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Abstract: The purpose of this note is to provide an expository introduction to some more curious
integral formulas and transformations involving generating functions. We seek to generalize these
results and integral representations which effectively provide a mechanism for converting between a
sequence’s ordinary and exponential generating function (OGF and EGF, respectively) and vice versa.
The Laplace transform provides an integral formula for the EGF-to-OGF transformation, where the
reverse OGF-to-EGF operation requires more careful integration techniques. We prove two variants
of the OGF-to-EGF transformation integrals from the Hankel loop contour for the reciprocal gamma
function and from Fourier series expansions of integral representations for the Hadamard product
of two generating functions, respectively. We also suggest several generalizations of these integral
formulas and provide new examples along the way.
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1. Introduction

1.1. Definitions

Given a sequence { fn}n≥0, we adopt the notation for the respective ordinary generating function
(OGF), F(z), and exponential generating function (EGF), F̂(z), of the sequence in some formal
indeterminate parameter z ∈ C:

F(z) = ∑
n≥0

fnzn (1)

F̂(z) = ∑
n≥0

fn

n!
zn.

Notice that we can always construct these functions over any sequence { fn}n∈N and formally
perform operations on these functions within the ring of formal power series in z without any
considerations on the constraints imposed by the convergence of the underlying series as a complex
function of z. If we assume that the respective series for F(z) or F̂(z) is analytic, or converges absolutely,
for all z ∈ C with 0 < |z| < σf , then we can apply complex function theory to these sequence generating
functions and treat them as analytic functions of z on this region.

We can precisely define the form of an integral transformation (in one variable) as [1] (§ 1.4)

I [ f (x)](k) :=
∫ b

a
K(x, k) f (x)dx, (2)
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for −∞ ≤ b < a ≤ +∞ and where the function K : R × C → C is called the kernel of the
transformation. When the function f which we operate on in the formula given by the last equation
corresponds to an OGF or EGF of a sequence with which we are concerned in applications, we consider
integrals of the form in (2) to be so-called generating function transformations. Such generating
function transformations are employed to transform the ordinary power series of the target generating
function for one sequence into the form of a generating function which enumerates another sequence
we are interested in studying.

Generating function transformations form a useful combinatorial and analytic method (depending
on perspective) which can be combined and employed to study new sequences of many forms.
Our focus in this article is to motivate the constructions of generating function transformations as
meaningful and indispensable tools in enumerative combinatorics, combinatorial number theory,
and in the theory of partitions, among other fields where such applications live. The particular
modus operandi within this article shows the evolution of integral transforms for the reciprocal
gamma function, and its multi-factorial integer sequence special cases, as a motivating method for
enumerating several types of special sequences and series which we will consider in the next sections.

The references [2–4] provide a much broader sense of the applications of generating function
techniques in general to those readers who are not familiar with this topic as a means for sequence
enumeration. A comprehensive array of analytic and experimental techniques in the theory of integral
transformations is also treated in the references [1,5]. We focus on only a comparatively few concrete
examples of integral and sequence transformations in the next subsections with hopes to motivate
our primary results proved in this article from this perspective. We hope that the discussion of these
techniques in this short note provide motivation and useful applications to readers in a broader range
of mathematical areas.

1.2. From Hobby To Short Note: OGF-to-EGF Conversion Formulas

A time consuming hobby that the author assumes from time to time is rediscovering old and
unusual identities in mathematics textbooks– particularly in the areas of combinatorics and discrete
mathematics. Favorite books to search include Comtet’s Advanced Combinatorics and the exercises and
their solutions found in Concrete Mathematics by Graham, Knuth and Patashnik. One curious and
interesting conversion operation discussed in the exercises to Chapter 7 of the latter book involves
a pair of integral formulas for converting an arbitrary sequence OGF into its EGF and vice versa
provided the resulting integral is suitably convergent. The exercise listed in Concrete Mathematics
suggests the second form of the operation. Namely, that of converting a sequence EGF into its OGF.

