
axioms

Review

Contact Semi-Riemannian Structures in CR
Geometry: Some Aspects

Domenico Perrone

Dipartimento di Matematica e Fisica “E. De Giorgi”, Universitá del Salento, Via Provinciale Lecce-Arnesano,
73100 Lecce, Italy; domenico.perrone@unisalento.it

Received: 26 September 2018; Accepted: 2 January 2019; Published: 9 January 2019
����������
�������
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and non-degenerate almost CR structures (H, ϑ, J). In general, a non-degenerate almost CR structure
is not a CR structure, that is, in general the integrability condition forH1,0 := {X− i JX, X ∈ H} is
not satisfied. In this paper we give a survey on some known results, with the addition of some new
results, on the geometry of contact semi-Riemannian manifolds, also in the context of the geometry
of Levi non-degenerate almost CR manifolds of hypersurface type, emphasizing similarities and
differences with respect to the Riemannian case.
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1. Introduction

Contact (semi-)Riemannian geometry and (almost) CR geometry are two fields of research
that have been developed independently of each other, and with different motivations. However,
the two theories are quite related to each other. We note that there is not a monograph dedicated to
contact semi-Riemannian structures which emphasizes its connection with the non-degenerate almost
CR structures.

We can say that the contact geometry begins with Sophus Lie (1872) when he introduced the
notion of a contact transformation as a geometric tool to study systems of differential equations
(we refer to H. Geiges [1] for an overview of the historical origins of contact geometry).

The study of contact manifolds from the Riemannian point of view was introduced in the 60’s
of the last century by the Japanese school, with S. Sasaki as leader. From then, contact manifolds
equipped with Riemannian metrics have been intensively studied. The odd dimensional spheres S2n+1

and the unit tangent sphere bundles T1M of Riemannian manifolds are the most known examples of
contact Riemannian manifolds.

The monograph of D.E. Blair [2] and the monograph of C. Boyer and K. Galicki [3] give a wide
and detailed overview of the results obtained in this framework. Contact manifolds equipped with
semi-Riemannian metrics were first introduced and studied by T. Takahashi [4], who focused on the
Sasakian case. In particular, the author discussed the classification of Sasakian semi-Riemannian
manifolds of constant ϕ-sectional curvature κ 6= −3. The relevance in physics of contact
semi-Riemannian structures was pointed out in K.L. Duggal [5] (see also H. Baum [6]). A systematic
study of contact semi-Riemannian manifolds started with the paper of G. Calvaruso and D. Perrone [7]
(see also [8]).
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The paper of S.S. Chern and J. Moser [9] on the real hypersurfaces in complex manifolds, and the
works by Tanaka [10] and S. Webster [11], have made an important contribution to the development of
CR geometry (also in terms of pseudohermitian geometry). Then, (almost) CR structures have drawn
a great amount of interest for their connection with several different research areas in both analysis and
geometry (see the monograph of S. Dragomir and G. Tomassini [12] for a wide and detailed overview
of CR structures).

If θ is a contact 1-form on an odd dimensional manifold and J is an almost complex structure,
i.e., J2 = −I, defined on the contact distribution H = ker θ, such that the Levi form Lθ = dθ(·, J·) is
a non-degenerate Hermitian form H, then (θ, J) is said to be a non-degenerate almost CR structure.
Different signatures of the Levi form Lθ correspond to different kind of geometries. There is one-to-one
correspondence between contact semi-Riemannian structures and non-degenerate almost CR structures.
In general, a non-degenerate almost CR structure is not a CR structure, that is, in general the
integrability condition for H1,0 := {X− i JX, X ∈ H} is not satisfied. CR structures are considered
mainly from a complex analytical point of view.

In this paper (which reflects the interests and knowledge of the author) we give a survey on some
known results, with additions of some new result, on the geometry of contact semi-Riemannian
manifolds, also in the context of the geometry of Levi non-degenerate almost CR manifolds of
hypersurface type, emphasizing similarities and differences with respect to the Riemannian case.
In particular, we explain the relationship between contact semi-Riemannian structures and
non-degenerate pseudohermitian structures, describing also in some detail several important
examples, like hypersurfaces of indefinite Kähler manifolds, and tangent hyperquadric bundles
over semi-Riemannian manifolds.

The author believes that this paper will be useful especially to mathematician interested in
contact Riemannian geometry, as developed for instance in D. Blair’s book [2], who want to have
a comprehensive look at the main differences between the strictly pseudo-convex setting and the
semi-Riemannian setting.

2. Contact semi-Riemannian Manifolds

2.1. Generality on Contact Semi-Riemannian Manifolds

A (2n + 1)-dimensional manifold M is said to be a contact manifold if it admits a contact form,
this is, a global 1-form η such that η ∧ (dη)n 6= 0. Given a contact form η, there exists a unique vector
field ξ, called the characteristic vector field or the Reeb vector field, such that η(ξ) = 1 and dη(ξ, ·) = 0.
Furthermore, a semi-Riemannian metric g is said to be an associated metric (for the contact form η) if
there exists a tensor ϕ of type (1, 1) such that

η = εg(ξ, ·), dη(·, ·) = g(·, ϕ·), ϕ2 = −I + η ⊗ ξ, (1)

and so g(ξ, ξ) = ε = ±1. In such a case, (η, ξ, ϕ, g), or (η, g), is called contact semi-Riemannian structure,
or contact pseudo-metric structure.

An associated semi-Riemannian metric satisfies

g(ϕX, ϕY) = g(X, Y)− εη(X)η(Y), (2)

and thus its signature is either (2p+ 1, 2n− 2p) or (2p, 2n− 2p+ 1), according to whether ξ is time-like
or space-like respectively.

More in general, an almost contact structure on a (2n + 1)-dimensional manifold M is a triplet
(η, ξ, ϕ), where ϕ is a (1, 1)-tensor, ξ a global vector field, and η a 1-form, such that

ϕ(ξ) = 0, η ◦ ϕ = 0, η(ξ) = 1, ϕ2 = −Id + η ⊗ ξ. (3)
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To note that the properties ϕ(ξ) = 0, η ◦ ϕ = 0, and the fact that the endomorphism ϕ has rank 2n,
are deducible from η(ξ) = 1 and ϕ2 = −Id + η ⊗ ξ (cf. [2]). A semi-Riemannian metric g on M is said
to be compatible with the almost contact structure (η, ξ, ϕ) if Equation (2) is satisfied, where ε = ±1.
In such a case, (η, ξ, ϕ, g) is called almost contact semi-Riemannian structure. By Equations (2) and (3),
η(X) = εg(ξ, X) and g(ξ, ξ) = ε for any compatible metric. In particular, for (almost) contact
semi-Riemannian manifolds, the characteristic vector field ξ is either space-like or time-like, but can
not be light-like. In the literature, (almost) contact Riemannian manifolds are also called (almost) contact
metric manifolds.

In the sequel, we denote by ∇ the Levi-Civita connection of a semi-Riemannian manifold (M, g),
by R the corresponding curvature tensor, taken with the sign convention R(X, Y) = ∇[X,Y] − [∇X ,∇Y],
and by Ric and r the Ricci tensor and the scalar curvature respectively.

Let (M, η, ξ, ϕ, g) be a contact semi-Riemannian (2n + 1)-manifold. In contact semi-Riemannian
geometry, the tensor

h = (1/2)Lξ ϕ,

plays a fundamental role, where L denotes the Lie derivative. This tensor is self-adjoint, moreover we
have (cf. [7])

∇ξ = −εϕ− ϕh, ∇ξ ϕ = 0, hϕ = −ϕh, hξ = 0, (4)

R(X, ξ)ξ = −ϕ∇ξ h + ϕ2 + h2, (5)

Ric(ξ, ξ) = 2n− trh2, (6)

tr∇ϕ =
2n+1

∑
i=1

εi(∇Ei ϕ)Ei = 2nξ, (7)

where {E1, ..., E2n+1} is an arbitrary local pseudo-orthonormal basis on M, εi = g(Ei, Ei).

