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Abstract: In this article, two new modified variational iteration algorithms are investigated for the
numerical solution of coupled Burgers’ equations. These modifications are made with the help of
auxiliary parameters to speed up the convergence rate of the series solutions. Three numerical test
problems are given to judge the behavior of the modified algorithms, and error norms are used to
evaluate the accuracy of the method. Numerical simulations are carried out for different values of
parameters. The results are also compared with the existing methods in the literature.

Keywords: modified variational iteration algorithm-I; modified variational iteration algorithm-II;
coupled Burgers equation; MVIA-II

1. Introduction

In recent years, coupled partial differential equations have been employed in various fields
of engineering and applied sciences. Coupled Burgers’ equations are coupled partial differential
equations (PDEs), and describe the approximation theory of flow through a shock wave traveling in a
viscous fluid.

In this paper, the following type of coupled Burger equations will be investigated: ∂u
∂t − α1

∂2u
∂x2 + β1,1

∂u
∂x + β1,2

∂uv
∂x = 0, t ∈ (0, T], x ∈[a, b],

∂v
∂t − α2

∂2v
∂x2 + β2,2

∂v
∂x + β2,1

∂uv
∂x = 0, t ∈ (0, T], x ∈[a, b],

(1)

where α1 and α2 are positive and non-zero viscosity parameters, β1,1, β1,2, β2,2 and β2,1 are constants
depend on the Stokes velocity. The initial and boundary conditions for coupled Burgers’ Equation (1)
are the following: {

u(x, 0) = ∅1(x), x ∈ [a, b],
v(x, 0) = ∅2(x), x ∈ [a, b],

(2)

{
u(a, t) = ∅1(t), u(b, t) = ∅2(t) x ∈ [a, b],
v(a, t) = ∅3(t), v(b, t) = ∅4(t) x ∈ [a, b],

(3)

Many authors have solved different types of coupled Burgers′ equations by different techniques
such as the Fourier pseudospectral method [1] applied by Rashid and Ismail for one-dimensional
coupled Burgers equations. A mesh-free interpolation method was employed by Islam et al. [2], where
the radial basis function (RBF) collocation method has been formulated for the numerical treatment of
coupled Burger equations and other nonlinear PDEs. Khater et al. [3] used the Chebyshev spectral
collocation method, which has been developed using Chebyshev polynomials, and the Runge-Kutta
4th order method (RK4) method. Kya [4] used the decomposition method for the solution of a viscous
coupled Burger equation, and obtained solutions in the form of a convergent power series. Mittal and
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Arora [5] proposed a scheme known as the Lai cubic B-spline collocation scheme for the solution of
coupled viscous Burger equations, where the authors used a crank Nicholson scheme and cubic B-spline
functions for time integration and space integration, respectively. Lai and Ma [6] proposed a new
lattice Boltzmann model for the solution of coupled Burger equations, after selecting the distribution
functions, Chapman–Enskog expansion was employed for the solution of coupled Burger equations.
The Chebyshev–Legendre pseudospectral method [7] has been utilized by Rashid et al. for coupled
viscous Burgers′ (VB) equations, where the leapfrog scheme and Chebyshev–Legendre Pseudo-Spectral
method (CLPS) method were used for the time direction and space direction, respectively. Kumar
and Pandit [8] used a composite numerical scheme for the numerical evaluation of coupled Burger
equations, where the scheme was developed based on Haar wavelets and finite difference. Mohammadi
and Mokhtari [9] used a reproducing Kernal method for an analytical solution in the form series of
systems of Burger equations. At last, in 2019, Bak et al. [10] developed a new approach named a
semi-Lagrangian approach for the numerical solution of coupled Burger equations. We compare our
results with those of [10], and show the applicability of our proposed method to handle such problems
as those that arise in applied science and engineering.

This paper aims to solve three types of coupled Burgers′ equations by employing variational
iteration algorithm-II and one of the examples to be solved by modified variational iteration algorithm-I.
The organization of the rest of the paper is as follows; in Section 2, we elucidate the variational iteration
algorithm-II, in the next Section 3, the semi-numerical method is applied to three test problems, and a
comparison is made with some other methods; lastly, some conclusions are drawn in the last Section 4.

2. Modified Variational Iteration Algorithm-II

Consider the nonlinear diffusion equation:

L[w(x, t)] + N[w(x, t)] = c(x, t), (4)

where the terms L[w(x, t)] and N[w(x, t)] are linear and nonlinear terms in that order, while c(x, t)
is the source term. For a given w0(x, t), the approximate solution wn+1(x, t) of Equation (4) can be
obtained as below:

wn+1(x, t) = wn(x, t) +
∫ t

0
λ(s)

[
L
{
wn(x, s)

}
+ ˜N

{
wn(x, s)

}
− c(x, s)

]
ds, (5)

In Equation (5), λ is a parameter, which is known as the Lagrange multiplier [11]. This Lagrange
multiplier is obtained by variational theory, where w̃n is a term being restricted, which in turn gives
δw̃n = 0 and gives the following Lagrange multipliers:

λ = −1 f or m = 1, λ = s− t f or m = 2,

and in general, the Lagrange multiplier for m ≥ 1:

λ =
(−1)m(s− t)m−1

(m− 1)!
. (6)

Putting the value of the Lagrange multiplier from Equation (6) in the correctional function shown
in Equation (5), we get the following iterative formula:

wn+1(x, t) = wn(x, t)

+
∫ t

0
(−1)m(s−t)m−1

(m−1)! [L
{
wn(x, s)

}
+ N

{
wn(x, s)

}
− c(x, s)]ds,

(7)

This is known as variational iteration algorithm-I [12–14], which is an advance improvement of
the common Lagrange multiplier method [11]. These days, this technique [15–23] has been set up for
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offering a solution for a more extensive scope of problems, developing in several fields of pure and
applied sciences. PDEs extensively arise in various physical applications such as propagation and
the scattering of waves, magnetohydrodynamic flow through pipes, computational fluid dynamics,
magnetic resonance imaging, the phenomena of turbulence and supersonic flow, the flow of a shock
wave traveling in a viscous fluid, acoustic transmission, traffic and aerofoil flow theory, and the
proposed technique has the ability to investigate these types problems effectively.