In this direction, we have an easy conversion integral for converting from the EGF of a sequence
{ fn}n≥0, denoted by F̂(z), and its corresponding OGF, denoted by F(z), given by the Laplace–Borel
transform [6] (§ B.14):

L[F̂](z) = F(z) =
∫ ∞

0
F̂(tz)e−tdt.

Other integral formulas for conversions between specified generating function “types” can be
constructed similarly as well (see Section 1.3). The key facets in constructing these semi-standard,
or at least known, conversion integrals is in applying a termwise series operation which generates a
factor, or reciprocal factor, of the gamma function Γ(z + 1) when z ∈ N. The corresponding “reversion”
operation of converting from a sequence’s OGF to its EGF requires a more careful treatment of the
properties of the reciprocal gamma function, 1/Γ(z + 1), and the construction of integral formulas
which generate it for z ∈ N involving the Hankel loop contour described in Section 2.

That being said, Graham, Knuth and Patshnik already suggest a curious “known” integral formula
for performing this corresponding OGF-to-EGF conversion operation of the following form [3] (p. 566):

F̂(z) =
1

2π

∫ π

−π
F
(
ze−ıt) eeıt

dt. (3)
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The statement of this result is given without proof in the identity-full appendix section of the
textbook. When first (re)-discovered many years back, the author assumed that the motivation for
this integral transformation must correspond to the non-zero paths of a complex contour integral for
the reciprocal gamma function. For many years the precise formulation of a proof of this termwise
integral formula and its generalization to enumerating terms of reciprocal generalized multi-factorial
functions, such as 1/(2n− 1)!!, remained a mystery and curiosity of periodic interest to the author.
In the summer of 2017, the author finally decided to formally inquire about the proof and possible
generalizations in an online mathematics forum. The question went unanswered for over a year
until by chance the author stumbled onto a Fourier series identity which finally motivated a rigorous
proof of the formula in (3). This note explains this proof and derives another integral formula for this
operation of OGF-to-EGF inversion based on the Hankel loop contour. The preparation of this article is
intended to be expository in nature in the hope of inspiring the creativity of more researchers towards
developing related integral transformations of sequence generating functions.

1.3. Examples: Integral transformations of a Sequence Generating Function

Integral transformations are a powerful and convenient formal and analytic tool which are used
to study sequences and their properties. Moreover, they are easy to parse and apply in many contexts
with only basic knowledge of infinitesimal calculus making them easy-to-understand operations which
we can apply to sequence generating functions. The author is an enthusiast for particularly pretty
or interesting integral representations (cf. [5,7]) and has taken a special research interest in finding
integral formulas of the ordinary generating function of sequence which transform the series into
another generating function enumerating a modified special sequence.

One notable example of such an integral transformation given in [8] (§ 2) allows us to construct
generalized polylogarithm-like and Dirichlet-like series over any prescribed sequence in the following
forms for integers r ≥ 1:

∑
n≥0

fn

(n + 1)r zn =
(−1)r−1

(r− 1)!

∫ 1

0
logr−1(t)F(tz)dt (4)

=
1
r!

∫ ∞

0
tr−1e−tF

(
e−tz

)
dt.

Another source of generating function transformation identities correspond to the bilateral series
given by Lindelöf in [9] (§ 2) of the form

∞

∑
n=−∞

f (n)zn = − 1
2πı

∮
γ

π cot(πw) f (w)zwdw, (5)

where γ is any closed contour in C which contains all of the singular points of f in its interior. In this
note, we will focus on integral formulas for generating function transformations of an arbitrary
sequence, { fn}n≥0.

Additional series transformations involving a sequence generating function into the form of
∑n≥0 fnzn/g(n)s for Re(s) > 1 and non-zero sequences {g(n)}n≥0 are proved in [10,11]. Note that
the harmonic-number-related coefficients implicit to these series transformations satisfy summation
formulas which are readily expressed by Nörlund-Rice contour integral formulas as well. The author
has proved in [12] so-called square series transformations providing that

∑
n≥0

fnqn2
zn =

1√
2π

∫ ∞

0

[
∑

b=±1
F
(

ebt
√

2 Log(q)
)]

e−t2/2dt, |q|, |qz| < 1. (6)
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Applications of these square series integral representations include many new integral formulas
for theta functions and classical q-series identities such as the Jacobi triple product and the partition
function generating function, (q; q)−1

