

Article Applications of Square Roots of Diffeomorphisms

Yoshihiro Sugimoto

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan; sugimoto@kurims.kyoto-u.ac.jp

Received: 09 March 2019; Accepted: 09 April 2019; Published: 11 April 2019

Abstract: In this paper, we prove that on any contact manifold (M, ξ) there exists an arbitrary C^{∞} -small contactomorphism which does not admit a square root. In particular, there exists an arbitrary C^{∞} -small contactomorphism which is not "autonomous". This paper is the first step to study the topology of $Cont_0(M, \xi) \setminus Aut(M, \xi)$. As an application, we also prove a similar result for the diffeomorphism group Diff(M) for any smooth manifold M.

Keywords: diffeomorphism; contactomorphism; symplectomorphism

1. Introduction

For any closed manifold *M*, the set of diffeomorphisms Diff(M) forms a group and any one-parameter subgroup $f : \mathbb{R} \to \text{Diff}(M)$ can be written in the following form

$$f(t) = \exp(tX).$$

Here, $X \in \Gamma(TM)$ is a vector field and exp : $\Gamma(TM) \rightarrow \text{Diff}(M)$ is the time 1 flow of vector fields. From the inverse function theorem, one might expect that there exists an open neighborhood of the zero section $\mathcal{U} \subset \Gamma(TM)$ such that

$$\exp: \mathcal{U} \longrightarrow \mathrm{Diff}(M)$$

is a diffeomorphism onto an open neighborhood of $Id \in Diff(M)$. However, this is far from true ([1], Warning 1.6). So one might expect that the set of "autonomous" diffeomorphisms

$$\operatorname{Aut}(M) = \exp(\Gamma(TM))$$

is a small subset of Diff(M).

For a symplectic manifold (M, ω) , the set of Hamiltonian diffeomorphisms $\operatorname{Ham}^{c}(M, \omega)$ contains "autonomous" subset $\operatorname{Aut}(M, \omega)$ which is defined by

$$\operatorname{Aut}(M, \omega) = \left\{ \exp(X) \middle| \begin{array}{c} X \text{ is a time-independent Hamiltonian vector field} \\ \text{whose support is compact} \end{array} \right\}.$$

In [2], Albers and Frauenfelder proved that on any symplectic manifold there exists an arbitrary C^{∞} -small Hamiltonian diffeomorphism not admitting a square root. In particular, there exists an arbitrary C^{∞} -small Hamiltonian diffeomorphism in Ham^{*c*}(M, ω)\Aut(M, ω).

Polterovich and Shelukhin used spectral spread of Floer homology and Conley conjecture to prove that $\operatorname{Ham}^{c}(M, \omega) \setminus \operatorname{Aut}(M, \omega) \subset \operatorname{Ham}^{c}(M, \omega)$ is C^{∞} -dense and dense in the topology induced from Hofer's metric if (M, ω) is closed symplectically aspherical manifold ([3]). The author generalized this theorem to arbitrary closed symplectic manifolds and convex symplectic manifolds ([4]).

One might expect that "contact manifold" version of these theorems hold. In this paper, we prove that there exists an arbitrary C^{∞} -small contactomorphism not admitting a square root. In particular,

there exists an arbitrary C^{∞} -small contactomorphism in $\operatorname{Cont}_0^c(M, \xi) \setminus \operatorname{Aut}(M, \xi)$. So, this paper is a contact manifold version of [2]. As an application, we prove that there exists an arbitrary C^{∞} -small diffeomorphism in $\operatorname{Diff}_0^c(M)$ not admitting a square root. This also implies that there exists an arbitrary C^{∞} -small diffeomorphism in $\operatorname{Diff}_0^c(M) \setminus \operatorname{Aut}(M)$.