Inserting an auxiliary parameter in the variational iteration method and presenting a new
modification of it, as below:

wn+1(x, t) = wn(x, t)

+h
∫ t

0
(−1)m(s−t)m−1

(m−1)! [L
{
wn(x, s)

}
+ N

{
wn(x, s)

}
− c(x, s)]ds,

(8)

we call it modified variational iteration algorithm-I. We will apply this method for a test problem for
verifying its accuracy and compactness. According to He et al. [21], we can construct a more concise
iteration formulation, which can be written as:

wn+1(x, t) = w0(x, t) +
∫ t

0

(−1)m(s− t)m−1

(m− 1)!
[N

{
wn(x, s)

}
− c(x, s)]ds, (9)

Equation (9) is called variational iteration algorithm-II; we further modify it by coupling an
auxiliary term, and named it modified variational iteration algorithm-II, which can be written as:

wn+1(x, t) = w0(x, t) + h
∫ t

0

(−1)m(s− t)m−1

(m− 1)!
[N

{
wn(x, s)

}
− c(x, s)]ds, (10)

The iterative algorithm does not contain unsure constants aside from an auxiliary parameter h,
which is utilized to control the convergence of the obtained solution ideally by limiting the norm
2 of the residual error over the space of the given problem. The ideal decision of this h improves
the precision and proficiency of the algorithm. In the wake of presenting h, Equation (10) takes the
structure:

w0(ζ) is a proper initial approximation,

w1(ζ, h) = w0(ζ) + h
∫ ζ

0 λ(s, ζ)[N
{
w0(s)

}
− c(s)]ds,

wn+1(ζ, h) = w0(ζ, h) + h
∫ ζ

0 λ(s, ζ)[N
{
wn(s, h)

}
− c(s, h)]ds,

n = 1, 2, 3, . . .

(11)

Now, we may start the procedures with the selective function w0(x, t) and use the above iteration
structures to get the approximate solutions. The iteration structure shown in Equation (11) will give
several approximations of w(x, t), and the exact solutions are obtained at the limit of the resulting
successive approximations, i.e.:

w(x, t) = Lim
n→∞

wn(x, t). (12)

This algorithm is named MVIA-II. We utilize this modified algorithm for the solution of coupled
nonlinear partial differential equations.

3. Numerical Assessments

In this section, we discuss three test problems of different types of coupled Burgers’ equations to
check the accuracy of the proposed method. We assess the accuracy of the method by taking different
values of parameters, and the obtained results are very encouraging and significant, while the error
norms are calculated and compared with the error of the other methods available in the literature.
For numerical computation, Maple 16 and MATLAB R2015a are used on a Dell core i3, 1.90-GHz PC
with 4 GB of RAM.
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3.1. Test Problem 1

Consider the coupled Burger′s Equation (1) with α1 = α2 = 1, β1,1 = β2,2 = −2 and x ∈ [−10, 10].
The equation becomes: ∂u

∂t −
∂2u
∂x2 − 2∂u

∂x + β1,2
∂uv
∂x = 0, t > 0, x ∈ [−10, 10],

∂v
∂t −

∂2v
∂x2 − 2∂v

∂x + β2,1
∂uv
∂x = 0, t > 0, x ∈ [−10, 10],

(13)

The exact solution was given by [10]: u(x, t) = k(1− tanh(B(x− 2Bt))),

v(x, t) = k
(

2β2,1−1
2β1,2−1 − tanh(B(x− 2Bt))

)
,

(14)

where β1,2 and β2,1 are nonzero arbitrary constants, k = 0.05 and B = k
(

4β2,1−1
2(2β1,2−1)

)
. In this example,

we investigate the proficiency and accuracy of the proposed algorithm by changing the values of
arbitrary constants β1,2 and β2,1, whose different magnitudes from each other produce the changed
performance of u and v. The approximate numerical solutions are calculated with different parameters
(β1,2 , β2,1) = (0.1, 0.3) by varying the t from t = 0.5 to 10.0.

Constructing the correction function for the Equation (13) as:

un+1(x, t, h1) = un(x, t, h1)

+h1
∫ t

0 λ1(ζ)

{
∂un(x, ζ,h1)

∂ζ −
˜∂2un(x, ζ,h1)

∂x2 − 2
˜∂un(x, ζ,h1)
∂x

+β1,2
˜∂un(x, ζ,h1)vn(x, ζ,h1)
∂x

}
dζ.

(15)

vn+1(x, t, h) = vn(x, t, h)

+h
∫ t

0 λ2(ζ)

{
∂vn(x, ζ,h)

∂ζ −
˜∂2vn(x, ζ,h)
∂x2 − 2

˜∂vn(x, ζ,h)
∂x

+β2,1
˜∂un(x, ζ,h)vn(x, ζ,h)
∂x

}
dζ.

(16)

The values of λ1(ζ) and λ2(ζ) may be obtained most positively by the variational principle [24,25].
We obtain the estimation of λ1(ζ) and λ2(ζ), which is λ1(ζ) = λ2(ζ) = −1.

