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1. Introduction

Nonassociative algebras comprise a large area of algebra. Among them, Lie algebras and their
modifications are widely used in different branches of mathematics and its applications including PDEs
, physics, quantum mechanics, informatics, and biology (see, for example, [1–5] and references therein).
There are other classes of nonassociative algebras which are less investigated. For example, octonions
and generalized Cayley–Dickson algebras play very important roles in mathematics and quantum field
theory [6–11]. Their structures and identities have attracted great attention. They are used not only
in algebra and noncommutative geometry, but also in noncommutative analysis and PDEs, particle
physics, mathematical physics, in the theory of Lie groups and algebras and their generalizations,
mathematical analysis, operator theory, and in applications in natural sciences including physics and
quantum field theory (see [2,7–9,12–25] and references therein).

A multiplicative law of their canonical generators is nonassociative and leads to a more general
notion of a metagroup instead of a group [26]. The preposition meta is used to emphasize that such
an algebraic object has milder properties than a group. Their axiomatic metagroups satisfy Conditions
(1)–(3) with the weak relation (9), as shown in Definition 1 in Section 2. They were used in [26] to
investigate automorphisms and derivations of nonassociative algebras.

An extensive area of investigation of PDEs intersects with cohomologies and deformed
cohomologies [27]. Therefore, it is important to develop this area using octonions, Cayley–Dickson
algebras, and more general metagroup algebras.

It appears that generators of Cayley–Dickson algebras form objects, which are nonassociative
generalizations of groups. They are called metagroups. This means that metagroup algebras include
the Cayley–Dickson algebras . This article is devoted to algebras generated by metagroups. Note that
a class of metagroups differs substantially from a class of groups. Indeed, a metagroup may be
nonassociative, power non-associative, or nonalternative. Moreover, left or right inverse elements in
the metagroup may not exist or it may contain elements for which left and right inverse elements do
not coincide (see Definition 1 in Section 2).
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On the other hand, algebras are frequently studied using cohomology theory. However,
the already developed cohomology theory operates with associative algebras. It has been investigated
by Hochschild and other authors [1,28–30], but it is not applicable to nonassociative algebras. In some
particular cases of nonassociative algebras, such as Lie algebras, pre-Lie algebras, flexible algebras,
and alternative algebras, homology theory was developed for the needs of studies of their structures
(see, for example, [2,31–33] and references therein). It is necessary to note that classes of these
algebras are quite different from classes of generalized Cayley–Dickson algebras and nonassociative
algebras with metagroup relations. This work is devoted to the development of cohomology theory
for nonassociative algebras, namely for its subclass of algebras with metagroup relations.

Previously, cohomologies of loop spaces on quaternion and octonion manifolds were studied
in [17]. They have specific features in comparison with the case of complex manifolds. This is
especially caused by the noncommutativity of the quaternion skew field and the nonassociativity of
the octonion algebra.

In this article, nonassociative algebras with metagroup relations are studied. Their modules and
acyclic complexes are investigated. Their cohomology theory is scrutinized in Section 2. This requires
the development of a specific axiomatic model of such algebras and their modules. Necessary structural
properties of metagroups are studied in Lemmas 1 and 2. Acyclic complexes and co-chain complexes
are described in Proposition 1 and Theorem 1. A relation of the cohomologies with quotient modules is
given by Theorem 2. Extensions and cleftings of these algebras are studied in Theorems 3–5 under the
framework of cohomology theory. Broad families of such algebras are described. In Theorem 6, inner
derivations of nonassociative algebras are investigated. A semisimplicity of nonassociative algebras is
investigated in Theorem 7 and Corollary 1.

Different types of products of metagroups are investigated in Theorems 8 and 9 in Section 3.
Examples are given. It is shown that a class of nonassociative algebras with metagroup relations
contains a subclass of generalized Cayley–Dickson algebras.

All of the key results of this paper are obtained for the first time. They can be used for
further studies of nonassociative algebras cohomologies, the structure of nonassociative algebras,
operator theory, and the spectral theory of Cayley–Dickson algebras, PDEs, noncommutative analysis,
noncommutative geometry, mathematical physics, and their applications in the sciences.

2. Cohomology Theory of Nonassociative Algebras

To avoid misunderstandings we give the necessary definitions.

Definition 1. Let G be a set with a single-valued binary operation (multiplication) G2 3 (a, b) 7→ ab ∈ G,
where G satisfies the following conditions:

(1) For each a and b in G, there is a unique x ∈ G with ax = b and
(2) A unique y ∈ G exists, satisfying ya = b, which is denoted by x = a \ b = Divl(a, b) and y = b/a =

Divr(a, b) correspondingly,
(3) A neutral (i.e., unit) element eG = e ∈ G exists: eg = ge = g for each g ∈ G.

The set of all elements h ∈ G commuting and associating with G is
(4) Com(G) := {a ∈ G : ∀b ∈ G, ab = ba},
(5) Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)},
(6) Nm(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)},
(7) Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)},
(8) N(G) := Nl(G) ∩ Nm(G) ∩ Nr(G);

C(G) := Com(G) ∩ N(G) is called the center C(G) of G.

We call G a metagroup if a set G possesses a single-valued binary operation and satisfies Conditions (1)–(3) and
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(9) (ab)c = t3(a, b, c)a(bc)
for each a, b, and c in G, where t3(a, b, c) ∈ Ψ, Ψ ⊂ C(G);
where t3 shortens a notation t3,G, where Ψ denotes a (proper or improper) subgroup of C(G).

Then G will be called a central metagroup if, in addition to (9), it satisfies the condition
(10) ab = t2(a, b)ba

for each a and b in G, where t2(a, b) ∈ Ψ.

Particularly, Invl(a) = Divl(a, e) is a left inversion, and Invr(a) = Divr(a, e) is a right inversion.
In view of the nonassociativity of G, in general, a product of several elements of G is usually

specified by opening “(” and closing “)” parentheses. We denote the product of elements a1,...,an in G
by {a1, ..., an}q(n), where a vector q(n) indicates an order of pairwise multiplications of elements in
the row a1, ..., an in braces in the following manner. The enumerate positions are as follows: before
a1 by 1, between a1 and a2 by 2,..., by n between an−1 and an, and by n + 1 after an. Then, we put
qj(n) = (k, m) if there are k opening "(" and m closing ")" parentheses in the ordered product at the
j-th position of the type )...)(...(, where k and m are nonnegative integers, q(n) = (q1(n), ...., qn+1(n))
with q1(n) = (k, 0) and qn+1(n) = (0, m).

Traditionally, Sn denotes the symmetric group of the set {1, 2, ..., n}. Henceforth, maps and
functions on metagroups are assumed to be single-valued unless otherwise specified .

Let ψ : G → G be a bijective surjective map satisfying the following condition: ψ(ab) = ψ(a)ψ(b)
for each a and b in G. Then, ψ is called an automorphism of the metagroup G.

Lemma 1. (i). Let G be a central metagroup. Then, for every a1,...,an in G, v ∈ Sn and vectors
q(n) and u(n) indicating an order of pairwise multiplications and n ∈ N, there exists an element
tn = tn(a1, ..., an; q(n), u(n)|v) ∈ Ψ such that

(1) {a1, ..., an}q(n) = tn{av(1), ..., av(n)}u(n) .

(ii). If G is a metagroup and if v is the neutral element v = id in Sn, then property (1) is satisfied.

Proof. From Conditions (1)–(8) in Definition 1, it follows that C(G) itself is a commutative group.
(i). For n = 1, evidently t1 = 1, since a = 1a for each a ∈ G. For n = 2, Formula (1) is a direct

consequence of condition (10) in Definition 1. Consider n = 3. When u is the identity element of S3,
the statement follows from condition (9) in Definition 1. For any transposition u of two elements of
the set {1, 2, 3}, the statement follows from (9) and (10) in Definition 1. Elements of S3 can be obtained
by multiplication of pairwise transpositions. Therefore, from the condition Ψ ⊂ C(G), it follows that
formula (1) is valid.

