Article

Best Proximity Point Results for Geraghty Type \mathcal{Z}-Proximal Contractions with an Application

Hüseyin Işık ${ }^{1,2, *(\mathbb{D}}$, Hassen Aydi ${ }^{3}{ }^{(\mathbb{D}}$, Nabil Mlaiki ${ }^{4}$ and Stojan Radenović ${ }^{5}$
1 Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
2 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
3 Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, H. Sousse 4000, Tunisia
4 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
5 Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
* Correspondence: huseyin.isik@tdtu.edu.vn

Received: 18 June 2019; Accepted: 11 July 2019; Published: 18 July 2019

Abstract

In this study, we establish the existence and uniqueness theorems of the best proximity points for Geraghty type \mathcal{Z}-proximal contractions defined on a complete metric space. The presented results improve and generalize some recent results in the literature. An example, as well as an application to a variational inequality problem are also given in order to illustrate the effectiveness of our generalizations.

Keywords: best proximity point; \mathcal{Z}-contraction; geraghty type contraction; simulation function; admissible mapping; variational inequality

MSC: 47H10; 54H25

1. Introduction

Numerous problems in science and engineering defined by nonlinear functional equations can be solved by reducing them to an equivalent fixed-point problem. In fact, an operator equation

$$
\begin{equation*}
G x=0 \tag{1}
\end{equation*}
$$

may be expressed as a fixed-point equation $\mathcal{T} x=x$. Accordingly, the Equation (1) has a solution if the self-mapping \mathcal{T} has a fixed point. However, for a non-self mapping $\mathcal{T}: P \rightarrow Q$, the equation $\mathcal{T} x=x$ does not necessarily admit a solution. Here, it is quite natural to find an approximate solution x^{*} such that the distance $d\left(x^{*}, \mathcal{T} x^{*}\right)$ is minimum, in which case x^{*} and $\mathcal{T} x^{*}$ are in close proximity to each other. Herein, the optimal approximate solution x^{*}, for which $d\left(x^{*}, \mathcal{T} x^{*}\right)=d(P, Q)$, is called a best proximity point of \mathcal{T}. The main aim of the best proximity point theory is to give sufficient conditions for finding the existence of a solution to the nonlinear programming problem,

$$
\begin{equation*}
\min _{\xi \in P} d(\xi, \mathcal{T} \xi) \tag{2}
\end{equation*}
$$

Moreover, a best proximity point generates to a fixed point if the mapping under consideration is a self-mapping. For more details on this research subject, see [1-15].

In 2015, Khojasteh et al. [16] presented the notion of \mathcal{Z}-contraction involving a new class of mappings-namely, simulation functions, and proved new fixed-point theorems via different methods to others in the literature. For more details, see [17-20].

Definition 1 ([16]). A simulation function is a mapping $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ so that:
$\left(\zeta_{1}\right) \quad \zeta(0,0)=0 ;$
(ζ_{2}) $\quad \zeta(\mu, \eta)<\eta-\mu$ for all $\mu, \eta>0$;
(ζ_{3}) If $\left(\mu_{n}\right),\left(\eta_{n}\right)$ are sequences in $(0, \infty)$ so that $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty} \eta_{n}>0$, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \zeta\left(\mu_{n}, \eta_{n}\right)<0 \tag{3}
\end{equation*}
$$

Theorem 1 ([16]). Let (M, d) be a complete metric space and $\mathcal{T}: M \rightarrow M$ be a \mathcal{Z}-contraction with respect to $\zeta \in \mathcal{Z}$-that is,

$$
\zeta(d(\mathcal{T} \xi, \mathcal{T} \omega), d(\xi, \omega)) \geq 0, \quad \text { for all } \xi, \omega \in M
$$

Then, \mathcal{T} admits a unique fixed point (say $\tau \in X$) and, for each $\xi_{0} \in M$, the Picard sequence $\left\{\mathcal{T}^{n} \xi_{0}\right\}$ is convergent to τ.

In this study, we will consider simulation functions satisfying only the condition $\left(\zeta_{2}\right)$. For the sake of convenience, we identify the set of all simulation functions satisfying only the condition $\left(\zeta_{2}\right)$ by \mathcal{Z}.

The main concern of the paper is to establish theorems on the existence and uniqueness of best proximity points for Geraghty type \mathcal{Z}-proximal contractions in complete metric spaces. The obtained results complement and extend some known results from the literature. An example, as well as an application to a variational inequality problem, is also given in order to illustrate the effectiveness of our generalizations.

2. Preliminaries

Let P and Q be two non-empty subsets of a metric space, (M, d). Consider:

$$
\begin{aligned}
d(P, Q) & :=\inf \{d(\rho, v): \rho \in P, v \in Q\} ; \\
P_{0} & :=\{\rho \in P: d(\rho, v)=d(P, Q) \text { for some } v \in Q\} ; \\
Q_{0} & :=\{v \in Q: d(\rho, v)=d(P, Q) \text { for some } \rho \in P\} .
\end{aligned}
$$

Denote by

$$
B_{\text {est }}(\mathcal{T})=\{u \in P: d(u, \mathcal{T} u)=d(P, Q)\}
$$

the set of all best proximity points of a non-self-mapping $\mathcal{T}: P \rightarrow Q$. In the study [5], Caballero et al. familiarized the notion of Geraghty contraction for non-self-mappings as follows:

Definition 2 ([5]). Let P, Q be two non-empty subsets of a metric space, (M, d). A mapping $\mathcal{T}: P \rightarrow Q$ is called a Geraghty contraction if there is $\beta \in \Sigma$, so that for all $\xi, \omega \in P$

$$
\begin{equation*}
d(\mathcal{T} \xi, \mathcal{T} \omega) \leq \beta(d(\xi, \omega)) \cdot d(\xi, \omega) \tag{4}
\end{equation*}
$$

where the class Σ is the set of functions $\beta:[0, \infty) \rightarrow[0,1)$, satisfying

$$
\beta\left(t_{n}\right) \rightarrow 1 \Longrightarrow t_{n} \rightarrow 0
$$

In the paper [10], Jleli and Samet initiated the concepts of $\alpha-\psi$-proximal contractive and α-proximal admissible mappings. They provided related best-proximity-point results. Subsequently, Hussain et al. [7] modified the aforesaid notions and substantiated certain best-proximity-point theorems.