First, we use the modified variational iteration algorithm-I; then, we will use the modified
algorithm-II for the solution of this test problem. Utilizing the estimation of λ1(ζ) and λ2(ζ) in
Equations (15) and (16) results in the underneath iterative structure:

un+1(x, t, h) = un(x, t, h1) − h
∫ t

0

{
∂un(x, ζ,h)

∂ζ −
∂2un(x, ζ,h)

∂x2 − 2∂un(x, ζ,h)
∂x + β1,2

∂un(x, ζ,h)vn(x, ζ,h)
∂x

}
dζ. (17)

vn+1(x, t, h) = vn(x, t, h) − h
∫ t

0

{
∂un(x, ζ,h1)

∂ζ −
∂2vn(x, ζ,h)

∂x2 − 2∂vn(x, ζ,h)
∂x + β2,1

∂un(x, ζ,h)vn(x, ζ,h)
∂x

}
dζ. (18)

Introducing with a proper initial guess:

u(x, 0) = k(1− tanh(B(x))),

v(x, 0) = k
(

2?22,1 − 1
2?21,2 − 1

− tanh(B(x))
)
,
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one can get the beneath different approximations by utilizing the recurrence relations shown in
Equations (17) and (18) and β1,2 = 0.1, β2,1 = 0.3:

u1(x, t, h) = (11 ∗h ∗ t ∗ exp((11 ∗ x)/450) ∗ (299 ∗ exp((11 ∗ x)/450) + 475))/(36,450,000
∗(exp((11 ∗ x)/450) + 1)̂3) − tanh((11 ∗ x)/900)/45 + 1/20,

v1(x, t, h) = (11 ∗h ∗ t ∗ exp((11 ∗ x)/450) ∗ (47 ∗ exp((11 ∗ x)/450) + 127))/(12,150,000
∗(exp((11 ∗ x)/450) + 1)̂3) − tanh((11 ∗ x)/900)/45 + 1/40,

u2(x, t, h) = (11 ∗h ∗ t ∗ exp((11 ∗ x)/450) ∗ (299 ∗ exp((11 ∗ x)/450) + 475))/(36,450,000
∗(exp((11 ∗ x)/450) + 1)̂3) − h ∗ ((11 ∗ t ∗ exp((11 ∗ x)/225) ∗ (589,808,450
∗ĥ2 ∗ t̂2 + 611,112,954,375 ∗ h ∗ t + 1,082,072,925,000,000 ∗ h
− 1, 082, 072, 925, 000, 000))/(17,936,133,750,000,000,000 ∗ (exp((11 ∗ x)/450) + 1)̂7)
− (11 ∗ t ∗ exp((11 ∗ x)/450) ∗ (147,130,425,000,000 ∗ exp((11 ∗ x)/90)
− 233,735,625,000,000 ∗ h + 1,817,725,050,000,000 ∗ exp((11 ∗ x)/150)
+ 1,990,935,450,000,000 ∗ exp((11 ∗ x)/225) + 822,257,325,000,000 ∗ exp((22
∗x)/225) − 147,130,425,000,000 ∗ h ∗ exp((11 ∗ x)/90) − 1,817,725,050,000,000 ∗ h
∗exp((11 ∗ x)/150) − 1,990,935,450,000,000 ∗ h ∗ exp((11 ∗ x)/225)
− 822,257,325,000,000 ∗ h ∗ exp((22 ∗ x)/225) − 372,851,758,125 ∗ h ∗ t
+ 643,660,226 ∗ ĥ2 ∗ t̂2 ∗ exp((11 ∗ x)/150) + 82,850,878 ∗ ĥ2 ∗ t̂2 ∗ exp((11
∗x)/225) + 226,552,898 ∗ ĥ2 ∗ t̂2 ∗ exp((22 ∗ x)/225) + 146,715,958,125 ∗ h ∗ t
∗exp((11 ∗ x)/90) + 1,368,940,196,250 ∗ h ∗ t ∗ exp((11 ∗ x)/150)
+ 440,146,203,750 ∗ h ∗ t ∗ exp((11 ∗ x)/225) + 837,248,754,375 ∗ h ∗ t ∗ exp((22
∗x)/225) + 233,735,625,000,000))/(17,936,133,750,000,000,000 ∗ (exp((11 ∗ x)/450)
+ 1)̂7)) − tanh((11 ∗ x)/900)/45 + 1/20,

v2(x, t, h) = (11 ∗h ∗ t ∗ exp((11 ∗ x)/450) ∗ (47 ∗ exp((11 ∗ x)/450) + 127))/(12,150,000
∗(exp((11 ∗ x)/450) + 1)̂3) − h ∗ ((11 ∗ t ∗ exp((11 ∗ x)/225) ∗ (53,630,830 ∗ ĥ2
∗t̂2 + 22,989,470,625 ∗ h ∗ t + 91,033,875,000,000 ∗ h
− 91,033,875,000,000))/(1,992,903,750,000,000,000 ∗ (exp((11 ∗ x)/450) + 1)̂7)
− (11 ∗ t ∗ exp((11 ∗ x)/450) ∗ (7,709,175,000,000 ∗ exp((11 ∗ x)/90)
− 20,831,175,000,000 ∗ h + 129,579,750,000,000 ∗ exp((11 ∗ x)/150)
+ 155,823,750,000,000 ∗ exp((11 ∗ x)/225) + 51,667,875,000,000 ∗ exp((22
∗x)/225) − 7,709,175,000,000 ∗ h ∗ exp((11 ∗ x)/90) − 129,579,750,000,000 ∗ h
∗exp((11 ∗ x)/150) − 155,823,750,000,000 ∗ h ∗ exp((11 ∗ x)/225)
− 51,667,875,000,000 ∗ h ∗ exp((22 ∗ x)/225) − 27,835,396,875 ∗ h ∗ t + 47,729,902
∗ĥ2 ∗ t̂2 ∗ exp((11 ∗ x)/150) + 42,038,546 ∗ ĥ2 ∗ t̂2 ∗ exp((11 ∗ x)/225)
+ 8,746,606 ∗ ĥ2 ∗ t̂2 ∗ exp((22 ∗ x)/225) + 3,778,396,875 ∗ h ∗ t ∗ exp((11
∗x)/90) + 115,439,073,750 ∗ h ∗ t ∗ exp((11 ∗ x)/150) + 77,016,926,250 ∗ h ∗ t
∗exp((11 ∗ x)/225) + 47,046,470,625 ∗ h ∗ t ∗ exp((22 ∗ x)/225)
+ 20,831,175,000,000))/(1,992,903,750,000,000,000 ∗ (exp((11 ∗ x)/450) + 1)̂7))
− tanh((11 ∗ x)/900)/45 + 1/40,

...