Change of the causal character of the Reeb vector field

There is a relationship between semi-Riemannian metrics of different signature associated to the
same contact form η. Let (η, ξ, ϕ, g) be a contact semi-Riemannian structure on M, with g(ξ, ξ) = ε.
If we consider the semi-Riemannian metric ḡ defined by

ḡ = g− 2εη ⊗ η, (8)

then Equation (1) easily implies that (η, ξ, ϕ, ḡ) is a contact semi-Riemannian structure on M.
However ε̄ = ḡ(ξ, ξ) = −ε. Hence, the change of metric described by Equation (8) transforms an
associated semi-Riemannian metric of signature (2p+ 1, 2n− 2p) into one of signature (2p, 2n− 2p+ 1)
and conversely. In particular, there exists a one-to-one correspondence between contact Riemannian
manifolds and contact Lorentzian manifolds.

The Ricci tensors and the scalar curvatures of ḡ and g are related by (cf. [7])

R̄ic(ξ, ξ) = Ric(ξ, ξ) = 2n− trh2, (9)

R̄ic(ξ, Y) = Ric(ξ, Y), (10)

R̄ic(X, Y) = Ric(X, Y) + 2εg(`X, Y) + 6εg(X, Y) + 4g(hX, Y)− 2εg(h2X, Y), (11)

r̄ = r− 2εRic(ξ, ξ) + 8nε, (12)

for all X, Y ∈ ker η, where `X := R(X, ξ)ξ.
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Reversing the contact semi-Riemannian structure

Let (η, ξ, ϕ, g) be a contact semi-Riemannian structure on M. Then, the tensors

η̂ = −η, ξ̂ = −ξ, ϕ̂ = ϕ, ĝ = −g (13)

define another contact semi-Riemannian structure on M with ε̂ = ĝ(ξ̂, ξ̂) = −ε. We shall say that the
deformation of (η, ξ, ϕ, g) defined by Equation (13) reverses the contact semi- Riemannian structure.

Special contact semi-Riemannian manifolds are the following.

• Sasakian (semi-Riemannian) manifolds are contact semi-Riemannian manifolds (M, η, ξ, ϕ, g) whose
almost contact structure (η, ξ, ϕ) is normal, that is, the almost complex structure J on M×R defined
by J(X, f (d/dt)) = (ϕX − f ξ, η(X)(d/dt)), where f is a real-valued function, is integrable,
i.e., the Nijenhuis tensor [J, J] = 0, where

[J, J](X, Y) = J2[X, Y] + [JX, JY]− J[JX, Y]− J[X, JY].

The integrability condition [J, J] = 0 is equivalent to the condition

[ϕ, ϕ] + 2dη ⊗ ξ = 0. (14)

Moreover, an almost contact semi-Riemannian manifold (M, η, ξ, ϕ, g) is a Sasakian manifold if
and only if

(∇X ϕ)Y = g(X, Y)ξ − εη(Y)X. (15)

In the literature, Sasakian semi-Riemannian manifolds are also called pseudo-Sasakian manifolds.
Pesudo-Sasakian manifolds can be also characterized by using cones on semi-Riemannian
manifolds (see, for example, Refs. [3,6,13,14]). Let (M, g) be a semi-Riemannian manifold.
Consider M̂ = R+ ×M equipped with the metric ĝ = t2g + εdt⊗ dt, ε = ±1. Then, (M̂, ĝ) is said
to be the ε-cone on M. If (η, ξ, ϕ, g) is a pseudo-Sasakian structure on M, with g(ξ, ξ) = ε = ±1,
we put ξ̂ = t(∂/∂t) and define the tensor J on M̂ by

JX = εϕX, for X ∈ ker η, Jξ = ξ̂, Jξ̂ = −ξ.

J is an almost complex structure on M̂ compatible with the metric ĝ: ĝ(J·, J·) = ĝ(·, ·). Moreover,
Ω := εd(t2η) = +εt2dη is the Kahler 2-form of (M̂, ĝ, J): Ω = ĝ(·, J·). In fact, since (η, ξ, ϕ, g) is
a contact semi-Riemannian structure, for X, Y ∈ ker η:

Ω(X, Y) = εt2dη(X, Y) = εt2g(X, ϕY) = t2g(X, JY) = ĝ(X, JY),

Ω(ξ̂, ξ) = ε2tdt ∧ η(ξ̂, ξ) = εtdt(ξ̂)η(ξ) = εt2 = ĝ(ξ̂, Jξ),

Ω(X, ξ) = 0 = ĝ(X, ξ̂), Ω(X, ξ̂) = 0 = ĝ(X, Jξ̂).

Since Ω is closed, (M̂, J, ĝ) is an almost pseudo-Kaehler structure. By using also the Sasakian
condition one can show that J is parallel, that is, the structure on the cone is pseudo-Kaehler.
Besides, the converse statement also holds. In other words, there is an one-to-one-correspondence
beteween pseudo-Sasakian structures (η, ξ, ϕ, g), with g(ξ, ξ) = ε, on M, and pseudo-Kaehler
structures (J, ĝ) on the ε-cone M̂. Moreover, the pseudo-Sasakian manifold is Einstein (respectively,
of constant sectional curvature) if and only if the corresponding ε-cone M̂ is Ricci-flat
(respectively, flat).
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• K-contact manifolds are contact semi-Riemannian manifolds (M, η, ξ, ϕ, g) whose Reeb vector field
ξ is a Killing vector field, or equivalently, h = 0. Any Sasakian semi-Riemannian manifold is
K-contact and the converse also holds when n = 1.

• H-contact manifolds. The condition that ξ be an eigenvector of the Ricci operator is a very natural
condition in contact Riemannian geometry. Sasakian manifolds, K-contact manifolds, (κ, µ)-spaces
and locally ϕ-symmetric spaces satisfy this curvature condition. One of the more important
interpretations of this condition is that of an H-contact manifold as introduced by the present
author in [15]. Recall that on a Riemannian manifold (M, g), a unit vector field V is said to be
a harmonic vector field if V : (M, g)→ (T1M, G̃), where G̃ is the Sasaki metric (cf. Section 5.1),
is a critical point for the energy functional restricted to maps defined by unit vector fields (see the
recent monograph [16], and references therein). If (M, g) is a semi-Riemannian manifold the
same argument applies for vector fields of constant length (if is not light-like). The critical point
condition which defines a harmonic vector field is: “∆̄V is collinear to V”, where ∆̄V is the so
called rough Laplacian of V. H-contact semi-Riemannian manifolds are contact semi-Riemannian
manifolds whose Reeb vector field ξ is harmonic, besides we have that (see [15,17]): a contact
semi-Riemannian manifold is H-contact if and only if ξ is a Ricci eigenvector. The class of H-contact
semi-Riemannian manifolds extends the classes of Sasakian and K-contact semi-Riemannian
manifolds. Results about the classification of H-contact Riemannian three-manifolds are given
in [18] and in the recent paper of Cho [19].

Remark 1. Sasakian structures, K-contact structures, and H-contact structures are preserved by the
transformation Equation (8). In fact, the normality condition and the tensor h = 1

2Lξ ϕ do not depend on
the metric, so that (M, η, g) is Sasakian (respectively K-contact) if and only if (M, η, ḡ) is. Moreover, by using
Equation (10), we have that (M, η, g) is H-contact if and only if (M, η, ḡ) is H-contact.

A difference between the Riemannian case and the general semi-Riemannian one is the following: in both
cases, from Equation (6), trh2 = 0 implies Ric(ξ, ξ) = 2n. But,

• K-contact Riemannian manifolds are characterized by the condition Ric(ξ, ξ) = 2n, since it implies
trh2 = 0 and so, h = 0 (because in the Riemannian case h is diagonalizable);

• in the semi-Riemannian case the condition tr h2 = 0 does not imply h = 0. On the other hand,
there exist contact semi-Riemannian manifolds for which trh2 = 0 but h 6= 0, and contact
semi-Riemannian manifolds for which h2 = 0 but h 6= 0 (see Examples 3 and 5).

Example 1. The hyperquadrics S2n+1
2s ,H2n+1

2s−1 [4].
Consider the semi-Euclidean space R2n+2

2s with the standard indefinite Kaehler structure (g0, J0):

g0(x, x) = −
2s

∑
i=1

x2
i +

2n+2

∑
i=2s+1

x2
i ; J0∂i = ∂n+1+i, i = 1, ..., n + 1; J0∂i = −∂i−n−1, i = n + 2, ..., 2n + 2.

