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Abstract: In this study, we establish the existence and uniqueness theorems of the best proximity
points for Geraghty type Z-proximal contractions defined on a complete metric space. The presented
results improve and generalize some recent results in the literature. An example, as well as an
application to a variational inequality problem are also given in order to illustrate the effectiveness of
our generalizations.
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1. Introduction

Numerous problems in science and engineering defined by nonlinear functional equations can be
solved by reducing them to an equivalent fixed-point problem. In fact, an operator equation

Gx = 0 (1)

may be expressed as a fixed-point equation T x = x. Accordingly, the Equation (1) has a solution if the
self-mapping T has a fixed point. However, for a non-self mapping T : P→ Q, the equation T x = x
does not necessarily admit a solution. Here, it is quite natural to find an approximate solution x∗ such
that the distance d(x?, T x∗) is minimum, in which case x∗ and T x∗ are in close proximity to each
other. Herein, the optimal approximate solution x∗, for which d(x∗, T x∗) = d(P, Q), is called a best
proximity point of T . The main aim of the best proximity point theory is to give sufficient conditions
for finding the existence of a solution to the nonlinear programming problem,

min
ξ∈P

d(ξ, T ξ). (2)

Moreover, a best proximity point generates to a fixed point if the mapping under consideration is
a self-mapping. For more details on this research subject, see [1–15].

In 2015, Khojasteh et al. [16] presented the notion of Z-contraction involving a new class of
mappings—namely, simulation functions, and proved new fixed-point theorems via different methods
to others in the literature. For more details, see [17–20].

Axioms 2019, 8, 81; doi:10.3390/axioms8030081 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
http://www.mdpi.com/2075-1680/8/3/81?type=check_update&version=1
http://dx.doi.org/10.3390/axioms8030081
http://www.mdpi.com/journal/axioms


Axioms 2019, 8, 81 2 of 12

Definition 1 ([16]). A simulation function is a mapping ζ : [0, ∞)× [0, ∞)→ R so that:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(µ, η) < η − µ for all µ, η > 0;
(ζ3) If (µn), (ηn) are sequences in (0, ∞) so that lim

n→∞
µn = lim

n→∞
ηn > 0, then

lim sup
n→∞

ζ(µn, ηn) < 0. (3)

Theorem 1 ([16]). Let (M, d) be a complete metric space and T : M→ M be a Z-contraction with respect to
ζ ∈ Z—that is,

ζ(d(T ξ, T ω), d(ξ, ω)) ≥ 0, for all ξ, ω ∈ M.

Then, T admits a unique fixed point (say τ ∈ X) and, for each ξ0 ∈ M, the Picard sequence {T nξ0} is
convergent to τ.

In this study, we will consider simulation functions satisfying only the condition (ζ2). For the
sake of convenience, we identify the set of all simulation functions satisfying only the condition (ζ2)

by Z .
The main concern of the paper is to establish theorems on the existence and uniqueness of best

proximity points for Geraghty type Z-proximal contractions in complete metric spaces. The obtained
results complement and extend some known results from the literature. An example, as well as an
application to a variational inequality problem, is also given in order to illustrate the effectiveness of
our generalizations.

2. Preliminaries

Let P and Q be two non-empty subsets of a metric space, (M, d). Consider:

d(P, Q) := inf {d(ρ, ν) : ρ ∈ P, ν ∈ Q} ;

P0 := {ρ ∈ P : d(ρ, ν) = d(P, Q) for some ν ∈ Q} ;

Q0 := {ν ∈ Q : d(ρ, ν) = d(P, Q) for some ρ ∈ P} .

Denote by
Best(T ) = {u ∈ P : d(u, T u) = d(P, Q)} ,

the set of all best proximity points of a non-self-mapping T : P→ Q. In the study [5], Caballero et al.
familiarized the notion of Geraghty contraction for non-self-mappings as follows:

Definition 2 ([5]). Let P, Q be two non-empty subsets of a metric space, (M, d). A mapping T : P → Q is
called a Geraghty contraction if there is β ∈ Σ, so that for all ξ, ω ∈ P

d(T ξ, T ω) ≤ β(d(ξ, ω)) · d(ξ, ω), (4)

where the class Σ is the set of functions β : [0, ∞)→ [0, 1), satisfying

β(tn)→ 1 =⇒ tn → 0.