...

we stop the procedure at the third-order approximation. In order to find an appropriate value of h for
the approximate solutions, a residual function can be defined as:

r3a(x, t, h) = ∂u3(x, t,h)
∂t −

∂2u3(x, t,h)
∂x2 − 2∂u3(x, t,h)

∂x + 0.1∂u3(x, t,h)v3(x, t,h)
∂x ,

r3b(x, t, h) = ∂u3(x, t,h)
∂t −

∂2u3(x, t,h)
∂x2 − 2∂u3(x, t,h)

∂x + 0.3∂u3(x, t,h)v3(x, t,h)
∂x ,

(19)
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The square of the r3a(x, t, h) and r3b(x, t, h) functions with respect to the auxiliary term h in the
domain (x, t)ε [0, 1] × [0, 1] is:

e3a(h) =

 1
(11)2

10∑
i=0

10∑
j=−10

(r3(i, j, h))2


1
2

e3b(h) =

 1
(11)2

10∑
i=0

10∑
j=−10

(r3(i, j, h))2


1
2

(20)

For finding an optimum value of the auxiliary term h, the lowest point of the error of norm
2 of Function (19) is selected. The lowest point of e3a(h), as h = 0.994178085892076 and e3b(h) as
h = 0.996482304232335 is gained by means of Maple mathematical software. By replacing the value of
the auxiliary term in u3(x, t, h), the absolute error of the fourth-order approximation of the proposed
algorithm decreases remarkably.

Now, we employ the modified variational iteration algorithm-II for the solution of test problem 1.
Utilizing this estimation of λ(ζ) in Equation (13) results in the underneath iterative structure:

un+1(x, t, h1) = u0(x, t, h1)

−h1
∫ t

0

{
−
∂2un(x, ζ,h1)

∂x2 − 2∂un(x, ζ,h1)
∂x + β1,2

∂un(x, ζ,h1)vn(x, ζ,h1)
∂x

}
dζ.

(21)

vn+1(x, t, h) = v0(x, t, h)

−h
∫ t

0

{
−
∂2vn(x, ζ,h)

∂x2 − 2∂vn(x, ζ,h)
∂x + β2,1

∂un(x, ζ,h)vn(x, ζ,h)
∂x

}
dζ.

(22)

Introducing with a proper initial guess:

u(x, 0) = k(1− tanh(B(x))),

v(x, 0) = k
(

2?22,1 − 1
2?21,2 − 1

− tanh(B(x))
)
,

one can get the beneath different approximations by utilizing the recurrence relations shown in
Equations (21) and (22) for β1,2 = 0.1 and β2,1 = 0.3:

u1(x, t, h) = (11 ∗h ∗ t ∗ exp((11 ∗ x)/450) ∗ (299 ∗ exp((11 ∗ x)/450) + 475))/(36,450,000
∗(exp((11 ∗ x)/450) + 1)̂3) − tanh((11 ∗ x)/900)/45 + 1/20,

v1(x, t, h) = (11 ∗h ∗ t ∗ exp((11 ∗ x)/450) ∗ (47 ∗ exp((11 ∗ x)/450) + 127))/(12,150,000
∗(exp((11 ∗ x)/450) + 1)̂3) − tanh((11 ∗ x)/900)/45 + 1/40,

u2(x, t, h) = 1/ 20 − h ∗ ((11 ∗ t ∗ exp((11 ∗ x)/225) ∗ (589,808,450 ∗ ĥ2 ∗ t̂2 + 61,111,2954,375 ∗ h
∗t − 1,082,072,925,000,000))/(17,936,133,750,000,000,000 ∗ (exp((11 ∗ x)/450)
+ 1)̂7) − (11 ∗ t ∗ exp((11 ∗ x)/450) ∗ (147,130,425,000,000 ∗ exp((11 ∗ x)/90)
+ 1,817,725,050,000,000 ∗ exp((11 ∗ x)/150) + 1,990,935,450,000,000 ∗ exp((11
∗x)/225) + 822,257,325,000,000 ∗ exp((22 ∗ x)/225) − 372,851,758,125 ∗ h ∗ t
+ 643,660,226 ∗ ĥ2 ∗ t̂2 ∗ exp((11 ∗ x)/150) + 82,850,878 ∗ ĥ2 ∗ t̂2 ∗ exp((11
∗x)/225) + 226,552,898 ∗ ĥ2 ∗ t̂2 ∗ exp((22 ∗ x)/225) + 146,715,958,125 ∗ h ∗ t
∗exp((11 ∗ x)/90) + 1,368,940,196,250 ∗ h ∗ t ∗ exp((11 ∗ x)/150)
+ 440,146,203,750 ∗ h ∗ t ∗ exp((11 ∗ x)/225) + 837,248,754,375 ∗ h ∗ t ∗ exp((22
∗x)/225) + 233,735,625,000,000))/(17,936,133,750,000,000,000 ∗ (exp((11 ∗ x)/450)
+ 1)̂7)) − tanh((11 ∗ x)/900)/45,
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v2(x, t, h) = h∗ ((11 ∗ t ∗ exp((11 ∗ x)/450) ∗ (7,709,175,000,000 ∗ exp((11 ∗ x)/90)
+ 129,579,750,000,000 ∗ exp((11 ∗ x)/150) + 155,823,750,000,000 ∗ exp((11
∗x)/225) + 51,667,875,000,000 ∗ exp((22 ∗ x)/225) − 27,835,396,875 ∗ h ∗ t
+ 47,729,902 ∗ ĥ2 ∗ t̂2 ∗ exp((11 ∗ x)/150) + 42,038,546 ∗ ĥ2 ∗ t̂2 ∗ exp((11
∗x)/225) + 8,746,606 ∗ ĥ2 ∗ t̂2 ∗ exp((22 ∗ x)/225) + 3,778,396,875 ∗ h ∗ t
∗exp((11 ∗ x)/90) + 115,439,073,750 ∗ h ∗ t ∗ exp((11 ∗ x)/150) + 77,016,926,250
∗h ∗ t ∗ exp((11 ∗ x)/225) + 47,046,470,625 ∗ h ∗ t ∗ exp((22 ∗ x)/225)
+ 20,831,175,000,000))/(1,992,903,750,000,000,000 ∗ (exp((11 ∗ x)/450) + 1)̂7)
− (11 ∗ t ∗ exp((11 ∗ x)/225) ∗ (53,630,830 ∗ ĥ2 ∗ t̂2 + 22,989,470,625 ∗ h ∗ t
− 91,033,875,000,000))/(1,992,903,750,000,000,000 ∗ (exp((11 ∗ x)/450) + 1)̂7))
− tanh((11 ∗ x)/900)/45 + 1/40,

