Article

Unification Theories: New Results and Examples

Florin F. Nichita

Simion Stoilow Institute of Mathematics of the Romanian Academy 21 Calea Grivitei Street, 010702 Bucharest, Romania; florin.nichita@imar.ro; Tel.: +40-0-21-319-6506; Fax: +40-0-21-319-6505

Received: 3 May 2019; Accepted: 17 May 2019; Published: 18 May 2019

Abstract

This paper is a continuation of a previous article that appeared in AXIOMS in 2018. A Euler's formula for hyperbolic functions is considered a consequence of a unifying point of view. Then, the unification of Jordan, Lie, and associative algebras is revisited. We also explain that derivations and co-derivations can be unified. Finally, we consider a "modified" Yang-Baxter type equation, which unifies several problems in mathematics.

Keywords: Euler's formula; hyperbolic functions; Yang-Baxter equation; Jordan algebras; Lie algebras; associative algebras; UJLA structures; (co)derivation

MSC: 17C05; 17C50; 16T15; 16T25; 17B01; 17B40; 15A18; 11J81

1. Introduction

Voted the most famous formula by undergraduate students, the Euler's identity states that $e^{\pi i}+1=0$. This is a particular case of the Euler's-De Moivre formula:

$$
\begin{equation*}
\cos x+i \sin x=e^{i x} \quad \forall x \in \mathbb{R} \tag{1}
\end{equation*}
$$

and, for hyperbolic functions, we have an analogous formula:

$$
\begin{equation*}
\cosh x+J \sinh x=e^{x J} \quad \forall x \in \mathbb{C} \tag{2}
\end{equation*}
$$

where we consider the matrices

$$
\begin{gather*}
J=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \tag{3}\\
I=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{4}\\
I^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) . \tag{5}
\end{gather*}
$$

In fact, $R(x)=\cosh (x) I+\sinh (x) J=\cosh x+J \sinh x=e^{x J}$ also satisfies the equation

$$
\begin{equation*}
\left(R \otimes I^{\prime}\right)(x) \circ\left(I^{\prime} \otimes R\right)(x+y) \circ\left(R \otimes I^{\prime}\right)(y)=\left(I^{\prime} \otimes R\right)(y) \circ\left(R \otimes I^{\prime}\right)(x+y) \circ\left(I^{\prime} \otimes R\right)(x) \tag{6}
\end{equation*}
$$

called the colored Yang-Baxter equation. This fact follows easily from $J^{12} \circ J^{23}=J^{23} \circ J^{12}$ and $x J^{12}+(x+y) J^{23}+y J^{12}=y J^{23}+(x+y) J^{12}+x J^{23}$, and it shows that the formulas (1) and (2) are related.

While we do not know a remarkable identity related to (2), let us recall an interesting inequality from a previous paper: $\quad\left|e^{i}-\pi\right|>e$. There is an open problem to find the matrix version of this inequality.

The above analysis is a consequence of a unifying point of view from previous papers ($[1,2]$).
In the remainder of this paper, we first consider the unification of the Jordan, Lie, and associative algebras. In Section 3, we explain that derivations and co-derivations can be unified. We suggest applications in differential geometry. Finally, we consider a "modified" Yang-Baxter equation which unifies the problem of the three matrices, generalized eigenvalue problems, and the Yang-Baxter matrix equation. There are several versions of the Yang-Baxter equation (see, for example, [3,4]) presented throughout this paper.

We work over the field k, and the tensor products are defined over k.

