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Abstract: In this paper, we prove that on any contact manifold (M, ξ) there exists an arbitrary
C∞-small contactomorphism which does not admit a square root. In particular, there exists an
arbitrary C∞-small contactomorphism which is not “autonomous”. This paper is the first step to
study the topology of Cont0(M, ξ)\Aut(M, ξ). As an application, we also prove a similar result for
the diffeomorphism group Diff(M) for any smooth manifold M.
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1. Introduction

For any closed manifold M, the set of diffeomorphisms Diff(M) forms a group and any
one-parameter subgroup f : R→ Diff(M) can be written in the following form

f (t) = exp(tX).

Here, X ∈ Γ(TM) is a vector field and exp : Γ(TM)→ Diff(M) is the time 1 flow of vector fields.
From the inverse function theorem, one might expect that there exists an open neighborhood of the
zero section U ⊂ Γ(TM) such that

exp : U −→ Diff(M)

is a diffeomorphism onto an open neighborhood of Id ∈ Diff(M). However, this is far from true ([1],
Warning 1.6). So one might expect that the set of “autonomous” diffeomorphisms

Aut(M) = exp(Γ(TM))

is a small subset of Diff(M).
For a symplectic manifold (M, ω), the set of Hamiltonian diffeomorphisms Hamc(M, ω) contains

“autonomous” subset Aut(M, ω) which is defined by

Aut(M, ω) =

{
exp(X)

∣∣∣∣ X is a time-independent Hamiltonian vector field
whose support is compact

}
.

In [2], Albers and Frauenfelder proved that on any symplectic manifold there exists an arbitrary
C∞-small Hamiltonian diffeomorphism not admitting a square root. In particular, there exists an
arbitrary C∞-small Hamiltonian diffeomorphism in Hamc(M, ω)\Aut(M, ω).

Polterovich and Shelukhin used spectral spread of Floer homology and Conley conjecture to prove
that Hamc(M, ω)\Aut(M, ω) ⊂ Hamc(M, ω) is C∞-dense and dense in the topology induced from
Hofer’s metric if (M, ω) is closed symplectically aspherical manifold ([3]). The author generalized this
theorem to arbitrary closed symplectic manifolds and convex symplectic manifolds ([4]).

One might expect that “contact manifold” version of these theorems hold. In this paper, we prove
that there exists an arbitrary C∞-small contactomorphism not admitting a square root. In particular,
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there exists an arbitrary C∞-small contactomorphism in Contc
0(M, ξ)\Aut(M, ξ). So, this paper is a

contact manifold version of [2]. As an application, we prove that there exists an arbitrary C∞-small
diffeomorphism in Diffc

0(M) not admitting a square root. This also implies that there exists an arbitrary
C∞-small diffeomorphism in Diffc

0(M)\Aut(M).

2. Main Result

Let M be a smooth (2n + 1)-dimensional manifold without boundary. A 1-form α on M is called
contact if (α ∧ (dα)n)(p) 6= 0 holds on any p ∈ M. A codimension 1 tangent distribution ξ on M is
called contact structure if it is locally defined by ker(α) for some (locally defined) contact form α.
A diffeomorphism φ ∈ Diff(M) is called contactomorphism if φ∗ξ = ξ holds (i.e., φ preserves the
contact structure ξ). Let Contc

0(M, ξ) be the set of compactly supported contactomorphisms which
are isotopic to Id through compactly supported contactomorphisms. In other words, Contc

0(M, ξ) is a
connected component of compactly supported contactomorphisms (Contc(M, ξ)) which contains Id.

Contc
0(M, ξ) =

{
φ1

∣∣∣∣ φt (t ∈ [0, 1]) is an isotopy of contactomorphisms
φ0 = Id, ∪t∈[0,1]supp(φt) is compact

}
Let X ∈ Γc(TM) be a compactly supported vector field on M. X is called contact vector field if

the flow of X preserves the contact structure ξ (i.e., exp(X)∗ξ = ξ holds). Let Γc
ξ(TM) be the set of

compactly supported contact vector fields on M and let Aut(M, ξ) be their images

Aut(M, ξ) = {exp(X) | X ∈ Γc
ξ(TM)}.

