Then M is one of the following:

(a) an integral surface of the distribution spanned by {∂/∂x, ∂/∂y},
(b) an integral surface of the distribution spanned by {∂/∂x, ∂/∂z} or {∂/∂y, ∂/∂z},

The latter case only occurring if λ1 = λ2. Moreover, the surfaces described in (a) are flat and minimal
but not totally geodesic and the surfaces in (b) are totally geodesic and have constant Gaussian curvature −λ4

1.

22.4. Parallel Surfaces in the Motion Group E(2)

The Euclidean motion group E(2) is given by the following matrix group:

E(2) =


 cos θ − sin θ x

sin θ cos θ y
0 0 1

 : x, y ∈ R, θ ∈ S1

 .

The universal covering group of E(2) is R3 with multiplication

(x, y, z) · (x′, y′, z′) = (x + x′ cos z− y′ sin z , y + x′ sin z + y′ cos z , z + z′).

Take positive constants λ1, λ2 and λ3 and a left-invariant frame

e1 =
1

λ2

(
− sin z

∂

∂x
+ cos z

∂

∂y

)
, e2 =

1
λ3

∂

∂z
, e3 =

1
λ1

(
cos z

∂

∂x
+ sin z

∂

∂y

)
.

Then this frame satisfies the commutation relations: [e1, e2] = c1e3, [e2, e3] = c2e1, [e3, e1] = 0,
with c1 = λ1

λ2λ3
and c2 = λ2

λ1λ3
.

The left-invariant Riemannian metric determined by the condition with orthonormal {e1, e2, e3} is
given by

g(λ1,λ2,λ3)
= λ2

1(cos z dx + sin z dy)2 + λ2
2(− sin z dx + cos z dy)2 + λ2

3 dz2.

We have the following result on Ẽ(2) from Reference [121].

Proposition 1. A left-invariant metric on Ẽ(2) is isometric to one of the metrics g(λ1,λ2,λ3)
with λ1 > λ2 > 0

and λ3 = 1
λ1λ2

or λ1 = λ2 = λ3 = 1. In particular, Ẽ(2) with metric g(1,1,1) is isometric to Euclidean
3-space E3.

J. Inoguchi and J. Van der Veken classified parallel surfaces in Ẽ(2) (see Reference [122]) as follows.

Theorem 50. The only parallel surfaces in Ẽ(2) are integral surfaces of the distribution spanned by
{∂/∂x, ∂/∂y}. These surfaces are flat and minimal but not totally geodesic.
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22.5. Parallel Surfaces in SU(2)

The group SU(2) is diffeomorphic to S3, since

SU(2) =

{ (
x0 +

√
−1x3 −x2 +

√
−1x1

x2 +
√
−1x1 x0 −

√
−1x3

)
: x2

0 + x2
1 + x2

2 + x2
3 = 1

}
.

From Reference [121], we have the following proposition which describes all possible left-invariant
metrics on SU(2).

Proposition 2. Any left-invariant metric on SU(2) is isometric to one of the following metrics g(λ1,λ2,λ3)
with

λi ∈ R and λ1 ≥ λ2 ≥ λ3 > 0:

g(λ1,λ2,λ3)
=

4
λ2λ3

σ2
1 +

4
λ3λ1

σ2
2 +

4
λ1λ2

σ2
3

on the unit three-sphere S3(1) = {(x0, x1, x2, x3) ∈ E4 : x2
0 + x2

1 + x2
2 + x2

3 = 1}, where

σ1 = −x1dx0 + x0dx1 − x3dx2 + x2dx3,

σ2 = −x2dx0 + x3dx1 − x0dx2 + x1dx3,

σ3 = −x3dx0 + x2dx1 − x1dx2 + x0dx3.

The dimension d(λ1, λ2, λ3) of the isometry group of (SU(2), g(λ1,λ2,λ3)
) is

d(λ1, λ2, λ3) =


3 if λ1 > λ2 > λ3,
4 if λ1 = λ2 > λ3 or λ1 > λ2 = λ3,
6 if λ1 = λ2 = λ3.

Let su(2) denote the Lie algebra of SU(2). Take the following quaternionic basis {i, j, k} of su(2):

i =

(
0

√
−1√

−1 0

)
, j =

(
0 −1
1 0

)
, k =

( √
−1 0
0 −

√
−1

)
.

We denote the left-translated vector fields of i, j, k by E1, E2, E3. Then the commutation relations
of{E1, E2, E3} are given by [E1, E2] = 2E3, [E2, E3] = 2E1, [E3, E1] = 2E2. Choose strictly positive real
constants λ1, λ2, λ3 and define

e1 =
1

λ2λ3
i, e2 =

1
λ3λ1

j, e3 =
1

λ1λ2
k.

Then [e1, e2] = c3e3, [e2, e3] = c1e1, [e3, e1] = c2e2 with c1 = 2/λ2
1, c2 = 2/λ2

2, c3 = 2/λ2
3.

The left-invariant metric g(c1,c2,c3)
, defined by the condition that {e1, e2, e3} is an orthonormal basis, is

g(c1,c2,c3)
= 4

(
1

c2c3
ω2

1 +
1

c1c3
ω2

2 +
1

c1c2
ω2

3

)
,

where {ω1, ω2, ω3} is the dual coframe field of {E1, E2, E3}.
The following result from Reference [121] describes all left-invariant metrics on SU(2)

Proposition 3. A left-invariant metric on SU(2) is isometric to one of the metrics g(c1,c2,c3)
with c1, c2, c3 ≥ 0.

Moreover, the dimension of the isometry group is greater or equal to 4 if and only if at least two of the parameters
ci coincide.
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The next non-existence result was proved by J. Inoguchi and J. Van der Veken in Reference [123].

Theorem 51. There are no parallel surfaces in SU(2) equipped with a left-invariant metric with 3-dimensional
isometry group.

22.6. Parallel Surfaces in the Real Special Linear Group Sl(2,R)

The group SL(2,R) is defined as the following subgroup of GL(2,R):

SL(2,R) =
{(

a b
c d

)
: ad− bc = 1

}
.

This group is isomorphic to the following subgroup of GL(2,C):

SU(1, 1) =

{(
α β

β̄ ᾱ

)
: |α| − |β|2 = 1

}

via the isomorphism SL(2,R)→ SU(1, 1) :

(
a b
c d

)
7→
(

i 1
1 i

)(
a b
c d

)(
−i 1
1 −i

)
.

