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Abstract: In this work, new Bäcklund transformations (BTs) for generalized Liouville equations 
were obtained. Special cases of Liouville equations with exponential nonlinearity that have a 
multiplier that depends on the independent variables and first-order derivatives from the function 
were considered. Two- and three-dimensional cases were considered. The BTs construction is 
based on the method proposed by Clairin. The solutions of the considered equations have been 
found using the BTs, with a unified algorithm. In addition, the work develops the Clairin’s method 
for the system of two third-order equations related to the integrable perturbation and 
complexification of the Korteweg-de Vries (KdV) equation. Among the constructed BTs an analog 
of the Miura transformations was found. The Miura transformations transfer the initial system to 
that of perturbed modified KdV (mKdV) equations. It could be shown on this way that, considering 
the system as a link between the real and imaginary parts of a complex function, it is possible to go 
to the complexified KdV (cKdV) and here the analog of the Miura transformations transforms it 
into the complexification of the mKdV. 

Keywords: Bäcklund transformation; Clairin’s method; generalized Liouville equation; Miura 
transformation; Korteweg-de Vries equation 

 

1. Introduction 

Currently, nonlinear partial differential equations are widely used to describe the so-called 
“fine processes”, such as propagation of nonlinear waves in dispersive media [1]. Due to the 
complexity of different nonlinear equations, no common method of their solution exists. For the 
integrable systems, efficient methods have been developed, such as the inverse scattering method 
[2,3], Hirota method [4], Painlevé method [5], Bäcklund transformation [6], a method of mapping 
and deformation [3], nonlocal symmetry method [7,8], etc. 

In the classical works [2,6] the Bäcklund transformations (BTs) were considered for the couple 
of differential second order partial differential equations and presented in form of a system of 
relations and containing independent variables, functions of the said equations, and their first-order 
derivatives. The BTs allow to obtain not only couples of equations but, if the solution of one of them 
is known, obtain the solution of the other one. 

BT plays an important role in the integrable systems because it reveals the inner relations 
between different integrable properties, such as determination of the point symmetries [9,10], the 
presence of the Hamiltonian structure [11–13]. 

Lots of research has recently been conducted in this area. For example, determining the 
complementary symmetries and obtaining the Miura transformations for the hierarchy of the 



Axioms 2019, 8, 45 2 of 17 

Kadomtsev–Petviashvili (KP) equation and modified KP, including for the discrete analog [14,15]; in 
[16] the new BTs relative to the residual symmetry of the (2 + 1)-dimensional Bogoyavlenskij 
equation [17] have been investigated; construction of new auto Bäcklund transformations for the 
Lagrange system and of Hеnon-Heiles system of equations in parabolic coordinates [18]; it has been 
shown that the calibration conditions in the theory of the relativistic string, which allow using the 
d’Alembert equation instead of the nonlinear Liouville equation, are direct consequences of the BT 
relating the solutions of these equations [19]. 

In Reference [20] it is shown how pseudo constants of the Liouville-type equations can be 
exploited as a tool for construction of the Bäcklund transformations. In Reference [21] it is proven 
that contact-nonequivalent three-dimensional linearly degenerate second-order equations that are 
Lax-integrable are related to each other by the corresponding Bäcklund transformations. 

This work describes how new BTs for the Liouville generalized equations are obtained. The 
second and third sections deal with the special cases of the Liouville equation with exponential 
nonlinearity that have a multiplier that depends upon the independent variables and first-order 
derivatives from the function, and the three-dimensional case. The BTs construction is based on the 
method proposed by Clairin and has at such approach a clear geometric sense. The solutions of the 
considered equations have been found using the BTs, with a unified algorithm. 

The fourth section contains the development of Clairin’s method for the system of two 
third-order equations related to the integrable perturbation and complexification of the KdV (cKdV) 
equation [22]. An essential point for these dynamic systems of equations is that the application of 
special conditions to the differential forms may lead to different dynamic systems. 

Among the constructed BTs an analog of the Miura transformations was found in Section five. 
The Miura transformations transfer the initial system to that of perturbed modified KdV (mKdV) 
equations. In this way, we were able to show that when considering the system as a relation between 
the real and imaginary parts of a complex function, we can pass to the cKdV, and the analog of the 
Miura transformations transforms it into the complexification of mKdV. 

2. Bäcklund Transformations for Special Cases of Liouville Equations 

Theorem 1. Partial differential equation 

( ) ( )1 2
zz f f e=ξη ξ η  (1) 

and wave equation 0wξη =  are related by the Bäcklund transformation of the form: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
1 22 2

1 2 1 2
1 2

1,
w z w zf fw z w zbe f f e f f

f b f

+ −
− ′′∂ ∂ ∂ ∂

= + + = − − −
∂ ∂ ∂ ∂

ξ η
ξ η ξ η

ξ ξ ξ η η η
 (2) 

where b is an arbitrary parameter, 1 2( ), ( )f fξ η  are arbitrary functions of one variable, ( , )w ξ η  and ( , )z ξ η  
are functions of two variables. 

The Proof uses the cross differentiation of the Equations (2) and then summing or finding the 
difference of the resulting expression. 
Corollary 1. If the wave equation 0w =ξη  has the solution 

( , ) ( ) ( )w = +ξ η θ η ϑ ξ  (3) 

then Equation (1) has the solution 

( ) ( ) ( )
2

( )
2 1

1( , ) ( ) ( ) ln
2 2

bz f f e d e d
b

θ η ϑ ξξ η ϑ ξ θ η η ξ η ξ−  = − − +  
   

∫ ∫  (4) 

where ( ), ( )ϑ ξ θ η  are arbitrary functions. 
Proof of Corollary 1. Substitute solution (3) into transformations (2), and get the system of equations 
for the function ( , )z ξ η  
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( ) ( )

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

1 22 2
1 2 1 2

1 2

1, .
z zf fz zbe f f e f f

f b f

+ + + −
− ′′∂ ∂ ∂ ∂

= + + = − − −
∂ ∂ ∂ ∂

θ η ϑ ξ θ η ϑ ξξ ηϑ θξ η ξ η
ξ ξ ξ η η η

 (5) 

Seek for the solution of the system in form ( )( , ) 2 ln ,z =ξ η ϕ ξ η , then (5) takes the form of two 
Bernoulli equations. Their solutions have the forms 

( )

( )

( )

( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( )

1 1
2 2

1 2
11 22 2

2 1 1 2

1 2 1 2,e e
f fbe f e d b e f e d

ϑ ξ θ η

θ η ϑ ξ
ϑ ξ θ η

ϕ ϕ
ξ η

η ξ ψ η ξ η ψ ξ

−

− −−

= =

+ +∫ ∫
 (6) 

where 1 2( ), ( )ψ η ψ ξ  are arbitrary functions. 
Compare the resulting solutions (6) and determine the condition at which they coincide, then 

functions 2 ( )ψ ξ  and 1 ( )ψ η  must be predetermined as follows 

( )
( )