We prove the following theorem.

Theorem 1. Let (M, ξ) be a contact manifold without boundary. Let W be any C∞-open neighborhood of
Id ∈ Contc

0(M, ξ). Then, there exists φ ∈ W such that

φ 6= ψ2

holds for any ψ ∈ Contc
0(M, ξ). In particular,W\Aut(M, ξ) is not empty.

Remark 1. If φ is autonomous (φ = exp(X)), φ has a square root ψ = exp( 1
2 X).

Corollary 1. The exponential map exp : Γc
ξ(TM)→ Contc

0(M, ξ) is not surjective.

We also consider the diffeomorphism version of this theorem and corollary. Let M be a smooth
manifold without boundary and let Diffc(M) be the set of compactly supported diffeomorhisms

Diffc(M) = {φ ∈ Diff(M) | supp(φ) is compact}.

Let Diffc
0(M) be the connected component of Diffc(M) (i.e., any element of Diffc

0(M) is isotopic
to Id). We define the set of autonomous diffeomorphisms by

Aut(M) = {exp(X) | X ∈ Γc(TM)}.

By combining the arguments in this paper and in [2], we can prove the following theorem.

Theorem 2. Let M be a smooth manifold without boundary. Let W be any C∞-open neighborhood of
Id ∈ Diffc0(M). Then, there exists φ ∈ W such that

φ 6= ψ2
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holds for any ψ ∈ Diffc(M). In particular,W\Aut(M) is not empty.

Corollary 2. The exponential map exp : Γc(TM)→ Diffc0(M) is not surjective.

3. Milnor’s Criterion

In [1], Milnor gave a criterion for the existence of a square root of a diffeomorphism. We use this
criterion later. We fix l ∈ N≥2 and a diffeomorphism φ ∈ Diff(M). Let Pl(φ) be the set of “l-periodic
orbits” which is defined by

Pl(φ) = {(x1, · · · , xl) | xi 6= xj(i 6= j), xj = φj−1(x1), x1 = φ(xl)}/ ∼ .

This equivalence relation ∼ is given by the natural Z/lZ-action

(x1, · · · , xl)→ (xl , x1, · · · , xl−1).

Proposition 1 (Milnor [1], Albers-Frauenfelder [2]). Assume that φ ∈ Diff(M) has a square root (i.e.,
there exists ψ ∈ Diff(M) such that φ = ψ2 holds). Then, there exists a free Z/2Z-action on P2k(φ) (k ∈ N).
In particular, ]P2k(φ) is even if ]P2k(φ) is finite.

4. Proof of Theorem 1

Proof. Before stating the proof of Theorem 1, we introduce the notion of a contact Hamiltonian
function. Let M be a smooth manifold without boundary and let α ∈ Ω1(M) be a contact form on M
(ξ = ker(α)). A Reeb vector field Rα ∈ Γ(TM) is the unique vector field which satisfies

α(Rα) = 1

dα(Rα, ·) = 0.

For any smooth function h ∈ C∞
c (M), there exists only one contact vector field Xh ∈ Γc

ξ(TM)

which satisfies

Xh = h · Rα + Z where Z ∈ ξ.

In fact, Xh is a contact vector field if and only if LXh(α)|ξ = 0 holds (L is the Lie derivative). So,

LXh(α)(Y) = dh(Y) + dα(Xh, Y) = dh(Y) + dα(Z, Y) = 0

holds for any Y ∈ ξ. Because dα is non-degenerate on ξ, above equation determines Z ∈ ξ uniquely.
Xh is the contact vector field associated to the contact Hamiltonian function h. We denote the time t
flow of Xh by φt

h and time 1 flow of Xh by φh.
Let (M, ξ) be a contact manifold without boundary. We fix a point p ∈ (M, ξ) and a

sufficiently small open neighborhood U ⊂ M of p. Let (x1, y1, · · · , xn, yn, z) be a coordinate of R2n+1.
Let α0 ∈ Ω1(R2n+1) be a contact form

α0 =
1
2 ∑

1≤i≤n
(xidyi − yidxi) + dz

on R2n+1. By using the famous Moser’s arguments, we can assume that there exists an open
neighborhood of the origin V ⊂ R2n+1 and a diffeomorphism

F : V −→ U (1)
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which satisfies
ξ|U = ker((F−1)∗α0).