The Lie algebra of SU(1, 1) is explicitly given by

su(1, 1) =

{(
iu v− iw

v + iw −iu

)
: u, v, w ∈ R

}
.

We take the following split-quaternionic basis of the Lie algebra su(1, 1):

i =

(
i 0
0 −i

)
, j′ =

(
0 −i
i 0

)
, k′ =

(
0 1
1 0

)
.

Denote the left-translated vector fields of {j′, k′, i} by {E1, E2, E3} and choose strictly positive real
constants λ1, λ2, λ3 and define

e1 =
1

λ2λ3
E1, e2 =

1
λ1λ3

E2, e3 =
1

λ1λ2
E3.

Then we have [e1, e2] = c3e3, [e2, e2] = c1e1, [e3, e1] = c23e2 with c1 = 2/λ2
1, c2 = 2/λ2

2 and
c2 = −2/λ2

3.
The left-invariant Riemannian metric g(c1, c2, c3) by the condition that {e1, e2, e3} is an

orthonormal basis is

g(c1, c2, c3) = 4
(
− 1

c2c3
ω2

1 −
1

c1c3
ω2

2 +
1

c1c2
ω2

3

)
,

where {ω1, ω2, ω3} is the dual coframe field of {E1.E2, E3}. This three-parameter family of Riemannian
metrics exhausts all left-invariant metrics on SL(2,R) as shown in the next proposition from
Reference [121].

Proposition 4. Any left-invariant metric on SU(1, 1) is isometric to one of the metrics g(c1, c2, c3) with
c3 < 0 < c2 ≤ c1. Moreover, this metric gives rise to an isometry group of dimension 4 if and only if c1 = c2.

Consider SL(2,R) equipped with a left-invariant metric such that the dimension of the isometry
group is only 3. With the notations given above, we have that c1 > c2 > 0 > c3. The following result
was proved by J. Inoguchi and J. Van der Veken in Reference [123].
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Theorem 52. Consider SL(2,R) equipped with a left-invariant metric with c1 > c2 > 0 > c3. Parallel
surfaces only occur if c2 = c1 + c3. Moreover, they are integral surfaces of the distribution spanned by
{cos θ e1 + sin θ e3, e2}, where θ is a constant, satisfying tan2 θ = −c3/c1. These surfaces are totally geodesic
and of constant Gaussian curvature given by c1c3 < 0.

M. Belkhelfa, F. Dillen and J. Inoguchi classified parallel surfaces in SL(2,R) with 4-dimensional
isometry group in Reference [124] as follows.

Theorem 53. The only parallel surfaces in the real special linear group SL(2,R) are rotational surfaces of
constant mean curvature. The generating curve is a Riemannian circle. Furthermore such surfaces are flat.

22.7. Parallel Surfaces in Non-Unimodular Three-Dimensional Lie Groups

Let G be a non-unimodular 3-dimensional Lie group with a left-invariant metric. Then the
unimodular kernel u of the Lie algebra g of G is defined by u = {X ∈ g : Tr ad(X) = 0}, where ad :
g→ End(g) is a homomorphism defined by ad(X)Y = [X, Y]. Then u is an ideal of g containing the
ideal [g, g].

On g, we can take an orthonormal basis {e1, e2, e3} such that (a) 〈e1, X〉 = 0, X ∈ u and (b)
〈[e1, e2], [e1, e3]〉 = 0. The commutation relations of this basis are given by

[e1, e2] = ae2 + be3, [e2, e3] = 0, [e1, e3] = ce2 + de3,

with a + d 6= 0 and ac + bd = 0. Under a suitable homothetic change of the metric, we may assume
that a + d = 2. Then the constants a, b, c and d are represented as

a = 1 + ξ, b = (1 + ξ)η, c = −(1− ξ)η, d = 1− ξ,

where (ξ, η) satisfies the condition ξ, η ≥ 0 and ξ2 + η2 6= 0.
The next was also proved by J. Inoguchi and J. Van der Veken in Reference [123].

Proposition 5. The non-unimodular Lie group G is locally symmetric if and only if ξ = 0 or (ξ, η) = (1, 0).

Since parallel surfaces in H2 ×R are not classified yet up to this stage (see Sections 24.1 and 25.1),
we shall restrict our attention to such surfaces in the non-unimodular Lie groups satisfying ξ /∈ {0, 1}.

The following theorem of J. Inoguchi and J. Van der Veken from Reference [123] provides the
classification of parallel surfaces in the corresponding Lie groups.

Theorem 54. Let G be a non-unimodular Lie group with structure constants (ξ, η). Assume that ξ /∈ {0, 1}.
Then the only parallel surfaces in G are:

(1) Integral surfaces of the distributions spanned by {e1, e2}, respectively {e1, e3}. These surfaces are totally
geodesic and of constant negative curvature −(1 + ξ)2, respectively −(1− ξ)2.

(2) Integral surfaces of the distribution spanned by {e2, e3}. These surfaces are flat and of constant mean
curvature 1.

The former case only occurs when η = 0.

22.8. Parallel Surfaces in the Heisenberg Group Nil3

The following classification theorem of parallel surfaces in the Heisenberg group Nil3 was proved
by M. Belkhelfa, F. Dillen and J. Inoguchi in Reference [125].

Theorem 55. The only parallel surfaces in the Heisenberg group Nil3 are open parts of vertical planes and
vertical round cylinders.
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Remark 9. The oscillator group was introduced and first studied by R. F. Streater in Reference [126] and owes
its name to the fact that its Lie algebra coincides with the one generated by the differential operators associated to
the harmonic oscillator problem. Generalizing this construction, oscillator groups have been defined in any even
dimension greater or equal to four. Since their introduction, the oscillator groups have been intensively studied
from several different points of view, both in differential geometry and in mathematical physics. Beside direct
extensions with Euclidean groups, the oscillator groups are the only simply connected non-Abelian solvable Lie
groups admitting a bi-invariant Lorentzian metric.

In Reference [127] G. Calvaruso and J. Van der Veken obtained the complete classification and explicitly
description of totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups equipped with a
one-parameter family of left-invariant Lorentzian metrics.

23. Parallel Surfaces in Three-Dimensional Lorentzian Lie Groups

Homogeneous Lorentzian 3-spaces (N, g) were classified by G. Calvaruso in Reference [128].
Unless they are symmetric, they are Lie groups equipped with left-invariant Lorentzian metrics.