Now, let n ≥ 4 and suppose that this lemma is proved for any products consisting of
less than n elements. In view of Properties (1) and (2) in Definition 1, it is sufficient to verify
Formula (1) of this lemma for {a1, ..., an}q(n) = (...((a1a2)a3)...)an =: {a1, ..., an}l(n) since Ψ ⊂
C(G). In this particular case, {av(1), ..., av(n)}u(n) = {av(1), ..., av(n−1)}u(n−1)an. Formula (1) follows
from the induction hypothesis, since (...((a1a2)a3)...)an−1 = tn−1{av(1), ..., av(n−1)}u(n−1) and hence
((...((a1a2)a3)...)an−1)an = tn−1({av(1), ..., av(n−1)}u(n−1)an) and putting tn = tn−1, where tn−1 =

tn−1(a1, ..., an−1; q(n− 1), u(n− 1)|w) with w = v|{1,...,n−1}, v(n) = n.
In the general case, {av(1), ..., av(n)}u(n) = {b1, ..., bj, ..., bk}p(k), where j is such that either bj = cjan

with cj = {av(j), ..., av(j+m−1)}r(m) and with v(j+m) = n or bj = ancj with cj = {av(j+1), ..., av(j+m)}r(m)

and with v(j) = n. Also, b1 = av(1),...,bj−1 = av(j−1), bj+1 = av(j+1),..., bk = av(n) with suitable vectors
p(k) and r(m). If m > 1, then k < n and using the induction hypothesis for {b1, ..., bj, ..., bk}p(k) and bj,
we get that elements s and t in Ψ exist so that {b1, ..., bj, ..., bk}p(k) = s{b1, ..., bj−1, bj+1, , ..., bk}p(k−1)bj
= st({b1, ..., bj−1, bj+1, , ..., bk}p(k−1)cj)an, where p(k− 1) is a corresponding vector prescribing an order
of multiplications.
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Again, applying the induction hypothesis to the product of n − 1 elements
{b1, ..., bj−1, bj+1, , ..., bk}p(k−1)cj, we deduce that there exists w ∈ Ψ, such that

{av(1), ..., av(n)}u(n) = stw((...((a1a2)a3)...)an−1)an.
Therefore, a case remains when m = 1. Let the first multiplication in {av(1), ..., av(n)}u(n)

containing an be (av(k)av(k+1)) =: bk. We put bj = av(j) for each 1 ≤ j ≤ k − 1. We also put
bj−1 = av(j) for each k + 1 < j ≤ n, where either an = av(k) or an = av(k+1). Therefore, using
previous identities, we rewrite the considered product as {av(1), ..., av(n)}u(n) = {by(1), ..., by(n−1)}w(n−1)
with an element y ∈ Sn−1 of the symmetric group and a vector w(n − 1), indicating an order of
pairwise products (see Definition 1). From the induction hypothesis, we deduce that there exists
tn−1 ∈ Ψ, so that tn−1{by(1), ..., by(n−1)}w(n−1) = pbk with p = {b1, ..., bk−1, bk+1, ..., bn−1}w(n−1),
because G is the central metagroup. Applying the induction hypothesis for n = 3, we infer that
t3 ∈ Ψ exists, such that tn−1t3{by(1), ..., by(n−1)}w(n−1) = (pa)an, where either a = av(k+1) or
a = av(k), correspondingly. From the induction hypothesis for n − 1, it follows that t̃n−1 ∈ Ψ

exists, so that t̃n−1 pa = (...((a1a2)a3)...)an−1, and hence, {a1, ..., an}l(n) = tn{av(1), ..., av(n)}u(n),
where tn = t̃n−1tn−1t3.

(ii). Now, let G be a metagroup and v = id be the neutral element of the symmetric group
Sn, where id(k) = k for each k ∈ N. Then, using condition (10) of Definition 1 is unnecessary,
because transpositions are already not utilized. For n = 1 and n = 2, we get t1 = 1 and t2 = 1,
since a = 1a and ab = 1ab for each a and b in G. For n = 3, Formula (1) of this lemma follows on from
condition (9) in Definition 1. Then, the proof in case (ii) by induction is a simplification of that of
case (i).

Lemma 2. If G is a metagroup, then for each a and b ∈ G, the following identities are fulfilled:

(1) b \ e = (e/b)t3(e/b, b, b \ e);
(2) (a \ e)b = (a \ b)t3(e/a, a, a \ e)/t3(e/a, a, a \ b);
(3) b(e/a) = (b/a)t3(b/a, a, a \ e)/t3(e/a, a, a \ e).

Proof. Conditions (1)–(3) in Definition 1 imply that

(4) b(b \ a) = a, b \ (ba) = a;
(5) (a/b)b = a, (ab)/b = a

for each a and b in G. Using Condition (9) in Definition 1 and Identities (4) and (5), we deduce that
e/b = (e/b)(b(b \ e)) = (b \ e)/t3(e/b, b, b \ e) which leads to (1).

Let c = a \ b. Then, from Identities (1) and (4), it follows that (a \ e)b = (e/a)t3(e/a, a, a \ e)(ac)
= ((e/a)a)(a \ b)t3(e/a, a, a \ e)/t3(e/a, a, a \ b) which provides (2).

Now, let d = b/a. Then, Identities (1) and (5) imply that b(e/a) = (da)(a \ e)/t3(e/a, a, a \ e) =
(b/a)t3(b/a, a, a \ e)/t3(e/a, a, a \ e) which demonstrates (3).

Definition 2. Let A be an algebra over an associative unital ring T , such that A has a natural structure of
a (T , T )-bimodule with a multiplication map A× A → A, which is right and left distributive, a(b + c) =
ab + ac, (b + c)a = ba + ca, and also satisfies the identities r(ab) = (ra)b, (ar)b = a(rb), (ab)r = a(br),
s(ra) = (sr)a, and (ar)s = a(rs) for any a, b, and c in A, r and s in T . Let G be a metagroup and T be
an associative unital ring.

Henceforth, the ring T is assumed to be commutative, unless otherwise specified.
Then, by T [G], a metagroup algebra is denoted over T for all formal sums s1a1 + ... + snan satisfying

Conditions (1− 3) below, where n is a positive integer, s1,...,sn are in T , and a1,...,an belong to G:

(1) sa = as for each s in T and a in G,
(2) s(ra) = (sr)a for each s and r in T , and a ∈ G,
(3) r(ab) = (ra)b, (ar)b = a(rb), (ab)r = a(br) for each a and b in G, r ∈ T .
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Note 1. Let M be an additive commutative group such that M is a two-sided G-module, where G is a metagroup.
We remind the reader that this means that automorphisms p(g) and s(g) of M correspond to each g ∈ G. For
short, we use gx = p(g)x and xg = xs(g) for each g ∈ G.

Note that, usually, M has a natural structure of a two-sided Z-module, because M is the additive
commutative group, where Z denotes the ring of all integers. Therefore, M is a two-sided G-module if and
only if it is a two-sided Z[G]-module according to the formulas (∑g∈G n(g)g)x = ∑g∈G n(g)(gx) and
x(∑g∈G n(g)g) = ∑g∈G(xg)n(g), where n(g) ∈ Z for each g ∈ G.

One can consider the additive group of integers Z as the trivial two-sided G-module putting gn = ng = n
for each g ∈ G and n ∈ Z, where G is a metagroup.

Example 1. I. Recall the following: Let A be a unital algebra over a commutative associative unital ring
F supplied with a scalar involution a 7→ ā so that its norm N and trace T maps have values in F and
fulfill conditions:

(1) aā = N(a)1 with N(a) ∈ F,
(2) a + ā = T(a)1 with T(a) ∈ F,
(3) T(ab) = T(ba)

for each a and b in A.
If a scalar f ∈ F satisfies the condition ∀a ∈ A f a = 0⇒ a = 0, then such element f is called cancelable.

For a cancelable scalar f , the Cayley–Dickson doubling procedure provides new algebra C(A, f ) over F such that

(4) C(A, f ) = A⊕ Al,
(5) (a + bl)(c + dl) = (ac− f d̄b) + (da + bc̄)l and
(6) (a + bl) = ā− bl

for each a and b in A. Then, l is called a doubling generator. From the definitions of T and N, it follows that
∀a ∈ A, ∀b ∈ A T(a) = T(a+ bl) and N(a+ bl) = N(a)+ f N(b). The algebra A is embedded into C(A, f )
as A 3 a 7→ (a, 0), where (a, b) = a + bl. This is put by induction An( f(n)) = C(An−1, fn), where A0 = A,
f1 = f , n = 1, 2, ..., f(n) = ( f1, ..., fn). Then, An( f(n)) are generalized Cayley–Dickson algebras when F is
not a field or Cayley–Dickson algebras when F is a field.

It is natural to put A∞( f ) :=
⋃∞

n=1 An( f(n)), where f = ( fn : n ∈ N). If char(F) 6= 2, let Im(z) =
z − T(z)/2 be the imaginary part of a Cayley–Dickson number z, and hence N(a) := N2(a, ā)/2,
where N2(a, b) := T(ab̄).

If the doubling procedure starts from A = F1 =: A0, then A1 = C(A, f1) is a ∗-extension of F.
If A1 has a basis {1, u} over F with the multiplication table u2 = u + w, where w ∈ F and 4w + 1 6= 0
with the involution 1̄ = 1, ū = 1− u, then A2 is the generalized quaternion algebra, and A3 is the
generalized octonion (Cayley–Dickson) algebra.

When F = R and fn = 1, each n by Ar will denote the real Cayley–Dickson algebra with
generators i0, ..., i2r−1, such that i0 = 1, i2j = −1 for each j ≥ 1, ijik = −ikij for each j 6= k ≥ 1. Note that
the Cayley–Dickson algebra Ar for each r ≥ 3 is nonassociative, for example, (i1i2)i4 = −i1(i2i4), etc.
Moreover, for each r ≥ 4, the Cayley–Dickson algebra Ar is nonalternative (see [7–9]). Frequently, ā
is also denoted by a∗ or ã. Then, Gr = {ij, − ij : j = 0, 1, ..., 2r − 1} is a finite metagroup for each
3 ≤ r < ∞.

Let An be a Cayley–Dickson algebra over a commutative associative unital ring R that is
characteristically different from two, such that A0 = R, n ≥ 2. Take its basic generators i0, i1, ..., i2n−1,
where i0 = 1. Choose Ψ as a multiplicative subgroup contained in the ringR, such that f j ∈ Ψ for each
j = 0, ..., n. Put Gn = {i0, i1, ..., i2n−1} ×Ψ. Then, Gn is a central metagroup.