The pseudo-sphere

S2n+1
2s (1) = {x ∈ R2n+2

2s : g0(x, x) = 1} ≡ R2s × S2n+1−2s,

and the pseudo-hyperbolic space

H2n+1
2s−1 (−1) = {x ∈ R2n+2

2s : g0(x, x) = −1} ≡ S2s−1 ×R2n−2s+2

are hyperquadrics of R2n+2
2s , both of dimension (2n + 1), of index 2s and (2s− 1) and of constant sectional

curvature 1 and −1 respectively. Such hyperquadrics have a canonical Sasakian semi-Riemannian structure
(η, ξ, ϕ, g) induced by the indefinite Kaehler structure (g0, J0):

ξ = −J0N, g = g0|M, η = εg(ξ, ·), J0 = ϕ + εg0(J0, N)N, Np = εp,
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where M = S2n+1
2s or M = H2n+1

2s−1 , and the characteristic vector field ξ is space-like and time-like
respectively. In general, these tensors define an almost contact semi-Riemannian structure on an orintable
non-degenerate hypersurface of an indefinite Kaehler manifold (see Proposition 9). Note that reversing the
standard pseudo-Sasakian structure of the pseudo-hyperbolic space H2n+1

2s−1 (−1), we get a pseudo-Sasakian
structure of constant sectional curvature 1, which identifies with the standard pseudo-Sasakian structure of the
pseudo-sphere S2n+1

2(n−s+1)(1).

If we consider the Euclidean unit sphere S2n+1, then ξ0 = J0N is referred as the standard Hopf vector
field on S2n+1. A tangent vector field ξ on S2n+1 is said to be a Hopf vector field if ξ = JN for some
orthogonal complex structure J on R2n+2. By a result of G. Wiegmink, the Hopf vector fields on S2n+1 are
precisely the unit Killing vector fields (cf., for example, Section 3.1 in [16]).

2.2. D-Homothetic Deformations and Contact Lorentzian Manifolds

Let (M, η, ξ, ϕ, g) be a contact semi-Riemannian manifold of dimension 2n + 1, with g(ξ, ξ) = ε.
Then, it is easy to check that, for any real constant t 6= 0, the tensors

η̃ = ηt = tη, ξ̃ = ξt = (1/t)ξ, ϕ̃ = ϕt = ϕ, g̃ = gt = tg + εt(t− 1)η ⊗ η (16)

make up another contact semi-Riemannian structure on M, having the same contact distribution
D = ker η̃ = ker η, called a D-homothetic deformation (or, transverse homothety) of (η, ξ, ϕ, g). Clearly,
Equation (16) is the natural semi-Riemannian generalization ofD-homothetic deformations of a contact
Riemannian structure, where one has g(ξ, ξ) = 1 and needs to assume t > 0 so that g̃ is still
Riemannian [20]. Notice that g̃(ξ̃, X) = εη̃(X). In particular, ε̃ = g̃(ξ̃, ξ̃) = g(ξ, ξ) = ε, that is,
D-homothetic deformations preserve the causal character of the Reeb vector field. For t < 0, if g is of
signature (2p + 1, 2n− 2p), then g̃ is of signature (2n− 2p + 1, 2p). The Ricci tensors and the scalar
curvatures satisfy (see [7], Section 3):

h̃ = (1/2)Lξ̃ ϕ̃ = (1/t)h, (17)

R̃ic = Ric− 2ε(t− 1)g + 2(t− 1)(nt + n + 1)η ⊗ η +
t− 1

t
g
(
ε(∇ξ h)ϕ + 2h, ·

)
, (18)

r̃ =
1
t

r− ε
t− 1

t2 Ric(ξ, ξ)− 2nε
(t− 1)2

t2 . (19)

By using Equations (14), (17) and (18), we get

Proposition 1. The classes of Sasakian, K-contact and H-contact semi-Riemannian manifolds are invariant for
a D-homothetic deformation.

Recall that there is a canonical way to associate a contact Riemannian structure to a contact
Lorentzian structure (and conversely). Let (η, ξ, ϕ, gL) be a contact Lorentzian structure on a smooth
manifold M, where the Reeb vector field ξ is time-like. Then,

g = gL + 2η ⊗ η

is a Riemannian metric, and is still compatible with the same contact structure (η, ξ, ϕ). Moreover,
in such case g(ξ, ξ) = −gL(ξ, ξ) = +1. Hence, (η, ξ, ϕ, g) is a contact Riemannian structure on M.
We remark that

gL = g− 2η ⊗ η = −g−1

where g−1 is obtained by the D-homothetic deformation of g for t = −1. Consequently, the Levi-Civita
connection and curvature of gL can be easily deduced from the formulae valid for a general
D-homothetic deformation. In particular, if ∇̄ is the Levi-Civita connection of gL and ∇ is Levi-Civita
connection of g, we have the following:
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∇̄XY = ∇XY + 2g(hX, ϕY)ξ + 2 {η(X)ϕY + η(Y)ϕX} .

Taking into account that in the Lorentzian case the tensor h is diagonalizable, for a unit vector
field X ∈ ker η, hX = λX, from Equations (18) and (19) we have the following formulae

rL = r + 4n + 2trh2 ≥ r + 4n, (20)

RicL = Ric + 4g− 4η ⊗ η + 2g
(
(∇ξ h)ϕ + 2h, ·

)
. (21)

Moreover, a contact Lorentzian manifold is Sasakian (respectively K-contact, H-contact) if and
only if the corresponding contact Riemannian manifold is so.

A contact semi-Riemannian manifold is called η-Einstein if the Ricci tensor is given by

Ric = αg + βη ⊗ η, where α =
( r

2n
+ ε(

trh2

2n
− 1)

)
, β = −

(
ε

r
2n

+ (2n + 1)(
trh2

2n
− 1)

)
.

In particular, the Ricci tensor of the η-Einstein K-contact Riemannian structure (η, g) is given by

Ric = (
r

2n
− 1)g + (− r

2n
+ 2n + 1)η ⊗ η,

where the scalar curvature r is a constant when n > 1, and g is Einstein if and only if r = 2n(2n + 1).
Then, from Equations (20) and (21), the Ricci tensor of the corresponding Lorentzian K-contact structure
(η, gL) is given by

RicL = Ric + 4g− 4η ⊗ η = (
rL
2n

+ 1)gL + (
rL
2n

+ 2n + 1)η ⊗ η, (22)

where the scalar curvature rL = r + 4n is a constant when n > 1. Hence (η, gL) is η-Einstein K-contact,
and gL is Einstein if and only if rL = −2n(2n + 1).

In dimension three, every K-contact structure (η, g) is automatically Sasakian and η-Einstein,
and thus by Equation (22) also every K-contact Lorentzian three-manifold is automatically Sasakian
and η-Einstein. Moreover, for a K-contact Lorentzian three-manifold, the scalar curvature rL and the
ϕ-sectional curvature HL are related by rL = 2HL − 4.

Recall that a Lorentzian Sasakian manifold (M, g, η) is Einsteinian if and only if the cone M̂
is Ricci-flat. Moreover, geometries of this type are interesting because they provide examples of
twistor spinors on Lorentzian manifolds (see, for example, Ref. [6,14]). In particular, in [6] a twistorial
characterization of Einstein Lorentzian Sasakian manifolds is given .

If (η, g) (resp.(η, gL)) is Einstein K-contact, then (η, gL) (resp.(η, g)) is η-Einstein K-contact. Now,
we see as the η-Einstein Lorentzian K-contact structures are related to the Einstein Lorentzian Sasakian
structures. Let (η, gL) be a Lorentzian K-contact structure on M with ξ time-like, dim M = 2n + 1 > 3.
For the new Lorentzian K-contact structure

η̃ = tη, ξ̃ =
1
t

ξ, ϕ̃ = ϕ, g̃L = (gL)t = tgL − t(t− 1)η ⊗ η = (gt)L, t > 0,

from Equations (18) and (19) we have

R̃icL = RicL + 2(t− 1)gL + 2(t− 1)(nt + n + 1)η ⊗ η, r̃L =
rL − 2n

t
+ 2n.

If in addition (η, gL) is η-Einstein, since n > 1, then the scalar curvature rL is a constant and the
Ricci tensor of the new Lorentzian K-contact structure (η̃, g̃L) is given by



Axioms 2019, 8, 6 8 of 50

R̃icL = (
rL
2n

+ 2t− 1)gL +
( rL

2n
+ 2n + 1 + 2(t− 1)(nt + n + 1)

)
η ⊗ η,

= (
r̃L
2n

+ 1)g̃L + (
r̃L
2n

+ 2n + 1)η̃ ⊗ η̃.