In the paper [10], Jleli and Samet initiated the concepts of α-ψ-proximal contractive
and α-proximal admissible mappings. They provided related best-proximity-point results.
Subsequently, Hussain et al. [7] modified the aforesaid notions and substantiated certain
best-proximity-point theorems.
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Definition 3 ([10]). Let T : P→ Q and α : P× P→ [0, ∞) be given mappings. Then, T is called α-proximal
admissible if

α(u1, u2) ≥ 1
d(p1, T u1) = d(P, Q)

d(p2, T u2) = d(P, Q)

 =⇒ α(p1, p2) ≥ 1,

for all u1, u2, p1, p2 ∈ P.

Definition 4 ([7]). Let T : P → Q and α, η : P× P → [0, ∞) be given mappings. Such T is said to be
(α, η)-proximal admissible if

α(u1, u2) ≥ η(u1, u2)

d(p1, T u1) = d(P, Q)

d(p2, T u2) = d(P, Q)

 =⇒ α(p1, p2) ≥ η(p1, p2),

for all u1, u2, p1, p2 ∈ P.

Note that if η(u, v) = 1 for all u, v ∈ P, then Definition 4 corresponds to Definition 3.
Very recently, Tchier et al. in [14] initiated the concept of Z-proximal contractions.

Definition 5 ([14]). Let P and Q be two non-empty subsets of a metric space, (M, d). A non-self-mapping
T : P→ Q is called a Z-proximal contraction if there is a simulation function ζ so that

d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

}
=⇒ ζ(d(ρ, ν), d(u, v)) ≥ 0, (5)

for all ρ, ν, u, v ∈ P.

Now, we introduce a new concept which will be efficiently used in our results.

Definition 6. Let T : P→ Q and α, η : P× P→ [0, ∞) be given mappings. Then, T is said to be triangular
(α, η)-proximal admissible, if

(1) T is (α, η)-proximal admissible;
(2) α(u, v) ≥ η(u, v) and α(v, z) ≥ η(v, z) implies that α(u, z) ≥ η(u, z), for all u, v, z ∈ P.

Now, we describe a new class of contractions for non-self-mappings which generalize the concept
of Geraghty-contractions.

Definition 7. Let P and Q be two non-empty subsets of a metric space (M, d), ζ ∈ Z and α, η : P× P →
[0, ∞) and β ∈ Σ. A non-self-mapping T : P→ Q is said to be a Geraghty type Z-proximal contraction, if for
all u, v, ρ, ν ∈ P, the following implication holds:

α(u, v) ≥ η(u, v)
d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

 =⇒ ζ(d(ρ, ν), β(d(u, v))d(u, v)) ≥ 0. (6)

Remark 1. If T : P → Q is a Geraghty type Z-proximal contraction, then by (ζ2) and Definition 7,
the following implication holds for all u, v, ρ, ν ∈ P with u 6= v:

α(u, v) ≥ η(u, v)
d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

 =⇒ d(ρ, ν) < β(d(u, v))d(u, v). (7)
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3. Main Results

Our first result is as follows.

Theorem 2. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that P0 is non-empty,
T : P→ Q and α, η : P× P→ [0, ∞) be given mappings. Suppose that:

(i) P is closed and T (P0) ⊆ Q0;
(ii) T is triangular (α, η)-proximal admissible;
(iii) There are u0, u1 ∈ P0 so that d(u1, T u0) = d(P, Q) and α (u0, u1) ≥ η (u0, u1);
(iv) T is a continuous Geraghty type Z-proximal contraction.

Then, T has a best proximity point in P. If α(u, v) ≥ η(u, v) for all u, v ∈ Best(T ), then T has a unique best
proximity point u∗ ∈ P. Moreover, for every u ∈ P, limn→∞ T nu = u∗.

Proof. From the condition (iii), there are u0, u1 ∈ P0 so that

d(u1, T u0) = d(P, Q) and α (u0, u1) ≥ η (u0, u1) .

Since T (P0) ⊆ Q0, there is u2 ∈ P0 so that

d(u2, T u1) = d(P, Q).

Thus, we get
α(u0, u1) ≥ η(u0, u1),
d(u1, T u0) = d(P, Q),
d(u2, T u1) = d(P, Q).

Since T is (α, η)-proximal admissible, we get α (u1, u2) ≥ η (u1, u2) . Now, we have

d(u2, T u1) = d(P, Q) and α (u1, u2) ≥ η (u1, u2) .