...

...

we stop the procedure at the third-order approximation. In order to find an appropriate value of h for
the approximate solutions, a residual function can be defined as:

r3a(x, t, h) = ∂u3(x, t,h)
∂t −

∂2u3(x, t,h)
∂x2 − 2∂u3(x, t,h)

∂x + 0.1∂u3(x, t,h)v3(x, t,h)
∂x

r3b(x, t, h) = ∂u3(x, t,h)
∂t −

∂2u3(x, t,h)
∂x2 − 2∂u3(x, t,h)

∂x + 0.3∂u3(x, t,h)v3(x, t,h)
∂x

(23)

The square of the r3a(x, t, h) and r3b(x, t, h) functions with respect to the auxiliary term h in the
domain (x, t)ε [0, 1] × [0, 1] is:

e3a(h) =

 1
(11)2

10∑
i=0

10∑
j=−10

(r3(i, j, h))2


1
2

e3b(h) =

 1
(11)2

10∑
i=0

10∑
j=−10

(r3(i, j, h))2


1
2

(24)

For finding an optimum value of the auxiliary term h, the lowest point of the error of norm
2 of Function (24) is selected. The lowest point of e3a(h) as h = 1.00000000005237, and e3b(h) as
h = 0.999999981901321 , are gained by means of Maple mathematical software. By replacing the
value of the auxiliary term in u4(x, t, h), the absolute error of the fourth-order approximation of the
proposed algorithm decreases remarkably. A comparison is presented in the following tables with the
Fourier pseudospectral method [1], meshfree interpolation method [2], Chebyshev spectral collocation
method [3], decomposition method [4], cubic B-spline collocation scheme [5], new lattice Boltzmann
model [6], and semi-Lagrangian approach [10].

In Tables 1 and 2, the L2 and L∞ error norms are given for our proposed algorithm MVIA-II,
MVIA-I, and finite difference method (FDM), as well as the lattice Boltzmann model (LBM) for u and
v, respectively, while Table 3 shows the comparison of errors of different methods for showing the
accuracy of our proposed method. We can see that MVIA-II produces more accurate results than both
FDM and LBM. The L2 and L∞ error norms for different values of t are reported in Tables 2 and 3,
which show that the proposed method gives more accurate results than the previous methods that
have been used before. Figures 1 and 2 display the behavior of exact and numerical solutions for u and
v by MVIA-II. Figure 3 presents the absolute error graphs for different values of t for u and v, while
Figure 4 is devoted to a plot solution at different time levels computed by MVIA-II. It can be seen that
the method is uniformly convergent and gives accurate results. It is clear from the figures and tables
that the proposed method can handle the coupled Burgers’ equations very accurately.
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Table 1. Comparison of numerical results of u for different values of t and x for Test Problem 1.

t β1,2 β2,1
L2 L∞

CBCS [5] LBM [6] CBSLM [10] MVIA-II MVIA-I CBCS [5] LBM [6] CBSLM [10] MVIA-II MVIA-I

0.5 0.1 0.3 6.7307 × 10−4 6.7736 × 10−4 5.7744 × 10−4 7.0326 × 10−4 2.2440 × 10−4 6.5947 × 10−4 6.6014 × 10−4 5.6194 × 10−4 6.7509 × 10−4 2.1840 × 10−4

1.0 0.1 0.3 1.3173 × 10−3 1.3317 × 10−3 0.2346 × 10−3 1.4073 × 10−3 4.4886 × 10−4 1.3020 × 10−3 1.3045 × 10−3 1.2083 × 10−3 1.3500 × 10−3 4.3681 × 10−4

5.0 0.1 0.3 5.9329 × 10−3 6.1433 × 10−3 6.0584 × 10−3 7.0707 × 10−3 2.2464 × 10−3 6.1046 × 10−3 6.1515 × 10−3 6.0644 × 10−3 6.7445 × 10−3 2.1844 × 10−3

10 0.1 0.3 1.0760 × 10−2 1.1439 × 10−2 1.1365 × 10−2 1.4221 × 10−2 4.4981 ×10−3 1.1541 × 10−2 1.1713 × 10−2 1.1633 × 10−2 1.3468 × 10−2 4.3694 × 10−3

Table 2. Comparison of numerical results for v for different values of t and x for Test Problem 1.