Definition 3 ([10]). Let $\mathcal{T}: P \rightarrow Q$ and $\alpha: P \times P \rightarrow[0, \infty)$ be given mappings. Then, \mathcal{T} is called α-proximal admissible if

$$
\left.\begin{array}{l}
\alpha\left(u_{1}, u_{2}\right) \geq 1 \\
d\left(p_{1}, \mathcal{T} u_{1}\right)=d(P, Q) \\
d\left(p_{2}, \mathcal{T} u_{2}\right)=d(P, Q)
\end{array}\right\} \Longrightarrow \alpha\left(p_{1}, p_{2}\right) \geq 1
$$

for all $u_{1}, u_{2}, p_{1}, p_{2} \in P$.
Definition 4 ([7]). Let $\mathcal{T}: P \rightarrow Q$ and $\alpha, \eta: P \times P \rightarrow[0, \infty)$ be given mappings. Such \mathcal{T} is said to be (α, η)-proximal admissible if

$$
\left.\begin{array}{l}
\alpha\left(u_{1}, u_{2}\right) \geq \eta\left(u_{1}, u_{2}\right) \\
d\left(p_{1}, \mathcal{T} u_{1}\right)=d(P, Q) \\
d\left(p_{2}, \mathcal{T} u_{2}\right)=d(P, Q)
\end{array}\right\} \Longrightarrow \alpha\left(p_{1}, p_{2}\right) \geq \eta\left(p_{1}, p_{2}\right)
$$

for all $u_{1}, u_{2}, p_{1}, p_{2} \in P$.
Note that if $\eta(u, v)=1$ for all $u, v \in P$, then Definition 4 corresponds to Definition 3.
Very recently, Tchier et al. in [14] initiated the concept of \mathcal{Z}-proximal contractions.
Definition 5 ([14]). Let P and Q be two non-empty subsets of a metric space, (M, d). A non-self-mapping $\mathcal{T}: P \rightarrow Q$ is called a \mathcal{Z}-proximal contraction if there is a simulation function ζ so that

$$
\left.\begin{array}{l}
d(\rho, \mathcal{T} u)=d(P, Q) \tag{5}\\
d(v, \mathcal{T} v)=d(P, Q)
\end{array}\right\} \Longrightarrow \zeta(d(\rho, v), d(u, v)) \geq 0
$$

for all $\rho, v, u, v \in P$.
Now, we introduce a new concept which will be efficiently used in our results.
Definition 6. Let $\mathcal{T}: P \rightarrow Q$ and $\alpha, \eta: P \times P \rightarrow[0, \infty)$ be given mappings. Then, \mathcal{T} is said to be triangular (α, η)-proximal admissible, if
(1) \mathcal{T} is (α, η)-proximal admissible;
(2) $\alpha(u, v) \geq \eta(u, v)$ and $\alpha(v, z) \geq \eta(v, z)$ implies that $\alpha(u, z) \geq \eta(u, z)$, for all $u, v, z \in P$.

Now, we describe a new class of contractions for non-self-mappings which generalize the concept of Geraghty-contractions.

Definition 7. Let P and Q be two non-empty subsets of a metric space $(M, d), \zeta \in \mathcal{Z}$ and $\alpha, \eta: P \times P \rightarrow$ $[0, \infty)$ and $\beta \in \Sigma$. A non-self-mapping $\mathcal{T}: P \rightarrow Q$ is said to be a Geraghty type \mathcal{Z}-proximal contraction, if for all $u, v, \rho, v \in P$, the following implication holds:

$$
\left.\begin{array}{l}
\alpha(u, v) \geq \eta(u, v) \tag{6}\\
d(\rho, \mathcal{T} u)=d(P, Q) \\
d(v, \mathcal{T} v)=d(P, Q)
\end{array}\right\} \Longrightarrow \zeta(d(\rho, v), \beta(d(u, v)) d(u, v)) \geq 0
$$

Remark 1. If $\mathcal{T}: P \rightarrow Q$ is a Geraghty type \mathcal{Z}-proximal contraction, then by $\left(\zeta_{2}\right)$ and Definition 7, the following implication holds for all $u, v, \rho, v \in P$ with $u \neq v$:

$$
\left.\begin{array}{l}
\alpha(u, v) \geq \eta(u, v) \tag{7}\\
d(\rho, \mathcal{T} u)=d(P, Q) \\
d(v, \mathcal{T} v)=d(P, Q)
\end{array}\right\} \Longrightarrow d(\rho, v)<\beta(d(u, v)) d(u, v) .
$$

3. Main Results

Our first result is as follows.
Theorem 2. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that P_{0} is non-empty, $\mathcal{T}: P \rightarrow Q$ and $\alpha, \eta: P \times P \rightarrow[0, \infty)$ be given mappings. Suppose that:
(i) P is closed and $\mathcal{T}\left(P_{0}\right) \subseteq Q_{0}$;
(ii) \mathcal{T} is triangular (α, η)-proximal admissible;
(iii) There are $u_{0}, u_{1} \in P_{0}$ so that $d\left(u_{1}, \mathcal{T} u_{0}\right)=d(P, Q)$ and $\alpha\left(u_{0}, u_{1}\right) \geq \eta\left(u_{0}, u_{1}\right)$;
(iv) \mathcal{T} is a continuous Geraghty type \mathcal{Z}-proximal contraction.