2. Main Result

Let *M* be a smooth (2n + 1)-dimensional manifold without boundary. A 1-form α on *M* is called contact if $(\alpha \land (d\alpha)^n)(p) \neq 0$ holds on any $p \in M$. A codimension 1 tangent distribution ξ on *M* is called contact structure if it is locally defined by ker(α) for some (locally defined) contact form α . A diffeomorphism $\phi \in \text{Diff}(M)$ is called contactomorphism if $\phi_*\xi = \xi$ holds (i.e., ϕ preserves the contact structure ξ). Let $\text{Cont}_0^c(M, \xi)$ be the set of compactly supported contactomorphisms which are isotopic to Id through compactly supported contactomorphisms. In other words, $\text{Cont}_0^c(M, \xi)$ is a connected component of compactly supported contactomorphisms ($\text{Cont}^c(M, \xi)$) which contains Id.

$$Cont_0^c(M,\xi) = \begin{cases} \phi_1 & \phi_t \ (t \in [0,1]) \text{ is an isotopy of contactomorphisms} \\ \phi_0 = \text{Id}, \ \cup_{t \in [0,1]} \text{supp}(\phi_t) \text{ is compact} \end{cases}$$

Let $X \in \Gamma^{c}(TM)$ be a compactly supported vector field on M. X is called contact vector field if the flow of X preserves the contact structure ξ (i.e., $\exp(X)_{*}\xi = \xi$ holds). Let $\Gamma^{c}_{\xi}(TM)$ be the set of compactly supported contact vector fields on M and let $\operatorname{Aut}(M, \xi)$ be their images

$$\operatorname{Aut}(M,\xi) = \{ \exp(X) \mid X \in \Gamma^{c}_{\mathfrak{c}}(TM) \}.$$

We prove the following theorem.

Theorem 1. Let (M,ξ) be a contact manifold without boundary. Let W be any C^{∞} -open neighborhood of $Id \in Cont_0^c(M,\xi)$. Then, there exists $\phi \in W$ such that

$$\phi \neq \psi^2$$

holds for any $\psi \in Cont_0^c(M, \xi)$. In particular, $W \setminus Aut(M, \xi)$ is not empty.

Remark 1. If ϕ is autonomous ($\phi = \exp(X)$), ϕ has a square root $\psi = \exp(\frac{1}{2}X)$.

Corollary 1. The exponential map $\exp: \Gamma^c_{\mathfrak{X}}(TM) \to Cont^c_0(M, \xi)$ is not surjective.

We also consider the diffeomorphism version of this theorem and corollary. Let M be a smooth manifold without boundary and let $\text{Diff}^{c}(M)$ be the set of compactly supported diffeomorphisms

 $\operatorname{Diff}^{c}(M) = \{ \phi \in \operatorname{Diff}(M) \mid \operatorname{supp}(\phi) \text{ is compact} \}.$

Let $\text{Diff}_0^c(M)$ be the connected component of $\text{Diff}_0^c(M)$ (i.e., any element of $\text{Diff}_0^c(M)$ is isotopic to Id). We define the set of autonomous diffeomorphisms by

$$\operatorname{Aut}(M) = \{ \exp(X) \mid X \in \Gamma^{c}(TM) \}.$$

By combining the arguments in this paper and in [2], we can prove the following theorem.

Theorem 2. Let M be a smooth manifold without boundary. Let W be any C^{∞} -open neighborhood of $Id \in Diff_0^c(M)$. Then, there exists $\phi \in W$ such that

$$\phi \neq \psi^2$$

holds for any $\psi \in Diff^{c}(M)$ *. In particular,* $W \setminus Aut(M)$ *is not empty.*

Corollary 2. The exponential map $\exp: \Gamma^c(TM) \to Diff_0^c(M)$ is not surjective.

