

Article

Best Proximitiy Point Results for Geraghty Type \mathcal{Z} -Proximal Contractions with an Application

Hüseyin Işık ^{1,2,*}, Hassen Aydi ³, Nabil Mlaiki ⁴ and Stojan Radenović ⁵

- ¹ Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- ² Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- ³ Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, H. Sousse 4000, Tunisia
- ⁴ Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- ⁵ Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- * Correspondence: huseyin.isik@tdtu.edu.vn

Received: 18 June 2019; Accepted: 11 July 2019; Published: 18 July 2019

Abstract: In this study, we establish the existence and uniqueness theorems of the best proximity points for Geraghty type Z-proximal contractions defined on a complete metric space. The presented results improve and generalize some recent results in the literature. An example, as well as an application to a variational inequality problem are also given in order to illustrate the effectiveness of our generalizations.

Keywords: best proximity point; \mathcal{Z} -contraction; geraghty type contraction; simulation function; admissible mapping; variational inequality

MSC: 47H10; 54H25

1. Introduction

Numerous problems in science and engineering defined by nonlinear functional equations can be solved by reducing them to an equivalent fixed-point problem. In fact, an operator equation

$$Gx = 0 \tag{1}$$

may be expressed as a fixed-point equation $\mathcal{T}x = x$. Accordingly, the Equation (1) has a solution if the self-mapping \mathcal{T} has a fixed point. However, for a non-self mapping $\mathcal{T} : P \to Q$, the equation $\mathcal{T}x = x$ does not necessarily admit a solution. Here, it is quite natural to find an approximate solution x^* such that the distance $d(x^*, \mathcal{T}x^*)$ is minimum, in which case x^* and $\mathcal{T}x^*$ are in close proximity to each other. Herein, the optimal approximate solution x^* , for which $d(x^*, \mathcal{T}x^*) = d(P, Q)$, is called a best proximity point of \mathcal{T} . The main aim of the best proximity point theory is to give sufficient conditions for finding the existence of a solution to the nonlinear programming problem,

$$\min_{\xi \in P} d(\xi, \mathcal{T}\xi).$$
⁽²⁾

Moreover, a best proximity point generates to a fixed point if the mapping under consideration is a self-mapping. For more details on this research subject, see [1–15].

In 2015, Khojasteh et al. [16] presented the notion of \mathcal{Z} -contraction involving a new class of mappings—namely, simulation functions, and proved new fixed-point theorems via different methods to others in the literature. For more details, see [17–20].

Definition 1 ([16]). A simulation function is a mapping $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ so that:

- $(\zeta_1) \quad \zeta(0,0) = 0;$
- $(\zeta_2) \quad \zeta(\mu,\eta) < \eta \mu \text{ for all } \mu,\eta > 0;$
- (ζ_3) If (μ_n) , (η_n) are sequences in $(0, \infty)$ so that $\lim_{n \to \infty} \mu_n = \lim_{n \to \infty} \eta_n > 0$, then

$$\limsup_{n \to \infty} \zeta(\mu_n, \eta_n) < 0. \tag{3}$$

Theorem 1 ([16]). *Let* (M, d) *be a complete metric space and* $T : M \to M$ *be a* Z*-contraction with respect to* $\zeta \in Z$ —*that is,*

$$\zeta(d(\mathcal{T}\xi,\mathcal{T}\omega),d(\xi,\omega)) \geq 0$$
, for all $\xi,\omega \in M$.

Then, \mathcal{T} admits a unique fixed point (say $\tau \in X$) and, for each $\xi_0 \in M$, the Picard sequence $\{\mathcal{T}^n\xi_0\}$ is convergent to τ .

In this study, we will consider simulation functions satisfying only the condition (ζ_2). For the sake of convenience, we identify the set of all simulation functions satisfying only the condition (ζ_2) by Z.

The main concern of the paper is to establish theorems on the existence and uniqueness of best proximity points for Geraghty type \mathcal{Z} -proximal contractions in complete metric spaces. The obtained results complement and extend some known results from the literature. An example, as well as an application to a variational inequality problem, is also given in order to illustrate the effectiveness of our generalizations.

2. Preliminaries

Let *P* and *Q* be two non-empty subsets of a metric space, (M, d). Consider:

$$d(P,Q) := \inf \left\{ d(\rho,\nu) : \rho \in P, \nu \in Q \right\};$$

$$P_0 := \left\{ \rho \in P : d(\rho,\nu) = d(P,Q) \text{ for some } \nu \in Q \right\};$$

$$Q_0 := \left\{ \nu \in Q : d(\rho,\nu) = d(P,Q) \text{ for some } \rho \in P \right\}.$$

Denote by

$$B_{est}(\mathcal{T}) = \{ u \in P : d(u, \mathcal{T}u) = d(P, Q) \},\$$

the set of all best proximity points of a non-self-mapping $T : P \to Q$. In the study [5], Caballero et al. familiarized the notion of Geraghty contraction for non-self-mappings as follows:

Definition 2 ([5]). Let P, Q be two non-empty subsets of a metric space, (M, d). A mapping $\mathcal{T} : P \to Q$ is called a Geraghty contraction if there is $\beta \in \Sigma$, so that for all $\xi, \omega \in P$

$$d(\mathcal{T}\xi,\mathcal{T}\omega) \le \beta(d(\xi,\omega)) \cdot d(\xi,\omega),\tag{4}$$

where the class Σ is the set of functions $\beta : [0, \infty) \to [0, 1)$, satisfying

$$\beta(t_n) \to 1 \implies t_n \to 0.$$

In the paper [10], Jleli and Samet initiated the concepts of α - ψ -proximal contractive and α -proximal admissible mappings. They provided related best-proximity-point results. Subsequently, Hussain et al. [7] modified the aforesaid notions and substantiated certain best-proximity-point theorems.