t β1,2 β2,1
L2 L∞

CBCS [5] LBM [6] CBSLM [10] MVIA-II MVIA-I CBCS [5] LBM [6] CBSLM [10] MVIA-II MVIA-I

0.5 0.1 0.3 5.0960 × 10−4 5.0505 × 10−4 4.3123 × 10−4 5.1860 × 10−4 2.5955 ×10−4 9.1286 × 10−4 5.6806 × 10−4 4.8567 × 10−4 6.2517 × 10−4 2.5169 × 10−4

1.0 0.1 0.3 9.9228 × 10−4 9.8477 × 10−4 9.1399 × 10−4 1.0389 × 10−3 5.1920 ×10−4 1.8244 × 10−3 1.0942 × 10−3 1.0169 × 10−3 1.2509 × 10−3 5.0343 × 10−4

5.0 0.1 0.3 4.3800 × 10−3 4.3984 ×10−3 4.3400 × 10−3 5.2635 × 10−3 2.5996 × 10−3 9.0708 × 10−3 4.6640 × 10−3 4.6046 × 10−3 6.2794 × 10−3 2.5190 × 10−3

10 0.1 0.3 7.8592 × 10−3 8.0429 ×10−3 7.9933 × 10−3 7.8956 × 10−2 5.2084 ×10−3 1.0815 × 10−2 8.2714 × 10−3 8.2233 × 10−3 7.9438 × 10−2 5.0426 × 10−3

Table 3. Comparison of absolute errors for different values of t and x for Test Problem 1.

u/v t β1,2 β2,1 [9] [3] [5] [1] [2] MVIA-II MVIA-I

u 0.5 0.1 0.3 4:251 × 10−5 4:38 × 10−5 4:167 × 10−5 9:619 × 10−4 4:084 × 10−5 2.2743× 10−4 1.1511× 10−5

1.0 0.1 0.3 8:150 × 10−5 8:66 × 10−5 8:258 × 10−5 1:153 × 10−3 8:157 × 10−5 4.5485× 10−4 2.3024× 10−5

v 0.5 0.1 0.3 4:051 × 10−5 4:99 × 10−5 1:480 × 10−5 3:332 × 10−4 3:713 × 10−5 2.1639× 10−4 6.9734× 10−6

1.0 0.1 0.3 7:158 × 10−5 9:92 × 10−5 4:770 × 10−5 1:162 × 10−3 7:358 × 10−5 4.3275× 10−4 1.3949× 10−5
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3.2. Test Problem 2

Consider the coupled Burgers’ Equation (1) with α1 = α2 = 1, β1,1 = β2,2 = −2, β1,2 = β2,1 = 2.5
and x ∈ [−20, 20]. The equation becomes:∂u

∂t −
∂2u
∂x2 − 2∂u

∂x + 2.5∂uv
∂x = 0, t > 0, x ∈ [−20, 20],

∂v
∂t −

∂2v
∂x2 − 2∂v

∂x + 2.5∂uv
∂x = 0, t > 0, x ∈ [−20, 20],

(25)

The exact solution was given by [10]:

u(x, t) = v(x, t) = k(1− tanh(
3
2

k(x− 3kt))). (26)

where k is a non-zero arbitrary constant. We noticed that when the value of k increases, then the
traveling waves become faster as time goes on, and the waveforms become increasingly steeper.

Constructing the correction function for Equation (25) as:

un+1(x, t, h) = un(x, t, h)

+h
∫ t

0 λ1(ζ)

{
∂un(x, ζ,h)

∂ζ −
˜∂2un(x, ζ,h)
∂x2 − 2

˜∂un(x, ζ,h)
∂x

+2.5
˜∂un(x, ζ,h)vn(x, ζ,h)
∂x

}
dζ.

(27)

vn+1(x, t, h) = vn(x, t, h)

+h
∫ t

0 λ2(ζ)

{
∂vn(x, ζ,h)

∂ζ −
˜∂2vn(x, ζ,h)
∂x2 − 2

˜∂vn(x, ζ,h)
∂x

+2.5
˜∂un(x, ζ,h)vn(x, ζ,h)
∂x

}
dζ.

(28)

The values of λ1(ζ) and λ2(ζ) may be obtained most positively by the variational principle. We obtain
the estimation of λ1(ζ) and λ2(ζ), which is λ1(ζ) = λ2(ζ) = −1. Utilizing this estimation of λ(ζ) in
Equations (27) and (28) results in the underneath iterative structure:
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un+1(x, t, h) = u0(x, t, h)

−h
∫ t

0

{
−
∂2un(x, ζ,h)

∂x2 − 2∂un(x, ζ,h)
∂x + 2.5∂un(x, ζ,h)vn(x, ζ,h)

∂x

}
dζ.

(29)

vn+1(x, t, h) = v0(x, t, h)

−h
∫ t

0

{
−
∂2vn(x, ζ,h)

∂x2 − 2∂vn(x, ζ,h)
∂x + 2.5∂un(x, ζ,h)vn(x, ζ,h)

∂x

}
dζ.