3. Milnor's Criterion

In [1], Milnor gave a criterion for the existence of a square root of a diffeomorphism. We use this criterion later. We fix $l \in \mathbb{N}_{\geq 2}$ and a diffeomorphism $\phi \in \text{Diff}(M)$. Let $P^{l}(\phi)$ be the set of "*l*-periodic orbits" which is defined by

$$P^{l}(\phi) = \{(x_{1}, \cdots, x_{l}) \mid x_{i} \neq x_{j} (i \neq j), x_{j} = \phi^{j-1}(x_{1}), x_{1} = \phi(x_{l})\} / \sim .$$

This equivalence relation \sim is given by the natural $\mathbb{Z}/l\mathbb{Z}$ -action

$$(x_1, \cdots, x_l) \rightarrow (x_l, x_1, \cdots, x_{l-1})$$

Proposition 1 (Milnor [1], Albers-Frauenfelder [2]). Assume that $\phi \in Diff(M)$ has a square root (i.e., there exists $\psi \in Diff(M)$ such that $\phi = \psi^2$ holds). Then, there exists a free $\mathbb{Z}/2\mathbb{Z}$ -action on $P^{2k}(\phi)$ ($k \in \mathbb{N}$). In particular, $\sharp P^{2k}(\phi)$ is even if $\sharp P^{2k}(\phi)$ is finite.

4. Proof of Theorem 1

Proof. Before stating the proof of Theorem 1, we introduce the notion of a contact Hamiltonian function. Let *M* be a smooth manifold without boundary and let $\alpha \in \Omega^1(M)$ be a contact form on *M* ($\xi = \ker(\alpha)$). A Reeb vector field $R_\alpha \in \Gamma(TM)$ is the unique vector field which satisfies

$$\alpha(R_{\alpha}) = 1$$
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

For any smooth function $h \in C_c^{\infty}(M)$, there exists only one contact vector field $X_h \in \Gamma_{\xi}^c(TM)$ which satisfies

$$X_h = h \cdot R_{\alpha} + Z$$
 where $Z \in \xi$.

In fact, X_h is a contact vector field if and only if $\mathcal{L}_{X_h}(\alpha)|_{\xi} = 0$ holds (\mathcal{L} is the Lie derivative). So,

$$\mathcal{L}_{X_h}(\alpha)(Y) = dh(Y) + d\alpha(X_h, Y) = dh(Y) + d\alpha(Z, Y) = 0$$

holds for any $Y \in \xi$. Because $d\alpha$ is non-degenerate on ξ , above equation determines $Z \in \xi$ uniquely. X_h is the contact vector field associated to the contact Hamiltonian function h. We denote the time t flow of X_h by ϕ_h^t and time 1 flow of X_h by ϕ_h .

Let (M,ξ) be a contact manifold without boundary. We fix a point $p \in (M,\xi)$ and a sufficiently small open neighborhood $U \subset M$ of p. Let $(x_1, y_1, \dots, x_n, y_n, z)$ be a coordinate of \mathbb{R}^{2n+1} . Let $\alpha_0 \in \Omega^1(\mathbb{R}^{2n+1})$ be a contact form

$$\alpha_0 = \frac{1}{2} \sum_{1 \le i \le n} (x_i dy_i - y_i dx_i) + dz$$

on \mathbb{R}^{2n+1} . By using the famous Moser's arguments, we can assume that there exists an open neighborhood of the origin $V \subset \mathbb{R}^{2n+1}$ and a diffeomorphism

$$F: V \longrightarrow U \tag{1}$$

Axioms 2019, 8, 43

which satisfies

$$\xi|_U = \ker((F^{-1})^* \alpha_0)$$

So, we first prove the theorem for $(V, \ker(\alpha_0))$ and apply this to (M, ξ) . We fix $k \in \mathbb{N}_{\geq 1}$ and R > 0 so that

$$\{(x_1, y_1, \cdots, z) \in \mathbb{R}^{2n+1} \mid |(x_1, \cdots, y_n)| < R, |z| < R\} \subset V$$

holds. Let $f \in C_c^{\infty}(V)$ be a contact Hamiltonian function. Then its contact Hamiltonian vector field X_f can be written in the following form

$$\begin{split} X_f(x_1,\cdots,z) &= \sum_{1\leq i\leq n} (-\frac{\partial f}{\partial y_i} + \frac{x_i}{2} \frac{\partial f}{\partial z}) \frac{\partial}{\partial x_i} \\ &+ \sum_{1\leq i\leq n} (\frac{\partial f}{\partial x_i} + \frac{y_i}{2} \frac{\partial f}{\partial z}) \frac{\partial}{\partial y_i} \\ &+ (f - \sum_{1\leq i\leq n} \frac{x_i}{2} \frac{\partial f}{\partial x_i} - \sum_{1\leq i\leq n} \frac{y_i}{2} \frac{\partial f}{\partial y_i}) \frac{\partial}{\partial z}. \end{split}$$