2. Weak Ujla Structures, Dual Structures, Unification

Definition 1. (Ref. [5]) Given a vector space V, with a linear map $\eta: V \otimes V \rightarrow V, \eta(a \otimes b)=a b$, the couple (V, η) is called a "weak UJLA structure" if the product $a b=\eta(a \otimes b)$ satisfies the identity

$$
\begin{equation*}
(a b) c+(b c) a+(c a) b=a(b c)+b(c a)+c(a b) \quad \forall a, b, c \in V \tag{7}
\end{equation*}
$$

Definition 2. Given a vector space V, with a linear map $\Delta: V \rightarrow V \otimes V$, the couple (V, Δ) is called a "weak co-UJLA structure" if this co-product satisfies the identity

$$
\begin{equation*}
\left(I d+S+S^{2}\right) \circ(\Delta \otimes I) \circ \Delta=\left(I d+S+S^{2}\right) \circ(I \otimes \Delta) \circ \Delta \tag{8}
\end{equation*}
$$

where $S: V \otimes V \otimes V \rightarrow V \otimes V \otimes V, a \otimes b \otimes c \mapsto b \otimes c \otimes a, I: V \rightarrow V, a \mapsto a$ and $I d: V \otimes V \otimes V \rightarrow$ $V \otimes V \otimes V, a \otimes b \otimes c \mapsto a \otimes b \otimes c$.

Definition 3. Given a vector space V, with a linear map $\phi: V \otimes V \rightarrow V \otimes V$, the couple (V, ϕ) is called a "weak (co)UJLA structure" if the map ϕ satisfies the identity

$$
\begin{equation*}
\left(I d+S+S^{2}\right) \circ \phi^{12} \circ \phi^{23} \circ \phi^{12} \circ\left(I d+S+S^{2}\right)=\left(I d+S+S^{2}\right) \circ \phi^{23} \circ \phi^{12} \circ \phi^{23} \circ\left(I d+S+S^{2}\right) \tag{9}
\end{equation*}
$$

where $\phi^{12}=\phi \otimes I, \phi^{23}=I \otimes \phi, \quad I d: V \otimes V \otimes V \rightarrow V \otimes V \otimes V, a \otimes b \otimes c \mapsto a \otimes b \otimes c$ and $I: V \rightarrow V, a \mapsto a$.

Theorem 1. Let (V, η) be a weak UJLA structure with the unity $1 \in V$. Let $\phi: V \otimes V \rightarrow V \otimes V, a \otimes b \mapsto$ $a b \otimes 1$. Then, (V, ϕ) is a "weak (co)UJLA structure".

Proof. $\left(I d+S+S^{2}\right) \circ \phi^{23} \circ \phi^{12} \circ \phi^{23} \circ\left(I d+S+S^{2}\right)(a \otimes b \otimes c)=\left(I d+S+S^{2}\right) \circ \phi^{23} \circ \phi^{12} \circ \phi^{23}(a \otimes$ $b \otimes c+b \otimes c \otimes a+c \otimes a \otimes b)=\left(I d+S+S^{2}\right) \circ \phi^{23} \circ \phi^{12}(a \otimes b c \otimes 1+b \otimes c a \otimes 1+c \otimes a b \otimes 1)=$ $\left(I d+S+S^{2}\right) \circ \phi^{23}(a(b c) \otimes 1 \otimes 1+b(c a) \otimes 1 \otimes 1+c(a b) \otimes 1 \otimes 1)=\left(I d+S+S^{2}\right)(a(b c) \otimes 1 \otimes 1+$ $b(c a) \otimes 1 \otimes 1+c(a b) \otimes 1 \otimes 1)=a(b c) \otimes 1 \otimes 1+b(c a) \otimes 1 \otimes 1+c(a b) \otimes 1 \otimes 1+1 \otimes 1 \otimes a(b c)+1 \otimes$ $1 \otimes b(c a)+1 \otimes 1 \otimes c(a b)+1 \otimes a(b c) \otimes 1+1 \otimes b(c a) \otimes 1+1 \otimes c(a b) \otimes 1$.

Similarly,
$\left(I d+S+S^{2}\right) \circ \phi^{12} \circ \phi^{23} \circ \phi^{12} \circ\left(I d+S+S^{2}\right)(a \otimes b \otimes c)=\left(I d+S+S^{2}\right) \circ \phi^{12} \circ \phi^{23} \circ \phi^{12}(a \otimes b \otimes$ $c+b \otimes c \otimes a+c \otimes a \otimes b)=(a b) c \otimes 1 \otimes 1+(b c) a \otimes 1 \otimes 1+(c a) b \otimes 1 \otimes 1+1 \otimes 1 \otimes(a b) c+1 \otimes 1 \otimes$ $(b c) a+1 \otimes 1 \otimes(c a) b+1 \otimes(a b) c \otimes 1+1 \otimes(b c) a \otimes 1+1 \otimes(c a) b \otimes 1$.