(30)

Introducing with a proper initial guess:

u0(x, t) = v0(x, t) = k(1− tanh
(3

2
kx

)
.

one can get beneath different iterations by utilizing the recurrence relations shown in Equations (29)
and (30), for k = 0.1:

u1(x, t, h) = (9 ∗ k̂3 ∗ t)/(2 ∗ cosh((3 ∗ k ∗ x)/2)̂2) − k ∗ (tanh((3 ∗ k ∗ x)/2) − 1),
v1(x, t, h) = (9 ∗ k̂3 ∗ t)/(2 ∗ cosh((3 ∗ k ∗ x)/2)̂2) − k ∗ (tanh((3 ∗ k ∗ x)/2) − 1),
u2(x, t, h) = (9 ∗ k̂3 ∗ t ∗ (2 ∗ cosh((3 ∗ k ∗ x)/2)̂3 + 27 ∗ k̂4 ∗ t̂2 ∗ sinh((3 ∗ k ∗ x)/2) + 9

∗k̂2 ∗ t ∗ cosh((3 ∗ k ∗ x)/2)̂2 ∗ sinh((3 ∗ k ∗ x)/2)))/(4 ∗ cosh((3 ∗ k ∗ x)/2)̂5)
− k ∗ (tanh((3 ∗ k ∗ x)/2) − 1),

v2(x, t, h) = (9 ∗ k̂3 ∗ t ∗ (2 ∗ cosh((3 ∗ k ∗ x)/2)̂3 + 27 ∗ k̂4 ∗ t̂2 ∗ sinh((3 ∗ k ∗ x)/2) + 9
∗k̂2 ∗ t ∗ cosh((3 ∗ k ∗ x)/2)̂2 ∗ sinh((3 ∗ k ∗ x)/2)))/(4 ∗ cosh((3 ∗ k ∗ x)/2)̂5)
− k ∗ (tanh((3 ∗ k ∗ x)/2) − 1),

...

...

we stop the procedure at u4(x, t, h). In order to find an appropriate value of h for the approximate
solutions, a residual function can be defined as:

r4(x, t, h) =
∂u4(x, t, h)

∂t
−
∂2u4(x, t, h)

∂x2 − 2
∂u4(x, t, h)

∂x
+ 2.5

∂u4(x, t, h)v4(x, t, h)
∂x

(31)

The square of the r4(x, t, h) function with respect to the auxiliary term h in the domain (x, t)ε [0, 1]×
[0, 1] is:

e4(h) =

 1

(11)2

10∑
i=0

10∑
j=0

(
r4

(
i

10
,

j
10

, h
))2


1
2

(32)

For finding an optimum value of the auxiliary term h, the lowest point of the error of norm 2 of
Function (31) is selected. The lowest point of e4(h), as h = 1.00000000005237, is gained by means of
Maple mathematical software. By replacing the value of the auxiliary term in u4(x, t, h), the absolute
error of the fourth-order approximation of the proposed algorithm decreases remarkably.

In Tables 4 and 5, L2 and L∞ error norms are given for our proposed algorithm MVIA-II, and other
methods available in the literature. We can see that MVIA-II produces more accurate results than
FDM, LBM, and CBSLM. The L2 and L∞ error norms for different values of t are reported in Table 5,
which shows that the proposed method gives more accurate results than previous methods used.
Figure 5 displays the behavior of the exact and numerical solutions, while Figure 6 is devoted to a plot
absolute error graph for different values of t. The method is uniformly convergent and gives accurate
results. It is clear from the figures and tables that the proposed method can handle the coupled Burgers’
equations very accurately.
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Table 4. Comparison of error norms different values of t and x for Test Problem 2.

t
L2 L∞

FDM [6] LBM [6] MVIA-II FDM [6] LBM [6] MVIA-II

1.0 1.5724 × 10−6 1.4829 × 10−6 7.8577 × 10−10 6.2856 × 10−7 5.7788 × 10−7 6.1316 × 10−13

2.0 2.9383 × 10−6 2.7955 × 10−6 2.6625 × 10−10 1.1138 × 10−6 1.0754 × 10−6 1.5700 × 10−9

3.0 4.1676 × 10−6 3.9298 × 10−6 8.7801 × 10−9 1.5879 × 10−6 1.4861 × 10−6 5.1132 × 10−8

4.0 5.2504 × 10−6 4.9434 × 10−6 2.9783 × 10−7 1.9868 × 10−6 1.8800 × 10−6 1.6959 × 10−6

5.0 6.1878 × 10−6 5.8615 × 10−6 3.4271 × 10−5 2.3468 × 10−6 2.2034 × 10−6 1.8436 × 10−4

Table 5. Comparison of error norms different values of t and x for Test Problem 2.

u/v t
L2 L∞

LBM [6] CBSLM [10] MVIA-II LBM [6] CBSLM [10] MVIA-II

u 1 2.992 × 1023 3.0876× 10−7 8.96888× 10−9 2.6797 × 1024 5.324 × 10−7 5.1556× 10−8

2 NaN 6.2561× 10−7 3.03807× 10−7 NaN 1.056 × 10−6 1.7139× 10−6

v 1 2.992 × 1023 8.2321× 10−8 8.96888× 10−9 2.6797 × 1024 1.479 × 10−7 5.1556× 10−8

2 NaN 1.6134× 10−7 3.03807× 10−7 NaN 2.639 × 10−7 1.7139× 10−6Axioms 2019, 8, 119 12 of 17 
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3.3. Test Problem 3

Consider the coupled Burger Equation (1) with α1 = α2 = 1, β1,1 = β2,2 = −2, β1,2 = β2,1 = 1 and
x ∈ [−π, π]. The equation becomes: ∂u

∂t −
∂2u
∂x2 − 2u∂u

∂x + ∂uv
∂x = 0, t > 0, x ∈ [−π, π],

∂v
∂t −

∂2v
∂x2 − 2v∂v

∂x + ∂uv
∂x = 0, t > 0, x ∈ [−π, π],

(33)

The exact solution was given by [10]:

u(x, t) = v(x, t) = exp(−t)sin(x) (34)

where β1,2 and β2,1 are non-zero arbitrary constants. Constructing the correction function for Equation
(33) as:

un+1(x, t, h1) = u0(x, t, h1)

+h1
∫ t

0 λ1(ζ)

{
∂un(x, ζ,h1)

∂ζ −
˜∂2un(x, ζ,h1)

∂x2 − 2
˜∂un(x, ζ,h1)
∂x

+
˜∂un(x, ζ,h1)vn(x, ζ,h1)
∂x

}
dζ.