( ) ( ) ( ) ( ) ( )
( )

2 2
1 2 2 1

1 ,e f e d be f e d
b

−
−= =∫ ∫

θ η ϑ ξ
θ η ϑ ξψ η η η ψ ξ ξ ξ  (7) 

obtaining the solution of system (5) in the form 

( )
( ) ( )

( ) ( ) ( )
11

2 2
1 2

1, 2 ( ) ( )e f f e d b e d
b

−−
− − = + 
 ∫ ∫

ϑ ξ θ η
θ η ϑ ξϕ ξ η ξ η η ξ  

and the solution of Equation (1) in the form (4). 
Clairin has proposed a method of Bäcklund transformations construction for the hyperbolical 

form of nonlinear equations. This procedure will be applied to the equation 

( )1 2 1 2, ,zz e B z B z B B const= + −

  ξη ξ η  (8) 

where ( , )z ξ η  is a function of two variables, and the Bäcklund transformation will be constructed. 

Theorem 2. Bäcklund transformations of the form: 

2

1

1 ,
2

1 ,
2 2

z

z

zw B e w w

w zw B e w

∂
= − +

∂

∂
= +

∂









ξξ ξ ξ

ξ
ξη ξ

ξ

η

 (9) 

relate the two equations, (8), and 
2 2

2 1( ) 4 0B w B w+ =ξη ξ  (10) 

where 1 2,B B  are arbitrary constants, and ( , ), ( , )w zξ η ξ η  are functions of two variables. 

The Proof is similar to that of Theorem 1. 
Corollary 2. If Equation (10) has the solution 

1 22w B B= −η ξ , (11) 

then Equation (8) has the solution 

2
1ln , .

2
B

z C B C constη ξ= − + − −  (12) 

Proof of Corollary 2. Use the found transformations (9) and substitute the known solution (11), the 
system takes the form 
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2 1 12 , 0 ,zz z zB B B e∂ ∂ ∂
= − = +

∂ ∂ ∂


  

η ξ η
 (13) 

where, from the first linear partial differential equation, find the relation between the independent 
variables ,  ξ η , and, from the second equation of the system (13) determine the form of the function 

1 2ln 0, 5 , 2 ,z C t t B B C constη ξ= − + = − − . The result is the solution of Equation (8) in the form 
(12). □ 
Corollary 3. If Equation (10) has the solution 

2 12 2 ,B Bw e const
−

= −
λ λ

η ξ
λ , (14) 

then Equation (8) has the solution 

( ) ( )1 2

1 2

2
1 2 2

1 2
1 2

2
ln 1 ln , .

2

B B
B BB B

z B B Ce C C const
B B

λ η ξλ η ξ
λ

−−
= − + + −  (15) 

The Proof is similar to that of Corollary 2. 
Corollary 4. If Equation (8) has the solution 1 2z B B= − η ξ , then Equation (10) has the solution 

1 2 1

2

2 1( , ) exp .
2 2

B B B
w e

B
− 

= − − 
 

η ξξ η η  (16) 

Proof of Corollary 4. Use the Bäcklund transformations (9) and substitute the available solution 
1 2z B B= − η ξ , and get the system of equations, that can be integrated by the relevant variables 

( )

( )

1 2

1 2

2 1

1
2

1ln ,
2
1ln ,
2 2

B B

B B

w e B

B
w e

−

−

= − +

= + +

η ξ
ξ

η ξ
ξ

ξ ψ η

η ψ ξ
 (17) 

where 1 2( ), ( )ψ η ψ ξ  are the integration constants. Complete the definition of functions 1 ( )ψ η  and 

2 ( )ψ ξ , so that the resulting values of the right parts of system (17) coincide. This is possible if 

1 1 2 2( ) 0, 5 , ( )B B= = −ψ η η ψ ξ ξ . As a result, the value 

1 2 1
2

1exp
2 2

B B B
w e B− 

= − + 
 

η ξ
ξ ξ η   

is determined. Integration by variable ξ  yields 

( )
11 21

2 2

2

2, ( )
B B B

e
w e

B

− −
= −

η ξ η
ξ η φ η ,  

where ( )φ η  is an arbitrary function. For a greater certainty of ( )φ η , substitute the found function 
into Equation (10). The equality will be fulfilled identically if 

( ) ( ) ( )1 2
1 12 0B BB e B−′ + + =η ξφ η φ η φ η .  

The obtained equation depends upon variable ξ , which must not happen, hence, assume 
( ) 0=φ η , then the desired function has the form (16). 

3. Bäcklund Transformations for Three-Dimensional Liouville Equation 

Theorem 3. Nonlinear partial differential equation 
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( )2
3 0vcv e v v v+ + + =ηξ η ζ ξγ γ

γ
 (18) 

is linked to the nonlinear equation 

3 + + = η ξ ζ η ξηϕ γϕ ϕ γϕ ϕ , (19) 

by the Bäcklund transformations of the form: 

2

3 ,

2 ,

3 6 ,

v v v

v v v

v

cce e v ce

cv e ce v v ce

+ + =

  + + + = −    

  + + + − − − − =   

ξ η ζ ξ

ηη η η η

ξη ξ η ζη ζ η ξ η ξ ζ η

γϕ γϕ ϕ γ

γ ϕ ϕ ϕ
γ

γ ϕ ϕ ϕ ϕ ϕ ϕ γ ϕ γ ϕ
γ

 
(20) 

where ,c γ  are arbitrary constants, and ( , , ), ( , , )vϕ ξ η ζ ξ η ζ  are functions of three variables , ,ξ η ζ . 

Proof of Theorem 3. Shows that system (20) leads to Equation (18). For this differentiate the first 
equality of relation (20) by variable η  

3 v+ + =ξη ηη ζη ξηγϕ γϕ ϕ γ  (21) 

and determine from the second and third equalities the second order derivatives , ,ξη ηη ζηϕ ϕ ϕ , 
then, having substituted their values into (21), gives 

( )3 3vcv e v v v v − − − − + + = ξ η ξ ζ η ξ ζ η ξηγ γϕ γϕ ϕ ϕ γ γ γ
γ

. (22) 

By reason of the first equality of system (20), the coefficient at function ηϕ  becomes zero and 
there remains the equality that relates the only function ( , , )v ξ η ζ : 

( ) 23vсe v v v v− + + =ξ ζ η ξηγ γ γ .  