23.1. Three-Dimensional Lorentzian Lie Groups

G. Calvaruso in Reference [128] classified 3-dimensional simply connected, complete
homogeneous Lorentzian manifold as the following theorem.

Theorem 56. Let (N, g) be a 3-dimensional connected, simply connected, complete homogeneous Lorentzian
manifold. If (N, g) is not symmetric, then N = G is a 3-dimensional Lie group and g is left-invariant. Moreover,
there exists a pseudo-orthonormal frame field {e1, e2, e3}, with e3 time-like, such that the Lie algebra of G is one
of the following seven types.

(1) Type g1:

[e1, e2] = αe1 − βe3, [e1, e3] = −αe1 − βe2, [e2, e3] = βe1 + αe2 + αe3, α 6= 0.

In this case, G = O(1, 2) or G = SL(2,R) if β 6= 0, while G = E(1, 1) if β = 0.
(2) Type g2:

[e1, e2] = γe2 − βe3, [e1, e3] = −βe2 + γe3, [e2, e3] = αe1, γ 6= 0.

In this case, G = O(1, 2) or G = SL(2,R) if α 6= 0, while G = E(1, 1) if α = 0.
(3) Type g3:

[e1, e2] = −γe3, [e1, e3] = −βe2, [e2, e3] = αe1.

The following Table 2 lists all the Lie groups G which admit a Lie algebra g3, taking into account the
different possibilities for α, β and γ:

Table 2. Lie groups G with Lie algebra of type g3.

G α β γ

O(1, 2) or SL(2,R) + + +
O(1, 2) or SL(2,R) + − −

SO(3) or SU(2) + + −
E(2) + + 0
E(2) + 0 −

E(1, 1) + − 0
E(1, 1) + 0 +

H3 + 0 0
H3 0 0 −

R⊕R⊕R 0 0 0
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(4) Type g4:

[e1, e2] = −e2 + (2η − β)e3, [e1, e3] = −βe2 + e3, [e2, e3] = αe1, η = ±1.

The following Table 3 describes all Lie groups G admitting a Lie algebra g4:

Table 3. Lie groups G with Lie algebra of type g4.

G α β

O(1, 2) or SL(2,R) 6= 0 6= η
E(1, 1) 0 6= η
E(1, 1) < 0 η
E(2) > 0 η
H3 0 η

(5) Type g5:

[e1, e2] = 0, [e1, e3] = αe1 + βe2, [e2, e3] = γe1 + δe2, α + δ 6= 0, αγ + βδ = 0.

(6) Type g6:

[e1, e2] = αe2 + βe3, [e1, e3] = γe2 + δe3, [e2, e3] = 0, α + δ 6= 0, αγ− βδ = 0.

(7) Type g7:

[e1, e2] = −αe1 − βe2 − βe3, [e1, e3] = αe1 + βe2 + βe3, [e2, e3] = γe1 + δe2 + δe3,

with α + δ 6= 0, αγ = 0.

Lie algebras of types g1, g2, g3 and g4 correspond to unimodular groups, whereas Lie algebras of types g5,
g6 and g7 correspond to non-unimodular groups.

G. Calvaruso determined in Reference [129] those 3-dimensional Lorentzian Lie groups (G, g)
which have constant sectional curvature and which are symmetric.

By a 3-dimensional Lorentzian Lie group Gi we mean a connected, simply connected 3-dimensional
Lie group G equipped with a left-invariant Lorentzian metric g and having Lie algebra gi.

23.2. Classification of Parallel Surfaces in Three-Dimensional Lorentzian Lie Groups

Let (N, g) be a 3-dimensional homogeneous Lorentzian manifold and M is a surface in N.
We denote by ξ a fixed normal vector field on the surface with 〈ξ, ξ〉 = ε. Here, either ε = −1
or ε = 1, according to the surface being either Riemannian or Lorentzian, respectively. We call ξ an
ε-unit normal vector field.

Parallel surfaces in 3-dimensional Lorentzian Lie groups were classified by G. Calvaruso and J.
Van der Veken in Reference [130]. More precisely, under the notations of Theorem 56, they proved
the following.

Theorem 57. Let M be a parallel surface in a 3-dimensional Lorentzian Lie group G1. Then β = 0, ξ =

e1 + be2 + be3 and the vector fields E1 = (be1 − e2)/
√

1 + b2 and E2 = (be1 + b2e2 + (1 + b2)e3)/
√

1 + b2

form a pseudo-orthonormal basis for the tangent plane at every point. Moreover, the function b satisfies
E1(b) = E2(b) and

E1

(
E1b√
1 + b2

− 2b
1 + b2 α

)
+ 2

(
E1b√
1 + b2

− 2b
1 + b2 α

)(
b√

1 + b2
E1b− α√

1 + b2

)
= 0.
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The surface is flat and parallel. Moreover, it is totally geodesic in the case that E1b = E2b = 2bα/
√

1 + b2.

Theorem 58. Let M be a parallel surface in a three-dimensional Lorentzian Lie group G2. Then one of the
following statements holds.

(a) M is an integral surface of the distribution spanned by {e2, e3}. This case only occurs if α = 0 and M is
parallel, flat and minimal but not totally geodesic.

(b) M is an integral surface of the distribution spanned by {e1, ce2 + be3}, where b and c are real constants
satisfying b2− c2 = ε = ±1, bc = −εβ/(2γ). This case only occurs if α = 2β and M is totally geodesic.

Theorem 59. Let M be a parallel surface in a non-symmetric three-dimensional Lorentzian Lie group G3.
Then one of the following statements holds.

(a) M is an integral surface of the distribution spanned by {e2, e3}. This case only occurs if γ = 0 and M is
flat and minimal but not totally geodesic.

(b) M is an integral surface of the distribution spanned by {e2, e3}. This case only occurs if α = 0 and M is
flat and minimal but not totally geodesic.

(c) M is an integral surface of the distribution spanned by {e1, e3}. This case only occurs if β = 0 and M is
flat and minimal but not totally geodesic.

(d) M is an integral surface of the distribution spanned by {E1 = e1, E2 = ce2 + be3}, where b and c are
functions on M satisfying b2 − c2 = ε and E1b = βc, E1c = βb, E2b = k1εc, E2c = k1εb, for some real
constant k1. This case only occurs if β = γ and M is flat.

(e) M is an integral surface of the distribution spanned by {ce2 + be3, e1}. Here, b and c are real constants
satisfying b2 = γε/(γ− β), c2 = βε/(γ− β). This case only occurs if α = β + γ and β 6= γ and M is
totally geodesic.