We now use the axiom of the "weak UJLA structure".

Theorem 2. Let (V, Δ) be a weak co-UJLA structure with the co-unity $\varepsilon: V \rightarrow k$. Let $\phi=\Delta \otimes \varepsilon: V \otimes V \rightarrow$ $V \otimes V$. Then, (V, ϕ) is a "weak (co)UJLA structure".

Proof. The proof is dual to the above proof. We refer to [6-8] for a similar approach.
A direct proof should use the property of the co-unity: $(\varepsilon \otimes I) \circ \Delta=I=(I \otimes \varepsilon) \circ \Delta$. After computing
$\phi^{12} \circ \phi^{23} \circ \phi^{12}(a \otimes b \otimes c)=\varepsilon(b) \varepsilon(c)\left(a_{1}\right)_{1} \otimes\left(a_{1}\right)_{2} \otimes a_{2} \quad$ and
$\phi^{23} \circ \phi^{12} \circ \phi^{23}(a \otimes b \otimes c)=\varepsilon(b) \varepsilon(c) a_{1} \otimes\left(a_{2}\right)_{1} \otimes\left(a_{2}\right)_{2}$,
one just checks that the properties of the linear map $I d+S+S^{2}$ will help to obtain the desired result.

Theorem 3. Let (V, η) be a weak $U J L A$ structure with the unity $1 \in V$. Let $\phi: V \otimes V \rightarrow V \otimes V, a \otimes b \mapsto$ $a b \otimes 1+1 \otimes a b-a \otimes b$. Then, (V, ϕ) is a "weak (co)UJLA structure".

Proof. One can formulate a direct proof, similar to the proof of Theorem 1.
Alternatively, one could use the calculations from [7] and the axiom of the "weak UJLA structure".

3. Unification of (Co)Derivations and Applications

Definition 4. Given a vector space V, a linear map $d: V \rightarrow V$, and a linear map $\phi: V \otimes V \rightarrow V \otimes V$, with the properties

$$
\begin{gather*}
\phi^{12} \circ \phi^{23} \circ \phi^{12}=\phi^{23} \circ \phi^{12} \circ \phi^{23} \tag{10}\\
\phi \circ \phi=I d, \tag{11}
\end{gather*}
$$

the triple (V, d, ϕ) is called a "generalized derivation" if the maps d and ϕ satisfy the identity
$\phi \circ(d \otimes I+I \otimes d)=(d \otimes I+I \otimes d) \circ \phi$.
Here, we have used our usual notation: $\phi^{12}=\phi \otimes I, \phi^{23}=I \otimes \phi, I d: V \otimes V \rightarrow V \otimes V, a \otimes b \mapsto a \otimes b$ and $I: V \rightarrow V, a \mapsto a$.

Theorem 4. If A is an associative algebra and $d: A \rightarrow A$ is a derivation, and $\phi: A \otimes A \rightarrow A \otimes A, a \otimes b \mapsto$ $a b \otimes 1+1 \otimes a b-a \otimes b$, then (A, d, ϕ) is a "generalized derivation".

Proof. According to [7], ϕ verifies conditions (10) and (11). Recall now that $d(a b)=d(a) b+$ $a d(b) \forall a, b \in A, \quad d\left(1_{A}\right)=0$.
$(d \otimes I+I \otimes d) \circ \phi(a \otimes b)=(d \otimes I+I \otimes d)(a b \otimes 1+1 \otimes a b-a \otimes b)=d(a b) \otimes 1-d(a) \otimes b+1 \otimes$ $d(a b)-a \otimes d(b)$.
$\phi \circ(d \otimes I+I \otimes d)(a \otimes b)=\phi(d(a) \otimes b+a \otimes d(b)=d(a) b \otimes 1+1 \otimes d(a) b-d(a) \otimes b+a d(b) \otimes$ $1+1 \otimes a d(b)-a \otimes d(b)$.