Again, since T (P0) ⊆ Q0, there exists u3 ∈ P0 such that

d(u3, T u2) = d(P, Q),

and thus,
α(u1, u2) ≥ η(u1, u2),
d(u2, T u1) = d(P, Q),
d(u3, T u2) = d(P, Q).

Since T is (α, η)-proximal admissible, this implies that α (u2, u3) ≥ η (u2, u3) . Thus, we have

d(u3, T u2) = d(P, Q) and α (u2, u3) ≥ η (u2, u3) .

By repeating this process, we build a sequence {un} in P0 ⊆ P so that

d(un+1, T un) = d(P, Q) and α (un, un+1) ≥ η (un, un+1) , (8)

for all n ∈ N∪ {0} . If there is n0 so that un0 = un0+1, then

d(un0 , T un0) = d(un0+1, T un0) = d(P, Q).

That is, un0 is a best proximity point of T . We should suppose that un 6= un+1, for all n.



Axioms 2019, 8, 81 5 of 12

From (8), for all n ∈ N, we get

α (un−1, un) ≥ η (un−1, un) ,
d(un, T un−1) = d(P, Q),
d(un+1, T un) = d(P, Q).

On the grounds that T is a Geraghty type Z-proximal contraction, by utilizing Remark 1,
we deduce that

d(un, un+1) < β(d(un−1, un))d(un−1, un), (9)

which requires that d(un, un+1) < d(un−1, un), for all n. Therefore, the sequence {d(un, un+1)} is
decreasing, and so there is λ ≥ 0 so that limn→∞ d (un, un+1) = λ. Now, we shall show that λ = 0.
On the contrary, assume that λ > 0. Then, taking into account (9), for any n ∈ N,

d(un, un+1) < β(d(un−1, un))d(un−1, un) < d(un−1, un).

This yields, for any n ∈ N,

0 <
d(un, un+1)

d(un−1, un)
< β(d(un−1, un)) < 1.

Taking n→ ∞, we find that

lim
n→∞

β(d(un−1, un)) = 1,

and since β ∈ Σ, limn→∞ d(un−1, un) = 0. This contradicts our assumption limn→∞ d(un−1, un) =

λ > 0. Therefore, we get
lim

n→∞
d(un−1, un) = 0, for all n ∈ N. (10)

We shall prove that {un} is Cauchy in P. By contradiction, suppose that {un} is not a Cauchy
sequence, so there is an ε > 0 for which we can find

{
umk

}
and

{
unk

}
of {un} such that nk is the

smallest index for which nk > mk > k and

d
(
umk , unk

)
≥ ε and d

(
umk , unk−1

)
< ε. (11)

We have

ε ≤ d
(
umk , unk

)
≤ d

(
umk , unk−1

)
+ d

(
unk−1, unk

)
< ε + d

(
unk−1, unk

)
.

Taking k→ ∞, by (10), we get
lim
k→∞

d
(
umk , unk

)
= ε. (12)

By triangular inequality,∣∣d (umk+1, unk+1
)
− d

(
umk , unk

)∣∣ ≤ d
(
umk+1, umk

)
+ d

(
unk , unk+1

)
,

which yields that
lim
k→∞

d
(
xmk+1, xnk+1

)
= ε. (13)

Since T is triangular (α, η)-proximal admissible, by using (8), we infer

α(um, un) ≥ η(um, un), for all n, m ∈ N with m < n. (14)
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Combining (8) and (14), for all k ∈ N, we have

α(umk , unk ) ≥ η(umk , unk ),
d(umk+1, T umk ) = d(P, Q),
d(unk+1, T unk ) = d(P, Q).

Regarding the fact that T is a Geraghty type Z-proximal contraction, from Remark 1,
we deduce that

d(umk+1, unk+1) < β(d(umk , unk ))d(umk , unk ) < d(umk , unk ).

Taking the limit as k tends to ∞ on both sides of the last inequality, and using the Equations (12)
and (13), we get

ε ≤ lim
k→∞

β(d(umk , unk ))ε ≤ ε,

which implies that limk→∞ β(d(umk , unk )) = 1, and so limk→∞ d(umk , unk ) = 0 which contradicts ε > 0.
Hence, {un} is a Cauchy sequence in P. Since P is a closed subset of the complete metric space (M, d),
there is p ∈ P so that

lim
n→∞

d(un, p) = 0. (15)

Since T is continuous, we have

lim
n→∞

d(T un, T p) = 0. (16)

Combining (8), (15), and (16), we get

d(P, Q) = lim
n→∞

d(un+1, T un) = d(p, T p).