II. More generally, let H be a group such that Ψ ⊂ H with relations hik = ikh and (hg)ik = h(gik)

for each k = 0, 1, ..., 2n − 1 and each h and g in H. Then, Gn = {i0, i1, ..., i2n−1} × H is also a metagroup.
If the group H is noncommutative, then the latter metagroup can be noncentral (see Condition (10) in
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Definition 1). Using the notation of Example 1. I, we get that the Cayley–Dickson algebra A∞ over the
real field R with fn = 1 for each n provides an example of a metagroup G∞ = {ij, − ij : 0 ≤ j ∈ Z},
where Z denotes the ring of integers.

III. Generally metagroups need not be central. From given metagroups, new metagroups can
be constructed using their direct or semidirect products. Certainly, each group is a metagroup also.
Therefore, there are abundant families of noncentral metagroups and also of central metagroups
different from groups.

In another way, smashed products of groups and of metagroups can be considered by providing
other examples of metagroups (for more detail, see Section 3).

Definition 3. Let R be a ring, which may be nonassociative relative to the multiplication. If the mapping
R×M→ M, R×M 3 (a, m) 7→ am ∈ M exists, such that a(m+ k) = am+ ak and (a+ b)m = am+ bm
for each a and b in R, m and k in M, then M will be called a generalized left R-module or, for short, a
leftR-module or left module overR.

If R is a unital ring and 1m = m for each m ∈ M, then M is called a left unital module over R,
where 1 denotes the unit element in the ringR. Symmetrically, a rightR-module is defined.

If M is a left and rightR-module, then it is called a two-sidedR-module or a (R,R)-bimodule.
If M is a leftR-module and a right S-module, then it is called a (R,S)-bimodule.

A two-sided module M overR is called cyclic if an element y ∈ M exists such that M = R(yR)
and M = (Ry)R, whereR(yR) = {s(yp) : s, p ∈ R} and (Ry)R = {(sy)p : s, p ∈ R}.

Let G be a metagroup. Take a metagroup algebra A = T [G] and a two-sided A-module M,
where T is an associative unital ring (see Definition 2). Let Mg be a two-sided T -module for each
g ∈ G, where G is the metagroup. Let M have the decomposition M = ∑g∈G Mg as a two-sided
T -module. Let M also satisfy the following conditions:

(1) hMg = Mhg and Mgh = Mgh,
(2) (bh)xg = b(hxg) and xg(bh) = (xgh)b and bxg = xgb,
(3) (hs)xg = t3(h, s, g)h(sxg) and (hxg)s = t3(h, g, s)h(xgs) and (xgh)s = t3(g, h, s)xg(hs)

for every h, g, s in G and b ∈ T and xg ∈ Mg. Then, a two-sided A-module M satisfying conditions
(1)–(3) is called smashly G-graded. For short, it is also called "G-graded" instead of "smashly
G-graded". In particular, if the module M is G-graded and splits into a direct sum M =

⊕
g∈G Mg of

two-sided T -submodules Mg, then we say that that M is directly G-graded. For a nontrivial (nonzero)
G-graded module X with the nontrivial metagroup G, it is supposed that g ∈ G exists such that
Xg 6= Xe if something else is not outlined.

Similarly, G-graded left and right A-modules are defined. Henceforward, speaking about
A-modules (left, right, or two-sided), it is supposed that they are G-graded and, for short,
“an A-module” is written instead of “a G-graded A-module”, unless otherwise specified.

If P and N are left A-modules and a homomorphism γ : P → N is such that γ(ax) = aγ(x) for
each a ∈ A and x ∈ P, then γ is called a left A-homomorphism. Analogously, right A-homomorphisms
are defined for right A-modules. For two-sided A modules, a left and right A-homomorphism is called
an A-homomorphism.

For left T -modules M and N by HomT (M, N), a family of all left T -homomorphisms is
defined from M into N. A similar notation is used for a family of all T -homomorphisms (or right
T -homomorphisms) of two-sided T -modules (or right T -modules correspondingly). If an algebra A
is specified, a homomorphism may be written for short, instead of an A-homomorphism.

Example 2. Let T be a commutative associative unital ring. Also, let G be a metagroup and A = T [G] be
a metagroup algebra, where A is considered to be a T -algebra. Put K−1 = A, K0 = A⊗T A and use induction
Kn+1 = Kn ⊗T A for each natural number n. Each Kn is supplied with a two-sided A-module structure:
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(1) ∀p ∈ T [C(G)], p · (x0, ..., xn+1) = ((px0), ..., xn+1) and

(x0, ..., (xn+1 p)) = (x0, ..., xn+1) · p and

∀j ∈ {1, ..., n}, p · (x0, ..., xn+1) = (x0, ..., (pxj), ..., xn+1) and

(x0, ..., (xj p), ..., xn+1) = (x0, ..., xn+1) · p,

where 0 · (x1, ..., xn) = 0;
(2) (xy) · (x0, ..., xn+1) = t3 · (x · (y · (x0, ..., xn+1)))

with t3 = t3(x, y, b), (see also Formula (9) in Definition 1 above);
(3) t3 · ((x0, ..., xn+1) · (xy)) = ((x0, ..., xn+1) · x) · y with t3 = t3(b, x, y);
(4) (x · (x0, ..., xn+1)) · y = t3 · (x · ((x0, ..., xn+1) · y)) with t3 = t3(x, b, y);
(5) x · (x0, ..., xn+1) = tn+3(x, x0, ..., xn+1; v0(n + 3); l(n + 3)) · ((xx0), x1, ..., xn+1)

where {x, x0, ..., xn+1}v0(n+3) = x{x0, ..., xn+1}l(n+2),

{x0, ..., xn+1}l(n+2) = {x0, ..., xn}l(n+1)xn+1,

{x0}l(1) = x0, {x0x1}l(2) = x0x1;
where b = {x0, ..., xn+1}l(n+2),

tn(x1, ..., xn; u(n), w(n)) := tn(x1, ..., xn; u(n), w(n)|id)
using the shortened notation;

(6) (x0, ..., xn+1) · x = tn+3(x0, ..., xn+1, x; l(n + 3), vn+2(n + 3)) · (x0, ..., xn, (xn+1x))
for every x, y, x0, ..., xn+1 in G, where (x0, ..., xn+1) denotes a basic element of Kn over T , corresponding
to the left ordered tensor product

(...((x0 ⊗ x1)⊗ x2)...⊗ xn)⊗ xn+1,

{x0, ..., xn+1, x}vn+2(n+3) = {x0, ..., xn, xn+1x}l(n+2).

Proposition 1. For each metagroup algebra A = T [G] (see Definition 2), an acyclic left A-complex K exists.

Proof. Take two-sided A-modules Kn, as in example 2. We construct a boundary T -linear operator
∂n : Kn → Kn−1 on Kn. For basic elements, it is given by the following formulas:

(1) ∂n((x · (x0, x1, ..., xn, xn+1)) · y) =

∑n
j=0(−1)j · tn+4(x, x0, ..., xn+1, y; l(n + 4), uj+1(n + 4))

·((x · (< x0, x1, ..., xn+1 >j+1,n+2)) · y), where
(2) < x0, ..., xn+1 >1,n+2:= ((x0x1), x2, ..., xn+1),
(3) < x0, ..., xn+1 >2,n+2:= (x0, (x1x2), x3, ..., xn+1),...,
(4) < x0, ..., xn+1 >n+1,n+2:= (x0, ..., xn−1, (xnxn+1)),
(5) ∂0(x · (x0, x1)) · y = (x · (x0x1)) · y,
(6) {x0, x1, ..., xn+1}l(n+2) := (...((x0x1)x2)...)xn+1;
(7) {x, x0, ..., xn+1, y}u1(n+4) := (x{(x0x1), x2, ..., xn+1}l(n+1))y,...,
(8) {x, x0, ..., xn+1, y}un+1(n+4) := (x{x0, x1, ..., (xnxn+1)}l(n+1))y

for each x, x0, ..., xn+1, y in G. On the other hand, from formulas (1) and (2) in Definition 1, it follows
that tn+4(x, x0, ..., xn+1, y; l(n + 4), uj+1(n + 4)) = tn+2(x0, ..., xn+1; l(n + 2), vj+1(n + 2)) for each j =
0, ..., n, where

(9) {x0, ..., xn+1}v1(n+2) := {(x0x1), x2, ..., xn+1}l(n+1),...,
(10) {x0, ..., xn+1}vn+1(n+2) := {x0, x1, ..., (xnxn+1)}l(n+1)

for every x0, ..., xn+1 in G. Therefore, ∂n is a left and right A-homomorphism of (A, A)-modules.
In particular, ∂1((x · (x0, x1, x2)) · y) = (x · ((x0x1), x2)) · y − t3(x0, x1, x2) · (x · (x0, (x1x2))) · y,
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∂2((x · (x0, x1, x2, x3)) · y) = (x · ((x0x1), x2, x3)) · y− t4(x0, ..., x3; l(4), v2(4)) · ((x · (x0, (x1x2), x3)) ·
y) + t4(x0, ..., x3; l(4), v3(4); id)((x · (x0, x1, (x2x3))) · y).