Then, \mathcal{T} has a best proximity point in P. If $\alpha(u, v) \geq \eta(u, v)$ for all $u, v \in B_{\text {est }}(\mathcal{T})$, then \mathcal{T} has a unique best proximity point $u^{*} \in P$. Moreover, for every $u \in P, \lim _{n \rightarrow \infty} \mathcal{T}^{n} u=u^{*}$.

Proof. From the condition (iii), there are $u_{0}, u_{1} \in P_{0}$ so that

$$
d\left(u_{1}, \mathcal{T} u_{0}\right)=d(P, Q) \text { and } \alpha\left(u_{0}, u_{1}\right) \geq \eta\left(u_{0}, u_{1}\right)
$$

Since $\mathcal{T}\left(P_{0}\right) \subseteq Q_{0}$, there is $u_{2} \in P_{0}$ so that

$$
d\left(u_{2}, \mathcal{T} u_{1}\right)=d(P, Q)
$$

Thus, we get

$$
\begin{aligned}
& \alpha\left(u_{0}, u_{1}\right) \geq \eta\left(u_{0}, u_{1}\right) \\
& d\left(u_{1}, \mathcal{T} u_{0}\right)=d(P, Q) \\
& d\left(u_{2}, \mathcal{T} u_{1}\right)=d(P, Q)
\end{aligned}
$$

Since \mathcal{T} is (α, η)-proximal admissible, we get $\alpha\left(u_{1}, u_{2}\right) \geq \eta\left(u_{1}, u_{2}\right)$. Now, we have

$$
d\left(u_{2}, \mathcal{T} u_{1}\right)=d(P, Q) \text { and } \alpha\left(u_{1}, u_{2}\right) \geq \eta\left(u_{1}, u_{2}\right) .
$$

Again, since $\mathcal{T}\left(P_{0}\right) \subseteq Q_{0}$, there exists $u_{3} \in P_{0}$ such that

$$
d\left(u_{3}, \mathcal{T} u_{2}\right)=d(P, Q)
$$

and thus,

$$
\begin{aligned}
& \alpha\left(u_{1}, u_{2}\right) \geq \eta\left(u_{1}, u_{2}\right) \\
& d\left(u_{2}, \mathcal{T} u_{1}\right)=d(P, Q) \\
& d\left(u_{3}, \mathcal{T} u_{2}\right)=d(P, Q)
\end{aligned}
$$

Since \mathcal{T} is (α, η)-proximal admissible, this implies that $\alpha\left(u_{2}, u_{3}\right) \geq \eta\left(u_{2}, u_{3}\right)$. Thus, we have

$$
d\left(u_{3}, \mathcal{T} u_{2}\right)=d(P, Q) \text { and } \alpha\left(u_{2}, u_{3}\right) \geq \eta\left(u_{2}, u_{3}\right)
$$

By repeating this process, we build a sequence $\left\{u_{n}\right\}$ in $P_{0} \subseteq P$ so that

$$
\begin{equation*}
d\left(u_{n+1}, \mathcal{T} u_{n}\right)=d(P, Q) \text { and } \alpha\left(u_{n}, u_{n+1}\right) \geq \eta\left(u_{n}, u_{n+1}\right) \tag{8}
\end{equation*}
$$

for all $n \in \mathbb{N} \cup\{0\}$. If there is n_{0} so that $u_{n_{0}}=u_{n_{0}+1}$, then

$$
d\left(u_{n_{0}}, \mathcal{T} u_{n_{0}}\right)=d\left(u_{n_{0}+1}, \mathcal{T} u_{n_{0}}\right)=d(P, Q)
$$

That is, $u_{n_{0}}$ is a best proximity point of \mathcal{T}. We should suppose that $u_{n} \neq u_{n+1}$, for all n.

From (8), for all $n \in \mathbb{N}$, we get

$$
\begin{aligned}
& \alpha\left(u_{n-1}, u_{n}\right) \geq \eta\left(u_{n-1}, u_{n}\right) \\
& d\left(u_{n}, \mathcal{T} u_{n-1}\right)=d(P, Q) \\
& d\left(u_{n+1}, \mathcal{T} u_{n}\right)=d(P, Q)
\end{aligned}
$$

On the grounds that \mathcal{T} is a Geraghty type \mathcal{Z}-proximal contraction, by utilizing Remark 1 , we deduce that

$$
\begin{equation*}
d\left(u_{n}, u_{n+1}\right)<\beta\left(d\left(u_{n-1}, u_{n}\right)\right) d\left(u_{n-1}, u_{n}\right), \tag{9}
\end{equation*}
$$

which requires that $d\left(u_{n}, u_{n+1}\right)<d\left(u_{n-1}, u_{n}\right)$, for all n. Therefore, the sequence $\left\{d\left(u_{n}, u_{n+1}\right)\right\}$ is decreasing, and so there is $\lambda \geq 0$ so that $\lim _{n \rightarrow \infty} d\left(u_{n}, u_{n+1}\right)=\lambda$. Now, we shall show that $\lambda=0$. On the contrary, assume that $\lambda>0$. Then, taking into account (9), for any $n \in \mathbb{N}$,

$$
d\left(u_{n}, u_{n+1}\right)<\beta\left(d\left(u_{n-1}, u_{n}\right)\right) d\left(u_{n-1}, u_{n}\right)<d\left(u_{n-1}, u_{n}\right)
$$

This yields, for any $n \in \mathbb{N}$,

$$
0<\frac{d\left(u_{n}, u_{n+1}\right)}{d\left(u_{n-1}, u_{n}\right)}<\beta\left(d\left(u_{n-1}, u_{n}\right)\right)<1 .
$$