Therefore, u ∈ P is a best proximity point of T . Finally, we shall show that the set Best(T ) is a
singleton. Suppose that r is another best proximity point of T , that is, d(r, T r) = d(P, Q). Then, by the
hypothesis, we have α(p, r) ≥ η(p, r)—that is,

α(p, r) ≥ η(p, r),
d(p, T p) = d(P, Q),
d(r, T r) = d(P, Q).

Then, from Remark 1, we deduce

d(p, r) < β(d(p, r))d(p, r) < d(p, r),

which is a contradiction. Hence, we have a unique best proximity point of T .

Let us consider the following assertion in order to remove the continuity on the operator T in the
next theorem.

(C) If a sequence {un} in P is convergent to u ∈ P so that α (un, un+1) ≥
η (un, un+1), then α (un, u) ≥ η (un, u) for all n ∈ N.

Theorem 3. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that P0 is non-empty,
T : P→ Q and α, η : P× P→ [0, ∞) be given mappings. Suppose that:

(i) P is closed and T (P0) ⊆ Q0;
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(ii) T is triangular (α, η)-proximal admissible;
(iii) there are u0, u1 ∈ P0 so that d(u1, T u0) = d(P, Q) and α (u0, u1) ≥ η (u0, u1);
(iv) the condition (C) holds and T is a Geraghty type Z-proximal contraction.

Then, T has a best proximity point in P. If α(u, v) ≥ η(u, v) for all u, v ∈ Best(T ), then T has a unique best
proximity point u∗ ∈ P. Moreover, for each u ∈ P, we have limn→∞ T nu = u∗.

Proof. Following the proof of Theorem 2, there exists a Cauchy sequence {un} ⊂ P0 satisfying (8) and
un → p. On account of (i), P0 is closed, and so p ∈ P0. Also, since T (P0) ⊆ Q0, there is z ∈ P0 so that

d(z, T p) = d(P, Q). (17)

Taking (C) and (8) into account, we infer

α (un, p) ≥ η (un, p) , for all n ∈ N.

Since T is (α, η)-proximal admissible and

α(un, p) ≥ η(un, p),
d(un+1, T un) = d(P, Q),
d(z, T p) = d(P, Q),

(18)

so, we conclude that

α(un+1, z) ≥ η(un+1, z), for all n ∈ N. (19)

Considering (18), (19) and Remark 1, we have

d(un+1, z) < β(d(un, p))d(un, p) < d(un, p),

which implies that limn→∞ d(un+1, z) = 0. By the uniqueness of the limit, we obtain z = p. Thus,
by (17), we deduce that d(p, T p) = d(P, Q). Uniqueness of the best proximity point follows from the
proof of Theorem 2.

Example 1. Let M = R2 be endowed with the Euclidian metric,
P = {(0, u) : u ≥ 0} and Q = {(1, u) : u ≥ 0}. Note that d(P, Q) = 1, P0 = P and Q0 = Q. Let{

β(t) = 1
1+t , if t > 0

β(t) = 1
2 , otherwise .

Then, β ∈ Σ. Define T : P→ Q and α : P× P→ [0, ∞) by

T (0, u) =

{
(1, u

9 ), if 0 ≤ u ≤ 1,

(1, u2), if u > 1,

and

α((0, u), (0, v)) =

{
2η((0, u), (0, v)), if u, v ∈ [0, 1], or u = v

0, otherwise.
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Choose ζ(t, s) = 2
3 s− t for all t, s ∈ [0, ∞). Let u, v, p, q ≥ 0 be such that

α((0, u), (0, v)) ≥ η((0, u), (0, v))

d((0, p), T (0, u)) = d(P, Q) = 1

d((0, q), T (0, v)) = d(P, Q) = 1.

Then, u, v ∈ [0, 1] or u = v.

u, v ∈ [0, 1]. Here, T (0, u) = (1, u
9 ) and T (0, v) = (1, v

9 ). Also,√
1 + (p− u

9
)2 =

√
1 + (q− v

9
)2 = 1,

that is, p = u
9 and q = v

9 . So, α((0, p), (0, q)) ≥ d((0, p), (0, q)). Moreover,

ζ(d((0, p), (0, q)), β(d((0, u), (0, v)))d((0, u), (0, v)))

=
2
3

β(d((0, u), (0, v)))d((0, u), (0, v))− d((0,
u
9
), (0,

v
9
))

=
2
3

β(|u− v|)|u− v| − |u− v|
9

.