(f) M is an integral surface of the distribution spanned by {E1 = ce1 + ae3, E2 = e2}, where a and c are
functions on the surface satisfying a2 − c2 = ε and E1a = k2εc, E1c = k2εa, E2a = −αc, E2c = −αa,
for some real constant k2. This case only occurs if α = γ and M is flat.

(g) M is an integral surface of the distribution spanned by {ce1 + ae3, e2}. Here, a and c are real constants
satisfying a2 = −γε/(α− γ), c2 = −αε/(α− γ). This case only occurs if β = α + γ and α 6= γ and
M is totally geodesic.

(h) M is an integral surface of the distribution spanned by {E1 = be1 − ae2, E2 = e3}, where a and b are
functions satisfying a2 + b2 = 1 and

E1a =
k3b

b2 − a2 , E1b = − k3a
b2 − a2 , E2a =

bα

b2 − a2 , E2b = − aα

b2 − a2 ,

for some real constant k3. This case only occurs if α = β and M is flat.
(i) M is an integral surface of the distribution spanned by {be1 − ae2, e3}, where a and b are constants

satisfying a2 = −β/(α− β), b2 = α/(α− β). This case only occurs if γ = α + β and α 6= β and M is
totally geodesic.

Theorem 60. Let M be a parallel surface in a non-symmetric three-dimensional Lorentzian Lie group G4.
Then one of the following statements holds.

(a) M is an integral surface of the distribution spanned by {e2, e3}. This case only occurs if α = 0. M is
parallel, flat and minimal but not totally geodesic.

(b) M is an integral surface of the distribution spanned by {e1, ce2 + be3}, where b and c are constants
satisfying b2− c2 = ε and βb2 + 2bc + (β− 2η)c2 = 0. M is totally geodesic and has constant Gaussian
curvature G = −ε(β− η).

Theorem 61. Let M be a parallel surface in a non-symmetric three-dimensional Lorentzian Lie group G5.
Then M is one of the surfaces listed below.
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(a) M is an integral surface of the distribution spanned by e1 and e2. M is flat but not totally geodesic.
(b) M is an integral surface of the distribution spanned by e2 and e3. This case only occurs if either β = γ = 0

or γ = δ = 0. In the first case, M is totally geodesic and has constant Gaussian curvature K = −δ2 ≤ 0.
In the second case, M is flat and minimal but not necessarily totally geodesic.

(c) M is an integral surface of the distribution spanned by e1 and e3. This case only occurs if either α = β = 0
or β = γ = 0. In the first case, M is flat and minimal but not necessarily totally geodesic. In the second
case, M is totally geodesic and has constant Gaussian curvature K = α2 ≥ 0.

(d) M is an integral surface of the distribution spanned by {E1 = e1, E2 = ce2 + be3}, where b and c are
functions satisfying b2 − c2 = ε and E1b = E1c = 0, E2b = c(k1 − cδ), E2c = b(k1 − cδ), for some
real constant k1. This case only occurs if α = β = 0 and M is flat.

(e) M is an integral surface of the distribution spanned by {E1 = ce1 + ae3, E2 = e2}, where a and c are
functions satisfying a2 − c2 = ε and E1a = −εc(a2cα− k2), E1c = −εa(a2cα− k2), E2a = E2c = 0,
for some real constant k2. This case only occurs if γ = δ = 0 and M is flat.

Theorem 62. Let M be a parallel surface in a three-dimensional Lorentzian Lie group G6. Then, one of the
following statements holds.

(a) M is an integral surface of the distribution spanned by e1 and e2. This case only occurs if either α = β = 0
or β = γ = 0. In the first case, M is parallel, flat and minimal but not necessarily totally geodesic. In the
second case, M is totally geodesic.

(b) M is an integral surface of the distribution spanned by e2 and e3. M is parallel and flat but not necessarily
totally geodesic.

(c) M is an integral surface of the distribution spanned by e1 and e3. This case only occurs if either β = γ = 0
or γ = δ = 0. In the first case, M is totally geodesic. In the second case, M is parallel, flat and minimal
but not necessarily totally geodesic.

(d) M is an integral surface of the distribution spanned by {E1 = ce1 + ae3, E2 = e2}, where a and c are
functions satisfying a2 − c2 = ε and E1a = c(k1 − δa), E1c = a(k1 − δa), E2a = E2c = 0 for some
real constant k1. This case only occurs if α = β = 0 and M is parallel and flat.

(e) M is an integral surface of the distribution spanned by {E1 = be1 − ae2, E2 = e3}, where a and b are
functions satisfying a2 + b2 = 1 and E1a = b(k2 + αa), E1b = −a(k2 + αb), E2a = E2c = 0 for some
real constant k2. This case only occurs if γ = δ = 0 and M is parallel and flat.

Theorem 63. Let M be a parallel surface in a non-symmetric three-dimensional Lorentzian Lie group G7.
Then M is one of surfaces listed below.

(a) M is an integral surface of the distribution spanned by {e2, e3}. This case only occurs if either β = γ = 0
or γ = δ = 0. In the first case, M is totally geodesic. In the second case, M is parallel and flat but not
necessarily totally geodesic.

(b) M is an integral surface of the distribution spanned by {E1 = e1, E2 = ce2 + be3}, where b and c are
functions satisfying b2 − c2 = ε and E1b = E1c = 0, E2b = c((b− c)δ− k1), E2c = b((b− c)δ− k1)

for some real constant k1. This case only occurs if α = β = 0. M is flat but not necessarily totally
geodesic.

(c) M is an integral surface of the distribution spanned by E1 = (be1 − e2)/
√

1 + b2 and E2 = (be1 +

b2e2 + (1 + b2)e3)/
√

1 + b2, where b is a function satisfying E1(b) = E2(b) and

E1

(
E1b√
1 + b2

+
b(α− δ)

1 + b2

)
+ 2

(
E1b√
1 + b2

+
b(α− δ)

1 + b2

)(
bE1b√
1 + b2

− δ√
1 + b2

)
= 0.

The surface is flat and parallel. Moreover, it is totally geodesic in the special case that E1b = E2b =

b(δ− α)/
√

1 + b2.
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24. Parallel Surfaces in Reducible Three-Spaces

24.1. Classification of Parallel Surfaces in Reducible Three-Spaces

Parallel submanifolds of the a Robertson–Walker space-time I × f Rn(c) have been treated in
Section 20. In Reference [131], G. Calvaruso and J. Van der Veken studied parallel surfaces in
3-dimensional reducible spaces M2 ×E1. More precisely, they proved the following results.