So, we first prove the theorem for (V, ker(α0)) and apply this to (M, ξ).
We fix k ∈ N≥1 and R > 0 so that

{(x1, y1, · · · , z) ∈ R2n+1 | |(x1, · · · , yn)| < R, |z| < R} ⊂ V

holds. Let f ∈ C∞
c (V) be a contact Hamiltonian function. Then its contact Hamiltonian vector field X f

can be written in the following form

X f (x1, · · · , z) = ∑
1≤i≤n

(− ∂ f
∂yi

+
xi
2

∂ f
∂z

)
∂

∂xi

+ ∑
1≤i≤n

(
∂ f
∂xi

+
yi
2

∂ f
∂z

)
∂

∂yi

+( f − ∑
1≤i≤n

xi
2

∂ f
∂xi
− ∑

1≤i≤n

yi
2

∂ f
∂yi

)
∂

∂z
.

Let e : R2n −→ R be a quadric function

e(x1, y1, · · · , xn, yn) = x2
1 + y2

1 + ∑
2≤i≤n

x2
i + y2

i
2

.

We define a contact Hamiltonian function h on V by

h(x1, y1, · · · , xn, yn, z) = β(z)ρ(e(x1, y1, · · · , xn, yn)).

Here, β : R→ [0, 1] and ρ : R≥0 → R≥0 are smooth functions which satisfy the following
five conditions.

1. supp(ρ) ⊂ [0, R2

2 ]

2. ρ(r) ≥ ρ′(r) · r, − π
2k < ρ′(r) ≤ π

2k

3. There exists an unique a ∈ [0, R2

2 ] which satisfies the following conditions{
ρ′(r) = π

2k ⇐⇒ r = a

ρ(a) = π
2k · a

.

4. supp(β) ⊂ [− R
2 , R

2 ]

5. β(0) = 1, β−1(1) = 0

Then, we can prove the following lemma.

Lemma 1. Let h ∈ C∞
c (V) be a contact Hamiltonian function as above. Then,

[q, φh(q), · · · , φ2k−1
h (q)] ∈ P2k(φh)

holds if and only if

q ∈ {(x1, y1, 0, · · · , 0) ∈ V | x2
1 + y2

1 = a} def.
= Sa

holds.
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Proof of Lemma 1. In order to prove this lemma, we first calculate the behavior of the function
z(φt

h(q)) for a fixed q ∈ V (Here, z is the (2n + 1)-th coordinate of R2n+1).

d
dt
(z(φt

h(q))) = h− ∑
1≤i≤n

xi
2

∂h
∂xi
− ∑

1≤i≤n

yi
2

∂h
∂yi

= β(z){ρ(e)− ∑
1≤i≤n

xi
2

∂

∂xi
(ρ(e))− ∑

1≤i≤n

yi
2

∂

∂yi
(ρ(e))}

= β(z){ρ(e)− ρ′(e) · e} ≥ 0

In the last inequality, we used the condition 2. So, this inequality implies that

φ2k
h (q) = q =⇒ d

dt
(z(φt

h(q))) = 0

holds.
Next, we study the behavior of xi(φ

t
h(q)) and yi(φ

t
h(q)). Let πi be the projection

πi : R2n+1 −→ R2.