∞ , expanded by Euler’s pentagonal number theorem.
There are more general Meinardus methods for computing asymptotics of the coefficients of

classes of partition number generating functions of the form [13]

∑
n≥0

pn(b)zn := ∏
k≥1

(
1− zk

)−bk
, (7)

where pn(b) denotes the number of weighted partitions of n corresponding to the parameter weights
bk for k ≥ 1. Generating functions enumerating partition function sequences of this type are related to
a known Euler transform of a sequence {an}n≥1 given by [14]

1 + ∑
n≥1

bnzn := ∏
j≥1

1(
1− zj

)aj
=⇒ log (1 + B(z)) = ∑

k≥1

A(zk)

k
, (8)

where A(z) := ∑n anzn and B(z) := ∑n bnzn are the respective OGFs of the component sequences.
In this case the right-hand-side generating function in the last equation is generated succinctly by a
q-integral for the q-beta function of the form [15]

1
1− q

∫ 1

0
f (x)d(z, x) = ∑

i≥0
f (zi)zi,

where inputting the modified generating function, Ãz(t) := A(t) log(z)/(t log t) for fixed z, into this
integral formula generates the second to last series result.

1.4. Results Proved in This Note

In this short note we provide proofs of known integral formulas providing an
ordinary-to-exponential generating function operation. We prove the following theorem using the
Hankel loop contour for the reciprocal gamma function in Section 2.

Theorem 1 (OGF-to-EGF Integral Formula I). For any real c > 0, provided that F(z) is analytic for
0 < |z| ≤ c, we have that

F̂(z) = ∑
n≥0

fnzn
∫ ∞

−∞

ec+ıt

(c + ıt)n+1 dt =
∫ ∞

−∞

ec+ıt

(c + ıt)
F
(

z
c + ıt

)
dt.

We also give a rigorous proof of the next integral formula relating F(z) and F̂(z).

Theorem 2 (OGF-to-EGF Integral Formula II). If F(z) is analytic for 0 < |z| < σf , we have that (3) holds.
Namely, we have that

F̂(z) =
1

2π

∫ π

−π
F
(
zeıt) eeıt

dt.

The proof of Theorem 2 is given in Section 3.
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2. Integral Representations of the Reciprocal Gamma Function

Since Γ(z) is a meromorphic function of z with poles at the non-positive integers, it follows
that the reciprocal gamma function, 1/Γ(z), is an entire function (of order one) with zeros at
z = 0,−1,−2, . . . [16] (§ 5.1). Indeed, as |z| → ∞ at a constant | arg(z)| < π, we can expand

log
[

1
Γ(z)

]
∼ −z log z + z +

1
2

log
( z

2π

)
− 1

12z
+

1
360z3 −

1
1260z5 , (9)

which can be computed via the infinite products

1
Γ(z)

= z ∏
n≥1

(
1 + z

n
)(

1 + 1
n

)z = zeγz ∏
n≥1

(
1 +

z
n

)
e−z/n,

where γ ≈ 0.577216 is Euler’s gamma constant. Classically, Karl Weierstrass called the function 1/Γ(z)
the “factorielle” function, and used its representation to prove his famous Weierstrass factorization
theorem in complex analysis [17] (§ 2).

For z ∈ C such that Re(z) > 0 we have a known series expansion for the reciprocal gamma
function given by

1
Γ(z)

=
∞

∑
k=1

akzk = z + γz2 +

(
γ2

2
− π2

12

)
z3 +

(
γ3

6
− γπ2

12
+

ζ(3)
3

)
z4 + · · · . (10)

The coefficients ak in this expansion satisfy many known recurrence relations and expansions by
the Riemann zeta function. In [18] an exact integral formula for these coefficients is given by

an =
(−1)n

π · n!

∫ ∞

0
e−t Im

{
(log t− ıπ)n} dt.

This integral formula is obtained in the reference using Euler’s reflection formula for the gamma
function given by

1
Γ(z)

=
sin(πz)

π
Γ(1− z),

and then applying a standard known real integral to express the gamma function on the right-hand-side
of the previous equation. Equivalently, the reflection formula can be stated as

1
Γ(1 + z)Γ(1− z)

=
sin(πz)

πz
.