Theorem 64. Let M be a parallel surface in a reducible 3-dimensional Riemannian manifold M2×E1. Then one
of the following three cases holds:

(1) M is isometric to an open portion of a surface of type M2 × {t0} for some t0 ∈ R;
(2) M is isometric to an open portion of a surface of type γ× E1, where γ is a curve of constant geodesic

curvature in M;
(3) M2 ×E1 is flat and M is isometric to an open portion of a standard sphere S2 ⊂ E3.

The following is a consequence of Theorem 64.

Corollary 8. The pair (S2,E3) is the only proper parallel surface in a reducible Riemannian 3-space.

For parallel surfaces in a reducible 3-dimensional Lorentzian manifold, G. Calvaruso and J. Van
der Veken obtained the following.

Theorem 65. Let M be a parallel surface in a reducible 3-dimensional Lorentzian manifold M2
1 × E1

(respectively M2 ×E1
1). Then one of the following holds.

(1) M is isometric to an open portion of a surface of type M2
1 × {t0} (respectively M2 × {t0}) for some real

number t0.
(2) M is isometric to an open portion of a surface of type γ × E1 (respectively γ × E1

1) where γ is a
non-degenerate curve of constant geodesic curvature in M2

1 (respectively M2).
(3) The ambient space is flat and M is isometric to an open portion of one of the following surfaces: (a) a

hyperbolic plane H2; (b) an indefinite sphere S2
1; (c) the null scroll N2

1 .

As a consequence of Theorem 65, G. Calvaruso and J. Van der Veken obtained the following.

Corollary 9. The pairs (H2,E3
1), (S

2
1,E3

1) and (N2
1 ,E3

1) are the only proper parallel surfaces in a reducible
Lorentzian 3-space.

24.2. Parallel Surfaces in Walker Three-Manifolds

A particularly interesting class of pseudo-Riemannian manifolds are ones which admit a parallel
null vector field. The study of such metrics in the 3-dimensional Lorentzian setting was initiated by M.
Chaichi, E. García-Río and M. E. Vázquez-Abal in Reference [132]. W. Batat and S. J. Hall named such
manifolds as Walker manifolds in Reference [133].

Complete classification of parallel surfaces of an arbitrary reducible 3-manifold, both in
Riemannian and Lorentzian was obtained by G. Calvaruso and J. Van der Veken in Reference [131]. It
turns out that the Euclidean space E3 and the Minkowski space E3

1 are the only cases admitting parallel
surfaces which are non-trivial, in the sense that they do not reflect the reducibility of the space itself.
Since the reducibility of a pseudo-Riemannian manifold corresponds to the existence of a parallel
non-null vector field, it is natural to study parallel surfaces in a Lorentzian 3-manifold which admits a
parallel null vector field, that is, in a Walker 3-manifold. G. Calvaruso and J. Van der Veken provided
in Reference [134] a complete classification of parallel surfaces in Walker 3-manifolds.

In Reference [133], W. Batat and S. J. Hall proved that totally umbilical non-degenerate surfaces
in a Walker 3-manifold with metric g = εdx2 + f (x, y)dy2 + 2dtdy where ε = ±1 and satisfying
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fxx 6= 0 are either one of a totally geodesic family described by G. Calvaruso and J. Van der Veken in
Reference [134] or the ambient manifold must be locally conformally flat (here the surface can also be
totally geodesic).

25. Bianchi–Cartan–Vranceanu Spaces

25.1. Basics on Bianchi–Cartan–Vranceanu Spaces

The simply-connected homogeneous 3-manifolds are classified according to the dimension
of their isometry group which is equal to 3, 4 or 6. If it is 6, one obtains the real space forms.
The Bianchi–Cartan–Vranceanu spaces are homogeneous Riemannian 3-manifolds with isometry
group of dimension 4 or 6. Such spaces, denoted by M̃3(λ, µ), are given by a two-parameter family of
Riemannian 3-manifolds (M, gλ,µ) where the underlying 3-manifolds M̃3 are R3 if µ ≥ 0; and

M̃3 =

{
(x, y, z) ∈ R3 : x2 + y2 < − 1

µ

}
if µ < 0.

The metrics g̃λ,µ on M̃3 are given by

gλ,µ =
dx2 + dy2

{1 + µ(x2 + y2)}2 +

(
dz +

λ(ydx− xdy)
2{1 + µ(x2 + y2)}

)2

. (4)

The 2-parameter family g̃λ,µ is called the Bianchi–Cartan–Vranceanu metrics. The metrics above are
defined over the whole 3-space R3 for µ > 0 and over the region x2 + y2 < −1/µ for µ < 0.

Consider the following Riemannian surface with constant Gaussian curvature 4µ:

M̃2(µ) =

({
(x, y) ∈ R2 : 1 + µ(x2 + y2) > 0

}
,

dx2 + dy2

(1 + µ(x2 + y2))2

)
.

Then the mapping
π : M̃3(λ, µ)→ M̃2(µ) : (x, y, z) 7→ (x, y)

is a Riemannian submersion, referred to as the Hopf-fibration. For µ = 4λ2 6= 0, this mapping coincides
with the “classical” Hopf-fibration π : S3 (µ)→ S2(4µ).

In the following, by a Hopf-cylinder we mean the inverse image of a curve in M̃2(µ) under π. By a
leaf of the Hopf-fibration, we mean a surface which is everywhere orthogonal to the fibres.

The family of Bianchi–Cartan–Vranceanu spaces M̃3(λ, µ) includes six of the eight Thurston’s
3-dimensional geometries except Sol3 and the hyperbolic space H3. The family of the Riemannian
metrics given by (4) includes all 3-dimensional homogeneous metrics whose group of isometries has
dimension 4 or 6, except for those with negative constant curvature.

For two given real numbers λ, µ, the Bianchi–Cartan–Vranceanu space M̃3(λ, µ) is the following
3-spaces (cf., e,g., References [135–137]).

(1) If λ = µ = 0, it is the Euclidean 3-space.
(2) If λ = 0, µ 6= 0, it is the product of real line and a surface of constant curvature 4λ.
(3) If λ 6= 0, λ2 = 4µ, it is a space of positive constant curvature.
(4) If λ 6= 0, µ > 0, it is SU(2) \ {∞}.
(5) If λ 6= 0, µ < 0, it is S̃L2(R) with a left-invariant metric.
(6) If λ 6= 0, µ = 0, it is the Heisenberg group Nil3 with a left-invariant metric.