Definition 3 ([10]). Let $\mathcal{T} : P \to Q$ and $\alpha : P \times P \to [0, \infty)$ be given mappings. Then, \mathcal{T} is called α -proximal admissible if

$$\left.\begin{array}{l} \alpha(u_1, u_2) \geq 1\\ d(p_1, \mathcal{T}u_1) = d(P, Q)\\ d(p_2, \mathcal{T}u_2) = d(P, Q) \end{array}\right\} \Longrightarrow \alpha(p_1, p_2) \geq 1,$$

for all $u_1, u_2, p_1, p_2 \in P$.

Definition 4 ([7]). Let $\mathcal{T} : P \to Q$ and $\alpha, \eta : P \times P \to [0, \infty)$ be given mappings. Such \mathcal{T} is said to be (α, η) -proximal admissible if

$$\left.\begin{array}{l} \alpha(u_1, u_2) \geq \eta(u_1, u_2) \\ d(p_1, \mathcal{T}u_1) = d(P, Q) \\ d(p_2, \mathcal{T}u_2) = d(P, Q) \end{array}\right\} \Longrightarrow \alpha(p_1, p_2) \geq \eta(p_1, p_2).$$

for all $u_1, u_2, p_1, p_2 \in P$.

Note that if $\eta(u, v) = 1$ for all $u, v \in P$, then Definition 4 corresponds to Definition 3. Very recently, Tchier et al. in [14] initiated the concept of \mathcal{Z} -proximal contractions.

Definition 5 ([14]). *Let* P *and* Q *be two non-empty subsets of a metric space,* (M, d)*. A non-self-mapping* $T : P \to Q$ *is called a* Z*-proximal contraction if there is a simulation function* ζ *so that*

$$\left. \begin{array}{l} d(\rho, \mathcal{T}u) = d(P, Q) \\ d(\nu, \mathcal{T}v) = d(P, Q) \end{array} \right\} \Longrightarrow \zeta(d(\rho, \nu), d(u, v)) \ge 0,$$

$$(5)$$

for all $\rho, \nu, u, v \in P$.

Now, we introduce a new concept which will be efficiently used in our results.

Definition 6. Let $\mathcal{T} : P \to Q$ and $\alpha, \eta : P \times P \to [0, \infty)$ be given mappings. Then, \mathcal{T} is said to be triangular (α, η) -proximal admissible, if

- (1) T is (α, η) -proximal admissible;
- (2) $\alpha(u,v) \ge \eta(u,v)$ and $\alpha(v,z) \ge \eta(v,z)$ implies that $\alpha(u,z) \ge \eta(u,z)$, for all $u, v, z \in P$.

Now, we describe a new class of contractions for non-self-mappings which generalize the concept of Geraghty-contractions.

Definition 7. Let *P* and *Q* be two non-empty subsets of a metric space $(M, d), \zeta \in \mathbb{Z}$ and $\alpha, \eta : P \times P \rightarrow [0, \infty)$ and $\beta \in \Sigma$. A non-self-mapping $\mathcal{T} : P \rightarrow Q$ is said to be a Geraghty type \mathbb{Z} -proximal contraction, if for all $u, v, \rho, v \in P$, the following implication holds:

$$\left. \begin{array}{l} \alpha(u,v) \ge \eta(u,v) \\ d(\rho,\mathcal{T}u) = d(P,Q) \\ d(\nu,\mathcal{T}v) = d(P,Q) \end{array} \right\} \Longrightarrow \zeta(d(\rho,\nu),\beta(d(u,v))d(u,v)) \ge 0.$$

$$(6)$$

Remark 1. If $T : P \to Q$ is a Geraghty type Z-proximal contraction, then by (ζ_2) and Definition 7, the following implication holds for all $u, v, \rho, v \in P$ with $u \neq v$:

$$\left. \begin{array}{l} \alpha(u,v) \ge \eta(u,v) \\ d(\rho,\mathcal{T}u) = d(P,Q) \\ d(\nu,\mathcal{T}v) = d(P,Q) \end{array} \right\} \Longrightarrow d(\rho,\nu) < \beta(d(u,v))d(u,v).$$

$$(7)$$

3. Main Results

Our first result is as follows.

Theorem 2. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that P_0 is non-empty, $\mathcal{T} : P \to Q$ and $\alpha, \eta : P \times P \to [0, \infty)$ be given mappings. Suppose that:

- (*i*) *P* is closed and $\mathcal{T}(P_0) \subseteq Q_0$;
- (*ii*) T is triangular (α, η) -proximal admissible;
- (*iii*) There are $u_0, u_1 \in P_0$ so that $d(u_1, Tu_0) = d(P, Q)$ and $\alpha(u_0, u_1) \ge \eta(u_0, u_1)$;
- (iv) T is a continuous Geraphty type Z-proximal contraction.