2.1. The Hankel Loop Contour for the Reciprocal Gamma Function

We seek an exact integral representation for the reciprocal gamma function, not just an integral
formula defining the coefficients of its Taylor series expansion about zero in this case. To find such a
formula we must use the Hankel loop contour Hδ,ε shown in Figure 1 and consider the contributions of
each component section of the contour in the limiting cases for increasingly small δ, ε→ 0. We prove
Theorem 1 using the next lemma derived from this contour below.
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x

y

Cε(δ) P1 = (
√

|ε2 − δ2|, δ)

P2 = (
√

|ε2 − δ2|,−δ)

O

C

L−

∞
(δ, ε)

L+
∞
(δ, ε)

Figure 1. The Hankel loop contour providing an integral representation of the reciprocal gamma
function when Re(z) > 0. This contour starts positively from the right, traverses the horizontal line
L+

∞(δ, ε) at distance +δ from the x-axis from +∞→
√
|ε2 − δ2|, then enters the semi-circular loop about

the origin of radius ε denoted by Cε(δ) at the point P1, and then at the point P2 = (
√
|ε2 − δ2|,−δ)

traverses the last horizontal line L−∞(δ, ε) back to infinity parallel to the x-axis.

Lemma 1. For any real c > 0 and z ∈ C such that Re(z) > 0,

1
Γ(z)

=
1

2π

∫ ∞

−∞
(c + ıt)−zec+ıtdt. (11)

Proof. Working from the figure, we have that [16] (§5.9)

1
Γ(z)

= lim
d,ε→0

1
2πı

∮
HHδ,ε

(−t)−ze−tdt (12a)

= lim
d,ε→0

1
2πı

[∫
Cε(δ)

+
∫

L+
∞(δ,ε)

+
∫

L−∞(δ,ε)

] (
e−ıπzt−ze−t) dt. (12b)

We will first approach the contribution of the section of the contour given by Cε which is a
path enclosing the origin along the circle of radius ε centered at (0, 0). This portion of the contour is
oriented in the positive direction and begins at the point P1 := (

√
|ε2 − δ2|, δ) and ends at the point

P2 := (
√
|ε2 − δ2|,−δ). By parameterizing t along this circle, we obtain the real integral giving

IC := lim
d,ε→0

∫ sin−1( δ
ε )

sin−1(− δ
ε )

ıε2e−ıπze−2izte−e2ıt
dt = 0, (12c)

since sin−1
(

δ
ε

)
= δ

ε +
δ3

6ε3 + O
(

δ5

ε5

)
→ 0 as δ, ε independently tend to zero. Now we can easily

parameterize each of the sections of the contour on the horizontal lines each at distance δ from the x-axis.
In particular, let’s define our integrand in the complex parameters z, w as fΓ(z, w) := e−ıπzw−ze−w.
Then we consider the limiting cases of the following parameterizations of the two line segments
{(s,±δ) : s ∈ [

√
|ε2 − δ2|, T]} on L+

∞(δ, ε) and L−∞(δ, ε), respectively, by evaluating the limit of δ, ε→ 0
and then letting T tend to +∞:

z±(δ, ε; t) :=
√
|ε2 − δ2| ± ıδ + t

(
T −

√
|ε2 − δ2|

)
(12d)

z′±(δ, ε; t) = T −
√
|ε2 − δ2|, for t ∈ [0, 1]. (12e)
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When we take the first small-order limits we obtain

lim
δ,ε→0

∫ 1

0
fΓ (z±(δ, ε; t)) · z′±(δ, ε; t)dt =

1
2πı

∫ T

0
e−ıπzs−ze−sds, (12f)

which by substitution provides us with the symmetric bounds of integration given by

lim
T→∞

1
2πı

∫ T

0
e−ıπzs−ze−sds = ±

∫ 0

∓∞
s−zesds. (12g)

We then finally arrive at the stated known integral formula for the reciprocal gamma function
which holds for any fixed real c > 0.