25.2. B-Scrolls

For every γ in the unit 3-sphere S3(1), one can define the Frenet frame {T, N, B} provided the
geodesic curvature κ does not vanish. The B-scroll of a curve γ in the unit 3-sphere S3(1) is the
surface described by moving the geodesic through γ(s) in the direction of spherical binormal B(s)
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along γ. A curve in S3(1) of constant geodesic curvature and constant torsion ±1 is called a twisted
spherical spiral. The B-scroll of a twisted spherical spiral has parallel second fundamental form (cf.,
Reference [138]), so it is a parallel surface in S3(1).

If γ is a closed curve in S2( 1
2 ), then the Hopf cylinder π−1(γ) is called a Hopf torus. A B-scroll

of a twisted spherical spiral is a Hopf cylinder (torus) over a curve with constant curvature in S2( 1
2 )

(cf. Reference [125]).

25.3. Parallel Surfaces in Bianchi–Cartan–Vranceanu Spaces

If 4µ = λ2, then M̃3(λ, µ) is a real space form whose parallel surfaces are already known.
In the next theorem, M. Belkhelfa, F. Dillen and J. Inoguchi [125] classified parallel surfaces in
Bianchi–Cartan–Vranceanu spaces M̃3(λ, µ) with 4µ 6= λ2.

Theorem 66. Let M̃3(λ, µ) be a Bianchi–Cartan–Vranceanu space with 4µ 6= λ2.

(1) If λ 6= 0, then the only parallel surfaces in M̃3(λ, µ) are Hopf cylinders over curves with constant
curvature in M̃2(µ).

(2) If λ = 0, then the only parallel surfaces in M̃3(λ, µ) with µ 6= 0 are totally geodesic leaves and Hopf
cylinders over circles with constant geodesic curvature in M̃2(µ).

26. Parallel Surfaces in Homogeneous Three-Spaces

26.1. Homogeneous Three-Spaces

A Riemannian manifold M is said to be homogeneous if for any two points p and q of M there exists
an isometry of M which carries p into q. It is clear that these spaces are a natural generalization of real
space forms. A parallel submanifold is called proper parallel it is non-totally geodesic. In dimension 3,
the classification of these spaces is well known as follows.

Theorem 67. Let M3 be a simply connected homogeneous Riemannian manifold with isometry group I(M3),
that is, I(M3) acts transitively on M3. Then dim I(M3) ∈ {3, 4, 6} and moreover:

(i) if dim I(M3) = 6, then M3 is a real space form of constant sectional curvature c, that is, Euclidean space
E3, hyperbolic space H3(c) or a three-sphere S3(c),

(ii) if dim I(M3) = 4, then M3 is a Bianchi–Cartan–Vranceanu space (different from E3 and S3(c)), that
is, a Riemannian product H2(c) × R or S2(c) × R or one of following Lie groups, equipped with a
left-invariant metric yielding a four-dimensional isometry group: the special unitary group SU(2), the
universal covering of the special linear group S̃L(2,R) or the Heisenberg group Nil3,

(iii) if dim I(M3) = 3, then M3 is a general three-dimensional Lie group with left-invariant metric.

26.2. Classification of Parallel Surfaces in Homogeneous Three-Spaces

In References [123,139], J. Inoguchi and J. Van der Veken classified parallel surfaces in
homogeneous 3-spaces in the next two theorems.

For totally geodesic surfaces in a 3-dimensional homogeneous Riemannian manifold, we have:

Theorem 68. Let (M3, g) be a 3-dimensional homogeneous Riemannian manifold. Then M3 admits totally
geodesic surfaces if and only if M3 is locally isometric to one of thefollowing spaces:

(1) a real space form S3,E3 or H3,
(2) a Riemannian product space S2 ×R or H2 ×R,
(3) SL(2,R) with a left-invariant metric determined by the condition c2 = c1 + c3 or equivalently µ2 = 0,
(4) the Minkowski motion group E(1, 1) with Riemannian 4-symmetric metric, including the model space

Sol3,
(5) a non-unimodular Lie group with structure constants (ξ, η) satisfying ξ /∈ {0, 1} and η = 0.
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For proper parallel surfaces in a 3-dimensional homogeneous Riemannian manifold, J. Inoguchi
and J. Van der Veken [123] proved the following.

Theorem 69. Let (M3, g) be a 3-dimensional homogeneous Riemannian manifold. Then M3 admits proper
parallel surfaces if and only if M3 is locally isometric to one of the following spaces:

(1) a real space form S3,E3 or H3,
(2) a Bianchi–Cartan–Vranceanu space,
(3) the Minkowski motion group E(1, 1) with any left-invariant metric, including the model space Sol3,
(4) the Euclidean motion group E(2) with any left-invariant metric,
(5) a non-unimodular Lie group with structure constants (ξ, η) satisfying ξ /∈ {0, 1}.

27. Parallel Surfaces in Symmetric Lorentzian Three-Spaces

Symmetric spaces are one of the most important topics in Riemannian geometry. In the Lorentzian
setting, their study goes back to the work of M. Cahen and N. Wallach [140] in the 1970s.

27.1. Symmetric Lorentzian Three-Spaces

It is well known that the curvature of a 3-dimensional pseudo-Riemannian manifold (N, g) is
completely determined by the Ricci tensor, denoted by Ric, defined for any point p ∈ N and any
X, Y ∈ TpN by

Ric(X, Y)p =
3

∑
i=1

εig(R(X, ei)Y, ei), (5)

where R is the Riemann curvature tensor, {e1, e2, e3} is a pseudo-orthonormal basis of TpN and
εi = gp(ei, ei) = ±1 for all i. Throughout this section, if not stated otherwise, we shall assume that e3 is
time-like, that is, ε1 = ε2 = −ε3 = 1.

Due to the symmetries of the curvature tensor, the Ricci tensor Ric is symmetric [113]. Thus,
the Ricci operator Q, defined by g(QX, Y) = Ric(X, Y), is self-adjoint. In the Riemannian case, there
always exists an orthonormal basis diagonalizing Q but in the Lorentzian case four different cases can
occur [113] and there exists a pseudo-orthonormal basis {e1, e2, e3}, with e3 time-like, such that Q takes
one of the following canonical forms, called Segre types:

Segre type {11, 1} :

 a 0 0
0 b 0
0 0 c

 , Segre type {1zz̄} :

 a 0 0
0 b c
0 −c b

 , c 6= 0,

Segre type {21} :

 a 0 0
0 b η

0 −η b− 2η

 , η = ±1, Segre type {3} :

 b a −a
a b 0
a 0 b

 , a 6= 0.