Then, \mathcal{T} has a best proximity point in P. If $\alpha(u, v) \ge \eta(u, v)$ for all $u, v \in B_{est}(\mathcal{T})$, then \mathcal{T} has a unique best proximity point $u^* \in P$. Moreover, for every $u \in P$, $\lim_{n\to\infty} \mathcal{T}^n u = u^*$.

Proof. From the condition (*iii*), there are $u_0, u_1 \in P_0$ so that

$$d(u_1, \mathcal{T}u_0) = d(P, Q)$$
 and $\alpha(u_0, u_1) \ge \eta(u_0, u_1)$.

Since $\mathcal{T}(P_0) \subseteq Q_0$, there is $u_2 \in P_0$ so that

$$d(u_2, \mathcal{T}u_1) = d(P, Q).$$

Thus, we get

$$\begin{aligned} &\alpha(u_0, u_1) \geq \eta(u_0, u_1), \\ &d(u_1, \mathcal{T}u_0) = d(P, Q), \\ &d(u_2, \mathcal{T}u_1) = d(P, Q). \end{aligned}$$

Since \mathcal{T} is (α, η) -proximal admissible, we get $\alpha(u_1, u_2) \ge \eta(u_1, u_2)$. Now, we have

$$d(u_2, \mathcal{T}u_1) = d(P, Q)$$
 and $\alpha(u_1, u_2) \ge \eta(u_1, u_2)$.

Again, since $\mathcal{T}(P_0) \subseteq Q_0$, there exists $u_3 \in P_0$ such that

$$d(u_3,\mathcal{T}u_2)=d(P,Q),$$

and thus,

$$\begin{aligned} &\alpha(u_1, u_2) \geq \eta(u_1, u_2), \\ &d(u_2, \mathcal{T}u_1) = d(P, Q), \\ &d(u_3, \mathcal{T}u_2) = d(P, Q). \end{aligned}$$

Since \mathcal{T} is (α, η) -proximal admissible, this implies that $\alpha(u_2, u_3) \geq \eta(u_2, u_3)$. Thus, we have

$$d(u_3, \mathcal{T}u_2) = d(P, Q)$$
 and $\alpha(u_2, u_3) \ge \eta(u_2, u_3)$.

By repeating this process, we build a sequence $\{u_n\}$ in $P_0 \subseteq P$ so that

$$d(u_{n+1}, \mathcal{T}u_n) = d(P, Q) \text{ and } \alpha(u_n, u_{n+1}) \ge \eta(u_n, u_{n+1}),$$
 (8)

for all $n \in \mathbb{N} \cup \{0\}$. If there is n_0 so that $u_{n_0} = u_{n_0+1}$, then

$$d(u_{n_0}, \mathcal{T}u_{n_0}) = d(u_{n_0+1}, \mathcal{T}u_{n_0}) = d(P, Q).$$

That is, u_{n_0} is a best proximity point of \mathcal{T} . We should suppose that $u_n \neq u_{n+1}$, for all n.

From (8), for all $n \in \mathbb{N}$, we get

$$\begin{aligned} &\alpha(u_{n-1}, u_n) \geq \eta(u_{n-1}, u_n), \\ &d(u_n, \mathcal{T}u_{n-1}) = d(P, Q), \\ &d(u_{n+1}, \mathcal{T}u_n) = d(P, Q). \end{aligned}$$

On the grounds that \mathcal{T} is a Geraghty type \mathcal{Z} -proximal contraction, by utilizing Remark 1, we deduce that

$$d(u_n, u_{n+1}) < \beta(d(u_{n-1}, u_n))d(u_{n-1}, u_n),$$
(9)

which requires that $d(u_n, u_{n+1}) < d(u_{n-1}, u_n)$, for all *n*. Therefore, the sequence $\{d(u_n, u_{n+1})\}$ is decreasing, and so there is $\lambda \ge 0$ so that $\lim_{n\to\infty} d(u_n, u_{n+1}) = \lambda$. Now, we shall show that $\lambda = 0$. On the contrary, assume that $\lambda > 0$. Then, taking into account (9), for any $n \in \mathbb{N}$,

$$d(u_n, u_{n+1}) < \beta(d(u_{n-1}, u_n))d(u_{n-1}, u_n) < d(u_{n-1}, u_n).$$

This yields, for any $n \in \mathbb{N}$,

$$0 < \frac{d(u_n, u_{n+1})}{d(u_{n-1}, u_n)} < \beta(d(u_{n-1}, u_n)) < 1.$$

Taking $n \to \infty$, we find that

$$\lim_{n\to\infty}\beta(d(u_{n-1},u_n))=1,$$

and since $\beta \in \Sigma$, $\lim_{n\to\infty} d(u_{n-1}, u_n) = 0$. This contradicts our assumption $\lim_{n\to\infty} d(u_{n-1}, u_n) = \lambda > 0$. Therefore, we get

$$\lim_{n \to \infty} d(u_{n-1}, u_n) = 0, \quad \text{for all } n \in \mathbb{N}.$$
(10)