(35)

vn+1(x, t, h) = v0(x, t, h)

+h
∫ t

0 λ2(ζ)

{
∂vn(x, ζ,h)

∂ζ −
˜∂2vn(x, ζ,h)
∂x2 − 2

˜∂vn(x, ζ,h)
∂x

+
˜∂un(x, ζ,h)vn(x, ζ,h)
∂x

}
dζ.

(36)

The values of λ1(ζ) and λ2(ζ) may be obtained most positively by the variational principle.
We obtain the estimation of λ1(ζ) and λ2(ζ) which is λ1(ζ) = λ2(ζ) = −1. Utilizing this estimation of
λ(ζ) in Equations (35) and (36) results in the underneath iterative structure:

un+1(x, t, h1) = u0(x, t, h1)

−h1
∫ t

0

{
−
∂2un(x, ζ,h1)

∂x2 − 2∂un(x, ζ,h1)
∂x +

∂un(x, ζ,h1)vn(x, ζ,h1)
∂x

}
dζ.

(37)

vn+1(x, t, h) = v0(x, t, h) − h
∫ t

0

{
−
∂2vn(x, ζ, h)

∂x2 − 2
∂vn(x, ζ, h)

∂x
+
∂un(x, ζ, h)vn(x, ζ, h)

∂x

}
dζ. (38)

Introducing with a proper initial guess:

u(x, 0) = v(x, 0) = sin(x),

one can get the beneath different approximations by utilizing the recurrence relations shown in
Equations (37) and (38):

u1(x, t, h) = −sin(x) ∗ (h ∗ t − 1),
v1(x, t, h) = −sin(x) ∗ (h ∗ t − 1),
u2(x, t, h) = (sin(x) ∗ (ĥ2 ∗ t̂2 − 2 ∗ h ∗ t + 2))/2,
v2(x, t, h) = (sin(x) ∗ (ĥ2 ∗ t̂2 − 2 ∗ h ∗ t + 2))/2,
u3(x, t, h) = −(sin(x) ∗ (ĥ3 ∗ t̂3 − 3 ∗ ĥ2 ∗ t̂2 + 6 ∗ h ∗ t − 6))/6,
v3(x, t, h) = −(sin(x) ∗ (ĥ3 ∗ t̂3 − 3 ∗ ĥ2 ∗ t̂2 + 6 ∗ h ∗ t − 6))/6,

...

...
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we stop the procedure at the 11th-order approximation. In order to find an appropriate value of h for
the approximate solutions, a residual function can be defined as:

r11a(x, t, h) = ∂u11(x, t,h)
∂t −

∂2u11(x, t,h)
∂x2 − 2∂u11(x, t,h)

∂x +
∂u11(x, t,h)v11(x, t,h)

∂x

r11b(x, t, h) = ∂u11(x, t,h)
∂t −

∂2u11(x, t,h)
∂x2 − 2∂u11(x, t,h)

∂x +
∂u11(x, t,h)v11(x, t,h)

∂x

(39)

The square of the r11a(x, t, h) and r11b(x, t, h) functions with respect to the auxiliary term h in the
domain x ∈ [−π, π] is:

e11a(h) =

 1
(11)2

10∑
i=0

10∑
j=0

(
r11

(
i

10 , j
10 , h

))2


1
2

e11b(h) =

 1
(11)2

10∑
i=0

π∑
j=−π

(
r11

(
i

10 , j
10 , h

))2


1
2

(40)

For finding an optimum value of the auxiliary term h, the lowest point of the error of norm 2 of
Function (40) is selected. The lowest point of e11(h), as h = 1.00000000005237, is gained by means of
Maple mathematical software. By replacing the value of the auxiliary term in u11(x, t, h), the absolute
error of the 11th-order approximation of the proposed algorithm decreases remarkably.

In Table 6, L2 and L∞ error norms are given for our proposed algorithm MVIA-II and other
numerical methods available in the literature. We can see that MVIA-II produces more accurate results
than the others. Figure 7 displays the comparison of exact and numerical solutions of u and v for t = 1.
Figure 8 is devoted to showing the behavior of exact and approximate solutions for u and v. It can be
seen that the method is uniformly convergent and gives accurate results. It is clear from the figures
and tables that the proposed method can handle the coupled Burgers’ equations very accurately.

Table 6. Comparison of L2 and L∞ error norms for different values of t for Test Problem 3.

t
L2 L∞

[9] [5] MVIA-II [9] [5] MVIA-II

0.1 2.5 × 10−6 2.05 × 10−6 5.33 × 10−11 2.5 × 10−6 1.86 × 10−6 4.81 × 10−11

0.5 8.8 × 10−6 1.02 × 10−5 2.46 × 10−10 4.8 × 10−6 6.22 × 10−6 1.49 × 10−11

1.0 1.1 × 10−5 2.04 × 10−5 6.22 × 10−8 3.7 × 10−5 7.56 × 10−6 2.29 × 10−8
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4. Conclusions

In this paper, we have proposed a technique to acquire numerical simulations of coupled Burgers’
equations by modifying the variational iteration algorithm-II. The technique effectively gives extremely
precise solutions using various values of parameters. The applicability, performance, and capability
of the algorithm have been investigated over the presented test examples, either by ascertaining the
maximum, relative, and absolute error norms for various time levels, or by contrasting the idea of
numerical results with the nature of the solutions accessible in the literature. We conclude that the
proposed algorithm provides an accurate numerical/analytical solution and can handle nonlinear
coupled PDEs in a good and reliable manner in various cases.

The obtained results are acceptable and capable with the results that are accessible in the literature.
The modified algorithm can be utilized without any need for discretization, linearization, or complex
and lengthy calculations; rather, it is a simple solution process. The proposed algorithm is reasonable,
has the easiest implementation, and is reliable as well. It can handle a large class of similar nonlinear
coupled equations, which often arises in science and engineering.
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