Define a T -linear homomorphism sn : Kn → Kn+1, which, for basic elements, has the form

(11) sn(x0, ..., xn+1) = (1, x0, ...., xn+1) for every x0, ..., xn+1 in G. From Formulas (9) and (10) in
Definition 1 and (1) in Lemma 1 the identities

(12) tn(x1, ..., xn; q(n), u(n)|v)tn(x1, ..., xn; u(n), q(n)|v−1) = 1
(13) tn(x1, ..., xn; q(n), u(n))tn(x1, ..., xn; u(n), w(n)) = tn(x1, ..., xn; q(n), w(n)) follow for every

element x1,...,xn in metagroup G. Vectors q(n), u(n), and w(n) indicate the orders of their
multiplication, v ∈ Sn and n ∈ N. The following identity is evident:

(14) tn+1(1, x1, ..., xn; q(n + 1), u(n + 1)|v(n + 1)) = tn(x1, ..., xn; q(n), u(n)|v(n))
for data q(n), u(n) and v(n) obtained from q(n + 1), u(n + 1), and v(n + 1) correspondingly
by taking the identity 1b = b1 = b into account for each b ∈ G. Hence, sn((x0, ..., xn+1) · y) =
(sn(x0, ..., xn+1)) · y for every x0, ..., xn+1, y in G.

Let pn : Kn+1 → Kn be a T -linear mapping, such that
(15) pn(a⊗ b) = a · b and pn(b⊗ a) = b · a for each a ∈ Kn and b ∈ A. Therefore, from Formulas (13)

and (14), we deduce that pnsn = id is the identity on Kn. Consequently, sn is a monomorphism.

Therefore, from Formulas (1), (11), (13), and (14) we infer that (∂n+1sn + sn−1∂n)(x0, ..., xn+1) =

= ∂n+1(1, x0, ..., xn+1)+ sn−1(∑n
j=0(−1)jtn+2(x0, ..., xn+1; l(n + 2), vj+1(n + 2))· < x0, ..., xn+1 >j+1,n+2

)) = = ∑n+1
j=0 (−1)jtn+3(1, x0, ..., xn+1; l(n + 3), vj+1(n + 3))· < 1, x0, x1, ..., xn+1 >j+1,n+3 +

+∑n
j=0(−1)jtn+2(x0, ..., xn+1; l(n + 2), vj+1(n + 2))· < 1, x0, ..., xn+1 >j+2,n+3= (x0, ..., xn+1), for every

x0,...,xn+1 in G (see also Definitions 2 and 3 and the notations above).
Thus, the homotopy conditions

(16) ∂n+1sn + sn−1∂n = 1 for each n ≥ 0
are fulfilled, where 1 denotes the identity operator on Kn. Therefore, the recurrence relation

(17) ∂n∂n+1sn = sn−2∂n−1∂n

is accomplished, since

∂n∂n+1sn = ∂n(1− sn−1∂n) = ∂n − (∂nsn−1)∂n = ∂n − (1− sn−2∂n−1)∂n.

On the other hand, from Formula (11), it follows that Kn+1, as the left A-module, is generated by
snKn. Then, proceeding by induction in n with the help of (17), we deduce that ∂n∂n+1 = 0 for each
n ≥ 0, since ∂0∂1 = 0 according to Formulas (1) and (5).

An opposite algebra Aop exists. The latter, as an T -linear space, is the same, but has the
multiplication x ◦ y = yx for each x, y ∈ Aop. Let Ae := A⊗T Aop denote the enveloping algebra of A.
Apparently, K0 = A⊗T A coincides with A⊗T Aop as a left and right A-module. Hence, the mapping
∂0 : K0 → K−1 provides the augmentation ε : Ae → A.

Thus, identity (16) means that the left complex K 0← A ←−
∂0

K0 ←−∂1
K1 ←−∂2

K2←−. .. ←−
∂n

Kn ←−−∂n+1
Kn+1 ← ....

is acyclic.

Example 3. For the Cayley–Dickson algebra An over a field F of characteristics not equal to two, let G = Gn,
as the (multiplicative) metagroup, consist of all elements bik with b ∈ Ψ, k = 0, 1, 2, ..., where i0, i1, i2, ...
are generators of the Cayley–Dickson algebra An, 2 ≤ n ≤ ∞. Then, M = Aj

n is the module over Z[G],
where j ∈ N.

Example 4. For a topological space U, it is possible to consider the module M = C(U, Aj
n) of all continuous

mappings from U into Aj
n, j ∈ N, Aj

n, which is supplied with the box product topology.

Example 5. If (U,B, µ) is a measure space, where µ : B → [0, ∞) is a σ-additive measure on a σ-algebra B
of a set U, for F = R and fk = 1 for each k, it is possible to consider the space Lp((U,B, µ), Aj

n) of all Lp
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mappings from U into Aj
n, where An is taken relative to its norm induced by the scalar product Re(ȳz) = (y, z),

j ∈ N, 1 ≤ p ≤ ∞.

Example 6. For an additive group H, one can consider the trivial action of A on H. Therefore, the direct
product M

⊗
H becomes an A-module for an A-module M. In particular, H may be a ring.

Example 7. If there is another ring S and a homomorphism φ : S → T , then each left (or right) T -module
M can be considered as a left (or right, correspondingly) S-module by the rule bm = (φb)m (or mb = m(φb)
correspondingly) for each b ∈ S and m ∈ M.

Vice versa, if M is a right (or left) S-module, then the right (or left, correspondingly) module
exists M(φ) = M ⊗S T (or (φ)M = T ⊗S M, correspondingly), which is called the right (or left
correspondingly) covariant φ-extension of M. Similarly, the contravariant right and left extensions
M(φ) = HomS (T , M) or (φ)M are defined for right or left S-modules M, respectively.

This also can be applied to a metagroup algebra A = S [G] over a commutative associative unital
ring S as in Example 1. Then, by changing a ring, we get right A(φ) or A(φ) and left (φ)A or (φ)A
algebras over T . Then, imposing the relation ta = at for each a ∈ A and t ∈ T provides a metagroup
algebra over T , which also has a two-sided T -module structure. It will be denoted by (φ)A(φ) or
(φ)A(φ), respectively. Particularly, this is applicable to cases when Z[Ψ] ⊂ S or φ is an embedding.

Notation 1. Let A = T [G] be a metagroup algebra (see Definition 2). Put L0 = T , L1 = A and by induction,
Ln+1 = Ln ⊗T A for each natural number n.

If N is a two-sided A-module, it can also be considered as a left Ae-module by the rule (x ⊗ y∗)b :=
(x ⊗ b)⊗ y for each x ∈ A, y∗ ∈ Aop, and b ∈ N, Ae = A⊗T Aop is an enveloping algebra, where Aop

denotes the opposite algebra of A, where y∗ in Aop corresponds to y in element A.

Theorem 1. If K is an acyclic left A-complex for a metagroup algebra A = T [G], as in Proposition 1, and M
is a two-sided A-module satisfying Conditions (1− 3) in Definition 3, then a co-chain complex Hom(L, M)

exists:

(1) 0→ HomT (L0, M)−→
ε∗

HomT (L1, M)−→
δ1 HomT (L2, M)−→

δ2 HomT (L3, M)−→
δ3 HomT (L4, M)−→

δ4 ...

such that f ∈ HomT (L1, M) is a co-cycle, if and only if f is a T -linear derivation from A into M.

Proof. Notation 1 and Example 2 permit each basic element (x0, ..., xn+1) of Kn over T to be written as

(1) (x0, ..., xn+1) = tn+2(x0, ..., xn+1; l(n + 2), w(n + 2))· ((x0 ⊗ (x1, ..., xn))⊗ xn+1) and
(2) (x0, ..., xn+1) = tn+2(x0, ..., xn+1; l(n + 2), w(n + 2))· (z⊗ (x1, ..., xn)), where (x1, ..., xn) is a basic

element in Ln for every x0, ..., xn+1 in G, {x0, ..., xn+1}w(n+2) = (x0{x1, ..., xn}l(n))xn+1, z ∈ Ae,
z = x0 ⊗ x∗n+1.

Each homomorphism f ∈ HomT (Ln, M) is characterized by its values on elements (x1, ..., xn),
where x1,..,xn belong to a metagroup G. Consider f as a T -linear function from An into M. Since M
satisfies Conditions (1− 3) in Definition 3, then f has the decomposition

(2) f (x1, ..., xn) = ∑g∈G fg(x1, ..., xn),

where fg : Gn → Mg for every g and x1, ..., xn in G.
Therefore, the restrictions follow from Conditions (1− 3) in Definition 3, which take into account

the nonassociativity of G:

(3) (xy) · fg(x1, ..., xn) = t3(x, y, g) · (x · (y · fg(x1, ..., xn))),
(4) t3(g, x, y) · ( fg(x1, ..., xn) · (xy)) = ( fg(x1, ..., xn) · x) · y,
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(5) (x · fg(x1, ..., xn)) · y = t3(x, g, y) · (x · ( fg(x1, ..., xn) · y))
for every g and x, y, x1, ..., xn in G, where coefficients t3 are prescribed by Formula (9) in
Definition 1. Also,

(6) x · fg(x1, ..., xn) := x · ( fg(x1, ..., xn)) and
(7) fg(x1, ..., xn) · y := ( fg(x1, ..., xn)) · y.