So, for any t > 0, the Lorentzian K-contact structure (η̃, g̃L) is η̃-Einstein. Recall that the function
r̂ = rL − 2n = r + 2n is the so-called Webster scalar curvature of (η, g) and (η, gL) (see Section 3.3).
Now, if the scalar curvature rL of the η-Einstein Lorentzian K-contact manifold (η, gL) satisfies rL < 2n,
i.e., r̂ < 0, then the Lorentzian K-contact structure (η̃ = ηt, g̃L = (gL)t) obtained in correspondence to

t = − r̂
4n(n + 1)

> 0

is Einstein. Analogously, if (η, g) is η-Einstein K-contact and r̂ > 0, i.e., r > −2n, equivalently rL > 2n,
the Riemannian K-contact structure (ηt, gt) obtained in correspondence to

t =
r̂

4n(n + 1)
> 0

is Einstein, and hence, when M is compact, gt is Sasakian-Einsten (cf. [21], Theorem A′). If rL = 2n,
that is r = −2n, and M is compact, from Theorem 7.2 of [21], we get that the contact Riemannian
structure (η, g) which corresponds to the η-Einstein Lorentzian K-contact structure (gL, η) is η-Einstein
Sasakian. So, summing up we get (see also [22], Section 5)

Theorem 1. Let (M, η, ξ, ϕ, gL) be an η-Einstein K-contact Lorentzian manifold of dimension 2n + 1 > 3.
Then, the Webster scalar curvature r̂ is a constant and we have the following.

• If the Webster scalar curvature r̂ < 0, i.e., rL < 2n, then there exists a transverse homothety whose
resulting structure (η̃, ξ̃, ϕ̃, g̃L) is Einstein-Lorentzian K-contact.

• If the Webster scalar curvature r̂ > 0, i.e., rL > 2n, then there exists a transverse homothety whose
resulting structure (ηt, ξt, ϕ, gt) is Einstein Riemannian K-contact. If in addition M is compact, (ηt, gt)

is Sasakian-Einsten and (ηt, (gt)L) is η-Einstein Lorentzian-Sasakian.
• If the Webster scalar curvature r̂ = 0, i.e., rL = 2n, and M is compact, then the structure (η, gL) is

η-Einstein Lorentzian-Sasakian.

From this Theorem and Proposition 6.2 of [6], we get the following

Theorem 2. ([22]) Let (M, η, ξ, gL) be a simply connected η-Einstein Lorentzian Sasakian manifold of
dimension 2n + 1 > 3 and with scalar curvature rL < 2n, i.e., r̂ < 0. Then, there exists a transverse
homothety whose resulting Lorentzian manifold (M, g̃L) is a spin manifold. Moreover, there exists a twistor
spinor φ which is an imaginary Killing spinor and the associated vector field Vφ (the Dirac current) is ξ̃.

Any connected sum of S2 × S3 admits a Lorentzian Sasaki-Einstein structure [23]. Now, we give
the following.

Example 2. Let Ω be a simply connected bounded domain in Cn, equipped with the Kaehler structure
(G, J) of constant holomorphic sectional curvature κ < −3. The corresponding the Kaehler form ω is closed
and thus ω = dϑ. Let π : M = Ω × R → Ω be the natural projection, and t the coordinate on R.
We construct a Lorentzian-Sasakian structure on M like the Riemannian case (cf. [2], Ch.7)). We define
η = π∗ϑ + dt, ξ = ∂/∂t, gL = π∗G − η ⊗ η, and define ϕ such that to be the horizontal lift of the
complex structure J and zero in the vertical direction. Then, (η, ξ, ϕ, gL) is an η-Einstein Lorentzian-Sasakian
structure with ξ time-like. Moreover, the scalar curvature is given by rL =

(
n(2n + 1)(κ + 3) + n(κ + 7)

)
/2,

and hence rL − 2n = n(n + 1)(κ + 3) < 0. Then, for t = − κ+3
4 > 0 the resulting structure (η̃, g̃L) is

Einstein-Lorentzian Sasakian.
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2.3. Curvature of K-Contact (and Sasakian) Semi-Riemannian Manifolds

In the contact Riemannian case, the following curvature condition

R(X, Y)ξ = η(X)Y− η(Y)X (23)

characterizes the Sasakian structures. In the semi-Riemannian case any Sasakian manifold satisfies
Equation (23), but there is not a proof for the conversely and we do not know examples of non-Sasakian
contact semi-Riemannian manifolds which satisfy Equation (23). A partial result for this problem is
given by the following (cf. [22]).

Theorem 3. Let (M, η, ξ, ϕ, g) be a K-contact semi-Riemannian manifold. Then, M is Sasakian if and only if
the curvature tensor R satisfies Equation (23).

Moreover, for a K-contact semi-Riemannian manifold, ξ is an eigenvector of the Ricci operator
Q: Qξ = 2nεξ. In the Riemannian case, this condition holds in a stronger form: M is K-contact if and
only if Qξ = 2nξ (cf. [2], Theorem 7.1 and Proposition 7.2). Always for a K-contact semi-Riemannian
manifold, by (5), one gets R(·, ξ)ξ = ϕ2. Then, for a non-degenerate plane section span(ξp, Xp),
g(ξp, Xp) = 0, the sectional curvature

K(ξp, Xp) = −
g(R(Xp, ξp)ξp, Xp)

εg(Xp, Xp)
= −

g(ϕ2Xp, Xp)

εg(Xp, Xp)
= ε.

Conversely, we have the following (cf. [22]).

Theorem 4. If a semi-Riemannian manifold (M, g) admits a Killing vector field ξ, g(ξ, ξ) = ε = ±1,
such that the sectional curvature of all nondegenerate plane sections containing ξ equals ε, then

(η = εg(ξ, ·), ξ, ϕ = −ε∇ξ, g)

is K-contact semi-Riemannian structure on M.

In the same paper [22], we proved

Theorem 5. Any conformally flat K-contact semi-Riemannian manifold is Sasakian and of constant sectional
curvature κ = ε.

If (M, η, g) is a locally symmetric contact semi-Riemannian three-manifold, then (M, g) is either
flat or of constant sectional curvature κ = ε = g(ξ, ξ) [7]. In particular, the pseudoEuclidean space R3

1
and the universal covering of the pseudohyperbolic space H3

1(−1), are the only three-dimensional
symply connected symmetric contact Lorentzian manifolds. Note that the pseudo-sphere S3

2(1),
which admits a symmetric contact semi-Riemannian structure (η, g), with ε = +1 and g of signature
(−,−,+), is nothing but the pseudohyperbolic space H3

1(−1) with the reversed structure.
Now, we give the following new result

Theorem 6. Any locally symmetric K-contact semi-Riemannian manifold (M, η, ξ, ϕ, g) is Sasakian and of
constant sectional curvature ε.

Proof. For a K-contact semi-Riemannian manifold, from Equations (4) and (5), we have

R(Y, ξ)ξ = −Y + η(Y)ξ and ∇ξ = −εϕ.
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Moreover, for a locally symmetric semi-Riemannian manifold ∇R = 0. Then we get

0 = (∇XR)(Y, ξ, ξ) = ∇XR(Y, ξ)ξ − R(∇XY, ξ)ξ − R(Y,∇Xξ)ξ)− R(Y, ξ)∇Xξ

= ....

= −ε2g(ϕX, Y)ξ − εη(Y)ϕX + εR(Y, ϕX)ξ + εR(Y, ξ)ϕX,

that is,

R(Y,−ϕX)ξ − R(Y, ξ)ϕX = −εg(ϕX, Y)ξ − η(Y)ϕX.

Replacing X by ϕX, we have

R(Y, X)ξ + R(Y, ξ)X− 2η(X)R(Y, ξ)ξ = η(Y)X− 2η(X)η(Y)ξ + εg(X, Y)ξ

that is,

R(Y, X)ξ + R(Y, ξ)X = −2η(X)Y + η(Y)X + εg(X, Y)ξ,

equivalently,

R(X, Y)ξ = R(ξ, X)Y− 2η(Y)X + η(X)Y + εg(X, Y)ξ. (24)

By using this last equation, we get

0 = (∇ZR)(X, Y, ξ) = ∇ZR(X, Y)ξ − R(∇ZX, Y)ξ − R(X,∇ZY)ξ − R(X, Y)∇Zξ

= ....