We shall prove that $\{u_n\}$ is Cauchy in *P*. By contradiction, suppose that $\{u_n\}$ is not a Cauchy sequence, so there is an $\varepsilon > 0$ for which we can find $\{u_{m_k}\}$ and $\{u_{n_k}\}$ of $\{u_n\}$ such that n_k is the smallest index for which $n_k > m_k > k$ and

$$d(u_{m_k}, u_{n_k}) \ge \varepsilon \quad \text{and} \quad d(u_{m_k}, u_{n_k-1}) < \varepsilon.$$
(11)

We have

$$\varepsilon \leq d(u_{m_k}, u_{n_k}) \leq d(u_{m_k}, u_{n_k-1}) + d(u_{n_k-1}, u_{n_k})$$

< $\varepsilon + d(u_{n_k-1}, u_{n_k}).$

Taking $k \to \infty$, by (10), we get

$$\lim_{k \to \infty} d\left(u_{m_k}, u_{n_k}\right) = \varepsilon. \tag{12}$$

By triangular inequality,

$$|d(u_{m_k+1}, u_{n_k+1}) - d(u_{m_k}, u_{n_k})| \le d(u_{m_k+1}, u_{m_k}) + d(u_{n_k}, u_{n_k+1}),$$

which yields that

$$\lim_{k \to \infty} d\left(x_{m_k+1}, x_{n_k+1}\right) = \varepsilon.$$
(13)

Since \mathcal{T} is triangular (α , η)-proximal admissible, by using (8), we infer

$$\alpha(u_m, u_n) \ge \eta(u_m, u_n), \quad \text{for all } n, m \in \mathbb{N} \text{ with } m < n.$$
(14)

Combining (8) and (14), for all $k \in \mathbb{N}$, we have

$$\begin{aligned} &\alpha(u_{m_k}, u_{n_k}) \geq \eta(u_{m_k}, u_{n_k}), \\ &d(u_{m_k+1}, \mathcal{T}u_{m_k}) = d(P, Q), \\ &d(u_{n_k+1}, \mathcal{T}u_{n_k}) = d(P, Q). \end{aligned}$$

Regarding the fact that \mathcal{T} is a Geraghty type \mathcal{Z} -proximal contraction, from Remark 1, we deduce that

$$d(u_{m_k+1}, u_{n_k+1}) < \beta(d(u_{m_k}, u_{n_k}))d(u_{m_k}, u_{n_k}) < d(u_{m_k}, u_{n_k}).$$

Taking the limit as *k* tends to ∞ on both sides of the last inequality, and using the Equations (12) and (13), we get

$$\varepsilon \leq \lim_{k\to\infty} \beta(d(u_{m_k}, u_{n_k}))\varepsilon \leq \varepsilon,$$

which implies that $\lim_{k\to\infty} \beta(d(u_{m_k}, u_{n_k})) = 1$, and so $\lim_{k\to\infty} d(u_{m_k}, u_{n_k}) = 0$ which contradicts $\varepsilon > 0$. Hence, $\{u_n\}$ is a Cauchy sequence in *P*. Since *P* is a closed subset of the complete metric space (M, d), there is $p \in P$ so that

$$\lim_{n \to \infty} d(u_n, p) = 0. \tag{15}$$

Since \mathcal{T} is continuous, we have

$$\lim_{n \to \infty} d(\mathcal{T}u_n, \mathcal{T}p) = 0.$$
⁽¹⁶⁾

Combining (8), (15), and (16), we get

$$d(P,Q) = \lim_{n \to \infty} d(u_{n+1}, \mathcal{T}u_n) = d(p, \mathcal{T}p).$$

Therefore, $u \in P$ is a best proximity point of \mathcal{T} . Finally, we shall show that the set $B_{est}(\mathcal{T})$ is a singleton. Suppose that r is another best proximity point of \mathcal{T} , that is, $d(r, \mathcal{T}r) = d(P, Q)$. Then, by the hypothesis, we have $\alpha(p, r) \ge \eta(p, r)$ —that is,

$$\begin{aligned} &\alpha(p,r) \geq \eta(p,r), \\ &d(p,\mathcal{T}p) = d(P,Q), \\ &d(r,\mathcal{T}r) = d(P,Q). \end{aligned}$$

Then, from Remark 1, we deduce

$$d(p,r) < \beta(d(p,r))d(p,r) < d(p,r),$$

which is a contradiction. Hence, we have a unique best proximity point of \mathcal{T} . \Box

Let us consider the following assertion in order to remove the continuity on the operator \mathcal{T} in the next theorem.

(*C*) If a sequence $\{u_n\}$ in *P* is convergent to $u \in P$ so that $\alpha(u_n, u_{n+1}) \ge \eta(u_n, u_{n+1})$, then $\alpha(u_n, u) \ge \eta(u_n, u)$ for all $n \in \mathbb{N}$.

Theorem 3. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that P_0 is non-empty, $\mathcal{T} : P \to Q$ and $\alpha, \eta : P \times P \to [0, \infty)$ be given mappings. Suppose that:

(*i*) *P* is closed and $\mathcal{T}(P_0) \subseteq Q_0$;

- (*ii*) T is triangular (α, η) -proximal admissible;
- (*iii*) there are $u_0, u_1 \in P_0$ so that $d(u_1, Tu_0) = d(P, Q)$ and $\alpha(u_0, u_1) \ge \eta(u_0, u_1)$;
- (*iv*) the condition (C) holds and T is a Geraghty type Z-proximal contraction.