Taking $n \rightarrow \infty$, we find that

$$
\lim _{n \rightarrow \infty} \beta\left(d\left(u_{n-1}, u_{n}\right)\right)=1,
$$

and since $\beta \in \Sigma, \quad \lim _{n \rightarrow \infty} d\left(u_{n-1}, u_{n}\right)=0$. This contradicts our assumption $\lim _{n \rightarrow \infty} d\left(u_{n-1}, u_{n}\right)=$ $\lambda>0$. Therefore, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(u_{n-1}, u_{n}\right)=0, \quad \text { for all } n \in \mathbb{N} \tag{10}
\end{equation*}
$$

We shall prove that $\left\{u_{n}\right\}$ is Cauchy in P. By contradiction, suppose that $\left\{u_{n}\right\}$ is not a Cauchy sequence, so there is an $\varepsilon>0$ for which we can find $\left\{u_{m_{k}}\right\}$ and $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that n_{k} is the smallest index for which $n_{k}>m_{k}>k$ and

$$
\begin{equation*}
d\left(u_{m_{k}}, u_{n_{k}}\right) \geq \varepsilon \quad \text { and } d\left(u_{m_{k}}, u_{n_{k}-1}\right)<\varepsilon . \tag{11}
\end{equation*}
$$

We have

$$
\begin{aligned}
\varepsilon \leq d\left(u_{m_{k}}, u_{n_{k}}\right) & \leq d\left(u_{m_{k}}, u_{n_{k}-1}\right)+d\left(u_{n_{k}-1}, u_{n_{k}}\right) \\
& <\varepsilon+d\left(u_{n_{k}-1}, u_{n_{k}}\right) .
\end{aligned}
$$

Taking $k \rightarrow \infty$, by (10), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(u_{m_{k}}, u_{n_{k}}\right)=\varepsilon \tag{12}
\end{equation*}
$$

By triangular inequality,

$$
\left|d\left(u_{m_{k}+1}, u_{n_{k}+1}\right)-d\left(u_{m_{k}}, u_{n_{k}}\right)\right| \leq d\left(u_{m_{k}+1}, u_{m_{k}}\right)+d\left(u_{n_{k}}, u_{n_{k}+1}\right)
$$

which yields that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m_{k}+1}, x_{n_{k}+1}\right)=\varepsilon . \tag{13}
\end{equation*}
$$

Since \mathcal{T} is triangular (α, η)-proximal admissible, by using (8), we infer

$$
\begin{equation*}
\alpha\left(u_{m}, u_{n}\right) \geq \eta\left(u_{m}, u_{n}\right), \quad \text { for all } n, m \in \mathbb{N} \text { with } m<n . \tag{14}
\end{equation*}
$$

Combining (8) and (14), for all $k \in \mathbb{N}$, we have

$$
\begin{aligned}
& \alpha\left(u_{m_{k}}, u_{n_{k}}\right) \geq \eta\left(u_{m_{k}}, u_{n_{k}}\right) \\
& d\left(u_{m_{k}+1}, \mathcal{T} u_{m_{k}}\right)=d(P, Q), \\
& d\left(u_{n_{k}+1}, \mathcal{T} u_{n_{k}}\right)=d(P, Q) .
\end{aligned}
$$

Regarding the fact that \mathcal{T} is a Geraghty type \mathcal{Z}-proximal contraction, from Remark 1, we deduce that

$$
d\left(u_{m_{k}+1}, u_{n_{k}+1}\right)<\beta\left(d\left(u_{m_{k}}, u_{n_{k}}\right)\right) d\left(u_{m_{k}}, u_{n_{k}}\right)<d\left(u_{m_{k}}, u_{n_{k}}\right) .
$$

Taking the limit as k tends to ∞ on both sides of the last inequality, and using the Equations (12) and (13), we get

$$
\varepsilon \leq \lim _{k \rightarrow \infty} \beta\left(d\left(u_{m_{k}}, u_{n_{k}}\right)\right) \varepsilon \leq \varepsilon,
$$

which implies that $\lim _{k \rightarrow \infty} \beta\left(d\left(u_{m_{k}}, u_{n_{k}}\right)\right)=1$, and so $\lim _{k \rightarrow \infty} d\left(u_{m_{k}}, u_{n_{k}}\right)=0$ which contradicts $\varepsilon>0$. Hence, $\left\{u_{n}\right\}$ is a Cauchy sequence in P. Since P is a closed subset of the complete metric space (M, d), there is $p \in P$ so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(u_{n}, p\right)=0 \tag{15}
\end{equation*}
$$

Since \mathcal{T} is continuous, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(\mathcal{T} u_{n}, \mathcal{T} p\right)=0 \tag{16}
\end{equation*}
$$

Combining (8), (15), and (16), we get

$$
d(P, Q)=\lim _{n \rightarrow \infty} d\left(u_{n+1}, \mathcal{T} u_{n}\right)=d(p, \mathcal{T} p)
$$

Therefore, $u \in P$ is a best proximity point of \mathcal{T}. Finally, we shall show that the set $B_{\text {est }}(\mathcal{T})$ is a singleton. Suppose that r is another best proximity point of \mathcal{T}, that is, $d(r, \mathcal{T} r)=d(P, Q)$. Then, by the hypothesis, we have $\alpha(p, r) \geq \eta(p, r)$-that is,

$$
\begin{aligned}
& \alpha(p, r) \geq \eta(p, r) \\
& d(p, \mathcal{T} p)=d(P, Q) \\
& d(r, \mathcal{T} r)=d(P, Q)
\end{aligned}
$$

Then, from Remark 1, we deduce

$$
d(p, r)<\beta(d(p, r)) d(p, r)<d(p, r)
$$

which is a contradiction. Hence, we have a unique best proximity point of \mathcal{T}.
Let us consider the following assertion in order to remove the continuity on the operator \mathcal{T} in the next theorem.
(C) If a sequence $\left\{u_{n}\right\}$ in P is convergent to $u \in P$ so that $\alpha\left(u_{n}, u_{n+1}\right) \geq$ $\eta\left(u_{n}, u_{n+1}\right)$, then $\alpha\left(u_{n}, u\right) \geq \eta\left(u_{n}, u\right)$ for all $n \in \mathbb{N}$.