(x1, y1, · · · , xn, yn, z) 7→ (xi, yi)

Then, Yi
h = πi(Xh) can be decomposed into the angular component Yi,θ

h and the radius component
Yi,r

h as follows

Yi,θ
h (x1, y1, · · · , z) = − ∂h

∂yi

∂

∂xi
+

∂h
∂xi

∂

∂yi

Yi,r
h (x1, y1, · · · , z) = (

1
2

∂h
∂z

)(xi
∂

∂xi
+ yi

∂

∂yi
).

Let wi be the complex coordinate of (xi, yi) (wi = xi +
√
−1yi). Then, the angular component

causes the following rotation on wi, if we ignore the z-coordinate,

arg(wi) −→ arg(wi) + 2ρ′(e(x1, · · · , yn))β(z)Cit

Ci =

{
1 i = 1
1
2 2 ≤ i ≤ n

.

By conditions 2, 3, and 5 in the definition of β and ρ, |2ρ′(e(x1, · · · , yn))β(z)Ci| is at most 2π
2k and

the equality holds if and only if (x1, y1, · · · , xn, yn, z) ∈ Sa holds. On the circle Sa, φh is the 2π
2k -rotation

of the circle Sa. This implies that Lemma 1 holds.

Next, we perturb the contactomorphism φh. Let (r, θ) be a coordinate of (x1, y1) ∈ R2\(0, 0)
as follows

x1 = r cos θ, y1 = r sin θ.

We fix εk > 0. Then εk(1− cos(kθ)) is a contact Hamiltonian function on R2\(0, 0)×R2n−1 and
its contact Hamiltonian vector field can be written in the following form

Xεk(1−cos(kθ)) = −
εkk
r

sin(kθ)
∂

∂r
+ εk(1− cos(kθ))

∂

∂z
.

So φεk(1−cos(kθ)) only changes the r of (x1, y1)-coordinate and z-coordinate as follows

(r, θ, x2, y2, · · · , xn, yn, z) 7→ (
√

r2 − 2εkk sin(kθ), θ, x2, · · · , yn, z + εk(1− cos(kθ))).
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We fix two small open neighborhoods of the circle Sa as follows

Sa ⊂W1 ⊂W2 ⊂ R2\(0, 0)×R2n−1

Xh(p) 6= 0 on p ∈W2.

We also fix a cut-off function η : R2n+1 → [0, 1] which satisfies the following conditions

η((x1, · · · , z)) = 1 ((x1, · · · , z) ∈W1)

η((x1, · · · , z)) = 0 ((x1, · · · , z) ∈ R2n+1\W2)

φ
j
h(R

2n+1\W2) ∩ supp(η) = ∅ (1 ≤ j ≤ 2k).

We will use the last condition in the proof of Lemma 2. Then, η(x1. · · · , z) · εk(1− cos(kθ))

is defined on R2n+1. We denote this contact Hamiltonian function by gεk . We define
φεk ∈ Contc

0(R2n+1, ker(α0)) by the composition φgεk
◦ φh.

Lemma 2. We take εk > 0 sufficiently small. We define 2k points {ai}1≤i≤2k by

ai = (
√

a cos(
iπ
k
),
√

a sin(
iπ
k
), 0, · · · , 0)) ∈ Sa.

Then P2k(φεk ) has only one point [a1, a2, · · · , a2k].

Proof of Lemma 2. The proof of this lemma is as follows. On W1, φgεk
only changes the r-coordinate

of (x1, y1) and z-coordinate. So, φεk increases the angle of each (xi, yi) coordinate at most 2π
2k and

the equality holds on only Sa. On the circle Sa, the fixed points of φgεk
are 2k points {ai}. From the

arguments in the proof of Lemma 1, this implies that

[a1, a2, · · · , a2k] ∈ P2k(φεk )

holds and this is the only element of P2k(φεk ) on W1. So, it suffices to prove that this is the only

element in P2k(φεk ) if εk > 0 is sufficiently small. We prove this by contradiction. Let {ε(j)
k > 0}j∈N be

a sequence which satisfies ε
(j)
k → 0. We assume that there exists a sequence

[b(j)
1 , · · · , b(j)

2k ] ∈ P2k(φ
ε
(j)
k
)\[a1, a2, · · · , a2k].