When (N, g) is homogeneous, the Ricci operator Q has the same Segre type at any point p ∈ N
and has constant eigenvalues.

G. Calvaruso studied homogeneous Lorentzian 3-manifolds (N3, g) in References [128,129]. For
symmetric ones, he proved that 3-dimensional symmetric spaces can only occur for some Segre types
of the Ricci operator Q. More precisely, he proved the following:

(I) For Segre type {11, 1}, (N, g) is symmetric if and only if

(i) a = b = c. Then (N, g) is an Einstein manifold and hence it has constant sectional curvature.
If N is connected and simply connected, then (N, g) is isometric to one of the Lorentzian
space forms: either S3

1, R3
1 or H3

1 .
(ii) a = b 6= c. Then N is reducible as a direct product M2 × R1, where M2 is a Riemannian

surface of constant curvature. If N is connected and simply connected, (N, g) is then isometric
to either S2 ×R or H2 ×R.
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(iii) a 6= b = c. Then N is reducible as a direct product R × M2
1, where M2

1 is a Lorentzian
surface of constant sectional curvature. When N is connected and simply connected, (N, g)
is isometric to either R× S2

1 or R× H2
1 .

(II) For Segre type {21}, (N, g) is symmetric if and only if a− b = η and, with respect to a suitable
pseudo-orthonormal frame field {e1, e2, e3}, the Levi Civita connection of (N, g) is completely
described by

∇e1 e1 = Ae2 − Ae3, ∇e2 e1 = Be2 − Be3, ∇e3 e1 = Ce2 − Ce3,
∇e1 e2 = −Ae1, ∇e2 e2 = −Be1, ∇e3 e2 = −Ce1,
∇e1 e3 = −Ae1, ∇e2 e3 = −Be1, ∇e3 e3 = −Ce1,

(6)

where A, B, C are smooth functions. Put u = e2 − e3. Then ∇ei u = 0 for all i, that is, u is a parallel
null vector field. Three-dimensional symmetric spaces admitting a parallel null vector field were
described in Reference [132] in terms of local coordinates. In fact, a three-dimensional locally
symmetric Lorentzian manifold (N, g), having a parallel null vector field, admits local coordinates
(t, x, y) such that, with respect to the local frame field { ∂

∂t , ∂
∂x , ∂

∂y}, the Lorentzian metric g and the
Ricci operator are respectively given by

g =

 0 0 1
0 ε 0
1 0 f

 , Q =

 0 0 −εα

0 0 0
0 0 0

 , (7)

where ε = ±1, u = ∂
∂t and

f (x, y) = x2α + xβ(y) + ξ(y), (8)

for a constant α ∈ R and functions β, ξ (cf. Reference [132]). It is easy to build a (local)
pseudo-orthonormal frame field from { ∂

∂t , ∂
∂x , ∂

∂y} and to check that, apart from the flat case
α f 6= 0, the Ricci operator Q described by (7) is of degenerate Segre type {21}, with λ = 0 as the
only Ricci eigenvalue, of multiplicity three, associated to a 2-dimensional eigenspace.

(III) For either Segre type {1zz̄} or Segre type {3}, (N, g) is never symmetric.

Therefore, we have the following classification result from Reference [129].

Theorem 70. A connected, simply connected three-dimensional symmetric Lorentzian space (N, g) is either

(i) a Lorentzian space form S3
1, R3

1 or H3
1 or

(ii) a direct product R× S2
1, R× H2

1 , S2 ×R1
1 or H2 ×R1

1 or

(iii) a space with a Lorentzian metric g locally described by (7)–(8).

27.2. Classification of Parallel Surfaces in Symmetric Lorentzian Three-Spaces

Three-dimensional Lorentzian manifolds admitting a parallel null vector field were first studied
in Reference [132], in which the attention was focused on local properties. G. Calvaruso and J. Van der
Veken described in Reference [141] a global model carrying a metric described by (7) and (8) as follows.

First they showed that the curvature components with respect to the pseudo-orthonormal frame
field {e1, e2, e3} for which (6) holds and then apply (5) to obtain its Ricci components. Since the Ricci
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operator must be of degenerate Segre type {21} (that is, with a = b− η), standard calculations lead to
the following system of partial differential equations:

− e1(B) + e2(A) + e1(C)− e3(A)− (B− C)2 = b− η,

− e1(B) + e2(A)− A2 − B2 + BC = b,

e1(C)− e3(A) + A2 − C2 + BC = b− 2η,

e2(C)− e3(B) + A(B− C) = 0,

−e1(B) + e2(A)− A2 − B2 + BC = η.

(9)

System (9) implies a = b− η = 0 (which also follows from (7) and (8)) and the remaining equations
reduce to 

e1(B)− e2(A) = −A2 − B2 + BC− η,

e1(C)− e3(A) = −A2 + C2 − BC− η,

e2(C)− e3(B) = A(C− B).

(10)

Then they proved that, for any smooth function ω, with respect to the following new pseudo-
orthonormal frame field

e′1 = e1 + ωe2 −ωe3, e′2 = −ωe1 + (1− ω2

2
)e2 +

ω2

2
e3, e′3 = −ωe1 −

ω2

2
e2 + (1 +

ω2

2
)e3, (11)

the Ricci operator still keeps the same components than with respect to {e1, e2, e3}. It follows from (6)
and (11) that, with respect to {e′1, e′2, e′3}, the Levi Civita connection satisfies

∇e′1
e′1 = A′e′2 − A′e′3, ∇e′2

e′1 = B′e′2 − B′e′3, ∇e′3
e′1 = C′e′2 − C′e′3,

∇e′1
e′2 = −A′e′1, ∇e′2

e′2 = −B′e′1, ∇e′3
e′2 = −C′e′1,

∇e′1
e′3 = −A′e′1, ∇e′2

e′3 = −B′e′1, ∇e′3
e′3 = −C′e′1,

where
A′ = A + e1ω,

B′ = Aω + ωe1ω− (1− ω2

2 )B− (1− ω2

2 )e2ω− ω2

2 C− ω2

2 e3ω,

C′ = Aω + ωe1ω + ω2

2 B + ω2

2 e2ω− (1 + ω2

2 )C− (1 + ω2

2 )e3ω.