Let $e : \mathbb{R}^{2n} \longrightarrow \mathbb{R}$ be a quadric function

$$e(x_1, y_1, \cdots, x_n, y_n) = x_1^2 + y_1^2 + \sum_{2 \le i \le n} \frac{x_i^2 + y_i^2}{2}$$

We define a contact Hamiltonian function h on V by

$$h(x_1, y_1, \cdots, x_n, y_n, z) = \beta(z)\rho(e(x_1, y_1, \cdots, x_n, y_n)).$$

Here, $\beta : \mathbb{R} \to [0,1]$ and $\rho : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ are smooth functions which satisfy the following five conditions.

 $\operatorname{supp}(\rho) \subset [0, \frac{R^2}{2}]$ 1.

2.
$$\rho(r) \ge \rho'(r) \cdot r, -\frac{\pi}{2k} < \rho'(r) \le \frac{\pi}{2k}$$

 $\rho(r) \ge \rho'(r) \cdot r, -\frac{\pi}{2k} < \rho'(r) \le \frac{\pi}{2k}$ There exists an unique $a \in [0, \frac{R^2}{2}]$ which satisfies the following conditions 3.

$$\begin{cases} \rho'(r) = \frac{\pi}{2k} \iff r = a\\ \rho(a) = \frac{\pi}{2k} \cdot a \end{cases}$$

- $\sup(eta) \subset [-rac{R}{2}, rac{R}{2}]$ $eta(0) = 1, eta^{-1}(1) = 0$ 4.
- 5.

Then, we can prove the following lemma.

Lemma 1. Let $h \in C_c^{\infty}(V)$ be a contact Hamiltonian function as above. Then,

$$[q,\phi_h(q),\cdots,\phi_h^{2k-1}(q)]\in P^{2k}(\phi_h)$$

holds if and only if

$$q \in \{(x_1, y_1, 0, \cdots, 0) \in V \mid x_1^2 + y_1^2 = a\} \stackrel{\text{det.}}{=} S_a$$

holds.

Proof of Lemma 1. In order to prove this lemma, we first calculate the behavior of the function $z(\phi_h^t(q))$ for a fixed $q \in V$ (Here, *z* is the (2n + 1)-th coordinate of \mathbb{R}^{2n+1}).

$$\begin{split} \frac{d}{dt}(z(\phi_h^t(q))) &= h - \sum_{1 \le i \le n} \frac{x_i}{2} \frac{\partial h}{\partial x_i} - \sum_{1 \le i \le n} \frac{y_i}{2} \frac{\partial h}{\partial y_i} \\ &= \beta(z) \{ \rho(e) - \sum_{1 \le i \le n} \frac{x_i}{2} \frac{\partial}{\partial x_i}(\rho(e)) - \sum_{1 \le i \le n} \frac{y_i}{2} \frac{\partial}{\partial y_i}(\rho(e)) \} \\ &= \beta(z) \{ \rho(e) - \rho'(e) \cdot e \} \ge 0 \end{split}$$

In the last inequality, we used the condition 2. So, this inequality implies that

$$\phi_h^{2k}(q) = q \Longrightarrow \frac{d}{dt}(z(\phi_h^t(q))) = 0$$

holds.