Theorem 3. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that P_{0} is non-empty, $\mathcal{T}: P \rightarrow Q$ and $\alpha, \eta: P \times P \rightarrow[0, \infty)$ be given mappings. Suppose that:
(i) P is closed and $\mathcal{T}\left(P_{0}\right) \subseteq Q_{0}$;
(ii) \mathcal{T} is triangular (α, η)-proximal admissible;
(iii) there are $u_{0}, u_{1} \in P_{0}$ so that $d\left(u_{1}, \mathcal{T} u_{0}\right)=d(P, Q)$ and $\alpha\left(u_{0}, u_{1}\right) \geq \eta\left(u_{0}, u_{1}\right)$;
(iv) the condition (C) holds and \mathcal{T} is a Geraghty type \mathcal{Z}-proximal contraction.

Then, \mathcal{T} has a best proximity point in P. If $\alpha(u, v) \geq \eta(u, v)$ for all $u, v \in B_{\text {est }}(\mathcal{T})$, then \mathcal{T} has a unique best proximity point $u^{*} \in P$. Moreover, for each $u \in P$, we have $\lim _{n \rightarrow \infty} \mathcal{T}^{n} u=u^{*}$.

Proof. Following the proof of Theorem 2, there exists a Cauchy sequence $\left\{u_{n}\right\} \subset P_{0}$ satisfying (8) and $u_{n} \rightarrow p$. On account of (i), P_{0} is closed, and so $p \in P_{0}$. Also, since $\mathcal{T}\left(P_{0}\right) \subseteq Q_{0}$, there is $z \in P_{0}$ so that

$$
\begin{equation*}
d(z, \mathcal{T} p)=d(P, Q) \tag{17}
\end{equation*}
$$

Taking (C) and (8) into account, we infer

$$
\alpha\left(u_{n}, p\right) \geq \eta\left(u_{n}, p\right), \text { for all } n \in \mathbb{N} .
$$

Since \mathcal{T} is (α, η)-proximal admissible and

$$
\begin{align*}
& \alpha\left(u_{n}, p\right) \geq \eta\left(u_{n}, p\right) \\
& d\left(u_{n+1}, \mathcal{T} u_{n}\right)=d(P, Q) \tag{18}\\
& d(z, \mathcal{T} p)=d(P, Q)
\end{align*}
$$

so, we conclude that

$$
\begin{equation*}
\alpha\left(u_{n+1}, z\right) \geq \eta\left(u_{n+1}, z\right), \text { for all } n \in \mathbb{N} . \tag{19}
\end{equation*}
$$

Considering (18), (19) and Remark 1, we have

$$
d\left(u_{n+1}, z\right)<\beta\left(d\left(u_{n}, p\right)\right) d\left(u_{n}, p\right)<d\left(u_{n}, p\right)
$$

which implies that $\lim _{n \rightarrow \infty} d\left(u_{n+1}, z\right)=0$. By the uniqueness of the limit, we obtain $z=p$. Thus, by (17), we deduce that $d(p, \mathcal{T} p)=d(P, Q)$. Uniqueness of the best proximity point follows from the proof of Theorem 2.

Example 1. Let $M=\mathbb{R}^{2}$ be endowed with the Euclidian metric, $P=\{(0, u): u \geq 0\}$ and $Q=\{(1, u): u \geq 0\}$. Note that $d(P, Q)=1, P_{0}=P$ and $Q_{0}=Q$. Let

$$
\begin{cases}\beta(t)=\frac{1}{1+t}, & \text { if } t>0 \\ \beta(t)=\frac{1}{2}, & \text { otherwise } .\end{cases}
$$

Then, $\beta \in \Sigma$. Define $\mathcal{T}: P \rightarrow Q$ and $\alpha: P \times P \rightarrow[0, \infty)$ by

$$
\mathcal{T}(0, u)= \begin{cases}\left(1, \frac{u}{9}\right), & \text { if } 0 \leq u \leq 1, \\ \left(1, u^{2}\right), & \text { if } u>1,\end{cases}
$$

and

$$
\alpha((0, u),(0, v))= \begin{cases}2 \eta((0, u),(0, v)), & \text { if } u, v \in[0,1], \text { or } u=v \\ 0, & \text { otherwise } .\end{cases}
$$

Choose $\zeta(t, s)=\frac{2}{3} s-t$ for all $t, s \in[0, \infty)$. Let $u, v, p, q \geq 0$ be such that

$$
\left\{\begin{array}{l}
\alpha((0, u),(0, v)) \geq \eta((0, u),(0, v)) \\
d((0, p), \mathcal{T}(0, u))=d(P, Q)=1 \\
d((0, q), \mathcal{T}(0, v))=d(P, Q)=1
\end{array}\right.
$$

Then, $u, v \in[0,1]$ or $u=v$.
$u, v \in[0,1]$. Here, $\mathcal{T}(0, u)=\left(1, \frac{u}{9}\right)$ and $\mathcal{T}(0, v)=\left(1, \frac{v}{9}\right)$. Also,

$$
\sqrt{1+\left(p-\frac{u}{9}\right)^{2}}=\sqrt{1+\left(q-\frac{v}{9}\right)^{2}}=1
$$

that is, $p=\frac{u}{9}$ and $q=\frac{v}{9}$. So, $\alpha((0, p),(0, q)) \geq d((0, p),(0, q))$. Moreover,

$$
\begin{aligned}
& \zeta(d((0, p),(0, q)), \beta(d((0, u),(0, v))) d((0, u),(0, v))) \\
& =\frac{2}{3} \beta(d((0, u),(0, v))) d((0, u),(0, v))-d\left(\left(0, \frac{u}{9}\right),\left(0, \frac{v}{9}\right)\right) \\
& =\frac{2}{3} \beta(|u-v|)|u-v|-\frac{|u-v|}{9} .
\end{aligned}
$$

If $u=v$, then $\beta(|u-v|)=\frac{1}{2}$ and the right-hand side of the above inequality is equal to 0 .
If $u \neq v$, we have

$$
\begin{aligned}
& \zeta(d((0, p),(0, q)), \beta(d((0, u),(0, v))) d((0, u),(0, v))) \\
& =\frac{2}{3} \frac{|u-v|}{1+|u-v|}-\frac{|u-v|}{9} \geq 0
\end{aligned}
$$

$u=v>1$. Here, $\mathcal{T}(0, u)=\left(1, u^{2}\right)$ and $\mathcal{T}(0, v)=\left(1, v^{2}\right)$. Similarly, we get that $p=q=u^{2}=v^{2}$. So, $\alpha((0, p),(0, q))=0=\eta((0, p),(0, q))$.