Then, try to get rid of function ( , , )v ξ η ζ  in the initial system of transformations (20). In the 

second equation of the system separate the combination of functions 1 vc e−+ηϕ γ , so that the equality 
takes the form 

2

0.v vc ce e   
+ + + =   

   
η η

η

ϕ ϕ
γ γ

 (23) 

In the third equation of system (20), substitute the value vξγ  from the first equality (20), then, 
after having grouped the elements together 

2
13 0.v v vc c ce e e     

+ − + + + =     
     

η η η
ξ ζ

ϕ ϕ ϕ
γ γ γ γ

 (24) 

Having separated the total derivatives, rewrite the first and third equations as 

13 ,

13 0.v

v

c e

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ 

   ∂ ∂ ∂
+ + + =   ∂ ∂ ∂   

ξ

η

ϕ
ξ η γ ζ

ϕ
ξ η γ ζ γ

 (25) 

Obviously if 1 , 0vс e C C− + = ≠ηγ ϕ  is assumed, such form is not a solution of Equation (23), 
hence, the two situations are possible: 
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1. 0С = , 2. ( , , )vce z+ =ηγϕ ξ η ζ  (26) 

( , , )z ξ η ζ  is some function. The simplest is that if 0С =  is assumed, then, for function v , get 
1ln( )v с −= − ηγ ϕ . As a result of the substitution, the first equality transforms into the nonlinear form 

(19). 
Corollary 5. If nonlinear partial differential Equation (18) has the solution 

( ) ( )1, , 3v с f c−= + − −ξ η ζ γ η ξ γζ ζ  (27) 

where ( )f −ξ γζ  is an arbitrary function of the combined variable −ξ γζ , then Equation (19) has 
the solution in the form 

( ) ( ) ( ) ( ), , exp 3a b cf f c r
a b
ξ γ ζϕ ξ η ζ ξ γζ η ξ γζ ζ ξ γζ

γ
 + ′= − − + − − + − +  

, (28) 

where ( , , ), ( , , )vϕ ξ η ζ ξ η ζ  are functions of three variables , ,ξ η ζ , ( , , )r ξ η ζ  is an arbitrary 
function, , ,a b c  are arbitrary constants. 
Proof of Corollary 5. Use Bäcklund transformations (20). Perform this substitution of function 

( , , )v ξ η ζ  (27) into (20); obviously, the last two equations of the system will be fulfilled identically if 

( )exp 3c c f cηϕ η ξ γζ ζ
γ γ

 
= − + − − 

 
. (29) 

Having integrated the last equality get the sought for a function of the form 

( ) ( ) ( ), , , exp 3cq f cϕ ξ η ζ ξ ζ η ξ γζ ζ
γ

 
= − + − − 

 
 (30) 

where ( , )q ξ ζ  is an arbitrary function. For greater certainty, use the remaining first equality of the 
system (20), then 

( ) ( ) ( )1, ,q q fξ ζξ ζ γ ξ ζ ξ γζ− ′+ = − . (31) 

As in the resulting linear Equation (31), one of the first integrals coincides with the form of the 
argument of the function of the right part, write the solution in the form 

( ) ( ) ( ), ,q g f ′= −ξ ζ ξ ζ ξ γζ  (32) 

with the unknown function ( , )g ξ ζ , which is obtained from the linear equation obtained after 
substitution into (31), 

( ) ( ) ( )1
1,g a b r

a b
= + + −

+
ξ ζ ξ γ ζ ξ γζ  (33) 

which is determined with accuracy to the summand of the form 1 ( ), ,r a b−ξ γζ  are arbitrary 
parameters simultaneously not equal to zero. Now put together the resulting values of the functions 
(30), (32), and (33); this yields the sought for solution (28). 
Corollary 6. Equations (18) and (19) have a solution in the form 

( ) ( )1 23F F F= − + −γζ η ξ γζ  (34) 

where 1 2,F F  are arbitrary functions. 
Get back to the above rationale and consider the second case (26). It may be shown that 

Equation (18) relates to a more complex equation. For this, make in (23) change 2 in (26) 
2 0z z+ =ηγ . (35) 

It can be seen that this equality may be integrated 
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( ) ( )
, ,

,
z =

+
γξ η ζ

η ψ ξ ζ
 (36) 

where ( , )ψ ξ ζ  is an arbitrary function. Substitute the found function into the last equality (25), this 
yields the equation for the function ( , )ψ ξ ζ  

[ ] ( ) ( )2( , ) , 3 , 0−  + + + = ξ ζη ψ ξ ζ γψ ξ ζ γ ψ ξ ζ . (37) 

The common solution (37) will be written in the form ( , 3 ) 0F − + =ξ γζ γζ ψ , where F  is an 
arbitrary function. Consider the partial solution in the form of a linear relation in relation to the 
second combined variable 

( ) ( ), 3f= − −ψ ξ ζ ξ γζ γζ  (38) 

with an arbitrary form of the function f . Hence, (36) takes the form 

( ) ( )
, ,

3
z

f
=

+ − −
γξ η ζ

η ξ γζ γζ
. (39) 

From (26), find the function ( , , )v ξ η ζ  

( ) ( )
1, , ln

3
v

c f η
γξ η ζ ϕ

η ξ γζ γζ
 

= −  + − − 
 (40) 

then the first equality of system (25) takes the form 

( )
( ) ( )2

1 3
33

f
ff

′  −
 + = − + +    + − −+ − −    

ξη η ξ ζ η

γ ξ γζ
γϕ ϕ γϕ ϕ γϕ

η ξ γζ γζη ξ γζ γζ
. (41) 

Theorem 4. Nonlinear partial differential Equation (18) relates to the class of nonlinear Equations (41) by 
Bäcklund transformations (20), where ( )f −ξ γζ  is an arbitrary function of the combined variable −ξ γζ . 

The solution of Equation (41) may be obtained having assumed 

( )
1

3f
=

+ − −ηϕ η ξ γζ γζ
  

then 

( )ln ( ) 3 ,f qϕ η ξ γζ γζ ξ ζ= + − − +  (42) 

where ( , )q ξ ζ  is an arbitrary function. 
Corollary 7. Function (42), where ( )f −ξ γζ  and ( , )q ξ ζ  are arbitrary functions, is a solution of 
Equation (41). 