Proof of Theorem 1. Since we are initially motivated by finding a general conversion integral from a
sequence OGF into its EGF, we notice that we require an application of (11) termwise to the Taylor
series expansions of our prescribed generating function by setting z = n+ 1. For example, if we assume
that our sequence OGF at hand is well enough behaved when its argument satisfies 0 < Re(z) < c
for some fixed choice of the real c > 0 in the integral formula from above, we can sum the integrand
of (11) termwise to obtain

F̂(z) = ∑
n≥0

fnzn
∫ ∞

−∞

ec+ıt

(c + ıt)n+1 dt =
∫ ∞

−∞

ec+ıt

(c + ıt)
F
(

z
c + ıt

)
dt.

2.2. Examples: Applications of the Integral Formula on the Real Line

We can perform the same “trick” of the generating function trades to sum a “doubly exponential”
sequence generating function when we replace the sequence OGF by its EGF in the previous equation:

∑
n≥0

fnzn

(n!)2 =
∫ ∞

−∞

ec+ıt

(c + ıt)
F̂
(

z
c + ıt

)
dt. (13)

Perhaps at first glance this iterated integral formula is somewhat unsatisfying since we have really
just repeated the procedure for constructing the first integral twice, but in fact there are notable special
case applications which we can derive from this method of summation which provide new integral
representations for otherwise hard-to-sum hypergeometric series.

For example, if we take the geometric series sequence case where fn ≡ 1 for all n ≥ 0, then we
can arrive at a new integral formula for the doubly exponential series expansion of the incomplete
Bessel function, I0(2

√
z) = ∑n≥0 zn/(n!)2 [3] (§ 5.5). In particular, we easily obtain that

I0(2
√

z) =
∫ ∞

−∞

ec+ıt

c + ıt
exp

(
z

c + ıt

)
dt. (14)

There is an integral representation for this function which is simpler to evaluate in the general
case given in (3). We elaborate more on this identity, its proof, and the corresponding series involving
Stirling numbers which it implies in the next section.

3. An Integral Formula from Fourier Analysis

One curious identity that the author has come across relating the OGF of a sequence to its EGF is
found in the appendices of the Concrete Mathematics reference [3] (p. 566). It states (3) without proof,
again providing that

F̂(z) =
1

2π

∫ π

−π
F
(
ze−ıt) eeıt

dt.

Finding a precise method of verifying this unproven identity is the initial motivation for this
note. Given the discussion and lead up to an integral for the reciprocal gamma function taken over
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the real line via the Hankel loop contour in the last section, the author initially assumed—and asked
with no replies in online math forums—that this computationally correct integral representation must
correspond to the non-zero components of some complex contour integral. It turns out that this
formula follows from the basic theory and constructions of Fourier analysis.

Proof of Theorem 2. Given a sequence, { fn}n≥0, its (mostly convergent) Fourier series is given by
f (x) = ∑n≥0 fneıπn. The terms of this sequence are then generated by this Fourier series according to
the standard integral formula [1,19]

fm =
1

2π

∫ π

−π
f (x)e−ımxdx,

for natural numbers m ≥ 0. If we can assume that the Fourier series, f (x), or equivalently the OGF,
F(eıx), is absolutely convergent for all x ∈ [−π, π] then we can sum over the integral formula in the
previous equation to obtain the first key component to this proof:

∑
m≥0

fmzm

m!
=

1
2π

∫ π

−π
F(eıx)eze−ıx

dx.

The change of variables eıx = z · e−ıt for fixed z shows that this formula is equivalent to the
integral formula in (3) directly by a change of variables. Also, by expanding the integrand in powers
of e±ıx where ∫ π

−π
eı(n−k)xdx = 2π · δn,k,

it is apparent that these two formulas in fact generate the same power series representation for F̂(z).

Alternate Proof of Theorem 2. Another satisfyingly less analytical and more formally motivated
explanation for this behavior can be given by considering known integral formulas for the Hadamard
product of two series given in terms of the orthogonal set {eıkx}∞

k=−∞ for x on the symmetric interval
[−π, π] [2] (§ 1.12(V); Ex. 1.30, p. 85) [4] (cf. §6.3). This perspective on the formulations of these
two series allows us to swap the series variables ze±ıx 7→ e±ıx from the input of one function in the
product to another and similarly in the reverse direction. Thus we can effectively pick and choose
where we would like to position the generating function parameter z in each component of the
integrand—whether it be situated more naturally as an argument to F as in (3), or whether we choose
to keep it nested in the corresponding multiplier function as in the previous equation. We shall see
other examples of these integral formula variants in the next remark and following examples.