Theorem 5. If (C, Δ, ε) is a co-algebra, $d: C \rightarrow C$ is a co-derivation, and $\psi=\Delta \otimes \varepsilon+\varepsilon \otimes \Delta-I d$: $C \otimes C \rightarrow C \otimes C, c \otimes d \mapsto \varepsilon(d) c_{1} \otimes c_{2}+\varepsilon(c) d_{1} \otimes d_{2}-c \otimes d$, then (C, d, ψ) is a "generalized derivation". (We use the sigma notation for co-algebras.)

Proof. The proof is dual to the above proof.
According to [7], ψ verifies conditions (10) and (11). From the definition of the co-derivation, we have $\varepsilon(d(c))=0$ and $\Delta(d(c))=d\left(c_{1}\right) \otimes c_{2}+c_{1} \otimes d\left(c_{2}\right) \forall c \in C$.
$\psi \circ(d \otimes I+I \otimes d)(c \otimes a)=\varepsilon(a) d(c)_{1} \otimes d(c)_{2}-d(c) \otimes a+\varepsilon(c) d(a)_{1} \otimes d(a)_{2}-c \otimes d(a)$,
$(d \otimes I+I \otimes d) \circ \psi(c \otimes a)=\varepsilon(a) d\left(c_{1}\right) \otimes c_{2}+\varepsilon(c) d\left(a_{1}\right) \otimes a_{2}-d(c) \otimes a+\varepsilon(a) c_{1} \otimes d\left(c_{2}\right)+\varepsilon(c) a_{1} \otimes$ $d\left(a_{2}\right)-c \otimes d(a)$.

The statement follows on from the main property of the co-derivative.

Definition 5. Given an associative algebra A with a derivation $d: A \rightarrow A, M$ an A-bimodule and $D: M \rightarrow$ M with the properties

$$
D(a m)=d(a) m+a D(m) \quad D(m a)=D(m) a+m d(a) \forall a \in A, \forall m \in M
$$

the quadruple (A, d, M, D) is called a "module derivation".
Remark 1. A "module derivation" is a module over an algebra with a derivation. It can be related to the co-variant derivative from differential geometry. Definition 5 also requires us to check that the formulas for D are well-defined.

Note that there are some similar constructions and results in [9] (see Theorems 1.27 and 1.40).
Theorem 6. In the above case, $A \oplus M$ becomes an algebra, and $\delta: A \oplus M \rightarrow A \oplus M,(a \oplus m) \mapsto(d(a) \oplus$ $D(m))$ is a derivation of this algebra.

Proof. We just need to check that $\delta((a \oplus m)(b \oplus n))=\delta((a b \oplus a n+m b))=d(a b) \oplus D(a n+m b)$
equals $\delta((a \oplus m)(b \oplus n))=\delta((a \oplus m))(b \oplus n)+(a \oplus m) \delta(b \oplus n)=(d(a) \oplus D(m))(b \oplus n)+(a \oplus$ $m)(d(b) \oplus D(n))=(d(a) b \oplus d(a) n+D(m) b)+(a d(b) \oplus a D(n)+m d(b))$.

Remark 2. A dual statement with a co-derivation and a co-module over that co-algebra can be given.
Remark 3. The above theorem leads to the unification of module derivation and co-module derivation.

4. Modified Yang-Baxter Equation

For $A \in M_{n}(\mathbb{C})$ and $D \in M_{n}(\mathbb{C})$, a diagonal matrix, we propose the problem of finding $X \in$ $M_{n}(\mathbb{C})$, such that

$$
\begin{equation*}
A X A+X A X=D \tag{12}
\end{equation*}
$$

This is an intermediate step to other "modified" versions of the Yang-Baxter equation (see, for example, [10]).