If u = v, then β(|u− v|) = 1
2 and the right-hand side of the above inequality is equal to 0.

If u 6= v, we have

ζ(d((0, p), (0, q)), β(d((0, u), (0, v)))d((0, u), (0, v)))

=
2
3
|u− v|

1 + |u− v| −
|u− v|

9
≥ 0.

u = v > 1. Here, T (0, u) = (1, u2) and T (0, v) = (1, v2). Similarly, we get that p = q = u2 = v2. So,
α((0, p), (0, q)) = 0 = η((0, p), (0, q)).

Also, ζ(d((0, p), (0, q)), β(d((0, u), (0, v)))d((0, u), (0, v))) ≥ 0.
In each case, we get that T is an (α, η)-proximal admissible. It is also easy to see that T is triangular

(α, η)-proximal admissible. Also, T is a Geraghty type Z-proximal contraction. Also, if {un = (0, pn)} is a
sequence in P such that α (un, un+1) ≥ η (un, un+1) for all n and un = (0, pn) → u = (0, p) as n → ∞,
then pn → p. We have pn, pn+1 ∈ [0, 1] or pn = pn+1. We get that p ∈ [0, 1] or pn = p. This implies that
α (un, u) ≥ η (un, u) for all n.

Moreover, there is (u0, u1) = ((0, 1), (0, 1
9 )) ∈ P0 × P0 so that

d(u1, T u0) = 1 = d(P, Q) and α (u0, u1) ≥ d (u0, u1) .

Consequently, all conditions of Theorem 3 are satisfied. Therefore, T has a unique best proximity point in P,
which is (0, 0). On the other side, we indicate that (4) is not satisfied. In fact, for u = (0, 2), v = (0, 3), we have

d(T u, T v) = d(T (0, 2), T (0, 3)) = d((0, 4), (0, 9))

= 5 >
1
2
= β(d((0, 2), (0, 3)))d((0, 2), (0, 3))

= β(d(u, v))d(u, v).
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Corollary 1. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d), such that P0 is
non-empty. Suppose that T : P→ Q is a Geraghty-proximal contraction—that is, the following implication
holds for all u, v, ρ, ν ∈ P:

d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

}
=⇒ ζ(d(ρ, ν), β(d(u, v))d(u, v)) ≥ 0.

Also, assume that P is closed and T (P0) ⊆ Q0. Then, T has a unique best proximity point u∗ ∈ P. Moreover,
for each u ∈ P, we have limn→∞ T nu = u∗.

Proof. We take α(σ, ς) = η(σ, ς) = 1 in the proof of Theorem 2 (resp. Theorem 3).

4. Some Consequences

In this section we give new fixed-point results on a metric space endowed with a partial
ordering/graph by using the results provided in the previous section. Define

α, η : M×M→ [0, ∞), α (u, v) =

{
η(u, v), if u � v,

0, otherwise.

Definition 8. Let (M,�, d) be a partially ordered metric space, (P, Q) be a pair of non-empty subsets of M,
and T : P→ Q be a given mapping. Such T is said to be �-proximal increasing if

u1 � u2

d(p1, T u1) = d(P, Q)

d(p2, T u2) = d(P, Q)

 =⇒ p1 � p2,

for all u1, u2, p1, p2 ∈ P.

Then, the following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 4. Let (P, Q) be a pair of non-empty subsets of a complete ordered metric space (M,�, d) so that P0

is non-empty and T : P→ Q be a given non-self-mapping. Suppose that:

(i) P is closed and T (P0) ⊆ Q0;
(ii) T is �-proximal increasing;
(iii) There are u0, u1 ∈ P0 so that d(u1, T u0) = d(P, Q) and u0 � u1;
(iv) T is continuous or, for every sequence {un} in P is convergent to u ∈ P so that un � un+1, we have

un � u for all n ∈ N;
(v) There exist ζ ∈ Z and β ∈ Σ, such that for all u, v, ρ, ν ∈ P,

u � v
d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

 =⇒ ζ(d(ρ, ν), β(d(u, v))d(u, v)) ≥ 0. (20)

Then, T has a best proximity point in P. If u � v for all u, v ∈ Best(T ), then T has a unique best proximity
point u∗ ∈ P. Moreover, for every u ∈ P, limn→∞ T nu = u∗.