Next, we study the behavior of $x_i(\phi_h^t(q))$ and $y_i(\phi_h^t(q))$. Let π_i be the projection

$$\pi_i: \mathbb{R}^{2n+1} \longrightarrow \mathbb{R}^2.$$
$$(x_1, y_1, \cdots, x_n, y_n, z) \mapsto (x_i, y_i)$$

Then, $Y_h^i = \pi_i(X_h)$ can be decomposed into the angular component $Y_h^{i,\theta}$ and the radius component $Y_h^{i,r}$ as follows

$$Y_h^{i,\theta}(x_1, y_1, \cdots, z) = -\frac{\partial h}{\partial y_i} \frac{\partial}{\partial x_i} + \frac{\partial h}{\partial x_i} \frac{\partial}{\partial y_i}$$
$$Y_h^{i,r}(x_1, y_1, \cdots, z) = (\frac{1}{2} \frac{\partial h}{\partial z})(x_i \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial y_i})$$

Let w_i be the complex coordinate of (x_i, y_i) ($w_i = x_i + \sqrt{-1}y_i$). Then, the angular component causes the following rotation on w_i , if we ignore the *z*-coordinate,

$$\arg(w_i) \longrightarrow \arg(w_i) + 2\rho'(e(x_1, \cdots, y_n))\beta(z)C_i t$$
$$C_i = \begin{cases} 1 & i = 1\\ \frac{1}{2} & 2 \le i \le n \end{cases}.$$

By conditions 2, 3, and 5 in the definition of β and ρ , $|2\rho'(e(x_1, \dots, y_n))\beta(z)C_i|$ is at most $\frac{2\pi}{2k}$ and the equality holds if and only if $(x_1, y_1, \dots, x_n, y_n, z) \in S_a$ holds. On the circle S_a , ϕ_h is the $\frac{2\pi}{2k}$ -rotation of the circle S_a . This implies that Lemma 1 holds. \Box

Next, we perturb the contactomorphism ϕ_h . Let (r, θ) be a coordinate of $(x_1, y_1) \in \mathbb{R}^2 \setminus (0, 0)$ as follows

$$x_1 = r\cos\theta, \ y_1 = r\sin\theta.$$

We fix $\epsilon_k > 0$. Then $\epsilon_k(1 - \cos(k\theta))$ is a contact Hamiltonian function on $\mathbb{R}^2 \setminus (0,0) \times \mathbb{R}^{2n-1}$ and its contact Hamiltonian vector field can be written in the following form

$$X_{\epsilon_k(1-\cos(k\theta))} = -\frac{\epsilon_k k}{r} \sin(k\theta) \frac{\partial}{\partial r} + \epsilon_k (1-\cos(k\theta)) \frac{\partial}{\partial z}.$$

So $\phi_{\epsilon_k(1-\cos(k\theta))}$ only changes the *r* of (x_1, y_1) -coordinate and *z*-coordinate as follows

$$(r,\theta,x_2,y_2,\cdots,x_n,y_n,z)\mapsto (\sqrt{r^2-2\epsilon_kk\sin(k\theta)},\theta,x_2,\cdots,y_n,z+\epsilon_k(1-\cos(k\theta))).$$

We fix two small open neighborhoods of the circle S_a as follows

$$S_a \subset W_1 \subset W_2 \subset \mathbb{R}^2 \setminus (0,0) \times \mathbb{R}^{2n-1}$$

 $X_h(p) \neq 0 \text{ on } p \in W_2.$

We also fix a cut-off function $\eta : \mathbb{R}^{2n+1} \to [0,1]$ which satisfies the following conditions

$$\eta((x_1, \cdots, z)) = 1 \quad ((x_1, \cdots, z) \in W_1)$$

$$\eta((x_1, \cdots, z)) = 0 \quad ((x_1, \cdots, z) \in \mathbb{R}^{2n+1} \setminus W_2)$$

$$\phi_h^j(\mathbb{R}^{2n+1} \setminus W_2) \cap \operatorname{supp}(\eta) = \emptyset \quad (1 \le j \le 2k).$$

We will use the last condition in the proof of Lemma 2. Then, $\eta(x_1, \dots, z) \cdot \epsilon_k(1 - \cos(k\theta))$ is defined on \mathbb{R}^{2n+1} . We denote this contact Hamiltonian function by g_{ϵ_k} . We define $\phi_{\epsilon_k} \in \text{Cont}_0^c(\mathbb{R}^{2n+1}, \ker(\alpha_0))$ by the composition $\phi_{g_{\epsilon_k}} \circ \phi_h$.