Then, \mathcal{T} has a best proximity point in P. If $\alpha(u, v) \ge \eta(u, v)$ for all $u, v \in B_{est}(\mathcal{T})$, then \mathcal{T} has a unique best proximity point $u^* \in P$. Moreover, for each $u \in P$, we have $\lim_{n\to\infty} \mathcal{T}^n u = u^*$.

Proof. Following the proof of Theorem 2, there exists a Cauchy sequence $\{u_n\} \subset P_0$ satisfying (8) and $u_n \to p$. On account of (i), P_0 is closed, and so $p \in P_0$. Also, since $\mathcal{T}(P_0) \subseteq Q_0$, there is $z \in P_0$ so that

$$d(z, \mathcal{T}p) = d(P, Q). \tag{17}$$

Taking (C) and (8) into account, we infer

$$\alpha(u_n, p) \ge \eta(u_n, p)$$
, for all $n \in \mathbb{N}$.

Since T is (α, η) -proximal admissible and

$$\begin{aligned}
\alpha(u_n, p) &\geq \eta(u_n, p), \\
d(u_{n+1}, \mathcal{T}u_n) &= d(P, Q), \\
d(z, \mathcal{T}p) &= d(P, Q),
\end{aligned}$$
(18)

so, we conclude that

$$\alpha(u_{n+1}, z) \ge \eta(u_{n+1}, z), \text{ for all } n \in \mathbb{N}.$$
(19)

Considering (18), (19) and Remark 1, we have

$$d(u_{n+1},z) < \beta(d(u_n,p))d(u_n,p) < d(u_n,p),$$

which implies that $\lim_{n\to\infty} d(u_{n+1}, z) = 0$. By the uniqueness of the limit, we obtain z = p. Thus, by (17), we deduce that d(p, Tp) = d(P, Q). Uniqueness of the best proximity point follows from the proof of Theorem 2. \Box

Example 1. Let $M = \mathbb{R}^2$ be endowed with the Euclidian metric, $P = \{(0, u) : u \ge 0\}$ and $Q = \{(1, u) : u \ge 0\}$. Note that d(P, Q) = 1, $P_0 = P$ and $Q_0 = Q$. Let

$$\begin{cases} \beta(t) = \frac{1}{1+t}, & \text{if } t > 0\\ \beta(t) = \frac{1}{2}, & \text{otherwise} \end{cases}$$

Then, $\beta \in \Sigma$ *. Define* $\mathcal{T} : P \to Q$ *and* $\alpha : P \times P \to [0, \infty)$ *by*

$$\mathcal{T}(0,u) = \begin{cases} (1,\frac{u}{9}), & \text{if } 0 \le u \le 1, \\ (1,u^2), & \text{if } u > 1, \end{cases}$$

and

$$\alpha((0,u),(0,v)) = \begin{cases} 2\eta((0,u),(0,v)), & \text{if } u,v \in [0,1], \text{ or } u = v \\ 0, & \text{otherwise.} \end{cases}$$

Choose $\zeta(t,s) = \frac{2}{3}s - t$ *for all* $t, s \in [0, \infty)$ *. Let* $u, v, p, q \ge 0$ *be such that*

$$\begin{cases} \alpha((0, u), (0, v)) \ge \eta((0, u), (0, v)) \\ d((0, p), \mathcal{T}(0, u)) = d(P, Q) = 1 \\ d((0, q), \mathcal{T}(0, v)) = d(P, Q) = 1. \end{cases}$$

Then, $u, v \in [0, 1]$ *or* u = v.

$$u, v \in [0, 1]$$
. Here, $\mathcal{T}(0, u) = (1, \frac{u}{9})$ and $\mathcal{T}(0, v) = (1, \frac{v}{9})$. Also,

$$\sqrt{1 + (p - \frac{u}{9})^2} = \sqrt{1 + (q - \frac{v}{9})^2} = 1,$$

that is, $p = \frac{u}{9}$ *and* $q = \frac{v}{9}$ *. So,* $\alpha((0, p), (0, q)) \ge d((0, p), (0, q))$ *. Moreover,*

$$\begin{split} \zeta(d((0,p),(0,q)),\beta(d((0,u),(0,v)))d((0,u),(0,v))) \\ &= \frac{2}{3}\beta(d((0,u),(0,v)))d((0,u),(0,v)) - d((0,\frac{u}{9}),(0,\frac{v}{9})) \\ &= \frac{2}{3}\beta(|u-v|)|u-v| - \frac{|u-v|}{9}. \end{split}$$

If u = v, then $\beta(|u - v|) = \frac{1}{2}$ and the right-hand side of the above inequality is equal to 0. If $u \neq v$, we have

$$\begin{aligned} \zeta(d((0,p),(0,q)),\beta(d((0,u),(0,v)))d((0,u),(0,v))) \\ &= \frac{2}{3} \frac{|u-v|}{1+|u-v|} - \frac{|u-v|}{9} \ge 0. \end{aligned}$$

u = v > 1. Here, $\mathcal{T}(0, u) = (1, u^2)$ and $\mathcal{T}(0, v) = (1, v^2)$. Similarly, we get that $p = q = u^2 = v^2$. So, $\alpha((0, p), (0, q)) = 0 = \eta((0, p), (0, q))$.