For n = 0 and g = e, naturally, the identities are fulfilled:
(8) (xy) · fe( ) = x · (y · fe( )), ( fe( ) · x) · y = fe( ) · (xy) and (x · fe( )) · y = x · ( fe( ) · y).

A co-boundary operator exists that takes into account the nonassociativity of the (multiplicative)
metagroup G:

(9) (δn f )(x1, ..., xn+1) = ∑n+1
j=0 (−1)jtn+1(x1, ..., xn+1; l(n + 1), uj+1(n + 1)) · [ f , x1, x2, ..., xn+1]j+1,n+1,

where
(10) [ f , x1, ..., xn+1]1,n+1 := x1 · f (x2, ..., xn+1), {x1, ..., xn+1}u1(n+1) = x1{x2, ..., xn+1}l(n);
(11) [ f , x1, ..., xn+1]2,n+1 := f ((x1x2), ..., xn+1), {x1, ..., xn+1}u2(n+1) = {(x1x2), ..., xn+1}l(n);...;
(12) [ f , x1, ..., xn+1]n+1,n+1 := f (x1, x2, ..., (xnxn+1)); {x1, ..., xn+1}un+1(n+1) = {x1, ..., (xnxn+1)}l(n);
(13) [ f , x1, ..., xn+1]n+2,n+1 := f (x1, x2, ..., xn) · xn+1, {x1, ..., xn+1}un+2(n+1) = {x1, ..., xn+1}l(n+1) =

(...((x1x2)x3)...xn)xn+1; with u0(n + 1) = l(n + 1).

From Gn+1 onto Kn+1, the homomorphism (δn f ) is extended by the T -linearity. On the other
hand, Condition (1) in Definition 3 implies that

(14) For each b ∈ G, h1,b exists, so that h1,b : Kn+1 → M1 and fb = h1,bLb, where Lb is the left
multiplication operator on b:

(15) (h1,bLb)(x1, ..., xn) = b · (h1,b(x1, ..., xn)) for every x1, ..., xn in G. Moreover, zg = 0 (or gz = 0) in
Z[G] for g ∈ G and z ∈ Z[G], if and only if z = 0, since G is a metagroup.

By virtue of Proposition 1, these formulas imply that δn+1 ◦ δn = 0 for each n, since (δn+1 ◦
δn f )(x1, ..., xn+2) = f (∂n−1 ◦ ∂n(x1, ..., xn+2)) for every x1, ..., xn+2 in G. Thus, the complex given by
formula (1) is exact.

Particularly, f ∈ HomT (L0, M) is a co-cycle if and only if

(16) (δ0 f )(x) = x f ( )− f ( )x = 0 for each x ∈ G.

We mention that HomT (L0, M) is isomorphic with M.
The one-dimensional co-chain f ∈ HomT (L1, M) is determined by the mapping f : G → M.

Taking Formula (9) into account, we infer that it is a co-cycle if and only if

(17) t2(x, y; l(2), u1(2)) · x · f (y)− t2(x, y; l(2), u2(2)) · f (xy)+ t2(x, y; l(2), u3(2)) · f (x) · y = x · f (y)−
f (xy) + f (x) · y = 0

for each x and y in G. That is, f is a derivation from the metagroup G into the G-module M. There is
the embedding T ↪→ A of T into A as T e, since e = 1 ∈ G. Thus, f has a T -linear extension to
a T -linear derivation from A into M by the following formula:

(18) f (xy) = x · f (y) + f (x) · y.

Remark 1. Suppose that the conditions of Theorem 1 are fulfilled. A two-dimensional co-chain
is a 2-co-cycle, if and only if (δ2 f )(x1, x2, x3) = ∑3

j=0(−1)jt3(x1, x2, x3; l(3), uj+1(3)) ·
[ f , x1, x2, x3]j+1,3 = t3(x1, x2, x3; l(3), u1(3)) · x1 · f (x2, x3)− t3(x1, x2, x3; l(3), u2(3)) · f ((x1x2), x3)+

t3(x1, x2, x3; l(3), u3(3)) · f (x1, (x2x3))− t3(x1, x2, x3; l(3), u4(3)) · f (x1, x2) · x3 = 0.
That is,

(1) t3(x1, x2, x3) · x1 · f (x2, x3) + t3(x1, x2, x3) · f (x1, (x2x3)) = f ((x1x2), x3) + f (x1, x2) · x3
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for each x1, x2 and x3 in G.

Usually, Zn(A, M) denotes the set of all n-co-cycles, and the notation Bn(A, M) is used for the
set of n-co-boundaries in HT (Ln, M). Since, as the additive group, M is commutative, then there are
defined groups of cohomologies Hn(A, M) = Zn(A, M)/Bn(A, M) as the quotient (additive) groups.

For n = 0, the co-boundaries are set as zero, and hence, H0(A, M) ∼= MA. In the case n = 1, a
mapping f : A→ M is a co-boundary if the element m = h( ) ∈ M exists, for which f (x) = xm−mx
for each x ∈ A. Such a derivation f is called an inner derivation of A defined by an element m ∈ M.
The set of all inner derivations is denoted by InnT (A, M).

From the cohomological point of view, the additive group H1(A, M) is interpreted as the group of
all outer derivations H1(A, M) ∼= OutT (A, M) ∼= DerT (A, M)/InnT (A, M), where Z1(A, M) =

DerT (A, M); InnT (A, M) = B1(A, M), where the family of all derivations (T -homogeneous
derivations) from X into a two-sided module M over T is denoted by Der(X, M) (or DerT (X, M)

respectively).
A two-co-chain f : G× G → M is a two-co-boundary, if a one-co-chain h : G → M exists such

that for each x and y in G, the following identity is fulfilled:

(2) f (x, y) = (δh)(x, y) = ∑2
j=0(−1)jt2(x, y; l(2), uj+1(2)) · [h, x1, x2]j+1,2,

= x · h(y)− h(xy) + h(x) · y.

Let A = T [G] be a metagroup algebra over a commutative associative unital ring T (also see
Definitions 1–3).

Let M, N, and P be left A-modules, and a short exact sequence exists:

(3) 0→ M−→
ξ

P−→η N → 0,

where ξ is an embedding, such that ξ and η are left A-homomorphisms. Then, P is called an
enlargement of a left A-module M with the help of a left A-module N. If there is another enlargement
of M with the help of N,

(4) 0→ M−→
ξ ′

P′−→
η′

N → 0

such that an isomorphism π : P→ P′ exists for which πξ = ξ ′1M and 1Nη = η′π, then enlargements
(3) and (4) are called equivalent, where 1M : M→ M notates the identity mapping, 1M(m) = m for
each m ∈ M.

It is said that an enlargement clefts, if and only if a left A-homomorphism ω : N → P exists,
fulfilling the restriction ηω = 1N .

In the particular case when P = M⊕ N, ξ is also an identifying mapping with the first direct
summand, and η is a projection on the second direct summand, an enlargement is called trivial.

Theorem 2. Let A be a nonassociative metagroup algebra and let M and N be left A-modules, where A = T [G],
G is a metagroup (see Definitions 2 and 3). Then, the family T = HomT (N, M) can be supplied with a two-sided
A-module structure, such that H1(A, T) is the set of classes of modules M with the quotient module N.

Proof. The family T = HomT (N, M) evidently has the structure of a left module over a ring T
(see Definition 3), and it can be supplied with a two-sided A-module structure:

(1) ∀ r ∈ T and ∀ n ∈ N and ∀ a ∈ A:
(a · r)(n) = a · (r(n)) and (r · a)(n) = r(a · n).
By virtue of Theorem 1, each element f ∈ Z1(A, T) induces a (generalized) derivation by

Formula (18) in Theorem 1. Each zero-dimensional co-chain m ∈ M provides an inner derivation
δ0m(a) = am−ma due to formula (16) in Theorem 1. Then, one co-cycle f induces an enlargement
by Formula (3) in Remark 1 with P = M⊕ N being the direct sum of left A-modules in which N is
a submodule and with the left action of A on N: a ◦ n = a · n + f (a) · n for each n ∈ N and a ∈ A.
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Suppose that a class of an one co-cycle f is zero, an element u ∈ T exists so that f = δ1u. Then,
elements of the form m + u(m) form its submodule M′, which is isomorphic with M. Moreover,
P = N ⊕M′ is the direct sum of A-modules. Thus, an enlargement is trivial.

Vice versa, suppose that an enlargement given by formula (3) in Remark 1 exists. That is, a left
A-homomorphism γ : N → P satisfying the restriction ηγ = 1N exists, where 1N notates the identity
mapping on N. It induces f ∈ Z1(A, T), such that f (a)n = γ(a · n)− (a · γ)(n) for all n ∈ N and for
each element a of the algebra A.

Suppose that there is another enlargement which clefts, that is, a left T -homomorphism ω : N → P
exists, fulfilling the restriction ηω = 1N . We put u(n) = ω(n)− γ(n) for each n ∈ N; hence, u ∈ T.
Then, f1 = δ1u is a co-cycle of zero class.

Theorem 3. Suppose that A is a nonassociative metagroup algebra over a commutative associative unital
ring T , a left A-module N and a two-sided A-module M are given. Then, H2(A, T) is the set of classes of
enlargements of A with a kernel M such that M2 = {0} and with the quotient algebra A. Moreover, an action
of A on M in this enlargement coincides with the structure of a two-sided A-module on M.