Lemma 2. We take $\epsilon_k > 0$ sufficiently small. We define 2k points $\{a_i\}_{1 \le i \le 2k}$ by

$$a_i = (\sqrt{a}\cos(\frac{i\pi}{k}), \sqrt{a}\sin(\frac{i\pi}{k}), 0, \cdots, 0)) \in S_a.$$

Then $P^{2k}(\phi_{\epsilon_k})$ *has only one point* $[a_1, a_2, \cdots, a_{2k}]$ *.*

Proof of Lemma 2. The proof of this lemma is as follows. On W_1 , $\phi_{g_{\epsilon_k}}$ only changes the *r*-coordinate of (x_1, y_1) and *z*-coordinate. So, ϕ_{ϵ_k} increases the angle of each (x_i, y_i) coordinate at most $\frac{2\pi}{2k}$ and the equality holds on only S_a . On the circle S_a , the fixed points of $\phi_{g_{\epsilon_k}}$ are 2k points $\{a_i\}$. From the arguments in the proof of Lemma 1, this implies that

$$[a_1, a_2, \cdots, a_{2k}] \in P^{2k}(\phi_{\epsilon_k})$$

holds and this is the only element of $P^{2k}(\phi_{\epsilon_k})$ on W_1 . So, it suffices to prove that this is the only element in $P^{2k}(\phi_{\epsilon_k})$ if $\epsilon_k > 0$ is sufficiently small. We prove this by contradiction. Let $\{\epsilon_k^{(j)} > 0\}_{j \in \mathbb{N}}$ be a sequence which satisfies $\epsilon_k^{(j)} \to 0$. We assume that there exists a sequence

$$[b_1^{(j)}, \cdots, b_{2k}^{(j)}] \in P^{2k}(\phi_{\epsilon_k^{(j)}}) \setminus [a_1, a_2, \cdots, a_{2k}].$$

We may assume without loss of generality that $b_1^{(j)} \notin W_1$ holds because

$$(b_1^{(j)}, \cdots, b_{2k}^{(j)}) \notin W_1^{2k}$$

holds. We may assume that $b_1^{(j)}$ converges to a point $b \notin W_1$. Then, $\phi_h^{2k}(b) = b$ holds. If $X_h(b) \neq 0$, ϕ_h increases the angle of every (x_i, y_i) coordinate less than $\frac{2\pi}{2k}$ and this contradicts $\phi_h^{2k}(b) = b$. Thus $X_h(b) = 0$ holds. Because we assumed $X_h(p) \neq 0$ on $p \in W_2$, $X_h(b) = 0$ implies that $b \notin W_2$ holds. Let $N \in \mathbb{N}$ be a large integer so that $b_1^{(N)} \notin W_2$ holds. Then, $\phi_h^j(\mathbb{R}^{2n+1} \setminus W_2) \cap \operatorname{supp}(\eta) = \emptyset$ $(1 \leq j \leq 2k)$ implies that $\phi_{\epsilon_k^{(N)}}^j(b_1^{(N)}) = \phi_h^j(b_1^{(N)})$ holds for $1 \leq j \leq 2k$ and $[b_1^{(N)}, \cdots, b_{2k}^{(N)}] \in P^{2k}(\phi_h)$ holds. This contradicts Lemma 1 because $b_1^{(N)} \notin S_a$. So, we proved Lemma 2. \Box

We assume that $\epsilon_k > 0$ is sufficiently small so that the conclusion of Lemma 2 holds and we define ϕ_k by $\phi_k = \phi_{\epsilon_k}$. Thus, we have constructed $\phi_k \in \text{Cont}_0^c(V, \text{Ker}(\alpha_0))$ which does not admit a square root for each $k \in \mathbb{N}$. Without loss of generality, we may assume that $\epsilon_k \to 0$ holds. Then ϕ_k converges to Id.