Use the fact that, according to theorem 2, Equation (18) and family of Equations (41) are related 
by Bäcklund transformations (20), and see how the trivial solution ( , , )v =C const−ξ η ζ  of the first 
equation may serve to construct a solution for the family (41). 
Corollary 8. Family of nonlinear partial differential Equations (41) has the solution 

( ) ( ) ( ) ( )1
2, , ln 3 3f aс fϕ ξ η ζ γζ η ξ γζ γ γζ η ξ γζ−= − + − + − + −  (43) 

where 2 ( )f −ξ γζ  is an arbitrary function of the combined variable −ξ γζ , а is an arbitrary 
constant. 
Proof of Corollary 8. Substitute function ( , , )v =C const−ξ η ζ  to system (20), then the first equality 
of system (20) yields 

( ) ( ), , 3 ,F= − −ϕ ξ η ζ γζ η ξ γζ  (44) 
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with an arbitrary function F . Denote the first component derivative as (1)F ′  and the second 
component derivative as (2)F ′ . Substitute (44) into the remaining two equations of the system (20) 

(for compaction: 0Ce a= > ) 

2
2 2

(1)(1) (1) (1)

2
2

(1)(2) (2) (1) (1)(1) (1)(2) (1) (2) (1) (1)2

( ) 2 ,

13 [3 ] 3 6 .

cF F a caF

cF F F F F F F F a caF

 ′′ ′ ′+ + = 

′′ ′ ′ ′′ ′′ ′ ′ ′ ′− − − + − − − = −

γ
γ

γγ

 

It is easily seen that both equalities reduce to the single equation 
2 2 2 1

(1)(1) (1) (1)( ) 2 ,F F a c caF− ′′ ′ ′+ + = γ γ  whose solution has the form 
1

1 2ln 3 ( ) (3 ) ( )F f ac fγζ η ξ γζ γ γζ η ξ γζ−= − + − + − + − , and 2 ( )f −ξ γζ  plays the role of the 
integration constant. 

As the resulting solution must comply with a whole class of equalities (41) differing from each 
other by the function ( )f −ξ γζ , the arbitrary functions 1 2( ), ( )f f− −ξ γζ ξ γζ  relate to the defined 
function ( )f −ξ γζ . The check leads to the necessity to assume 1 ( ) ( )f f− = − −ξ γζ ξ γζ , then 
solution (41) has the form (43). 

4. Bäcklund Transformations for System of Two Third-Order Equations 

We will develop the ideas of Clairin [5] and try to construct differential relations that transform 
the defined system of two equations on the function ( , ), ( , )u x t w x t  of the form 

12 6 0, 2 6 0t xxx x x t xxx xu u ww uu w w uw+ − − = − + =µ  (45) 

into a certain unknown system on the function ( , ), ( , )f x t r x t  of the same order. 
As the initial system describes the relation of two functions of two variables ,x t , to define the 

transition from one system to another one, it is necessary to define two couples characterizing the 
differential transformations from the independent variables х and t. Assuming that the considered 
system (45) is of third-order for variable х, and of first-order for variable t, and to construct (45) the 
cross differentiation is used, the differential relationships of the first order should be defined from 
variable t, and those of the second order should be defined from variable х: 

( ) ( )

( ) ( )

2

1 12

2

2 22

, , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , .

x x x x x x x x

x x x x x x x x

r rF u w f r u w f r H u w f r u w f r
tx

f fF u w f r u w f r H u w f r u w f r
tx

∂ ∂
= =

∂∂
∂ ∂

= =
∂∂

 (46) 

To define the explicit form of transformation, functions 1F , 2F , and 1H , 2H  must be found. 
The condition of integrability (equality of mixed second order derivatives) requires functions (46) to 
comply with the relationship 

3 33 3

2 2 2 2, f fr r
x t t x x t t x

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (47) 

where all the functions , , , , , , ,x x x xu w f r u w f r  depend upon the variables ,x t . Taking into account 
(46), 

3
1 1 1 1

2 ...t t t xt
x

F F F Fr u w f r
u w f rx t

∂ ∂ ∂ ∂∂
= + + + +
∂ ∂ ∂ ∂∂ ∂

, 

3
1 1 1 1 1 1

2 ... ... ... ,x x xx x x x xx xx
x x x

H H H H H Hr u w r u u w r r
u u w r r u w rt x
   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂

= + + + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂    
 

(48) 
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similarly for functions f . Equaling the right parts of the obtained equalities, and using (46) to 
exclude tr , tf , xxr , xxf , xtr , xtf , finally get the condition of consistency, which must lead to 
system (45). 

System (45) has the exponential nonlinearity of the first order ( , , , )t xxx t xxxu u w w  and second 
order ( , , )x x xww uu w u , while each summand in (48) is a product of two or three co-multipliers. To 
make the condition of consistency (47) yield the considered system (45) and without terms of higher 
than second power it is necessary to assume that functions , , 1, 2j jF H j =  are of linear structure in 
relation to variables , , ,x xu u w w : 

1 2

3 4 5

1 2

3 4 5

( , , , ) ( , , , )

( , , , ) ( , , , ) ( , , , ),

( , , , ) ( , , , )

( , , , ) ( , , , ) ( , , , ).

j j x x j x x x

j x x j x x x j x x

j j x x j x x x

j x x j x x x j x x

F F f r f r u F f r f r u

F f r f r w F f r f r w F f r f r

H H f r f r u H f r f r u

H f r f r w H f r f r w H f r f r

= + +

+ + +

= + +

+ + +

 (49) 

When composing the condition of consistency (48) at differentiation jF  by variable t, 
summands occur with the co-multipliers ,xt xtu w  that are absent from the initial system (45) and 
cannot be replaced or compensated, hence, it is necessary to set the coefficients 

2 4( , , , ) 0, ( , , , ) 0j x x j x xF f r f r F f r f r= = . (50) 

As a result, the condition of consistency (47) takes the form 
2 2

1 3 5 1 1 2 2
1 3 12 2

2 2 2
3 3 4 4 5

2 3 42 2 2

2 2

2 2 ,

j j j j j j j
j t j t x j xx x xx

j j j j j
j xxx x j xx x xx j xxx

F F F H H H H
u F u w F w u u H u u u

t t t x xx x
H H H H H

H u w w H w w w H w
x xx x x

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + = + + + + +

∂ ∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂ ∂

+ + + + + + + +
∂ ∂∂ ∂ ∂

 (51) 

where 

2 1 2 1

2 1

,

,

jk jk jk jk jk
x x

x x

jk jk jk jk jk
x x

x x

F F F F F
H H H H

t f r f r
H H H H H

f r F F
x f r f r

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂

  

2 2 2 2
2 2 2

2 1 2 1 22 2 2 2

2 2 2 2 2 2 2
2

1 2 1 1 2 2 12 2 .

jk jk jk jk jk jk jk jk
x x x x

x x x

jk jk jk jk jk jk jk
x x x x x x

x x x x x xx

H H H H H H H H
F F F F f r F

f r f rx f r f

H H H H H H H
F f r f F f F r F r F F F

f r f f f r r r r f f rr

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  

 (52) 

Functions ( , ), ( , )u x t w x t  are known, while the form of system (51) is determined by the 
equalities (45). The terms with multipliers , , ,t t xxx xxxu w u w  cannot occur during substitutions 