Proof. If P is an enlargement with a kernel M such that M2 = 0 and a quotient module A = P/M
and a = p + M with p ∈ P, then a · m = p · m and m · a = m · p supply M with the two-sided
A-module structure. Take a T -linear mapping γ : A → P inverse from the left to a natural
epimorphism and put f (a, b) = γ(ab) − γ(a)γ(b) for each a and b in A. Then, we infer that
γ(a(bc)) = f (a, bc) + γ(a)γ(bc) = f (a, bc) + γ(a)( f (b, c) + γ(b)γ(c)) and γ((ab)c) = f (ab, c) +
γ(ab)γ(c) = f (ab, c) + ( f (a, b) + γ(a)γ(b))γ(c), consequently, 0 = t3(a, b, c)γ(a(bc))− γ((ab)c) =

t3(a, b, c) f (a, bc) + t3(a, b, c)γ(a)( f (b, c) + γ(b)γ(c))− f (ab, c)− ( f (a, b) + γ(a)γ(b))γ(c).
Taking into account that γ(a)m = a ·m and mγ(a) = m · a for each m ∈ M and a ∈ A, we deduce

using Formula (1) in Remark 1 that 0 = t3(a, b, c) · a · f (b, c)− f (ab, c) + t3(a, b, c) · f (a, bc)− f (a, b) ·
c = (δ2 f )(a, b, c).

Thus, f ∈ B2(A, M) and hence, f = (δ1h) with h ∈ C1(A, M) := HomT (A, M).
It remains to prove that the set S of all elements γ(a) + h(a) forms a subalgebra isomorphic with

A in P . From the construction of S, it follows that S is a a two-sided T -module. We verify that it is
closed relative to the multiplication for all a and b in A:

(γ(a) + h(a))(γ(b) + h(b)) = γ(a)γ(b) + γ(a)h(b) + h(a)γ(b) = γ(ab) − f (a, b) + ah(b) +
h(a)b = γ(ab) + h(ab) + ah(b) − h(ab) + h(a)b − f (a, b) = γ(ab) + h(ab) + (δ1h)(a, b) − f (a, b) =

γ(ab) + h(ab).
If A, M, and f are given, then an enlargement P can be constructed as the direct sum P = M⊕ A of

two-sided T -modules and with the multiplication rule (m1 + b1)(m2 + b2) = m1b2 +m2b1 + f (b1, b2) +

b1b2 for every m1 and m2 in M and b1 and b2 in A. It rests to verify that this multiplication rule is
homogeneous over T and right and left distributive. At first, we evidently get (m1 + b1)(s(m2 +

b2)) = (s(m1 + b1))(m2 + b2) = s((m1 + b1)(m2 + b2)) = sm1b2 + sm2b1 + s f (b1, b2) + sb1b2 and
(sp)(m1 + b1) = s(p(m1 + b1)) for all s, p ∈ T and m1 and m2 in M and b1 and b2 in A, since T ⊂
C(A) and f (s, p) = 0. Moreover, we infer that (m1 + b1)((m2 + b2) + (m3 + b3)) = (m1 + b1)((m2 +

m3) + (b2 + b3)) = m1(b2 + b3) + (m2 + m3)b1 + f (b1, b2 + b3) + b1(b2 + b3) = m1b2 + m1b3 + m2b1 +

m3b1 + f (b1, b2) + f (b1, b3) + b1b2 + b1b3 = (m1 + b1)(m2 + b2) + (m1 + b1)(m3 + b3), and analogously,
((m1 + b1) + (m2 + b2))(m3 + b3) = (m1 + b1)(m3 + b3) + (m2 + b2)(m3 + b3) for all m1, m2 and m3 in
M and b1, b2 and b3 in A.

Definition 4. Let M and P and N be two-sided A-modules, where A is a nonassociative metagroup algebra
over a commutative associative unital ring T . An A-homomorphism (isomorphism) f : M→ P is called a right
(operator) A-homomorphism (isomorphism) if it is such for M and N as right A-modules, that is, f (x + y) =
f (x) + f (y) and f (xa) = f (x)a for each x and y in M and a ∈ A (see also Definition 3). If an algebra
A is specified, a homomorphism (isomorphism) may be written for short instead of an A-homomorphism (an
A-isomorphism, respectively).
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An enlargement (P, η) of M by N is called right inessential if a right isomorphism γ : N → P exists,
satisfying the restriction ηγ|N = 1|N .

Theorem 4. Suppose that M is a two-sided A-module, where A is a nonassociative metagroup algebra over
a commutative associative unital ring T . Then, for each n ≥ 0, a two-sided A-module Pn exists such that
Hn+1(A, M) is isomorphic with the additive group of equivalence classes of right inessential enlargements of M
by Pn.

Proof. Consider two right inessential enlargements (E1, η1) and (E2, η2) of M by N, where ξ1 and
ξ2 are embeddings of M into E1 and E2 correspondingly. Take a submodule Q of E1 ⊕ E2 consisting
of all elements (x1, x2) satisfying the condition η1(x1) = η2(x2). Then, a quotient module Q/T
exists, where T = {(ξm,−ξm) : m ∈ M}. Therefore, (ξ1M ⊕ ξ2M)/T is isomorphic with M,
and homomorphisms η1 and η2 induce a homomorphism η of Q/T onto N. Hence, the submodule
ker(η) is isomorphic with M. Then, an addition of enlargements is prescribed by the formula
(E1, η1) + (E2, η2) := (Q/T, η). Evidently, sums of equivalent enlargements are equivalent.

For an enlargement (E, η) of M by N, one takes the direct sum of modules E⊕M and puts Tb
to be its submodule consisting of all elements (ξm,−bξm) with m ∈ M, where ξ is an embedding of
M into E, b ∈ T . Therefore, a homomorphism η induces a homomorphism bη of (E⊕M)/Tb onto
N, since the mapping (ξm, m) 7→ bξm + m is a homomorphism of (ξM)⊕M onto M. Also, the ring
T is commutative and associative. This induces an enlargement of M by N, denoted by (bE, bη) and
hence, an operation of scalar multiplication of an enlargement (E, η) on b ∈ T . From this construction,
it follows that equivalent enlargements have equivalent scalar multipliers on b ∈ T .

Let Pn be a T -linear span of all elements (x1, ..., xn+1) with x1,...,xn+1 in G such that
((bx1), x2, ..., xn+1) = (x1, ..., (bxn+1)) for each b ∈ T . Next, we put

(1) (x1, ..., xn+1) · y := tn+2(x1, ..., xn+1, y; l(n + 2), un+2(n + 2)) · (x1, ..., xn, (xn+1y)) and
(2) y · (x1, ..., xn+1) = ∑n+1

j=1 (−1)j+1·

tn+2(y, x1, ..., xn+1; u1(n + 2), uj+1(n + 2))· < y, x1, x2, ..., xn+1 >j,n+2

(also see Notations (2–4) of Proposition 1 and (10)–(13) in Theorem 1) for every y, x1, ..., xn+1 in G.
That is, Pn is the two-sided A-module, where A has the unit element.

By Rn = R(Pn, M), we denote the family of all right homomorphisms of Pn into M. For each
p ∈ Rn, let an arbitrary element ṗ ∈ Cn(A, M) in the additive group of all n co-chains (that is, n times
T -linear mappings of A into M) on A with values in M be prescribed by the formula ṗ(a1, ..., an) =

p(a1, ..., an, 1) for all a1, ..., an in A. Consequently, ( ṗ(a1, ..., an)) · y = p(a1, ..., an, y) for each y ∈ A,
since tn+3(x1, ..., xn+1, 1, g; l(n + 3), un+3(n + 3)) = 1 for all x1, ..., xn+1 and g in G. This makes the
mapping p 7→ ṗ an T -linear isomorphism of Rn onto Cn(A, M).

Supply Cn(A, M) with a two-sided A-module structure

(3) (x0 · f )(x1, ..., xn) = x0 · ( f (x1, ..., xn)) and
(4) ( f · x0)(x1, .., xn) = ∑n−1

k=0 (−1)ktn+1(x0, x1, ..., xn; u1(n + 1), uk+2(n + 1)) · f (x0, ..., xkxk+1, ..., xn)

+(−1)n( f (x0, ..., xn−1)) · xn

for each f ∈ Cn(A, M) and all x0, x1, ..., xn in G, extending f by T -linearity on A from G, where uj(n +

1) are given by Formulas (10)–(13) in Theorem 1. Thus, the mapping p 7→ ṗ is an operator isomorphism.
Consequently, Hp(A, Rn) is isomorphic with Hp(A, Cn(A, M)) for each integer (n and p) such that
n ≥ 0 and p ≥ 0. On the other hand, Hp(A, Cn(A, M)) is isomorphic with Hp+n(A, M) for each p ≥ 1;
hence, Hp(A, Rn) is isomorphic with Hp+n(A, M).

By virtue of Theorem 2 applied with p = 1, we infer that Hn+1(A, M) is isomorphic with the
additive group of equivalence classes of right inessential enlargements of M by Pn.
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Theorem 5. Let M be a two-sided A-module, where A is a nonassociative metagroup algebra over a commutative
associative unital ring T . Then, to each n + 1-co-cycle f ∈ Zn+1(A, M), an enlargement of M by a two-sided
A-module Pn corresponds such that f becomes a co-boundary in it.