Finally, we prove Theorem 1. We define $\psi_k \in \text{Cont}_0^c(M, \xi)$ for $k \in \mathbb{N}$ as follows. Recall that *F* is a diffeomorphism which was defined in Equation (1).

$$\psi_k(x) = \begin{cases} F \circ \phi_k \circ F^{-1}(x) & x \in U \\ x & x \in M \setminus U \end{cases}$$

Lemma 2 implies that

$$P^{2k}(\psi_k) = \{ [F(a_1), \cdots, F(a_{2k})] \}$$

holds. Proposition 1 implies that ψ_k does not admit a square root. Because $p \in M$ is any point and U is any small open neighborhood of p, we proved Theorem 1. \Box

5. Proof of Theorem 2

Proof. Let *M* be a *m*-dimensional smooth manifold without boundary. We fix a point $p \in M$. Let *U* be an open neighborhood of *p* and let $V \subset \mathbb{R}^m$ be an open neighborhood of the origin such that there is a diffeomorphism

$$F:V\longrightarrow U.$$

In order to prove Theorem 2, it suffices to prove that there exists a sequence ψ_k ($k \in \mathbb{N}$) so that

- ψ_k does not admit a square root
- $\operatorname{supp}(\psi_k) \subset U$
- $\psi_k \longrightarrow \text{Id as } k \longrightarrow +\infty$

hold.

First, assume that *m* is odd (m = 2n + 1). In this case, α_0 is a contact form on *V*. Let ϕ_k be a contactomorphism which we constructed in the proof of Theorem 1

- $\phi_k \in \operatorname{Cont}_o^c(V, \ker(\alpha_0))$

We define $\psi_k \in \text{Diff}_0^c(M)$ by

$$\psi_k(x) = \begin{cases} F \circ \phi_k \circ F^{-1}(x) & x \in U \\ x & x \in M \setminus U \end{cases}.$$

Then, $\sharp P^{2k}(\psi_k) = 1$ holds and this implies that ψ_k does not admit a square root and satisfies the above conditions. So, we proved Theorem 2 if *m* is odd.

Next, assume that *m* is even (m = 2n). Let ω_0 be a standard symplectic form on $(x_1, y_1, \dots, x_n, y_n) \in \mathbb{R}^{2n}$ which is defined by

$$\omega_0 = \sum_{1 \le i \le n} dx_i \wedge dy_i.$$

By using the arguments in [2], we can construct a sequence $\phi_k \in \text{Ham}^c(V, \omega_0)$ for $k \in \mathbb{N}$ which satisfies the following conditions

• $\phi_k \longrightarrow \operatorname{Id} \operatorname{as} k \longrightarrow +\infty$.

We define $\psi_k \in \text{Diff}_0^c(M)$ by

$$\psi_k = \begin{cases} F \circ \phi_k \circ F^{-1} & x \in U \\ x & x \in M \backslash U \end{cases}$$

Then $\sharp P^{2k}(\psi_k) = 1$ holds and this implies that ψ_k does not admit a square root and satisfies the above conditions. Hence, we have proved Theorem 2. \Box

Funding: This research received no external funding.

Acknowledgments: The author thanks Kaoru Ono and Urs Frauenfelder for many useful comments, discussion and encouragement.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Milnor, J. Remarks on infinite-dimensional Lie groups. In *Relativity, Groups and Topology II*; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1984.
- 2. Albers, P.; Frauenfelder, U. Square roots of Hamiltonian diffeomorphisms. *J. Symplectic Geom.* **2014**, *12*, 427–434. [CrossRef]
- Polterovich, L.; Schelukhin, E. Autonomous Hamiltonian flows, Hofer's geometry and persistence modules. Sel. Math. 2016, 22, 227–296. [CrossRef]
- 4. Sugimoto, Y. Spectral spread and non-autonomous Hamiltonian diffeomorphisms. *Manuscr. Math.* **2018**. [CrossRef]

 \odot 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).