, , 1, 2j jF H j =  and their first order derivatives ,jx jxF H  (only second-order derivatives from x 
may occur), hence, comparing the coefficients for the couple ,t xxxu u  and ,t xxxw w  in formulas (45) it 
is necessary to assume 

1 2 3 4, 2j j j jF H F H= − = . (53) 

Taking into account (53), equality (51) takes the form 

( ) ( )
2 2 2

1 1 3 3 5 5
1 32 2 2

2 2
1 1 1 3 3 3

1 32 2

2

2 2 2 4 .

j j j j j j
j t xxx j t xxx

j j j j j j
x j xx x j xx

F H F H F H
u F u u w F w w

t t tx x x

H F F H F F
u H u w H w

x x x xx x

   ∂ ∂ ∂ ∂ ∂ ∂
− + + + − + − + − =      ∂ ∂ ∂∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂   
= − + − + + + +         ∂ ∂ ∂ ∂∂ ∂      

 (54) 
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System (45) has no terms not containing xxu  or xxw . Hence, differentiate (54) by variable xxu  
(correspondingly, by xxw ), and obtain the relation that must be fulfilled identically 

1 1 3 3 5 5
21 11 21 11 21 11 1

1 1 1 1
2 12 ,

j j j j j j
j

x x x x x x

j j j j
x x

x x

F F F F F F
F F u F F w F F H

f r f r f r

F F F F
f r F F

f r f r

∂ ∂ ∂ ∂ ∂ ∂   
+ + + + + + =   

∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂ ∂ ∂ 

= + + + 
∂ ∂ ∂ ∂ 

 (55) 

similarly for xxw : 

1 1 3 3 5 5
23 13 23 13 23 13

3 3 3 3
3 2 1

1 2 .
2

j j j j j j

x x x x x x

j j j j
j x x

x x

F F F F F F
F F u F F w F F

f r f r f r

F F F F
H f r F F

f r f r

∂ ∂ ∂ ∂ ∂ ∂   
+ + + + + =   

∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂ ∂ ∂ 

= + + + + 
∂ ∂ ∂ ∂ 

 (56) 

As the equalities have functions ,u w  and do not have similar summands, the coefficients at 
these functions must return to zero, hence, (55), (56) separate into system 1, 2j = : 

1 1 3 3 1 1
21 11 21 11 23 13

5 5 1 1 1 1
21 11 1 25 15

0, 2 2 ,

2 ,

j j j j j j

x x x x x x

j j j j j j
j x x

x x x x

F F F F F F
F F F F F F

f r f r f r
F F F F F F

F F H f r F F
f r f r f r

∂ ∂ ∂ ∂ ∂ ∂
+ = + = +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ 
+ + = + + + 

∂ ∂ ∂ ∂ ∂ ∂ 

 

1 1 3 3 3 3
23 13 21 11 23 13

5 5 3 3 3 3
23 13 3 25 15

2 2 , 0,

1 2 .
2

j j j j j j

x x x x x x

j j j j j j
j x x

x x x x

F F F F F F
F F F F F F

f r f r f r
F F F F F F

F F H f r F F
f r f r f r

∂ ∂ ∂ ∂ ∂ ∂
+ = + + =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ 
+ = + + + + 

∂ ∂ ∂ ∂ ∂ ∂ 

 

 

To make the first, second, fourth, and fifth equalities be fulfilled identically, assume 1jF , 3jF  
independent of functions ,x xf r . Note that here the simplest variant is selected. Other relations 
between functions 1jF , 3jF  are possible as well. The introduced assumptions are not final and may 
be changed when constructing transformations in the event when, at the next steps, incompatible 
systems or terms that cannot be eliminated occur. The third and sixth equalities yield 

1 1 5 5
1 21 112 ,j j j j

j x x
x x

F F F F
H f r F F

f r f r
∂ ∂ ∂ ∂ 

= + − − 
∂ ∂ ∂ ∂ 

 (57) 

5 5 3 3
3 23 132 2 4 .j j j j

j x x
x x

F F F F
H F F f r

f r f r
∂ ∂ ∂ ∂ 

= + − + 
∂ ∂ ∂ ∂ 

 (58) 

As a result of the performed analysis, functions (4.5) were transformed into the form 
( ) ( ) ( )

( ) ( )

( )

1 3 5

1 1 5 5
21 11 1 3

5 5 3 3
23 13 5

, , , , , ,

2 , 2 ,

2 2 4 , , , .

j j j j x x

j j j j
j x x j x j x

x x

j j j j
x x j x x

x x

F F f r u F f r w F f r f r

F F F F
H f r F F u F f r u F f r w

f r f r

F F F F
F F f r w H f r f r

f r f r

= + +

 ∂ ∂ ∂ ∂  
= + − − − + +   ∂ ∂ ∂ ∂  

 ∂ ∂ ∂ ∂  
+ + − + +   ∂ ∂ ∂ ∂  

 
(59) 

Continue examining equality (54). See with what coefficient the term with the multiplier xuu , 
point (1) (point (2): xww , point (3): xuw ), enters the condition of consistency (54); for this, 
differentiate (54) twice, first by variable u  (by w in (2), and by u in (3)), then by variable xu  (in (2), 
(3) by variable xw ). During the manipulations, interrelated equations are obtained, hence, describe 
their construction separately. 

1. After differentiation of (54) in relation to multiplier xuu , the following summands remain 
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3 2 3 3 3 2 3
1 1 1 3 5 1 1

2 22j j j j j j j

x x x xx

F F H F F H F
u w

t u u t u t u u t u u x ux u x u

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
, (60) 

where, taking into account (59), derivatives are transformed into a simpler form 
2 2 3

21 11

3 2

21 112

, 0,

, 1, 2, 1, 3.

jk jk jk jk jk

x x x x

jk jk jk jk

x

H H H H F
F F

x u x u f r t u u

F F F F
F F j k

t u f rx u

∂ ∂ ∂ ∂ ∂
= = + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= − = + = =

∂ ∂ ∂ ∂∂ ∂

 (61) 

As a result of the performed differentiation of the condition of consistency get the coefficient 
(60), that will be at the multiplier xuu . 
As such term occurs in system (45), the expression (60) must not be identically equal to zero but 
must be proportional to the coefficient 1jF , with which the terms t xxxu u+  enter. The 
coefficient of proportionality conforms to the coefficient of term xuu  in system (45) and equals 
−6. As a result, after substitution (57), expression (60) yields equation 

2 2 2
1 5 5 1 5

21 11 21 11 11 12 22 2 2 2j j j j j
j

x xx x

F F F F F
F F F F F F

f r f rf r

   ∂ ∂ ∂ ∂ ∂
− − + − =      ∂ ∂ ∂ ∂∂ ∂   

. (62) 