Also, $\zeta(d((0, p),(0, q)), \beta(d((0, u),(0, v))) d((0, u),(0, v))) \geq 0$.
In each case, we get that \mathcal{T} is an (α, η)-proximal admissible. It is also easy to see that \mathcal{T} is triangular (α, η)-proximal admissible. Also, \mathcal{T} is a Geraghty type \mathcal{Z}-proximal contraction. Also, if $\left\{u_{n}=\left(0, p_{n}\right)\right\}$ is a sequence in P such that $\alpha\left(u_{n}, u_{n+1}\right) \geq \eta\left(u_{n}, u_{n+1}\right)$ for all n and $u_{n}=\left(0, p_{n}\right) \rightarrow u=(0, p)$ as $n \rightarrow \infty$, then $p_{n} \rightarrow p$. We have $p_{n}, p_{n+1} \in[0,1]$ or $p_{n}=p_{n+1}$. We get that $p \in[0,1]$ or $p_{n}=p$. This implies that $\alpha\left(u_{n}, u\right) \geq \eta\left(u_{n}, u\right)$ for all n.

Moreover, there is $\left(u_{0}, u_{1}\right)=\left((0,1),\left(0, \frac{1}{9}\right)\right) \in P_{0} \times P_{0}$ so that

$$
d\left(u_{1}, \mathcal{T} u_{0}\right)=1=d(P, Q) \text { and } \alpha\left(u_{0}, u_{1}\right) \geq d\left(u_{0}, u_{1}\right)
$$

Consequently, all conditions of Theorem 3 are satisfied. Therefore, \mathcal{T} has a unique best proximity point in P, which is $(0,0)$. On the other side, we indicate that (4) is not satisfied. In fact, for $u=(0,2), v=(0,3)$, we have

$$
\begin{aligned}
d(\mathcal{T} u, \mathcal{T} v) & =d(\mathcal{T}(0,2), \mathcal{T}(0,3))=d((0,4),(0,9)) \\
& =5>\frac{1}{2}=\beta(d((0,2),(0,3))) d((0,2),(0,3)) \\
& =\beta(d(u, v)) d(u, v)
\end{aligned}
$$

Corollary 1. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d), such that P_{0} is non-empty. Suppose that $\mathcal{T}: P \rightarrow Q$ is a Geraghty-proximal contraction-that is, the following implication holds for all $u, v, \rho, v \in P$:

$$
\left.\begin{array}{l}
d(\rho, \mathcal{T} u)=d(P, Q) \\
d(v, \mathcal{T} v)=d(P, Q)
\end{array}\right\} \Longrightarrow \zeta(d(\rho, v), \beta(d(u, v)) d(u, v)) \geq 0
$$

Also, assume that P is closed and $\mathcal{T}\left(P_{0}\right) \subseteq Q_{0}$. Then, \mathcal{T} has a unique best proximity point $u^{*} \in P$. Moreover, for each $u \in P$, we have $\lim _{n \rightarrow \infty} \mathcal{T}^{n} u=u^{*}$.

Proof. We take $\alpha(\sigma, \varsigma)=\eta(\sigma, \varsigma)=1$ in the proof of Theorem 2 (resp. Theorem 3).

4. Some Consequences

In this section we give new fixed-point results on a metric space endowed with a partial ordering/graph by using the results provided in the previous section. Define

$$
\alpha, \eta: M \times M \rightarrow[0, \infty), \quad \alpha(u, v)= \begin{cases}\eta(u, v), & \text { if } u \preceq v \\ 0, & \text { otherwise }\end{cases}
$$

Definition 8. Let (M, \preceq, d) be a partially ordered metric space, (P, Q) be a pair of non-empty subsets of M, and $\mathcal{T}: P \rightarrow Q$ be a given mapping. Such \mathcal{T} is said to be \preceq-proximal increasing if

$$
\left.\begin{array}{r}
u_{1} \preceq u_{2} \\
d\left(p_{1}, \mathcal{T} u_{1}\right)=d(P, Q) \\
d\left(p_{2}, \mathcal{T} u_{2}\right)=d(P, Q)
\end{array}\right\} \Longrightarrow p_{1} \preceq p_{2}
$$

for all $u_{1}, u_{2}, p_{1}, p_{2} \in P$.
Then, the following result is a direct consequence of Theorem 2 (resp. Theorem 3).
Theorem 4. Let (P, Q) be a pair of non-empty subsets of a complete ordered metric space (M, \preceq, d) so that P_{0} is non-empty and $\mathcal{T}: P \rightarrow Q$ be a given non-self-mapping. Suppose that:
(i) P is closed and $\mathcal{T}\left(P_{0}\right) \subseteq Q_{0}$;
(ii) \mathcal{T} is \preceq-proximal increasing;
(iii) There are $u_{0}, u_{1} \in P_{0}$ so that $d\left(u_{1}, \mathcal{T} u_{0}\right)=d(P, Q)$ and $u_{0} \preceq u_{1}$;
(iv) \mathcal{T} is continuous or, for every sequence $\left\{u_{n}\right\}$ in P is convergent to $u \in P$ so that $u_{n} \preceq u_{n+1}$, we have $u_{n} \preceq u$ for all $n \in \mathbb{N}$;
(v) There exist $\zeta \in \mathcal{Z}$ and $\beta \in \Sigma$, such that for all $u, v, \rho, v \in P$,

$$
\left.\begin{array}{r}
u \preceq v \tag{20}\\
d(\rho, \mathcal{T} u)=d(P, Q) \\
d(v, \mathcal{T} v)=d(P, Q)
\end{array}\right\} \Longrightarrow \zeta(d(\rho, v), \beta(d(u, v)) d(u, v)) \geq 0
$$