Proof. An n + 1-co-cycle f ∈ Zn+1(A, M) induces an enlargement (E, η) of M by Pn due to Theorem 4.
An element h in Z1(A, Rn) corresponding to f is characterized by the equality

(h(x1))(x2, ..., xn+1, 1) = tn+1(x1, ..., xn+1; u1(n + 1), l(n + 1)) · f (x1, ..., xn+1)

for all x1, ..., xn+1 in G. This enlargement (E, η) as the two-sided A-module is Pn ⊕ M such that
x1 · ((x2, ..., xn+1, 1), 0) = (x1 · (x2, ..., xn+1), f (x1, ..., xn+1)). Let γ(a1, ..., an) = (a1, ..., an, 0) for all
a1, ..., an in A. Therefore, we deduce that f (x1, ..., xn+1) = tn+1(x1, ..., xn+1; l(n + 1), u1(n + 1)) · {x1 ·
γ(x2, ..., xn+1, 1) −γ(x1 · (x2, ..., xn+1, 1))}.

An n-co-chain v ∈ Cn(A, E), defined by v(a1, ..., an) = ((a1, ..., an, 1), 0), exists for all a1, ..., an in A.
Thus, f = δv.

Theorem 6. Let A be a nonassociative metagroup algebra over a commutative associative unital ring T .
Then, an algebra B over T exists such that B contains A and each T -homogeneous derivation d : A→ A is the
restriction of an inner derivation of B.

Proof. Naturally, an algebra A has the structure of a two-sided A-module. In view of Theorem 1,
each derivation of the two-sided algebra A can be considered an element of Z1(A, A).

Applying Theorem 5 by induction, one obtains a two-sided A-module Q containing M for which
an arbitrary element of Zn+1(A, M) is represented as the co-boundary of an element of Cn(A, Q).
At the same time, M and Q satisfy Conditions (1)–(3) in Definition 3. This implies that the natural
injection of Hn+1(A, M) into Hn+1(A, Q) maps Hn+1(A, M) into zero.

Therefore, a two-sided A-module E exists, which, as a two-sided T -module, is a direct sum,
A⊕ P, and P is such that for each f ∈ Z1(A, A), an element p ∈ P exists that generally depends on f
with the property f (a) = a · p− p · a. The metagroup G corresponds to the algebra A. By enlarging P,
if necessary, we can consider that to P, a metagroup G also corresponds in such a manner that
properties (1)–(3) in Definition 3 are fulfilled.

Now, we take A ⊕ P as the underlying two-sided T -module of B and supply it with the
multiplication (a1, p1)(a2, p2) := (a1a2, a1 · p2 + p1 · a2) as the semidirect product for each a1, a2 in
A and p1, p2 in P. An embedding ξ of A into B is ξ(a) = (a, 0) for each a in A. This implies that
f (a) = (a, 0)(0, p)− (0, p)(a, 0) = a(0, p)− (0, p)a.

Theorem 7. Suppose that A is a nonassociative metagroup algebra of finite order over a commutative associative
unital ring T and M is a finitely generated two-sided A-module. Then, M is semisimple if and only if its
cohomology group is null Hn(A, M) = 0 for each natural number n ≥ 1.

Proof. Certainly, if E is an A-module and N is its A-submodule, then a natural quotient morphism
π : E → E/N exists. Therefore, an enlargement (E, η) of a two-sided A-module M by a two-sided
A-module N is inessential if and only if there is a submodule T in E complemented to ξ(M) such that T
is isomorphic with E/ξ(M), where ξ is an embedding of M into E. If M is semisimple, then it is either
a simple or a finite product of simple modules, since M is finitely generated. For a finitely generated
module E and its submodule N, the quotient module E/N is not isomorphic with E, since the algebra
A is of finite order over the commutative associative unital ring T .

By virtue of Theorems 4 and 5, if, for an algebra A, its corresponding finitely generated two-sided
A-modules are semisimple, then its cohomology groups of dimension n ≥ 1 are zero.

Vice versa, suppose that Hn(A, M) = 0 for each natural number n ≥ 1. Consider a finitely
generated two-sided A-module E and its two-sided A-submodule N. At first, we take into account the
right A-module structure Er of E with the same right transformations, but with zero left transformations.
Then, the left inessential (Er, ηr) enlargement of Mr by Nr = Er/ξr(Mr) exists, where ηr : Er →
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Er/ξr(Mr) is the quotient mapping and ξr is an embedding of Mr into Er. From Theorem 4, it follows
that the enlargement (Er, ηr) is right inessential. Analogously, considering the left A-module structures
El and Ml we infer that (El , ηl) is also left inessential.

Note 2. Let A be a nonassociative metagroup algebra over a commutative associative unital ring T with a
characteristic char(T ) other than two and three. Its opposite algebra Aop exists. The latter, as an F-linear space,
is the same, but with the multiplication x ◦ y = yx for each x, y ∈ Aop. To each element h ∈ A or y ∈ Aop, there
is posed a left multiplication operator Lh by the formula xLh = hx or a right multiplication operator xRy = xy
for each x ∈ A, respectively. Having the anti-isomorphism operator S : A → Aop, A 3 x 7→ xS ∈ Aop,
S(xy) = S(y)S(x), we get

(1) RhS = SLhS and LhS = SRhS for each x and h in A. Then, taking into account (1) analogously
to formula (4) in Theorem 4, we put x0 · (Lx1 , Rx2) = t−1

3 (x0, x1, x2) · (x0Lx1)Lx2S − x0(Lx1 Rx2)

+t−1
3 (x0, x1, x2) · (x0Rx1S)Rx2 .

Then, taking into account the multipliers t3, this gives
(2) x0 · (Lx1 , Rx2) = x0(Lx1 Lx2S − Lx1 Rx2 + Rx1SRx2) for all x0, x1, x2 in G. Next, symmetrically, S(x0 ·

(Lx1 , Rx2)) provides the formula for (Ly1 , Ry2) · y0 for each y0, y1 and y2 in G. We consider the enveloping
algebra Ae = A⊗T Aop. Extending these rules by T -linearity on A and A⊗T Aop from G one supplies
the tensor product M = Ae over T with the two-sided A-module structure.

Corollary 1. Let A be a semisimple, nonassociative metagroup algebra of finite order over a commutative
associative unital ring T with a characteristic char(T ) other than two and three, and let M be a two-sided
A-module described in Note 2. Then, Hn(A, M) = 0 for each natural number n ≥ 1.

Proof. Since A is semisimple, then the module M from Note 2 is semisimple. Consequently,
the statement of this corollary follows from Theorem 7.

3. Products of Metagroups

The main subject of this paper are cohomologies on metagroups. Nonetheless, in this section, it is
shortly demonstrated that there are abundant families of metagroups besides those which appear in
areas described in the introduction.

Theorem 8. Let Gj be a family of metagroups (see Definition 1 in Section 2), where j ∈ J, J is a set. Then,
their direct product G = ∏j∈J Gj is a metagroup and

(1) C(G) = ∏j∈J C(Gj).

Proof. Each element a ∈ G is written as a = {aj : ∀j ∈ J, aj ∈ Gj}. Therefore, a product ab =

{c : ∀j ∈ J, cj = ajbj, aj ∈ Gj, bj ∈ Gj} is a single-valued binary operation on G. Then, we get that
a \ b = {d : ∀j ∈ J, dj = aj \ bj, aj ∈ Gj, bj ∈ Gj} and a/b = {d : ∀j ∈ J, dj = aj/bj, aj ∈ Gj, bj ∈ Gj}.
Moreover, eG = { ∀j ∈ J, eGj} is a neutral element in G, where eGj denotes a neutral element in Gj for
each j ∈ J. Thus, Conditions (1)–(3) of Definition 1 in Section 2 are satisfied.

From Conditions (4)–(7) of Definition 1 in Section 2 for each Gj, we infer that

(2) Com(G) := {a ∈ G : ∀b ∈ G, ab = ba} = {a ∈ G : a = {aj : ∀j ∈ J, aj ∈ Gj}; ∀b ∈ G, b = {bj :
∀j ∈ J, bj ∈ Gj}; ∀j ∈ J, ajbj = bjaj} = ∏j∈J Com(Gj),

(3) Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)} = {a ∈ G : a = {aj : ∀j ∈ J, aj ∈ Gj}; ∀b ∈
G, b = {bj : ∀j ∈ J, bj ∈ Gj}; ∀c ∈ G, c = {cj : ∀j ∈ J, cj ∈ Gj}; ∀j ∈ J, (ajbj)cj = aj(bjcj)} =
∏j∈J Nl(Gj), and similarly,

(4) Nm(G) = ∏j∈J Nm(Gj) and
(5) Nr(G) = ∏j∈J Nr(Gj).

This and (8) of Definition 1 in Section 2 imply that
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(6) N(G) = ∏j∈J N(Gj). Thus,
(7) C(G) := Com(G) ∩ N(G) = ∏j∈J C(Gj).