2. Perform similar actions in relation to the term xww . In relationship (54) the following 
summands remain 

3 2 3 3 3 2 3
1 3 3 3 5 3 3

2 22 2j j j j j j j

x x x xx

F F H F F H F
u w

t w w t w t w w t w w x wx w x w

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
. (63) 

where, taking into account (59), derivatives are transformed into a simpler form 
2 3 3

23 132

2 3

23 132

, 0,

2 2 2 , 1, 2, 1

 

, 3.

jk jk jk jk jk

x x xx

jk jk jk jk

x

H H H H F
F F

x w f r t w wx w

F F F F
F F j k

t w f rx w

∂ ∂ ∂ ∂ ∂
= = + =

∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

∂ ∂ ∂ ∂
= = + = =

∂ ∂ ∂ ∂∂ ∂

 (64) 

Expression (63) must not be identically equal to zero but must be proportional to 1jF  with the 
coefficient of proportionality corresponding to the term xww  in system (45) and equal to 

12− µ . As a result, after substitution (58), expression (63) yields equation 
2 2 2

5 5 3 5 3
23 13 23 13 13 12 22 2 2 2j j j j j

j
x xx x

F F F F F
F F F F F F

r f f rf r

   ∂ ∂ ∂ ∂ ∂
+ − + − =      ∂ ∂ ∂ ∂∂ ∂   

µ . (65) 

3. After differentiation (54) with multiplier xuw  the following non-zero summands remain 
3 2 3 3 3 2 2

1 1 1 3 5 3 3
2 22 2j j j j j j j

x x x xx

F F H F F H F
u w

t w u t w t w u t w u x ux w x u

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
. (66) 

Specifying the form of the derivatives using the earlier found form (53), rewrite the remaining 
coefficients (66) and equate 36 jF  

1 1 1 1 3
23 13 23 13 21

3 3 3
11 21 11 3

2 2 2

2 2 2 6 ,

j j j j j

x x x

j j j
j

x

F F H H H
F F F F F

f r f r f
H F F

F F F F
r f r

∂ ∂ ∂ ∂ ∂
+ − − − −

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
− − − =

∂ ∂ ∂

 (67) 

or, after substitution of the earlier found functions (57), (58): 
2 2 2 2

3 3 5 5 5 5
21 11 21 11 23 21 11 13 32 22 2 2j j j j j j

j
x x x xx x

F F F F F F
F F F F F F F F F

f r r f f rf r

   ∂ ∂ ∂ ∂ ∂ ∂
+ − + − + =      ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   

. (68) 

Now it is necessary to solve the system of six quasilinear partial second order differential 
equations (62), (65), (68), 1, 2j =  
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2
1 1

21 11 21 11 5 1

2
3 3

23 13 5 23 13 1

3 3
21 11 23 13 21 11 5 3

2 2 ,

2 2 ,

2 2 .

j j
j j

x x

j j
j j

x x

j j
j j

x x x x

F F
F F F F F F

f r f r

F F
F F F F F F

f r f r

F F
F F F F F F F F

f r f r f r

∂ ∂   ∂ ∂
+ − + =   ∂ ∂ ∂ ∂  

∂ ∂  ∂ ∂
+ − + =  ∂ ∂ ∂ ∂   

∂ ∂     ∂ ∂ ∂ ∂
+ − + + =     ∂ ∂ ∂ ∂ ∂ ∂    

µ  (69) 

In the resulting system (69) the summands 1 21 1 11j f j rF F F F+ , 3 23 3 13j f j rF F F F+ , and 

3 21 3 11j f j rF F F F+  have occurred that depend only upon variables ,f r , and operators of second 
order differentiation by variables ,x xf r , for which the dependence upon variables ,f r  is 
parametric. Obviously, the system decomposes into two subsystems determining the 
dependence upon variables ,x xf r : 

2 2

21 11 5 23 13 5

23 13 21 11 5

0, 0,

0,

j j
x x x x

j
x x x x

F F F F F F
f r f r

F F F F F
f r f r

   ∂ ∂ ∂ ∂
+ = + =   ∂ ∂ ∂ ∂   

   ∂ ∂ ∂ ∂
+ + =   ∂ ∂ ∂ ∂   

 (70) 

and the dependence upon variables ,f r : 

1 1 3 3 3 3
21 11 1 23 13 1 21 11 3, ,j j j j j j

j j j

F F F F F F
F F F F F F F F F

f r f r f r
∂ ∂ ∂ ∂ ∂ ∂

+ = + = − + =
∂ ∂ ∂ ∂ ∂ ∂

µ . (71) 

It can be seen that both systems (70), (71) are over-determined, hence, we will not search for 
their solutions here (they may exist; this variant has not been examined). 

The second possibility is when the action of the second order differential operators on 
function 5jF  yields the expression, dependent only upon variables ,f r . This is possible if 5jF  
has quadratic dependence upon variables ,x xf r ; write it in the form: 

2 2
5 1 2 3 4 5 6( , ) ( , ) ( , ) ( , ) ( , ) ( , )j j x j x x j x j x j x jF s f r f s f r f r s f r r s f r f s f r r s f r= + + + + + . (72) 

In this case, system (69) takes the form: 
1 1 2 2

21 11 1 21 21 11 2 3 11 1

3 32 2
1 23 23 13 2 3 13 23 13 1

3 3
21 11 23 1 21 11 2 13 21 2 3 11 3

,

,

2 [2 ] [ 2 ] 2 .

j j
j j j j

j j
j j j j

j j
j j j j j

F F
F F s F F F s s F F

f r
F F

s F F F s s F F F F
f r

F F
F F F s F F s F F s s F F

f r

∂ ∂
+ − − − =

∂ ∂
∂ ∂

+ + − − =
∂ ∂

∂ ∂ 
+ − + − + = 

∂ ∂ 

µ  (73) 

The first equation yields the system, relating two functions 11 21,F F . Select the simplest 
solutions (such an approach is justified because the Bäcklund transformations must, if possible, 
be of simple form) 

21 110,F F a const= = −  (74) 

then, it must be additionally assumed 
1

23 130,s s a−= = − . (75) 

Taking into account (74), (75), the remaining equalities take the form 
2 2 13

11 23 12 23 13 13 23 13 13 12 23

2 23 22
21 23 22 23 13 23 13 23 23

1 , 2 ,

2
0, .