Then, \mathcal{T} has a best proximity point in P. If $u \preceq v$ for all $u, v \in B_{\text {est }}(\mathcal{T})$, then \mathcal{T} has a unique best proximity point $u^{*} \in P$. Moreover, for every $u \in P, \lim _{n \rightarrow \infty} \mathcal{T}^{n} u=u^{*}$.

Now, we present the existence of the best proximity point for non-self mappings from a metric space M, endowed with a graph, into the space of non-empty closed and bounded subsets of the metric space. Consider a graph G, such that the set $V(G)$ of its vertices coincides with M and the set
$E(G)$ of its edges contains all loops; that is, $E(G) \supseteq \Delta$, where $\Delta=\{(u, u): u \in M\}$. We assume G has no parallel edges, so we can identify G with the pair $(V(G), E(G))$.

Define

$$
\alpha, \eta: M \times M \rightarrow[0,+\infty), \quad \alpha(u, v)= \begin{cases}\eta(u, v), & \text { if }(u, v) \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

Definition 9. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty subsets of M and $\mathcal{T}: P \rightarrow Q$ be a given mapping. Such \mathcal{T} is said to be triangular G-proximal, if
(1) for all $u_{1}, u_{2}, p_{1}, p_{2} \in P$,

$$
\left.\begin{array}{r}
\left(u_{1}, u_{2}\right) \in E(G) \\
d\left(p_{1}, \mathcal{T} u_{1}\right)=d(P, Q) \\
d\left(p_{2}, \mathcal{T} u_{2}\right)=d(P, Q)
\end{array}\right\} \Longrightarrow\left(p_{1}, p_{2}\right) \in E(G) ;
$$

(2) $(u, v) \in E(G)$ and $(v, z) \in E(G)$ implies that $(u, z) \in E(G)$, for all $u, v, z \in P$.
for all $u_{1}, u_{2}, p_{1}, p_{2} \in P$.
The following result is a direct consequence of Theorem 2 (resp. Theorem 3).
Theorem 5. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty subsets of M so that P_{0} is non-empty and $\mathcal{T}: P \rightarrow Q$ be a given non-self mapping. Suppose that:
(i) P is closed and $\mathcal{T}\left(P_{0}\right) \subseteq Q_{0}$;
(ii) \mathcal{T} is triangular G-proximal;
(iii) There are $u_{0}, u_{1} \in P_{0}$ so that $d\left(u_{1}, \mathcal{T} u_{0}\right)=d(P, Q)$ and $\left(u_{0}, u_{1}\right) \in E(G)$;
(iv) \mathcal{T} is continuous or, for every sequence $\left\{u_{n}\right\}$ in P is convergent to $u \in P$ so that $\left(u_{n}, u_{n+1}\right) \in E(G)$, we have $\left(u_{n}, u\right) \in E(G)$ for all $n \in \mathbb{N}$;
(v) There exist $\zeta \in \mathcal{Z}$ and $\beta \in \Sigma$ such that for all $u, v, \rho, v \in P$,

$$
\left.\begin{array}{r}
(u, v) \in E(G) \tag{21}\\
d(\rho, \mathcal{T} u)=d(P, Q) \\
d(v, \mathcal{T} v)=d(P, Q)
\end{array}\right\} \Longrightarrow \zeta(d(\rho, v), \beta(d(u, v)) d(u, v)) \geq 0 .
$$

Then, \mathcal{T} has a best proximity point in P. If $(u, v) \in E(G)$ for all $u, v \in B_{\text {est }}(\mathcal{T})$, then \mathcal{T} has a unique best proximity point $u^{*} \in P$. Moreover, for every $u \in P, \lim _{n \rightarrow \infty} \mathcal{T}^{n} u=u^{*}$.

5. A Variational Inequality Problem

Let C be a non-empty, closed, and convex subset of a real Hilbert space H, with inner product $\langle\cdot, \cdot\rangle$ and a norm $\|\cdot\|$. A variational inequality problem is given in the following:

$$
\begin{equation*}
\text { Find } u \in C \text { so that }\langle S u, v-u\rangle \geq 0 \text { for all } v \in C \text {, } \tag{22}
\end{equation*}
$$

where $S: H \rightarrow H$ is a given operator. The above problem can be seen in operations research, economics, and mathematical physics, especially in calculus of variations associated with the minimization of infinite-dimensional functionals. See [21] and the references therein. It appears in variant problems of nonlinear analysis, such as complementarity and equilibrium problems, optimization, and finding fixed points; see [21-23]. To solve problem (22), we define the metric projection operator $P_{C}: H \rightarrow C$. Note that for every $u \in H$, there is a unique nearest point $P_{C} u \in C$ so that

$$
\left\|u-P_{C} u\right\| \leq\|u-v\|, \quad \text { for all } v \in C .
$$

The two lemmas below correlate the solvability of a variational inequality problem to the solvability of a special fixed-point problem.

Lemma 1 ([24]). Let $z \in H$. Then, $u \in C$ is such that $\langle u-z, y-u\rangle \geq 0$, for all $y \in C$ iff $u=P_{C} z$.
Lemma 2 ([24]). Let $S: H \rightarrow H$. Then, $u \in C$ is a solution of $\langle S u, v-u\rangle \geq 0$, for all $v \in C$, if $u=P_{C}(u-\lambda S u)$, with $\lambda>0$.