Remark 4. Equation (12) is related to the problem of the three matrices. This problem is about the properties of the eigenvalues of the matrices A, B and C, where $A+B=C$. A good reference is the paper [11]. Note that if A is "small" then $D-A X A$ could be regarded as a deformation of D.

Remark 5. Equation (12) can be interpreted as a "generalized eigenvalue problem" (see, for example, [12]).
Remark 6. Equation (12) is a type of Yang-Baxter matrix equation (see, for example, $[13,14]$) if $D=O_{n}$ and $X=-Y$.

Remark 7. For $A \in M_{2}(\mathbb{C})$, a matrix with trace -1 and

$$
D=-\left(\begin{array}{cc}
\operatorname{det}(A) & 0 \tag{13}\\
0 & \operatorname{det}(A)
\end{array}\right)
$$

Equation (12) has the solution $X=I^{\prime}$.
Remark 8. There are several methods to solve (12). For example, for $A^{3}=I_{n}$, one could search for solutions of the following type: $\quad X=\alpha I_{n}+\beta A+\gamma A^{2}$. Now, (12) implies that $\left(2 \alpha \beta+\gamma^{2}+\alpha\right) A^{2}+\left(\alpha^{2}+2 \beta \gamma+\gamma\right) A+$ $\left(2 \alpha \gamma+\beta^{2}+\beta\right) I_{n}-D=0$.

It can be shown that we can produce a large class of solutions in this way, if D is of a certain type.

Funding: This research received no external funding.
Acknowledgments: I would like to thank Dan Timotin for the discussions and the reference on the problem of the three matrices. I also thank the editors and the referees.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Nichita, F.F. Unification theories: Examples and Applications. Axioms 2018, 7, 85. [CrossRef]
2. Marcus, S.; Nichita, F.F. On Transcendental Numbers: New Results and a Little History. Axioms 2018, 7, 15. [CrossRef]
3. Smoktunowicz, A.; Smoktunowicz, A. Set-theoretic solutions of the Yang-Baxter equation and new classes of R-matrices. Linear Algebra Its Appl. 2018, 546, 86-114. [CrossRef]
4. Motegi, K.; Sakai, K. Quantum integrable combinatorics of Schur polynomials. arXiv 2015, arXiv:1507.06740.
5. Nichita, F.F. On Jordan algebras and unification theories. Rev. Roum. Math. Pures Appl. 2016, 61, 305-316.
6. Ardizzoni, A.; Kaoutit, L.E.; Saracco, P. Functorial Constructions for Non-associative Algebras with Applications to Quasi-bialgebras. arXiv 2015, arXiv:1507.02402.
7. Nichita, F.F. Self-inverse Yang-Baxter operators from (co)algebra structures. J. Algebra 1999, 218, 738-759. [CrossRef]
8. Dascalescu, S.; Nichita, F.F. Yang-Baxter Operators Arising from (Co)Algebra Structures. Commun. Algebra 1999, 27, 5833-5845. [CrossRef]
9. Grinberg, D. Collected Trivialities On Algebra Derivations. Available online: http:/ /www.cip.ifi.lmu.de (accessed on 16 May 2019).
10. Bordemann, M. Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups. Commun. Math. Phys. 1990, 135, 201-216. [CrossRef]
11. Fulton, W. Eigenvalues, Invariant Factors, Highest Weights, and Schubert Calculus. Bull. New Ser. AMS 2000, 37, 209-249. [CrossRef]
12. Chiappinelli, R. What Do You Mean by "Nonlinear Eigenvalue Problems"? Axioms 2018, 7, 39. [CrossRef]
13. Ding, J.; Tian, H.Y. Solving the Yang-Baxter-like matrix equation for a class of elementary matrices. Comput. Math. Appl. 2016, 72, 1541-1548. [CrossRef]
14. Zhou, D.; Chen, G.; Ding, J. On the Yang-Baxter matrix equation for rank-two matrices. Open Math. 2017, 15, 340-353. [CrossRef]