Remark 1 (Generalizations of series expansions from Fourier series). This technique of using a convergent
Fourier series and the corresponding integral operation for extracting its coefficients can be generalized to
generate many other series variants. For example, there are many zeta function and polylogarithm-related series
which are summed by modifying a polylogarithmic series of the form expanded in Section 1.2 by the reciprocal of
the central binomial coefficients, (2n

n ). In particular, in the exponential-series-based generating function cases we
have that

∑
n≥0

fnzn

n! · (2n
n )

=
2
π

∫ π

−π
F(e−ıx)

[√
4− zeıx +

√
zeıx sin−1

(√
zeıx

2

)]
(4− zeıx)3/2 dx (15)

=
2
π

∫ π

−π
F(ze−ıx)

[√
4− eıx +

√
eıx sin−1

(√
eıx

2

)]
(4− eıx)3/2 dx,
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and in the geometric-series-based OGF cases we recover the exponential error function by

∑
n≥0

fnzn

(2n
n )

=
1

4π

∫ π

−π
F(e−ıx)

[
2 + e

zeıx
4
√

πzeıx erf

(√
zeıx

2

)]
dx (16)

=
1

4π

∫ π

−π
F(ze−ıx)

[
2 + e

eıx
4
√

πeıx erf

(√
eıx

2

)]
dx.

There are many other possibilities for constructing integral transformations for modified generating function
types. All one needs to do is be creative and consult a detailed reference of compendia such as [5,7].

Examples: Generalizations and Solutions to a Long-Standing Forum Post

The primary goal of the first post [20] mentioned in the introduction was to eventually generalize
the integral formula in (3) to enumerate the modified EGF sequences of the form

F̂a,b(z) := ∑
n≥0

fnzn

Γ(an + b + 1)
,

for integers a ≥ 1 and b ≥ 0, or over factors of the generalized integer multifactorials defined in [21] as

F̈a,d(z) := ∑
n≥0

fnzn

(an + d)!(a)
.

In the spirit of our realization that the integral representation in (3) is derived from a Fourier
series coefficient formula, we may similarly complete our initial goal to sum the second forms of these
series in the special cases where (a, b) = (2, 0), (2, 1). In particular, we can sum these cases of the
modified EGFs defined above in closed-form as explicit integral formulas in the forms

F̈2,0(z) =
1

2π

∫ π

−π
F
(
ze−ıt) e

1
2 eıt

dt (17)

F̈2,1(z) =
1

2π

∫ π

−π
F
(
ze−ıt) e

1
2 [e

ıt−ıt] erf

(√
eıt

2

)
dt.

The modified exponential series of the first type identified above are primarily summed
in closed-form using expansions of the Mittag–Leffler functions, Ea,b(z) := ∑n≥0 zn/Γ(an + b),
and powers of primitive ath roots of unity [16] (§ 10.46). For example, let’s take (a, b) := (3, 0)
and observe that

E3,0(t) = ∑
m≥0

tm

Γ(3m + 1)
=

et1/3

3
+

2e−t1/3/2

3
cos

(√
3t1/3

2

)
. (18)

Then we arrive at a corresponding explicit integral representation for the modified EGF of any sequence
of the form

F̂3,0(z) =
1

2π

∫ π

−π
F(ze−ıt)E3,0

(
eıt) dt.

4. Concluding Remarks

We have proved two key new forms of integral representations for the reciprocal gamma function
on the real line. By composition and the uniform convergence of power series for functions defined on
some disc |z| < σf , these results effectively provide us with OGF-to-EGF conversion formulas between
the generating functions for some F(z). These integral formulas for OGF-to-EGF conversion can be
applied termwise, or in analytic estimates of the asymptotic growth of the coefficients in the power
series expansions of the functions defined by the corresponding integral transformation.
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We have provided several examples of motivating cases of our so-termed generating function
transformations by integral-based methods in Section 1.3. The broader applications of these
transformation methods to other fields and phrasings of problems is certainly possible given a suitable
context waiting for a new method from which to be approached. We hope that readers come away
from this article with a new understanding of how useful and sometimes indispensable integral
transformation methods are in sequence analysis.
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