Let a, b, and c be in G. T,hen

(ab)c = {(ajbj)cj : ∀j ∈ J, aj ∈ Gj, bj ∈ Gj, cj ∈ Gj} = {t3,Gj(aj, bj, cj)aj(bjcj) : ∀j ∈ J, aj ∈
Gj, bj ∈ Gj, cj ∈ Gj} = t3,G(a, b, c)a(bc), where

(8) t3,G(a, b, c) = {t3,Gj(aj, bj, cj) : ∀j ∈ J, aj ∈ Gj, bj ∈ Gj, cj ∈ Gj}.

Therefore, Formulas (7) and (8) imply that Condition (9) of Definition 1 in Section 2 is also
satisfied. Thus, G is a metagroup.

Remark 2. (1) Let A and B be two metagroups, and let C be a commutative group such that Cm(A) ↪→
C, Cm(B) ↪→ C, C ↪→ C(A) and C ↪→ C(B), where Cm(A) denotes a minimal subgroup in C(A)

generated by {tA(a, b, c) : a ∈ A, b ∈ A, c ∈ A}.

Using direct products, it is always possible to extend either A or B to get such a case. In particular, either A
or B may be a group. Let an equivalence relation Ξ on the Cartesian product A× B be such that

(2) (γv, b)Ξ(v, γb) and (γv, b)Ξγ(v, b) and (γv, b)Ξ(v, b)γ
for every v in A, b in B and γ in C.

(3) Let φ : A → A(B) be a single-valued mapping, where A(B) denotes a family of all bijective surjective
single-valued mappings of B onto B subjected to the conditions given below. If a ∈ A and b ∈ B,
then ba is written instead of φ(a)b for short, where φ(a) : B → B. Also, let ηφ : A × A × B → C,
κφ : A× B× B→ C and ξφ : ((A× B)/Ξ)× ((A× B)/Ξ)→ C be single-valued mappings written
as η, κ, and ξ for short, such that

(4) (bu)v = bvuη(v, u, b), eu = e, be = b;
(5) η(v, u, γb) = η(v, u, b);
(6) (cb)u = cubuκ(u, c, b);
(7) κ(u, γc, b) = κ(u, c, γb) = κ(u, c, b) and

κ(u, γ, b) = κ(u, b, γ) = e;
(8) ξ((γu, c), (v, b)) = ξ((u, c), (γv, b)) = ξ((u, c), (v, b)) and

ξ((γ, e), (v, b)) = e and ξ((u, c), (γ, e)) = e
for every u and v in A, b, c in B, γ in C, where e denotes the neutral element in C and in A and B.

We put
(9) (a1, b1)(a2, b2) = (a1a2, ξ((a1, b1), (a2, b2))b1ba1

2 )

for each a1, a2 in A, b1 and b2 in B.
The Cartesian product A× B supplied with such a binary operation (9) is denoted by A

⊗φ,η,κ,ξ B.

Theorem 9. Let the conditions of Remark 2 be fulfilled. Then, the Cartesian product A× B supplied with
a binary Operation (9) in Remark 2 is a metagroup.

Proof. From the conditions of Remark 2, it follows that the binary operation (9) in Remark 2 is
single-valued.

Let I1 = ((a1, b1)(a2, b2))(a3, b3) and I2 = (a1, b1)((a2, b2)(a3, b3)), where a1, a2, a3 belong to A,
and b1, b2, b3 belong to B. Then, we infer that

I1 = ((a1a2)a3, ξ((a1, b1), (a2, b2))ξ((a1a2, b1ba1
2 ), (a3, b3))(b1ba1

2 )ba1a2
3 ) and

I2 = (a1(a2a3), ξ((a1, b1), (a2a3, b2ba2
3 ))[ξ((a2, b2), (a3, b3))]

a1

b1(b
a1
2 ba1a2

3 )κ(a1, b2, ba2
3 )η(a1, a2, b3)). Therefore,

(1) I1 = t3((a1, b1), (a2, b2), (a3, b3))I2 with
(2) t3((a1, b1), (a2, b2), (a3, b3)) = t3,A(a1, a2, a3)t3,B(b1, ba1

2 , ba1a2
3 )
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ξ((a1, b1), (a2a3, b2ba2
3 ))[ξ((a2, b2), (a3, b3))]

a1 κ(a1, b2, ba2
3 )η(a1, a2, b3)

/[ξ((a1, b1), (a2, b2))ξ((a1a2, b1ba1
2 ), (a3, b3))].

Apparently, t3,A
⊗φ,η,κ,ξ B((a1, b1), (a2, b2), (a3, b3)) ∈ C for each aj ∈ A, bj ∈ B, j ∈ {1, 2, 3},

where for shortening of a notation, t3,A
⊗φ,η,κ,ξ B is denoted by t3.

If γ ∈ C, then
γ((a1, b1)(a2, b2)) = (γa1a2, ξ((a1, b1), (a2, b2))b1ba1

2 ) = (a1a2, b1ba1
2 )γξ((a1, b1), (a2, b2)) =

((a1, b1)(a2, b2))γ.
Hence, γ ∈ C(A

⊗φ,η,κ,ξ B). Consequently, C ⊆ C(A
⊗φ,η,κ,ξ B).

Next, we consider the following equation:

(3) (a1, b1)(a, b) = (e, e), where a ∈ A, b ∈ B.

From (2) of Definition 1 in Section 2 and (9) in Remark 2, we deduce that
(4) a1 = e/a.

Consequently, ξ((e/a, b1), (a, b))b1b(e/a) = e, and hence
(5) b1 = e/[ξ((e/a, b(e/a)), (a, b))b(e/a)].

Thus, a1 ∈ A and b1 ∈ B given by (4) and (5) provide a unique solution of (3).
Similarly, from the following equation

(6) (a, b)(a2, b2) = (e, e), where a ∈ A, b ∈ B we infer that
(7) a2 = a \ e.

Consequently, ξ((a, b), (a \ e, b2))bba
2 = e, and hence, ba

2 = [ξ((a, b), (a \ e, b2))b] \ e. On the other
hand, (ba

2)
e/a = η(e/a, a, b2)b2 Consequently,

(8) b2 = (b \ e)e/a/{[(ξ((a, b), (a \ e, (b \ e)e/a))]e/aη(e/a, a, (b \ e)e/a)}.

Thus, Formulas (7) and (8) provide a unique solution to (6).
Next, we put (a1, b1) = (e, e)/(a, b) and (a2, b2) = (a, b) \ (e, e) and

(9) (a, b) \ (c, d) = ((a, b) \ (e, e))(c, d)

t3((e, e)/(a, b), (a, b), ((a, b) \ (e, e))(c, d))/t3((e, e)/(a, b), (a, b), (a, b) \ (e, e));
(10) (c, d)/(a, b) = (c, d)((e, e)/(a, b))

t3((e, e)/(a, b), (a, b), (a, b) \ (e, e))/t3((c, d)(e/(a, b)), (a, b), (a, b) \ (e, e))

and eG = (e, e), where G = A
⊗φ,η,κ,ξ B. Note that (3) of Definition 1 in Section 2 follows on from (8)

and (9) of Remark 2. Therefore, Properties (1)–(3) and (9) of Definition 1 in Section 2 are fulfilled for
A

⊗φ,η,κ,ξ B.

Definition 5. The metagroup A
⊗φ,η,κ,ξ B provided by Theorem 9 is called a smashed product of metagroups

A and B with smashing factors φ, η, κ, and ξ.

Remark 3. From Theorems 8 and 9, it follows that by taking the nontrivial mappings η, κ, and ξ and starting
from groups with nontrivial C(Gj) or C(A), it is possible to construct new metagroups with nontrivial C(G),
and ranges t3,G(G, G, G) of t3,G may be infinite. Indeed, using extensions of groups (or metagroups) by
semidirect or direct products, it is possible to take initial groups (or metagroups) A and B such that quotient
groups A1 of A by C(A) and B1 of B by C(B) are infinite. Therefore, their automorphism groups Aut(A1) and
Aut(B1) are infinite, because they contain all inner automorphisms.

With suitable smashing factors φ, η, κ, and ξ and with nontrivial metagroups or groups A and B
it is easy to get examples of metagroups in which e/a 6= a \ e for an infinite family of elements a in
A

⊗φ,η,κ,ξ B using Formulas (1) in Lemma 2 in Section 2 and (2) in Theorem 9. Evidently smashed
products (see Remark 2 and Theorem 9) are nonassociative generalizations of semidirect products.
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Smashed twisted products and smashed twisted wreath products of metagroups or groups are
described in [34]. They also provide tools for a construction of a wide class of metagroups and
nonassociative algebras with metagroup relations.

Conclusions 1. The results of this article can be used for further studies of cohomology theory of
nonassociative algebras and noncommutative manifolds with metagroup relations. It is interesting to
mention possible applications in mathematical coding theory, analysis of information flows, and their
technical realizations [35–38], because codes are frequently based on binary systems and algebras.
Indeed, metagroup relations are weaker than relations in groups. Therefore, a code complexity can
increase by using nonassociative algebras with metagroup relations in comparison with group algebras
or Lie algebras.

Besides the applications of cohomologies outlined in the introduction, they also can be used in
mathematical physics and quantum field theory. This also can be applied to cohomologies of PDEs
and solutions of PDEs with boundary conditions, which can have practical importance [27,39]. It will
be interesting to investigate cohomologies of nonassociative algebras related with a class of directed
ringoids [40,41], because the latter have applications to non locally compact groups.
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