Thus, by choosing ω to be a solution of the system of differential equations

A + e1ω = k, de2ω− e3ω = C− B,

where k is a real constant, we can always specify the pseudo-orthonormal frame field {e1, e2, e3} in
such a way that A = k and B = C. In this case, system of Equation (10) reduces to

e1B = −k2 − η, e2B− e3B = 0, (12)

and the Lie brackets [ei, ej] are easily determined as follows:

[e1, e2] = [e1, e3] = −ke1 − B(e2 − e3), [e2, e3] = 0. (13)

With the notations given in Section 27.1, G. Calvaruso and J. Van der Veken proved the following
theorem (see Reference [141]).

Theorem 71. Let (N, g) be a connected, simply connected 3-dimensional Lorentzian manifold. Then the
necessary and sufficient condition for (N, g) to be symmetric and to have a Ricci operator of (degenerate) Segre
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type {21}, is the existence of a global pseudo-orthonormal frame field {e1, e2, e3}, with e3 time-like, a real
constant k and a smooth function B, satisfying (12) and (13).

The following classification of parallel surfaces in a symmetric Lorentzian 3-space was also
obtained by G. Calvaruso and J. Van der Veken in Reference [141].

Theorem 72. Let M be a parallel surface in a symmetric Lorentzian three-space (Ñ, g̃) carrying a parallel null
vector field, described by (12) and (13). Then M is an integral surface of the distribution spanned by {e2, e3},
on which B is constant. Moreover, M is always flat and M is totally geodesic if and only if B = 0 on it. If B is
non-constant on all integral surfaces of the distribution spanned by {e2, e3}, then (Ñ, g̃) does not admit any
parallel surfaces.

Remark 10. For pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues, see
Reference [142].

28. Three Natural Extensions of Parallel Submanifolds

28.1. Submanifolds with Parallel Mean Curvature Vector

One natural extension of the class of parallel submanifolds (∇̄h = 0) is the class of submanifolds
with parallel mean curvature vector, that is, ∇̄(Tr h) = 0 or equivalently DH = 0. Trivially, both
minimal submanifolds and parallel submanifolds have parallel mean curvature vector automatically.
Further, a hypersurface of any Riemannian manifold has parallel mean curvature vector if and only if
it has constant mean curvature.

Euclidean hypersurfaces with constant mean curvature are important since they are critical points
of some natural functionals. In fact, a hypersurface of constant mean curvature in a Euclidean space is
a solution to a variational problem. With respect to any volume-preserving variation of a domain D in
a Euclidean space the mean curvature of M = ∂D is constant if and only if the volume of M is critical,
where ∂D is the boundary of D.

The condition of submanifolds to have parallel mean curvature vector in higher dimensional
Euclidean spaces is very interesting as well since it is equivalent to a critical points of being variational
problem; namely, their Gauss maps are harmonic maps (see Reference [143]).

During the last 50 years, there are many research done on submanifolds with parallel mean
curvature vector. Among others, for submanifolds with parallel mean curvature vector in real space
forms see References [144–151]; for surfaces with parallel mean curvature vector in complex space
forms see References [152–157]; for surfaces with parallel mean curvature vector in indefinite space
forms see References [158–163]; for surfaces with parallel mean curvature vector in homogeneous
spaces or symmetric spaces see References [164,165]; for surfaces with parallel mean curvature vector
in Sasakian space forms see Reference [166]; and for surfaces with parallel mean curvature vector in
reducible manifolds see References [167–170]. For general references of submanifolds with parallel
mean curvature vector see Reference [171].

28.2. Higher Order Parallel Submanifolds

Higher order parallel submanifolds, that is, submanifolds that satisfy ∇̄kh = 0 for some positive
integer k, were first studied by D. Del-Pezzo in Reference [172] and then investigated by several authors
after Del-Pezzo (see J. A. Schouten and D. J. Struik’s 1938 book [173] for details). This research topic
was renewed in late 1980s by F. Dillen, V. Mirzoyan and Ü. Lumiste. Since, this interesting research
topic has been studied by several differential geometers.

Among others, for higher order parallel submanifolds in real space forms see
References [138,174–179]; for higher order parallel surfaces in three-dimensional homogeneous
spaces see Reference [139]; for higher order parallel surfaces in Bianchi–Cartan–Vranceanu spaces see
Reference [136]; for higher order parallel surfaces in the Heisenberg group see Reference [180]; and for
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higher order parallel submanifolds of a complex space form see Reference [181]. For some further
results on higher order parallel submanifolds see Ü Lumiste’s 2000 survey article [2].

28.3. Semi-Parallel Submanifolds

The notion of semi-parallel submanifolds was introduced in 1985 by J. Deprez in Reference [182].
A submanifold M of a Riemannian manifold N is called semi-parallel if its second fundamental form
h satisfies

R̃(X, Y) · h = (∇̄X∇̄Y − ∇̄Y∇̄X − ∇̄[X,Y])h = 0,

where R̃ is the Riemann curvature tensor of N. Obviously, parallel submanifolds are semi-parallel.
Hence, semi-parallel submanifolds are natural extensions of parallel submanifolds as well.

In Reference [182], J. Deprez applying the work of E. Backes [183] on Euclidean Jordan triple
systems to prove that totally geodesic surfaces are the only minimal semi-parallel surfaces in a
Euclidean space. Furthermore, he proved in Reference [184] that every semi-parallel submanifolds
of a Euclidean space is intrinsically a semi-symmetric Riemannian manifold. By a semi-symmetric
Riemannian manifold (M, g) we mean that the Riemann curvature curvature tensor of (M, g) satisfies
the condition R · R = 0, where the first tensor R acts on the second one as a derivation. In
Reference [182], Deprez also classified semi-parallel surfaces in a Euclidean space. Since then many
articles were devoted to the study of semi-parallel submanifolds.

Among others, for semi-parallel submanifolds in real space forms see References [184–193];
for semi-parallel submanifolds of indefinite space forms see References [194,195]; for semi-parallel
submanifolds in Kaehler manifolds see [196–199]; for semi-parallel submanifolds in reducible spaces
see Reference [117]; for manifold with semi-parallel geodesic spheres or semi-parallel tubes see
Reference [200]; for semi-parallel submanifolds in contact metric manifolds see References [201,202];
and for semi-parallel submanifolds in other Riemannian manifolds see References [203–205]. For some
further results on semi-parallel submanifolds see Reference [2].
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