2

F
s F s F F F F F F a a as F

a f r r

F as
s F s F F F F F F

f r r a

∂ ∂ ∂
+ − − + = = ∂ ∂ ∂ 

∂ + ∂ ∂
+ − + = = ∂ ∂ ∂ 

µ
 (76) 

Select, if possible, simpler solutions; for this suppose that 13 23,F F  depend upon f and do not 
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depend upon r, then 
1

12 220, 2s s a const−= = − − . (77) 

Only two first-order differential equations remain 
2 2 213 23

11 23 13 23 21 23 23 13 23
1 2, 0

F F
s F F F a s F F F F

a f a f
∂ ∂

− − = − − =
∂ ∂

µ  (78) 

whose solutions may be varied. Let 
2

13 11 21 230, , 1f fF s ae s e F−= = = =µ . (79) 

As a result, formulas (59) are transformed into the form 

( ) ( ) ( )

[ ] ( )

2 2 2 2
1 1 2 2

1 15 14 15

2 25 24 25

1 2, ,

2 2 2 , , , ,

22 2 2 , , , ,

f f
x x x x x

f f
x x x x x

f f
x x x x x

F au a e f r S F e w f f r S
a a

H r as u au a e f e s w H f r f r

H f as u e s r w e w H f r f r
a

−

−

= + − + = + − +

= − − + + +

 = − + − + + 
 

µ

µ  (80) 

where, for compactness of entry 
( ) ( ) ( )
( ) ( ) ( )

1 14 15 16

2 24 25 26

, , , ,

, , , .
x x

x x

S s f r f s f r r s f r

S s f r f s f r r s f r

= + +

= + +
  

Return to the condition of consistency (54) 

( ) ( )

( ) ( ) ( )

22
11 1315 15

2 2

22
21 23 225 25

2 22 2

,

2 4 2 ,

t xxx

f f
t xxx x xx x x

H u H wF H
a u u

t x x
H u H wF H

e w w e f w f F w H w
t x x

∂ +∂ ∂
+ + − =

∂ ∂ ∂
∂ +∂ ∂  − + − = + + + − ∂ ∂ ∂

 (81) 

and find the dependence upon 2u  (1) ( 2w , step (2), uw , step (3)); for this differentiate by 2u  
(1) (by variable 2w  at step (2), and by variable uw  at step (3)). 
By reason of the only linear dependence , ,j j jkxF H H  in relation to function u  (52), the 

condition (81) will, after differentiation by 2u  taking the form 

( ) ( ) ( ) ( )
2 3 2 3

5 5 1 3
22 2 2 2 2 2

, 1, 2,j j j jF H H H
u w j

xt u x u u x u

 ∂ ∂ ∂ ∂∂
− = + =  ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (82) 

that yields 
2 2

15 15 25 25
2 2,

x x

H s H s
r rr r

∂ ∂ ∂ ∂
= =

∂ ∂∂ ∂
. (83) 

4. Perform the second step of the algorithm. According to (52), and, taking into account the linear 
character of , ,j j jkxF H H  in relation to function w , (81) will, after differentiation, take the 
form: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 2 3
15 15 13 11

22 2 2 2 2 2

2 3 2 3
25 25 23 21

2322 2 2 2 2 2

,

.f

F H H H
w u

xt w x w w x w

F H H H
w u e H

xt w x w w x w

 ∂ ∂ ∂ ∂∂
− = +  ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂∂
− = + −  ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (84) 

After transformations, the relationship (83) takes the form 
2 2

2 2 2 215 2514
15 14 24 25 142 2

44 2 4 , 4 .f f f f

x x

H Hs
a s e e s a s a s e e s

f af f
µ µ µ

∂ ∂∂ 
− = + + − = − ∂∂ ∂ 

 (85) 

5. The condition of consistency (81) for the values 1, 2j =  yields the system: 
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( ) ( ) ( )

( ) ( ) ( )

2 3 22
15 15 1311

2 2 2

2 3 22
25 25 2321

212 2 2

,

.f

F H HH
u w

t uw uwx uw x x

F H HH
u w e H

t uw uwx uw x x

 ∂ ∂ ∂∂∂
− = +  ∂ ∂ ∂∂ ∂ ∂ ∂ 

 ∂ ∂ ∂∂∂
− = + −  ∂ ∂ ∂∂ ∂ ∂ ∂ 

 (86) 

Using the earlier found form of coefficients and their dependence upon variables ,xr r , ,xf f , 
obtain from (85) two new differential equations: 

2
2 215 15 14

14 25

2
25 25 24

24 25 15

2 4 2 4 0,

2 4 2 4 0.

f

x x

x x

H s s
a a s a a e s

f r f r

H s s
a s a as a s

f r f r

µ −∂ ∂ ∂
− + + + =

∂ ∂ ∂ ∂

∂ ∂ ∂
+ − + + − =

∂ ∂ ∂ ∂

 (87) 

Equalities (83), (85), (87) do not contain in explicit form the variables ,x xf r ; this allows to 
suppose that functions 5 0, 0, 1, 2, 4, 5, 6j jkH s j k= = = = . Perform a check having returned to 
equalities (4.37), where 

2 2 215 25
2 2 1 2 1

2 1 22 2 , 2 ,f f
x x x x x x x x x x

F F
a e f H a e f H r H f r H f H

t a t a a
µ µ− −∂ ∂  = − + − = − − ∂ ∂  

  

( ) ( )213 2311 21
1 2 2 1

42 , 4 , 2 , ,f f
x x x

H HH H
F a e F f F e r f F

x x x x a
µ −∂ ∂∂ ∂

= = − = = − +
∂ ∂ ∂ ∂

  

( )

( )

22 2
31311 21

1 2 2 22 2 2

2 2
2 223 23 23

2 1 1 2 22 2

2 , 4 3 , 2 ,

4 2 , , ,

f
x x x x x

f f f f
x x x x x x

HH H
F a e F f f F F

x x x
H F F

e r F F r f f F e H e F e f
a tx x

µ −∂∂ ∂
= = + − =

∂ ∂ ∂
∂ ∂ ∂

= − + + + = = +
∂∂ ∂

  

after substitution 
( ) 6 12 , 2 6 .t xxx x x t xxx xa u u au u a w w w w w uµ+ = + − = −   

It can be seen that equalities coincide, hence, a Bäcklund transformation of the form (80), where 
50, 0, 1, 2, 4, 5, 6jk js H j k= = = =  has been found. 

Theorem 5. Nonlinear systems of partial differential equations (45) and 
( )

( )

2 3 2 2

1 1 2 3 2

2 6 ,

6 2 [1 ] 2 ,

f
t x xxx x xx x x x

f
t x xx x xx x xxx

r a r r e f af af f r

f a f r a r af f e f

µ

µ

− −

− − −

= − + − +

= − − + − +
 (88) 

are interrelated by the Bäcklund transformations of the form: 
2 2 1 2 2 1

1

, 2 ,

2 4 , 2 4 2 ,

f f
xx x x xx x x x

f f f
t x x x t x x x

r au a e f a r f e w f a f r

r r u au a e f w f f u a e r w e w

µ

µ

− − −

− −

= + − = + −

= − + = − +
 (89) 

where ( , ), ( , ), ( , ), ( , )u x t w x t f x t r x t  differentiable functions of two independent variables, 0,a µ≠  
are arbitrary non-zero parameters. 