Also, $\zeta(d((0, p), (0, q)), \beta(d((0, u), (0, v)))d((0, u), (0, v))) \ge 0.$

In each case, we get that \mathcal{T} is an (α, η) -proximal admissible. It is also easy to see that \mathcal{T} is triangular (α, η) -proximal admissible. Also, \mathcal{T} is a Geraghty type \mathcal{Z} -proximal contraction. Also, if $\{u_n = (0, p_n)\}$ is a sequence in P such that $\alpha(u_n, u_{n+1}) \ge \eta(u_n, u_{n+1})$ for all n and $u_n = (0, p_n) \rightarrow u = (0, p)$ as $n \rightarrow \infty$, then $p_n \rightarrow p$. We have $p_n, p_{n+1} \in [0, 1]$ or $p_n = p_{n+1}$. We get that $p \in [0, 1]$ or $p_n = p$. This implies that $\alpha(u_n, u) \ge \eta(u_n, u)$ for all n.

Moreover, there is $(u_0, u_1) = ((0, 1), (0, \frac{1}{9})) \in P_0 \times P_0$ *so that*

$$d(u_1, \mathcal{T}u_0) = 1 = d(P, Q) \text{ and } \alpha(u_0, u_1) \ge d(u_0, u_1).$$

Consequently, all conditions of Theorem 3 are satisfied. Therefore, T has a unique best proximity point in P, which is (0,0). On the other side, we indicate that (4) is not satisfied. In fact, for u = (0,2), v = (0,3), we have

$$d(\mathcal{T}u, \mathcal{T}v) = d(\mathcal{T}(0, 2), \mathcal{T}(0, 3)) = d((0, 4), (0, 9))$$

= 5 > $\frac{1}{2} = \beta(d((0, 2), (0, 3)))d((0, 2), (0, 3))$
= $\beta(d(u, v))d(u, v).$

Corollary 1. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d), such that P_0 is non-empty. Suppose that $\mathcal{T} : P \to Q$ is a Geraghty-proximal contraction—that is, the following implication holds for all $u, v, \rho, v \in P$:

$$\left. \begin{array}{l} d(\rho, \mathcal{T}u) = d(P, Q) \\ d(\nu, \mathcal{T}v) = d(P, Q) \end{array} \right\} \Longrightarrow \zeta(d(\rho, \nu), \beta(d(u, v))d(u, v)) \ge 0.$$

Also, assume that P is closed and $\mathcal{T}(P_0) \subseteq Q_0$. Then, \mathcal{T} has a unique best proximity point $u^* \in P$. Moreover, for each $u \in P$, we have $\lim_{n\to\infty} \mathcal{T}^n u = u^*$.

Proof. We take $\alpha(\sigma, \varsigma) = \eta(\sigma, \varsigma) = 1$ in the proof of Theorem 2 (resp. Theorem 3). \Box

4. Some Consequences

In this section we give new fixed-point results on a metric space endowed with a partial ordering/graph by using the results provided in the previous section. Define

$$\alpha, \eta \colon M \times M \to [0, \infty), \quad \alpha(u, v) = \begin{cases} \eta(u, v), & \text{if } u \leq v, \\ 0, & \text{otherwise} \end{cases}$$

Definition 8. Let (M, \leq, d) be a partially ordered metric space, (P, Q) be a pair of non-empty subsets of M, and $\mathcal{T} : P \to Q$ be a given mapping. Such \mathcal{T} is said to be \leq -proximal increasing if

$$\left. \begin{array}{c} u_1 \leq u_2 \\ d(p_1, \mathcal{T}u_1) = d(P, Q) \\ d(p_2, \mathcal{T}u_2) = d(P, Q) \end{array} \right\} \Longrightarrow p_1 \leq p_2,$$

for all $u_1, u_2, p_1, p_2 \in P$.

Then, the following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 4. Let (P, Q) be a pair of non-empty subsets of a complete ordered metric space (M, \leq, d) so that P_0 is non-empty and $\mathcal{T} : P \to Q$ be a given non-self-mapping. Suppose that:

- (*i*) *P* is closed and $\mathcal{T}(P_0) \subseteq Q_0$;
- (*ii*) T is \leq -proximal increasing;
- (*iii*) There are $u_0, u_1 \in P_0$ so that $d(u_1, \mathcal{T}u_0) = d(P, Q)$ and $u_0 \leq u_1$;
- (iv) \mathcal{T} is continuous or, for every sequence $\{u_n\}$ in P is convergent to $u \in P$ so that $u_n \leq u_{n+1}$, we have $u_n \leq u$ for all $n \in \mathbb{N}$;
- (v) There exist $\zeta \in \mathcal{Z}$ and $\beta \in \Sigma$, such that for all $u, v, \rho, v \in P$,

$$\left.\begin{array}{l}
 u \leq v \\
d(\rho, \mathcal{T}u) = d(P, Q) \\
d(v, \mathcal{T}v) = d(P, Q)
\end{array}\right\} \Longrightarrow \zeta(d(\rho, v), \beta(d(u, v))d(u, v)) \geq 0.$$
(20)

Then, \mathcal{T} has a best proximity point in P. If $u \leq v$ for all $u, v \in B_{est}(\mathcal{T})$, then \mathcal{T} has a unique best proximity point $u^* \in P$. Moreover, for every $u \in P$, $\lim_{n\to\infty} \mathcal{T}^n u = u^*$.