We may assume without loss of generality that b(j)
1 /∈W1 holds because

(b(j)
1 , · · · , b(j)

2k ) /∈W2k
1

holds. We may assume that b(j)
1 converges to a point b /∈W1. Then, φ2k

h (b) = b holds. If Xh(b) 6= 0,
φh increases the angle of every (xi, yi) coordinate less than 2π

2k and this contradicts φ2k
h (b) = b.

Thus Xh(b) = 0 holds. Because we assumed Xh(p) 6= 0 on p ∈W2, Xh(b) = 0 implies that b /∈W2

holds. Let N ∈ N be a large integer so that b(N)
1 /∈W2 holds. Then, φ

j
h(R

2n+1\W2) ∩ supp(η) = ∅

(1 ≤ j ≤ 2k) implies that φ
j

ε
(N)
k

(b(N)
1 ) = φ

j
h(b

(N)
1 ) holds for 1 ≤ j ≤ 2k and [b(N)

1 , · · · , b(N)
2k ] ∈ P2k(φh)

holds. This contradicts Lemma 1 because b(N)
1 /∈ Sa. So, we proved Lemma 2.

We assume that εk > 0 is sufficiently small so that the conclusion of Lemma 2 holds and we define
φk by φk = φεk . Thus, we have constructed φk ∈ Contc

0(V, Ker(α0)) which does not admit a square root
for each k ∈ N. Without loss of generality, we may assume that εk → 0 holds. Then φk converges to Id.
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Finally, we prove Theorem 1. We define ψk ∈ Contc
0(M, ξ) for k ∈ N as follows. Recall that F is a

diffeomorphism which was defined in Equation (1).

ψk(x) =

{
F ◦ φk ◦ F−1(x) x ∈ U

x x ∈ M\U

Lemma 2 implies that
P2k(ψk) = {[F(a1), · · · , F(a2k)]}

holds. Proposition 1 implies that ψk does not admit a square root. Because p ∈ M is any point and U is
any small open neighborhood of p, we proved Theorem 1.

5. Proof of Theorem 2

Proof. Let M be a m-dimensional smooth manifold without boundary. We fix a point p ∈ M. Let U
be an open neighborhood of p and let V ⊂ Rm be an open neighborhood of the origin such that there
is a diffeomorphism

F : V −→ U.

In order to prove Theorem 2, it suffices to prove that there exists a sequence ψk (k ∈ N) so that

• ψk does not admit a square root
• supp(ψk) ⊂ U
• ψk −→Id as k −→ +∞

hold.
First, assume that m is odd (m = 2n + 1). In this case, α0 is a contact form on V. Let φk be a

contactomorphism which we constructed in the proof of Theorem 1

• φk ∈ Contc
o(V, ker(α0))

• ]P2k(φk) = 1 .

We define ψk ∈ Diffc
0(M) by

ψk(x) =

{
F ◦ φk ◦ F−1(x) x ∈ U

x x ∈ M\U
.

Then, ]P2k(ψk) = 1 holds and this implies that ψk does not admit a square root and satisfies the
above conditions. So, we proved Theorem 2 if m is odd.

Next, assume that m is even (m = 2n). Let ω0 be a standard symplectic form on
(x1, y1, · · · , xn, yn) ∈ R2n which is defined by

ω0 = ∑
1≤i≤n

dxi ∧ dyi.

By using the arguments in [2], we can construct a sequence φk ∈ Hamc(V, ω0) for k ∈ N which
satisfies the following conditions

• ]P2k(φk) = 1
• φk −→ Id as k −→ +∞ .

We define ψk ∈ Diffc
0(M) by

ψk =

{
F ◦ φk ◦ F−1 x ∈ U

x x ∈ M\U
.
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Then ]P2k(ψk) = 1 holds and this implies that ψk does not admit a square root and satisfies the
above conditions. Hence, we have proved Theorem 2.
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