Another form of transformation may be obtained, as well. For this, return in the procedure of 
examination, to the moment that determines the form, i.e., to system (78). Such an approach has been 
implemented in Reference [17]. 

5. Analog of Miura Transformations 

We demonstrate how the results obtained in the previous section can be used. Use the earlier 
obtained Bäcklund transformation (89) and substitute the functions ( , ), ( , )f x t r x t  by the functions 

( , ), ( , )g x t v x t : 

( )( , ) ( , ), ( , ) ( , )f x t
xx

e g x t r x t v x t− = = , (90) 

To perform the complete substitution with the new functions, the second couple of equalities 
(89) must be previously differentiated by variable х. The substitution yields the following relation 
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( )

2 1 2 1, 2 ,
22 4 , 2 .

x x

t x t x

v au a g a v g a gv w

v vu a gw au g gu vw w
x x a

µ

µ

− −= + − = − −

∂ ∂  = − − = + − ∂ ∂  

 (91) 

The first line yields the explicit form of functions ( , ), ( , )u x t w x t  via the two other functions: 
1 2 2 2 1, 2x xu a v a v g w a gv gµ− − −= + − = − − . (92) 

Supposing that ( , ) ( , )g x t v x t= , the resulting relation has terms similar to the known Miura 

transformation 2( )xq v iv= −  [22], which determines the conformity between the KdV equation and 
the modified KdV equation, hence, (92) may be considered a certain analog of this transformation. 

Substitute (92) into the equalities of the second line (91), and get the system of two equations 

( ) ( )2 3 2 2 2 32 6 6 , 2 3 ,t xx x t x xxx x
v a v v g v a gg g a g av v g gµ µ µ− − = − + + = − − +   (93) 

each of which is a perturbation of modified KdV equation. 
Theorem 6. Systems of partial differential Equations (45) and (93) are related by transformations (92). 
Proof of Theorem 6. Substitute (92) into (90). Transform the first equation and separate the total 
derivatives 

2
2 2

2 2

3 2 3 2
2 2 2

1 1 612 6 6

2 2 36 6 2 2 { } .

t xxx x x t xxx x x

t xx x xx x t
x x

u u ww uu v v v v g v agg
a x aa x

v v v v g v a gg g g g g av v g
a a a

µ µ

µ µ µ µ

∂ ∂   + − − = + − − + +   ∂ ∂ 
      + + − − − + − + − −      

      

  

In the resulting equality, the linear operator 1 2( 2 )xa a v− −∂ +  may be removed: 

3 2
2 2

3 2
2

1 2 212 6 6 6

32 2 { } .

t xxx x x t xx x
x

xx x t
x

u u ww uu v v v v g v a gg
a x a a

g g g g av v g
a

µ µ µ

µ µ

 ∂   + − − = + + − − − +    ∂    
  + − + − −  
  

 (94) 

Do the same with the second equality of system (45) and factor out the operator 1( 2 )x a v−∂ + . 

3 2
2

3 2
2

2 3 32 6 2

2 2 6 6 .

t xxx x xx x t
x

xx x t
x

w w uw v g g gv gv g
a x a a

g v v vg a gg v
a a

µ

µ µ

 ∂   − + = + − + − − +    ∂    
  + − + + −    

 (95) 

If functions ( , ), ( , )u x t w x t  are solutions of system (45) and ( , ) 0, ( , ) 0u x t w x t≠ ≠ , then, at 
( , ) 0, ( , ) 0g x t v x t≠ ≠ , it follows from (94) and (95) that functions ( , ), ( , )g x t v x t  are solutions of 

system (93). 
Corollary 9. Complexification of Korteweg-de Vries equation 

( ) ( )3 6 0, 5 3t x x xxxq q q q q q q q= − + − − , (96) 

and 

( ) ( ) ( )2 23 3 0, 5 3t x xx x
s s s s s s s s s = − + − + −  , (97) 

are related by transformation 
2

xq s s= + , (98) 

where ( , ), ( , )q x t s x t  are complex functions of independent variables ,x t . 
The pattern of proof fully coincides with the proof of the theorem above, where 

( , ) Re ( , )u x t q x t= , ( , ) Im ( , ), ( , ) Re ( , )w x t s x t v x t s x t= = , ( , ) Im ( , )g x t s x t= , is supposed to contain 
parameters 1a = , 1µ = . 
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Assuming in equality (97) that ( , )s x t  is a real function, get a routinely modified KdV equation 
26t x xxxs s s s= − , hence, (97) may be considered as a modification of the KdV equation 

complexification [22]. 
In the classic case, the resulting transformations can be used to build exact solutions. Let us 

show that the found relation (91) of the two systems (45) and (93) allows us to do this. We take, as the 
solution of system (45), the following trivial functions 

( , ) 0, ( , )w x t u x t constβ= = − . (99) 

Using (91) and integrating, we obtain the solution of system (93) in the form of traveling waves: 

( )

( ) ( )

1

2
1 2 1

1

2 2
1 2 1 2 1

( , ) ch 2 4 ,

( , ) sh 2 4 ch 2 4 ,

g x t C C x t C

v x t a C C x t C C x t C

µ β β β
β

µ µβ β β β β β
β β

−

−

 
= + − − − 
 

 
= − + − − + − − − 

 

  

where C1 and C2 are the arbitrary integration constants. At C1 = 0 we obtain classical solutions: 

( ) ( )1
2 2( , ) ch 2 4 , ( , ) th 2 4g x t C x t v x t a C x tβ β β β β β β

µ
−= − − = − − − .  

6. Conclusions 

1. In this work, new Bäcklund transformations (BTs) have been obtained for the particular cases of 
Liouville equations with the exponential nonlinearity that has a multiplier dependent upon 
independent variables and first-order derivatives from the function. 

2. BT for three-dimensional Liouville equation has been constructed. 
3. A solution of coupled pairs of equations using BT has been found. 
4. Clairin’s method for the system of two third-order partial differential equations has been 

generalized and algorithm for construction of BTs for these dynamic systems has been 
demonstrated. 

5. Non-uniqueness of differential relations has been shown because the application of special 
conditions to differential forms leads to different dynamic systems. 

6. Analog of Miura transformations that relates the initial system to the system of perturbed 
modified KdV equations has been determined. 

7. Natural transition of KdV to mKdV using Miura transformations has been received from the 
relation of cKdV and complexification of mKdV with an analog of Miura transformations, 
supposing that the function is real. 
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