Now, we present the existence of the best proximity point for non-self mappings from a metric space M, endowed with a graph, into the space of non-empty closed and bounded subsets of the metric space. Consider a graph G, such that the set V(G) of its vertices coincides with M and the set

E(G) of its edges contains all loops; that is, $E(G) \supseteq \Delta$, where $\Delta = \{(u, u) : u \in M\}$. We assume *G* has no parallel edges, so we can identify *G* with the pair (V(G), E(G)).

Define

$$\alpha, \eta: M \times M \to [0, +\infty), \quad \alpha(u, v) = \begin{cases} \eta(u, v), & \text{if } (u, v) \in E(G), \\ 0, & \text{otherwise.} \end{cases}$$

Definition 9. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty subsets of M and $T : P \to Q$ be a given mapping. Such T is said to be triangular G-proximal, if

(1) for all $u_1, u_2, p_1, p_2 \in P$,

$$\left. \begin{array}{c} (u_1, u_2) \in E(G) \\ d(p_1, \mathcal{T}u_1) = d(P, Q) \\ d(p_2, \mathcal{T}u_2) = d(P, Q) \end{array} \right\} \Longrightarrow (p_1, p_2) \in E(G);$$

(2) $(u,v) \in E(G)$ and $(v,z) \in E(G)$ implies that $(u,z) \in E(G)$, for all $u, v, z \in P$.

for all $u_1, u_2, p_1, p_2 \in P$.

The following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 5. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty subsets of M so that P_0 is non-empty and $\mathcal{T} : P \to Q$ be a given non-self mapping. Suppose that:

- (*i*) *P* is closed and $\mathcal{T}(P_0) \subseteq Q_0$;
- (*ii*) T is triangular *G*-proximal;
- (*iii*) There are $u_0, u_1 \in P_0$ so that $d(u_1, Tu_0) = d(P, Q)$ and $(u_0, u_1) \in E(G)$;
- (iv) \mathcal{T} is continuous or, for every sequence $\{u_n\}$ in P is convergent to $u \in P$ so that $(u_n, u_{n+1}) \in E(G)$, we have $(u_n, u) \in E(G)$ for all $n \in \mathbb{N}$;
- (v) There exist $\zeta \in \mathcal{Z}$ and $\beta \in \Sigma$ such that for all $u, v, \rho, \nu \in P$,

$$\begin{array}{c} (u,v) \in E(G) \\ d(\rho,\mathcal{T}u) = d(P,Q) \\ d(\nu,\mathcal{T}v) = d(P,Q) \end{array} \end{array} \right\} \Longrightarrow \zeta(d(\rho,\nu),\beta(d(u,v))d(u,v)) \ge 0.$$

$$(21)$$

Then, \mathcal{T} has a best proximity point in P. If $(u, v) \in E(G)$ for all $u, v \in B_{est}(\mathcal{T})$, then \mathcal{T} has a unique best proximity point $u^* \in P$. Moreover, for every $u \in P$, $\lim_{n\to\infty} \mathcal{T}^n u = u^*$.

5. A Variational Inequality Problem

Let *C* be a non-empty, closed, and convex subset of a real Hilbert space *H*, with inner product $\langle \cdot, \cdot \rangle$ and a norm $\|\cdot\|$. A variational inequality problem is given in the following:

Find
$$u \in C$$
 so that $\langle Su, v - u \rangle \ge 0$ for all $v \in C$, (22)

where $S : H \to H$ is a given operator. The above problem can be seen in operations research, economics, and mathematical physics, especially in calculus of variations associated with the minimization of infinite-dimensional functionals. See [21] and the references therein. It appears in variant problems of nonlinear analysis, such as complementarity and equilibrium problems, optimization, and finding fixed points; see [21–23]. To solve problem (22), we define the metric projection operator $P_C : H \to C$. Note that for every $u \in H$, there is a unique nearest point $P_C u \in C$ so that

$$||u - P_C u|| \le ||u - v||$$
, for all $v \in C$.

The two lemmas below correlate the solvability of a variational inequality problem to the solvability of a special fixed-point problem.

Lemma 1 ([24]). Let $z \in H$. Then, $u \in C$ is such that $\langle u - z, y - u \rangle \ge 0$, for all $y \in C$ iff $u = P_C z$.

Lemma 2 ([24]). Let $S : H \to H$. Then, $u \in C$ is a solution of $(Su, v - u) \ge 0$, for all $v \in C$, if $u = P_C(u - \lambda Su)$, with $\lambda > 0$.

The main theorem of this section is:

Theorem 6. Let *C* be a non-empty, closed, and convex subset of a real Hilbert space *H*. Assume that $S : H \to H$ is such that $P_C(I - \lambda S) : C \to C$ is a Geraghty-proximal contraction. Then, there is a unique element $u^* \in C$, such that $\langle Su^*, v - u^* \rangle \ge 0$ for all $v \in C$. Also, for any $u_0 \in C$, the sequence $\{u_n\}$ given as $u_{n+1} = P_C(u_n - \lambda Su_n)$ where $\lambda > 0$ and $n \in \mathbb{N} \cup \{0\}$, is convergent to u^* .