= −εR(ϕZ, X)Y + 2g(ϕZ, Y)X− g(ϕZ, X)Y− g(X, Y)ϕZ + εR(X, Y)ϕZ,

that is,

−εR(ϕZ, X)Y + εR(X, Y)ϕZ = −2g(ϕZ, Y)X + g(ϕZ, X)Y + g(X, Y)ϕZ.

Replacing Z by ϕZ, the above equation becomes

ε
(

R(Z, X)Y− R(X, Y)Z
)
+ εη(Z)

(
R(X, Y)ξ − R(ξ, X)Y

)
=

−g(X, Y)Z− g(X, Z)Y + 2g(Y, Z)X + εη(Z)
(
− 2η(Y)X + η(X)Y + εg(X, Y)ξ

)
.

Then, by using Equation (24), we obtain

ε
(

R(Z, X)Y− R(X, Y)Z
)
= −g(X, Y)Z− g(X, Z)Y + 2g(Y, Z)X

and hence

εR(X, Y, Z, Y) = g(X, Y)g(Z, Y) + g(X, Z)g(Y, Y)− 2g(Y, Z)g(X, Y). (25)

Now, let p be an arbitrary point and span(Xp, Yp) be an arbitrary non-degenerate plane. Then,
from Equation (25), we obtain

εR(X, Y, X, Y) = g(X, X)g(Y, Y)− g(X, Y)2,

that is,

R(Xp, Yp, Xp, Yp)

g(Xp, Xp)g(Yp, Yp)− g(Xp, Yp)2 = ε.

Therefore (M, η, ξ, ϕ, g) is a K-contact semi-Riemannian manifold of constant curvature ε. Then,
by using Theorem 5, we conclude that the manifolds is also Sasakian.

Remark 2. Theorems 4–6, which include in particular the Lorentzian case, give results analogous to the
Riemannian case (see [2]).
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If (M, g̃) is a semi-Riemannian manifold which admits a Killing vector field X0 of constant
length, g(X0, X0) = c 6= 0, such that the sectional curvature of all non-degenerate plane sections
containing X0 equals c, then ξ = (1/εc)X0 and g = εcg̃, where ε = +1 if c > 0 and ε = −1 if c < 0,
satisfy the conditions of Theorem 4. Then, by using Theorems 4–6, we get the following (which extends
Corollary 4.3 of [22]).

Theorem 7. Let (M, g) be a semi-Riemannian manifold whose admits a Killing vector field X0 of constant
length, g(X0, X0) = c 6= 0, such that the sectional curvature of all non-degenerate plane sections containing X0

equals c. Then, the following properties are equivalent
Numbered lists can be added as follows:

(1) (M, g) is conformally flat ;
(2) (M, g) is locally symmetric;
(3) (M, g) is of constant sectional curvature κ = c.

2.4. Geometry of H-Contact Semi-Riemannian Manifolds

H-contact semi-Riemannian manifolds are related to the contact semi-Riemannian manifolds
whose Reeb vector field is an infinitesimal harmonic transformation. Recall that a vector field
V on a semi-Riemannian manifold (M, g) is called an infinitesimal harmonic transformation
(in short i.h.t.) if the one-parameter group of local transformations generated by V are local harmonic
diffeomorphisms. Moreover, V is an i.h.t. if and only if tr(LV∇) = 0 (see [24,25]), where

(LV∇)(X, Y) = R(V, X)Y +∇X∇YV −∇∇XYV,

for all tangent vector fields X, Y. With respect to a pseudo-orthonormal basis {E1, . . . , Em} of (M, g),
we have

tr(LV∇) = ∑i εi(LV∇)(Ei, Ei)

= ∑i εiR(V, Ei)Ei + ∑i εi(∇Ei∇Ei V −∇∇Ei
Ei V)

= −QV + ∆̄V,

where ∆̄ is the rough Laplacian. Thus, a vector field V is an i.h.t. if and only if ∆̄V = QV.
Now, let (M, η, g, ξ, ϕ) be an arbitrary contact semi-Riemannian manifold. Then, we have

(cf. [15,17])
∆̄ξ = 4nεξ −Qξ = ε‖∇ξ‖2ξ − pr|kerηQξ. (26)

Besides, by using Equation (6), we get

ξ is an i.h.t. ⇐⇒ ∆̄ξ = Qξ ⇐⇒ Qξ = 2nεξ ⇐⇒ trh2 = 0 and Qξ is collinear to ξ, (27)

from which we get the following (cf. [17]).

Theorem 8. Let (M, η, g, ξ, ϕ) be a contact semi-Riemannian manifold. Then, the following properties
are equivalent:

(1) Qξ = 2nεξ;
(2) ξ is an infinitesimal harmonic transformation;
(3) M is H-contact and trh2 = 0.

In the Riemannian case, trh2 = 0 is equivalent to h = 0, and so ([26]).

ξ is an i.h.t. if and only if M is K-contact.

In the semi-Riemannian case:

ξ i.h.t. does not imply K-contact.
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In fact, the following is an example of contact semi-Riemannian manifold where ξ is an i.h.t. but it
is not Killing.

Example 3. ([17]) We consider the 5-dimensional connected Lie group G, whose Lie algebra g admits a basis
{E0, E1, E2, V1,V2} such that

[E0, E1] = [E0, E2] = −E2, [E0, V1] = −[E0, V2] = v1, [E1, V1] = 2E0, [E2, V2] = −2E0,

[Ei, Ej] = [Vi, Vj] = [Ei, Vj] = 0, i 6= j = 1, 2.

Consider the semi-Riemannian left-invariant metric g, for which {E0, Ei, Vi} is a pseudo-orthonormal basis
with

g(E0, E0) = ε, g(E1, E1) = g(V1, V1) = 1, g(E2, E2) = g(V2, V2) = −1. (28)

Define the left-invariant tensors ξ, η, and ϕ on G putting

ξ = E0, η(X) = εg(ξ, X), ϕEi = Vi, ϕVi = −Ei, i = 1, 2. (29)

Then, the metric g described in Equation (28), together with tensors described in Equation (29), define
a left-invariant contact semi-Riemannian structure (η, g, ξ, ϕ) on G. This contact semi-Riemannian structure
is H-contact and satisfies trh2 = 0 with h 6= 0 (more precisely, 2h2E1 = E2, 2h2E2 = −E1, 2h2V1 = V2,
2h2V2 = −V1). Thus, ξ is an i.h.t. and (η, ξ, ϕ, g) is not K-contact.

Remark 3. The class of contact semi-Riemannian manifolds with ξ i.h.t. is invariant for D-deformations.
In fact, the class of H-contact semi-Riemannian manifolds is invariant and trh2

t =(1/t2)trh2.

The Lorentzian case. Let (M, η, ξ, ϕ, g) be a contact semi-Riemannian manifold, and ḡ the metric
associated to (η, ξ, ϕ) described by Equation (8). Then, as remarked in Section 2, (M, η, ξ, ϕ, ḡ)
is H-contact if and only if (M, η, ξ, ϕ, g) is H-contact. In particular, there exists a one-to-one
correspondence between H-contact Riemannian manifolds and H-contact Lorentzian manifolds.
It follows that the class of H-contact Lorentzian manifolds is really large. To note that just like in
the Riemannian case, for a contact Lorentzian manifold, with ξ time-like one has trh2 = 0 if and
only if h = 0 [7]. Hence, using Equation (8) and the corresponding result valid in the Riemannian
case ([26], [Theorem 4.1]), we have the following result.

Proposition 2. Let (M, η, ξ, ϕ, g) be a contact Lorentzian manifold with ξ time-like. Then, the following
properties are equivalent:

(1) M is K-contact; (2) ξ is an infinitesimal harmonic transformation; (3) ∆̄ξ = −2nξ.

Remark 4. Let (M, g) be a Lorentzian manifold and V a unit time-like vector field on M. The space-like
energy of V is defined as the integral of the square norm of the restriction of ∇V to the space-like distribution
V⊥. A unit time-like vector field V, which is a critical point of the space-like energy, is called a spatially
harmonic vector field. If V is a time-like unit geodesic vector field, then it is spatially harmonic if and only
if it is a harmonic vector field ([16], Chapter 8 and [27]). On the other hand, the Reeb vector field of a contact
semi-Riemannian manifold is geodesic. Thus, we have the following result [17]: A contact Lorentzian manifold,
with ξ time-like, is H-contact if and only if ξ spatially harmonic.