The main theorem of this section is:

Theorem 6. Let C be a non-empty, closed, and convex subset of a real Hilbert space H. Assume that $S: H \rightarrow H$ is such that $P_{C}(I-\lambda S): C \rightarrow C$ is a Geraghty-proximal contraction. Then, there is a unique element $u^{*} \in C$, such that $\left\langle S u^{*}, v-u^{*}\right\rangle \geq 0$ for all $v \in C$. Also, for any $u_{0} \in C$, the sequence $\left\{u_{n}\right\}$ given as $u_{n+1}=P_{C}\left(u_{n}-\lambda S u_{n}\right)$ where $\lambda>0$ and $n \in \mathbb{N} \cup\{0\}$, is convergent to u^{*}.

Proof. We consider the operator $\mathcal{T}: C \rightarrow C$ defined by $\mathcal{T} x=P_{C}(x-\lambda S x)$ for all $x \in C$. By Lemma 2, $u \in C$ is a solution of $\langle S u, v-u\rangle \geq 0$ for all $v \in C$, if $u=\mathcal{T} u$. Now, \mathcal{T} verifies all the hypotheses of Corollary 1 with $P=Q=C$. Now, from Corollary 1, the fixed-point problem $u=\mathcal{T} u$ possesses a unique solution $u^{*} \in C$.

Author Contributions: H.I. analyzed and prepared/edited the manuscript, H.A. analyzed and prepared/edited the manuscript, N.M. analyzed and prepared the manuscript, S.R. analyzed and prepared the manuscript.

Funding: This research received no external funding.
Acknowledgments: The third author would like to thank Prince Sultan University for funding this work through the research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Conflicts of Interest: The authors declare that they have no competing interests regarding the publication of this paper.

References

1. Abkar, A.; Gabeleh, M. Best proximity points for cyclic mappings in ordered metric spaces. J. Optim. Theory Appl. 2011, 150, 188-193. [CrossRef]
2. Al-Thagafi, M.A.; Shahzad, N. Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal. 2009, 70, 1209-1216. [CrossRef]
3. Aydi, H.; Felhi, A. On best proximity points for various α-proximal contractions on metric-like spaces. J. Nonlinear Sci. Appl. 2016, 9, 5202-5218. [CrossRef]
4. Aydi, H.; Felhi, A. Best proximity points for cyclic Kannan-Chatterjea-Ćirić type contractions on metric-like spaces. J. Nonlinear Sci. Appl. 2016, 9, 2458-2466. [CrossRef]
5. Caballero, J.; Harjani, J.; Sadarangani, K. A best proximity point theorem for Geraghty-contractions. Fixed Point Theory Appl. 2012, 2012, 231. [CrossRef]
6. Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001-1006. [CrossRef]
7. Hussain, N.; Kutbi, M.A.; Salimi, P. Best proximity point results for modified $\alpha-\psi$-proximal rational contractions. Abstr. Appl. Anal. 2013, 2013, 927457. [CrossRef]
8. Hussain, N.; Latif, A.; Salimi, P. New fixed point results for contractive maps involving dominating auxiliary functions. J. Nonlinear Sci. Appl. 2016, 9, 4114-4126. [CrossRef]
9. Işık, H.; Sezen, M.S.; Vetro, C. φ-Best proximity point theorems and applications to variational inequality problems. J. Fixed Point Theory Appl. 2017, 19, 3177-3189. [CrossRef]
10. Jleli, M.; Samet, B. Best proximity points for $\alpha-\psi$-proximal contractive type mappings and application. Bull. Sci. Math. 2013, 137, 977-995. [CrossRef]
11. Basha, S.S.; Veeramani, P. Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 2000, 103, 119-129. [CrossRef]
12. Sahmim, S.; Felhi, A.; Aydi, H. Convergence Best Proximity Points for Generalized Contraction Pairs. Mathematics 2019, 7, 176. [CrossRef]
13. Souyah, N.; Aydi, H.; Abdeljawad, T.; Mlaiki, N. Best proximity point theorems on rectangular metric spaces endowed with a graph. Axioms 2019, 8, 17. [CrossRef]
14. Tchier, F.; Vetro, C.; Vetro, F. Best approximation and variational inequality problems involving a simulation function. Fixed Point Theory Appl. 2016, 2016, 26. [CrossRef]
15. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for $\alpha-\psi$-contractive type mappings. Nonlinear Anal. 2012, 75, 2154-2165. [CrossRef]
16. Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theorems via simulation functions. Filomat 2015, 29, 1189-1194. [CrossRef]
17. Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in metric space with a partial order. J. Nonlinear Sci. Appl. 2015, 8, 1082-1094. [CrossRef]
18. Işık, H.; Gungor, N.B.; Park, C.; Jang, S.Y. Fixed point theorems for almost \mathcal{Z}-contractions with an application. Mathematics 2018, 6, 37. [CrossRef]
19. Nastasi, A.; Vetro, P. Fixed point results on metric and partial metric spaces via simulation functions. J. Nonlinear Sci. Appl. 2015, 8, 1059-1069. [CrossRef]
20. Radenovic, S.; Vetro, F.; Vujakovic, J. An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math. 2017, 50, 223-230. [CrossRef]
21. Kinderlehrer, D.; Stampacchia, G. An Introduction to Variational Inequalities and Their Applications; Academic Press: New York, NY, USA, 1980.
22. Fang, S.C.; Petersen, E.L. Generalized variational inequalities. J. Optim. Theory Appl. 1982, 38, 363-383. [CrossRef]
23. Todd, M.J. The Computations of Fixed Points and Applications; Springer: Berlin/Heidelberg, Germany, 1976.
24. Deutsch, F. Best Approximation in Inner Product Spaces; Springer: New York, NY, USA, 2001.