Proof. We consider the operator $\mathcal{T} : C \to C$ defined by $\mathcal{T}x = P_C(x - \lambda Sx)$ for all $x \in C$. By Lemma 2, $u \in C$ is a solution of $\langle Su, v - u \rangle \ge 0$ for all $v \in C$, if $u = \mathcal{T}u$. Now, \mathcal{T} verifies all the hypotheses of Corollary 1 with P = Q = C. Now, from Corollary 1, the fixed-point problem $u = \mathcal{T}u$ possesses a unique solution $u^* \in C$. \Box

Author Contributions: H.I. analyzed and prepared/edited the manuscript, H.A. analyzed and prepared/edited the manuscript, N.M. analyzed and prepared the manuscript, S.R. analyzed and prepared the manuscript.

Funding: This research received no external funding.

Acknowledgments: The third author would like to thank Prince Sultan University for funding this work through the research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Conflicts of Interest: The authors declare that they have no competing interests regarding the publication of this paper.

References

- 1. Abkar, A.; Gabeleh, M. Best proximity points for cyclic mappings in ordered metric spaces. *J. Optim. Theory Appl.* **2011**, *150*, 188–193.
- 2. Al-Thagafi, M.A.; Shahzad, N. Best proximity pairs and equilibrium pairs for Kakutani multimaps. *Nonlinear Anal.* **2009**, *70*, 1209–1216.
- 3. Aydi, H.; Felhi, A. On best proximity points for various *α*-proximal contractions on metric-like spaces. *J. Nonlinear Sci. Appl.* **2016**, *9*, 5202–5218.
- 4. Aydi, H.; Felhi, A. Best proximity points for cyclic Kannan-Chatterjea-Ćirić type contractions on metric-like spaces. J. Nonlinear Sci. Appl. 2016, 9, 2458–2466.
- 5. Caballero, J.; Harjani, J.; Sadarangani, K. A best proximity point theorem for Geraghty-contractions. *Fixed Point Theory Appl.* **2012**, 2012, 231.
- 6. Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. *J. Math. Anal. Appl.* **2006**, 323, 1001–1006.
- 7. Hussain, N.; Kutbi, M.A.; Salimi, P. Best proximity point results for modified *α*-ψ-proximal rational contractions. *Abstr. Appl. Anal.* **2013**, 2013, 927457.
- 8. Hussain, N.; Latif, A.; Salimi, P. New fixed point results for contractive maps involving dominating auxiliary functions. *J. Nonlinear Sci. Appl.* **2016**, *9*, 4114–4126.
- 9. Işık, H.; Sezen, M.S.; Vetro, C. *φ*-Best proximity point theorems and applications to variational inequality problems. *J. Fixed Point Theory Appl.* **2017**, *19*, 3177–3189.
- Jleli, M.; Samet, B. Best proximity points for *α*-ψ-proximal contractive type mappings and application. *Bull. Sci. Math.* 2013, 137, 977–995.
- 11. Basha, S.S.; Veeramani, P. Best proximity pair theorems for multifunctions with open fibres. *J. Approx. Theory* **2000**, *103*, 119–129.

- 12. Sahmim, S.; Felhi, A.; Aydi, H. Convergence Best Proximity Points for Generalized Contraction Pairs. *Mathematics* **2019**, *7*, 176.
- 13. Souyah, N.; Aydi, H.; Abdeljawad, T.; Mlaiki, N. Best proximity point theorems on rectangular metric spaces endowed with a graph. *Axioms* **2019**, *8*, 17.
- 14. Tchier, F.; Vetro, C.; Vetro, F. Best approximation and variational inequality problems involving a simulation function. *Fixed Point Theory Appl.* **2016**, 2016, 26.
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. *Nonlinear Anal.* 2012, 75, 2154–2165.
- 16. Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theorems via simulation functions. *Filomat* **2015**, *29*, 1189–1194.
- 17. Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in metric space with a partial order. *J. Nonlinear Sci. Appl.* **2015**, *8*, 1082–1094.
- Işık, H.; Gungor, N.B.; Park, C.; Jang, S.Y. Fixed point theorems for almost *Z*-contractions with an application. *Mathematics* 2018, 6, 37.
- 19. Nastasi, A.; Vetro, P. Fixed point results on metric and partial metric spaces via simulation functions. *J. Nonlinear Sci. Appl.* **2015**, *8*, 1059–1069.
- 20. Radenovic, S.; Vetro, F.; Vujakovic, J. An alternative and easy approach to fixed point results via simulation functions. *Demonstr. Math.* **2017**, *50*, 223–230.
- 21. Kinderlehrer, D.; Stampacchia, G. An Introduction to Variational Inequalities and Their Applications; Academic Press: New York, NY, USA, 1980.
- 22. Fang, S.C.; Petersen, E.L. Generalized variational inequalities. J. Optim. Theory Appl. 1982, 38, 363–383.
- 23. Todd, M.J. The Computations of Fixed Points and Applications; Springer: Berlin/Heidelberg, Germany, 1976.
- 24. Deutsch, F. Best Approximation in Inner Product Spaces; Springer: New York, NY, USA, 2001.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).