Now, we present the existence of the best proximity point for non-self mappings from a metric
space M, endowed with a graph, into the space of non-empty closed and bounded subsets of the
metric space. Consider a graph G, such that the set V (G) of its vertices coincides with M and the set
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E (G) of its edges contains all loops; that is, E (G) ⊇ ∆, where ∆ = {(u, u) : u ∈ M}. We assume G has
no parallel edges, so we can identify G with the pair (V (G) , E (G)).

Define

α, η : M×M→ [0,+∞), α (u, v) =

{
η(u, v), if (u, v) ∈ E (G) ,

0, otherwise.

Definition 9. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty
subsets of M and T : P→ Q be a given mapping. Such T is said to be triangular G-proximal, if

(1) for all u1, u2, p1, p2 ∈ P,

(u1, u2) ∈ E(G)

d(p1, T u1) = d(P, Q)

d(p2, T u2) = d(P, Q)

 =⇒ (p1, p2) ∈ E(G);

(2) (u, v) ∈ E(G) and (v, z) ∈ E(G) implies that (u, z) ∈ E(G), for all u, v, z ∈ P.

for all u1, u2, p1, p2 ∈ P.

The following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 5. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty
subsets of M so that P0 is non-empty and T : P→ Q be a given non-self mapping. Suppose that:

(i) P is closed and T (P0) ⊆ Q0;
(ii) T is triangular G-proximal;
(iii) There are u0, u1 ∈ P0 so that d(u1, T u0) = d(P, Q) and (u0, u1) ∈ E(G);
(iv) T is continuous or, for every sequence {un} in P is convergent to u ∈ P so that (un, un+1) ∈ E(G),

we have (un, u) ∈ E(G) for all n ∈ N;
(v) There exist ζ ∈ Z and β ∈ Σ such that for all u, v, ρ, ν ∈ P,

(u, v) ∈ E(G)

d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

 =⇒ ζ(d(ρ, ν), β(d(u, v))d(u, v)) ≥ 0. (21)

Then, T has a best proximity point in P. If (u, v) ∈ E(G) for all u, v ∈ Best(T ), then T has a unique best
proximity point u∗ ∈ P. Moreover, for every u ∈ P, limn→∞ T nu = u∗.

5. A Variational Inequality Problem

Let C be a non-empty, closed, and convex subset of a real Hilbert space H, with inner product
〈·, ·〉 and a norm ‖ · ‖. A variational inequality problem is given in the following:

Find u ∈ C so that 〈Su, v− u〉 ≥ 0 for all v ∈ C, (22)

where S : H → H is a given operator. The above problem can be seen in operations research, economics,
and mathematical physics, especially in calculus of variations associated with the minimization of
infinite-dimensional functionals. See [21] and the references therein. It appears in variant problems of
nonlinear analysis, such as complementarity and equilibrium problems, optimization, and finding
fixed points; see [21–23]. To solve problem (22), we define the metric projection operator PC : H → C.
Note that for every u ∈ H, there is a unique nearest point PCu ∈ C so that

‖u− PCu‖ ≤ ‖u− v‖, for all v ∈ C.



Axioms 2019, 8, 81 11 of 12

The two lemmas below correlate the solvability of a variational inequality problem to the
solvability of a special fixed-point problem.

Lemma 1 ([24]). Let z ∈ H. Then, u ∈ C is such that 〈u− z, y− u〉 ≥ 0, for all y ∈ C iff u = PCz.

Lemma 2 ([24]). Let S : H → H. Then, u ∈ C is a solution of 〈Su, v − u〉 ≥ 0, for all v ∈ C, if
u = PC(u− λSu), with λ > 0.

The main theorem of this section is:

Theorem 6. Let C be a non-empty, closed, and convex subset of a real Hilbert space H. Assume that S : H → H
is such that PC(I − λS) : C → C is a Geraghty-proximal contraction. Then, there is a unique element
u∗ ∈ C, such that 〈Su∗, v − u∗〉 ≥ 0 for all v ∈ C. Also, for any u0 ∈ C, the sequence {un} given as
un+1 = PC(un − λSun) where λ > 0 and n ∈ N∪ {0}, is convergent to u∗.

Proof. We consider the operator T : C → C defined by T x = PC(x− λSx) for all x ∈ C. By Lemma 2,
u ∈ C is a solution of 〈Su, v− u〉 ≥ 0 for all v ∈ C, if u = T u. Now, T verifies all the hypotheses of
Corollary 1 with P = Q = C. Now, from Corollary 1, the fixed-point problem u = T u possesses a
unique solution u∗ ∈ C.
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