Remark 5. We note that the Reeb vector field of a three-dimensional contact Riemannian manifold
(M3, η, ξ, ϕ, g) defines a harmonic map from M to T1M if and only if it is H-contact and ξ(λ) = 0, where λ,−λ

are the nontrivial eigenvalues of tensor h [18]. The same characterization holds in the contact Lorentzian case
(in fact, for the corresponding contact Lorentzian manifold we have h̄ = h). Then, it is natural to ask which are
the H-contact Lorentzian three-manifolds for which λ is a constant (equivalently, the Ricci eigenvalue related to
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ξ is constant). In the Riemannian case, it follows from the proof of Theorem 1.2 in [18] that a three-dimensional
contact Riemannian manifold is H-contact with constant Ricci eigenvalue if and only if either it is Sasakian or
is locally isometric to a unimodular Lie group G equipped with a non-Sasakian left-invariant contact metric
structure. Then, a contact Lorentzian three-manifold is H-contact with constant Ricci eigenvalue
(related to ξ) if and only if either it is Sasakian or is locally isometric to a unimodular Lie group G
equipped with a non-Sasakian left-invariant contact Lorentzian structure. A complete classification of
simply connected homogeneous contact Lorentzian three-manifolds will be given in Section 4.

Since the work of Hamilton and especially Perelman’s proof of the Poincaré conjecture, there has
been considerable interest in the Ricci flow and its applications. For an introduction to Ricci flow we
refer to the book of B. Chow and D. Knopf [28]. Ricci solitons have been intensively studied in recent
years, particularly because of their relationship with the Ricci flow. For examples and more details on
Ricci solitons in semi-Riemannian settings, we may refer for example to [29] and references therein.
A Ricci soliton is a semi-Riemannian manifold (M, g), admitting a vector field V, such that

Ric +
1
2
LV g = µg, (30)

for some real constant µ. A Ricci soliton is said to be shrinking, steady, or expanding, according to
whether µ > 0, µ = 0 or µ < 0, respectively. Clearly, an Einstein manifold, together with a Killing
vector field, is a trivial solution of Equation (30). As proved in the paper [30], any Riemannian Ricci
soliton is an infinitesimal harmonic transformation, and it is easily seen that the same argument
applies to the semi-Riemannian case. By definition, a contact (semi-Riemannian) Ricci soliton is
a contact semi-Riemannian manifold (M, η, ξ, ϕ, g), for which Equation (30) is satisfied by V = ξ.
Since (Lξ g)(ξ, X) = 0, from Equation (30) with V = ξ, we have that the Reeb vector field of a contact
semi-Riemannian manifold satisfies

Qξ = µξ.

So, a contact semi-Riemannian Ricci soliton is H-contact with constant Ricci eigenvalue. On the other
hand, if (M, η, ξ, ϕ, g) is a contact semi-Riemannian Ricci soliton, then ξ is an infinitesimal harmonic
transformation. Hence, by Theorem 8, Qξ = µξ with µ = 2nε = ±2n and we get the following
result [17]:

Theorem 9. A (2n + 1)-dimensional contact semi-Riemannian Ricci soliton is H-contact: Qξ = ±2nξ, and it
is either shrinking or expanding, according to the causal character of the Reeb vector field.

In Riemannian setting, the above Theorem yields a much stronger rigidity result. In fact,
by Theorem 8 we have trh2 = 0, that is h = 0. So, by using Equation (30), we have the following result
(see [31] and also [22]).

Corollary 1. A contact Riemannian manifold is a contact Ricci soliton if and only if it is K-contact and Einstein.

Recall the following result of C. Boyer and K. Galicki (see [21]): A compact K-contact Einstein
manifold is Sasakian Einstein. Therefore, from Corollary 1 we get the following

Theorem 10. A compact, contact Riemannian Ricci soliton is Sasakian Einstein.

Moreover, by Theorem 9 and Proposition 2, we deduce the following Lorentzian analogue of
Corollary 1.

Corollary 2. Let (M, η, ξ, g, ϕ) be a contact Lorentzian manifold with ξ time-like. Then, (M, η, ξ, ϕ, g) is
a contact Ricci soliton if and only if it is Einstein and K-contact.
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By Corollary 1, only trivial contact Ricci solitons occur in Riemannian settings. On the other hand,
the above Theorem 9 specifies that semi-Riemannian Ricci solitons must be found among H-contact
manifolds, but this does not exclude the existence of nontrivial contact semi-Riemannian Ricci solitons.
As explicitly remarked in [17], the left-invariant contact semi-Riemannian structure described in
Example 3 is H-contact (and ξ is also an infinitesimal harmonic transformation), but not a contact Ricci
soliton. Hence, the class of semi-Riemannian contact Ricci solitons is strictly included in the one of
H-contact semi-Riemannian manifolds satisfying Qξ = ±2nξ.

3. Non-Degenerate Almost CR Structures

Almost CR structures have drawn a great amount of interest for their connection with several
different research areas in both analysis and geometry (Dragomir-Tomassini [12]). In this Section we
will emphasize some aspects of their connection with the contact semi-Riemannia structures.

3.1. Generality on Almost CR Structures

Let M be a (2n + 1)-dimensional manifold. An almost CR structure (of hypersurface type) on M
is a pair (H = H(M), J) where H is a smooth real subbundle of rank 2n of the tangent bundle TM
(also called the Levi distribution), and J : H → H is an almost complex structure: J2 = −I.

Example 4. Any odd-dimensional Lie group G admits a left-invariant almost CR structure. If (ξ, Xi, Yi),
i = 1, ..., n, is a basis of the Lie algebra g of G and define H = span(Xi, Yi) and J by JXi = Yi, JYi = −Xi,
then (H, J) is a left invariant almost CR structure on G.

Starting from an almost contact structure (η, ξ, ϕ), the pair (H = kerη, J = ϕ|H) defines
a corresponding almost CR structure on M. It is a natural question to ask when an almost CR structure
(H, J) permits to reconstruct an almost contact structure (η, ξ, ϕ), such that (H = kerη, J = ϕ|H).
The answer is given by the following result.

Proposition 3. Let M denote an odd-dimensional manifold. An almost CR structure (H, J) on M is induced
by an almost contact structure (η, ξ, ϕ) if and only if M admits a (globally defined) vector field X0, transversal to
H at any point.

Proof. If (H = kerη, J = ϕ|H) for some almost contact structure (η, ξ, ϕ), then clearly the characteristic
vector field ξ satisfies the requirements above.

Conversely, suppose that (H, J) is an almost CR structure, admitting a global vector field X0

transversal to it. Then, it is enough to define ξ, η and ϕ by

ξ = X0, η(ξ) = 1, η(X) = 0, ϕ(ξ) = 0, ϕ(X) = J(X),

for any vector field X ∈ H. It is then easy to check that (η, ξ, ϕ) is an almost contact structure,
and (H, J) = (kerη, ϕ|kerη).

Given an almost CR structure, let Ex ⊂ T∗x (M) be the subspace consisting of all pseudohermitian
structures on M at x ∈ M. Then E =

⋃
x∈M Ex is (the total space of) a real line subbundle of the

cotangent bundle T∗(M) and the pseudohermitian structures are the globally defined nowhere zero
C∞ sections in E. If M is oriented then E is trivial i.e., E ≈ M×R (a vector bundle isomorphism).
Therefore E admits globally defined nowhere vanishing sections, equivalently any orientable almost CR
manifold admits a 1-form θ such that kerθ = H (cf., for example, Ref. [12] Section 1.1.2). On the other
hand the existence of a (globally defined) vector field X0, transversal toH at any point is equivalent
to the existence of a 1-form θ such that kerθ = H. In fact, given θ with kerθ = H, we consider
a Riemannian metric g on M (which is paracompact) and then define X0 by g(X0, X) = θ(X) for
any vector field X. As such, X0 is transversal to H at any point because kerθ = H. Hence, by using
Proposition 3, we get the following
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Proposition 4. On an orientable odd-dimensional manifold, the existence of an almost CR structure is
equivalent to the existence of an almost contact structure.

Let (M,H, J) be an almost CR manifold. Put

H1,0 = {X− i JX : X ∈ H} andH0,1 = {X + i JX : X ∈ H} = H1,0, i =
√
−1,

that is, H1,0 (resp. H0,1) is the eigenbundle of JC (the C-linear extension of J to HC = H ⊗ C)
corresponding to the eigenvalue i (resp. −i). Then the complexficationHC can be decomposed into
direct sum of (±i)-distributions of JC:

HC = H1,0 ⊕H0,1.

Definition 1. An almost CR structure (M,H, J) is said to be a CR structure on M if H1,0 (and hence
alsoH0,1) is (formally) integrable:

[H1,0,H1,0] ⊂ H1,0, that is, Z, W ∈ C∞(U,H1,0) yields [Z, W] ∈ C∞(U,H1,0)

for any open set U ⊂ M.

CR structures are considered mainly from a complex analytical point of view. It is easy to see that
an almost CR structure (M,H, J) is a CR structure if and only if the following two conditions hold:

[JX, Y] + [X, JY] ∈ H, X, Y ∈ H, (31)

J {[JX, Y] + [X, JY]} = [JX, JY]− [X, Y], X, Y ∈ H. (32)

Of course, if dim M = 3: Any almost CR structure is integrable (in dimension three, the integrability
conditions are trivially satisfied). Moreover, if M is a real hypersurface of a complex manifold then the
induced almost CR structure is CR (cf. [12], Proposition 1.1). Therefore, an integrable (codimension
one) CR structure (H, J) is often called CR structure of hypersurface type.

Remark 6. Another way to define an almost CR structure is the following. Let M be a real (2n + 1)-dimensional
manifold. An almost CR structure on M is a complex subbbundle T1,0(M), of complex rank n, of the
complexified tangent bundle T(M) ⊗ C such that T1,0(M) ∩ T0,1(M) = (0) where T0,1(M) = T1,0(M)

(overbars denote complex conjugates). The integer n is the CR dimension. An almost CR structure T1,0(M)

is integrable, and then T1,0(M) is referred to as a CR structure, if Z, W ∈ C∞(U, T1,0(M)) yields
[Z, W] ∈ C∞(U, T1,0(M)) for any open set U ⊂ M. The Levi (or maximally complex) distribution
is the real rank 2n distribution on M given by H ≡ H(M) = Re{T1,0(M)⊕ T0,1(M)}. It carries the
complex structure

J : H → H, J(Z + Z) = i(Z− Z), Z ∈ T1,0(M) (i =
√
−1).

Then, T1,0(M) = {X− i JX : X ∈ H} = H1,0, i.e., T1,0(M) is the eigenbundle of JC (the C-linear
extension of J toH⊗C) corresponding to the eigenvalue i. The pair (H, J) is the real manifestation of T1,0(M).

Now, we want to compare the normality condition Equation (14) of an almost contact
structure with the integrability conditions of the induced almost CR structure. We first give the
following proposition.

Proposition 5. Let (H, J) be an almost CR structure on an odd-dimensional manifold M induced by an almost
contact structure (η, ξ, ϕ). Then,
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(1) (H, J) is a CR structure if and only if S(X, Y) = 0 for any X, Y ∈ H, where

S(X, Y) := ϕ
(
[JX, Y] + [X, JY]

)
− [JX, JY] + [X, Y], X, Y ∈ H. (33)

(2) the tensor h = (1/2)Lξ ϕ vanishes if and only if Lξ η = 0 and Lξ J = 0;
(3) if g is a semi-Riemannian metric compatible with the almost contact structure (η, ξ, ϕ), then

Lξ η = 0⇐⇒ ∇ξ ξ = 0, where ∇ is the Levi-Civita connection.

Proof. (1) We have to show that the condition S = 0 is equivalent to the integrability conditions
Equations (31) and (32). Since ϕ2 = −I + η ⊗ ξ, we have

S(X, Y) = −ϕ2(S(X, Y)) + η(S(X, Y))ξ.

So S(X, Y) = 0 implies η(S(X, Y)) = 0. Then, by using η ◦ ϕ = 0, we get η([JX, JY]− [X, Y]) = 0
and thus ([JX, JY] − [X, Y]) ∈ H, that is Equation (31). Replacing X by JX, we get
([X, JY] + [JX, Y]) ∈ H, and so Equation (33) becomes

S(X, Y) = J
(
[JX, Y] + [X, JY]

)
− [JX, JY] + [X, Y], X, Y ∈ H.

Thus S(X, Y) = 0 implies the condition Equation (32). Conversely, if Equations (31) and (32) are
satisfied, then S = 0 is trivial.

(2) Recall that 2hX = (Lξ ϕ)(X) = Lξ ϕX − ϕLξ X = [ξ, ϕX]− ϕ[ξ, X]. So, h = 0 if and only
if hX = 0 for any X ∈ H. On the other hand, for X ∈ H, (Lξ η)(X) = −η([ξ, X]), and so Lξ η = 0
means [ξ, X] ∈ H. Then, for X ∈ H : h = 0 implies [ξ, ϕX] = ϕ[ξ, X] ∈ H, that is, [ξ, X] ∈ H,
and 0 = 2hX = [ξ, ϕX]− ϕ[ξ, X] = [ξ, JX]− J[ξ, X] = (Lξ J)(X). Conversely, it is not difficult to see
that Lξη = 0 and Lξ J = 0 imply h = 0.

(3) In such a case, the condition Lξ η = 0 is equivalent to the condition that
ξ is geodesic with respect to the Levi-Civita connection. In fact, for any X ∈ H:
(Lξη)(X) = 0⇐⇒ g(ξ,∇ξ X−∇Xξ) = 0.

Remark 7. An almost contact structure (η, ξ, ϕ) satisfying the condition ξ ∈ ker dη is called a natural
almost contact structure. This class of almost contact structures has been introduced and studied in the
paper [32]. We note that 2dη(ξ, X) = Lξ η, so the condition that defines this structure is equivalent to the
condition Lξ η = 0 considered in Proposition 5. In particular, any contact semi-Riemannian manifold satisfies
the condition Lξ η = 0, equivalently ∇ξ ξ = 0.

S. Ianus (cf. [2], Theorem 6.6 p. 92) proved that a normal almost contact manifold is a CR-manifold.
The following Theorem completes this result.

Theorem 11. Let (H, J) be an almost CR structure on an odd-dimensional manifold M induced by an almost
contact structure (η, ξ, ϕ). Then, the almost contact structure (η, ξ, ϕ) is normal if and only if almost CR
structure (H, J) is integrable and the tensor h = 0. In particular, if Lξ η = 0, (η, ξ, ϕ) is normal if and only if
(H, J) is integrable and Lξ J = 0.
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Proof. By Proposition 5 we know that (H, J) is a CR structure if and only the tensor S defined onH
by Equation (33) vanishes. For X, Y ∈ H:

[ϕ, ϕ](X, Y) = [JX, JY] + ϕ2[X, Y]− ϕ
(
[JX, Y] + [X, JY]

)
= [JX, JY]− [X, Y] + η([X, Y])ξ − ϕ

(
[JX, Y] + [X, JY]

)
= [JX, JY]− [X, Y]− 2dη(X, Y)ξ − ϕ

(
[JX, Y] + [X, JY]

)
= [JX, JY]− [X, Y]− 2dη(X, Y)ξ − ϕ

(
− ϕ2([JX, Y] + [X, JY]) + η([JX, Y] + [X, JY])ξ

)
= [JX, JY]− [X, Y]− 2dη(X, Y)ξ + ϕ3([JX, Y] + [X, JY]

)
.

that is,

[ϕ, ϕ](X, Y) + 2dη(X, Y)ξ = −S(X, Y). (34)

Moreover, for X ∈ H, from
[ϕ, ϕ](X, ξ) = ϕ2[X, ξ]− ϕ([ϕX, ξ]) = −[X, ξ] + η([X, ξ])ξ − ϕ([ϕX, ξ])

and
2hϕX = (Lξ ϕ)(ϕX) = −[ξ, X]− ϕ[ξ, ϕX] = [X, ξ] + ϕ[ϕX, ξ],

we have

[ϕ, ϕ](X, ξ) + 2dη(X, ξ)ξ = −2hϕX. (35)

Therefore, from Equations (14), (34), and (35) we obtain that (η, ξ, ϕ) is normal if and only if
almost CR structure (H, J) is integrable (i.e., S = 0) and the tensor h = 0. The second part follows
from (3) of Proposition 5.

3.2. Non-Degenerate Almost CR Structures and Contact Semi-Riemannian Structures

We have already observed that the existence of an almost CR structure (H, J) on
an (2n + 1)-dimensional manifold M induced by an almost contact structure is related to the existence
of a 1-form θ such that kerθ = H (cf. Proposition 3).

Definition 2. A pseudohermitian structure on an almost CR manifold (M,H, J) is a 1-form θ such that
kerθ = H and the Levi form Lθ , defined by

Lθ(X, Y) := (dθ)(X, JY), X, Y ∈ H,

is Hermitian, that is, Lθ(JX, JY) = Lθ(X, Y). In such a case, (H, J, θ) is called pseudohermitian almost CR
structure on M.

It should be observed that, for any X, Y ∈ H, the following are equivalent:
θ([JX, Y]) + θ([X, JY]) = 0;

(dθ)(JX, Y) + (dθ)(X, JY) = 0
(
i.e., −Lθ(Y, X) + Lθ(X, Y) = 0

)
;

Lθ(JX,−JY) + Lθ(X, Y) = 0.
Then, we have

Proposition 6. Let (H, J) be an almost CR structure and θ an 1-form such that kerθ = H. Then, the following
properties are equivalent:
(a) Lθ is Hermitian, that is, (H, J, θ) is pseudohermitian;
(b) Lθ is symmetric, that is, Lθ(X, Y) = Lθ(Y, X);
(c) the partial integrability condition Equation (31) is satisfied.
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In the case of an almost CR structure induced by an almost contact semi-Riemanian structure,
we have:

Proposition 7. Let (H = ker θ, J) be an almost CR structure induced by an almost contact semi-Riemannian
structure (η = θ, ξ, ϕ, g). Then, (H, J, θ) is a pseudohermitian almost CR structure if and only if the tensor

q := ϕ ◦ ∇ξ −∇ξ ◦ ϕ

is symmetric on H, where ∇ is the Levi-Civita connection of g. In particular, if (η = θ, ξ, ϕ, g) is a contact
semi-Riemannian structure, or an almost α-coKähler structure, then q = 2h = Lξ ϕ and so it is symmetric.

Proof. We show that the partial integrability condition Equation (31) is satisfied if and only if q is
symmetric onH.

[JX, Y] + [X, JY] ∈ H, X, Y ∈ H ⇐⇒ g(∇JXY−∇Y JX +∇X JY−∇JYX, ξ) = 0, X, Y ∈ H;

⇐⇒ −g(∇ϕXξ, Y) + g(∇Yξ, ϕX)− g(∇Xξ, ϕY) + g(∇ϕYξ, X) = 0, X, Y ∈ H;

⇐⇒ g(ϕ∇Xξ −∇ϕXξ, Y) = g(ϕ∇Yξ −∇ϕYξ, X), X, Y ∈ H;

⇐⇒ g(qX, Y) = g(X, qY), X, Y ∈ H.

If (η = θ, ξ, ϕ, g) is a contact semi-Riemannian structure, q = 2h follows from Equation (4).
If (η = θ, ξ, ϕ, g) is an almost α-coKähler structure, q = 2h follows from (3.1) of [33].

Definition 3. A pseudohermitian almost CR structure (H, J, ϑ) is said to be a non-degenerate
(pseudohermitian) almost CR structure if the Levi form Lθ is, in addition, non-degenerate (equivalently,
θ is a contact form, i.e., θ ∧ (dθ)n is a volume form).

In the sequel by a non-degenerate almost CR structure we will mean a non-degenerate
pseudohermitian almost CR structure. So, a nondegenerate almost CR structure satisfies the partial
integrability condition Equation (31). We remark that two pseudohermitian structures θ and θ̃ on the
same almost CR manifold, are related by

θ̃ = λθ for some C∞ function λ : M→ R \ {0}.
This gives dθ̃ = dλ ∧ θ + λdθ, then Lθ̃ = λ Lθ and hence non degeneracy is a CR invariant.

Remark 8. In dimension three any non-degenerate almost CR manifold is a CR manifold. If dim M > 3,
there exist examples of non-degenerate almost CR manifolds which do not satisfy Equation (32), i.e., are
not CR manifolds. For example, we have (cf. Theorem 25): If (M, g) is a semi-Riemannian manifold,
dim M = n ≥ 3, the standard non-degenerate almost CR structure (H, J, θ) on the tangent hyperquadric
bundle Tε(M, g) = {(x, u) ∈ TM|gx(u, u) = ε}, ε ∈ {±1}, is integrable, i.e., it is a non-degenerate CR
structure, if and only if (M, g) has constant sectional curvature.

Let (M,H, J, θ) be a non-degenerate almost CR manifold. Let us extend J to an endomorphism ϕ

of the tangent bundle by requesting that ϕ = J onH and ϕ(T) = 0 (T is the Reeb vector field of θ). Then

ϕ2 = −I + θ ⊗ T,

and (θ, T, ϕ) is an almost contact structure. In particular, θ ◦ ϕ = 0. The Webster metric is the
semi-Riemannian metric gθ defined by

gθ(X, Y) = Lθ(X, Y) = (dθ)(X, ϕY), gθ(X, T) = 0, gθ(T, T) = ε,

for any X, Y ∈ H, where ε = ±1. Equivalently,

gθ = (dθ)(·, ϕ·) + εθ ⊗ θ.
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Since gθ(X, ϕY) = −(dθ)(X, Y), η = −θ = εgθ(−T, ·) and ϕ2 = −I + θ ⊗ T, then by Equation (1)
we get that

(η = −θ, ξ = −T, ϕ, g = gθ)

is a contact semi-Riemannian structure on M. If we denote by g+θ the Webster metric with T space-like
and by g−θ the Webster metric with T time-like, then

g+θ = g−θ + 2θ ⊗ θ. (36)

This fact agrees with the change of the causal character of the Reeb vector field (cf. Equation (8)).
In particular, if g+θ is Riemannian, then g−θ is Lorentzian with T time-like.

Conversely, a contact semi-Riemannian structure (η, ξ, ϕ, g) defines a nondegenerate pseudohermitian
almost CR structure given by

(H = kerη, θ = −η, J = ϕ|H),

and Lθ = g|H is the corresponding Levi form which is nondegenerate and Hermitian, that is,
Equation (31) is satisfied.

If the Levi-form Lθ is positive definite, the Webster metric gθ (with ε = 1) is a Riemannian metric
and “non-degenerate” is replaced by “strictly pseudo-convex”.

Thus, we have the following (cf. also [34], Proposition 2.1)

Proposition 8. The notion of non-degenerate (resp. strictly pseudo-convex) almost CR structure (H, J, θ) is
equivalent to the notion of contact semi-Riemannian (resp. Riemannian) structure (ϕ, ξ, η, g). In particular,
non-degenerate (resp. strictly pseudo-convex) CR structures (H, J, θ) correspond to contact semi-Riemannian
(resp. Riemannian) structures satisfying the condition Equation (32).

• Some remarks

1. We note that the non-degeneracy is more natural in CR geometry with respect to strictly
pseudo-convexity. In fact non-degeneracy is a CR invariant property, i.e., it is invariant under
a transformation θ̃ = λθ, where λ : M→ R−{0} is a smooth function, while strictly pseudo-convexity
is not a CR invariant property (if Lθ is positive definite and θ̃ = −θ, then Lθ̃ is negative definite).
In particular, if (H, θ, J) is a non-degenerate almost CR structure, then for any real constant t 6= 0,
(H, θ̃ = tθ, J) is a non-degenerate almost CR structure. Moreover, the Webster metrics gθ̃ and gθ are
related, taking account that ϕ̃ = ϕ, by

gθ̃ = (dθ̃)(·, ϕ̃·) + εθ̃ ⊗ θ̃ = t(dθ)(·, ϕ·) + εt2θ ⊗ θ = t(gθ − εθ ⊗ θ) + εt2θ ⊗ θ,
that is,

gθ̃ = tgθ + εt(t− 1)θ ⊗ θ.
This is related to the deformation Equation (16).
2. Let (H(M), J, θ) be a non-degenerate almost CR structure and (η = −θ, ξ = −T, ϕ, g = gθ)

the corresponding contact semi-Riemannian structure. Since

dθ(X, Y) = dθ(X,−ϕ2Y + θ(Y)T) = dθ(X,−ϕ2Y) = −Lθ(X, ϕY) = −gθ(X, ϕY),

then we get that (θ, ξ̄ = T, ϕ, ḡ = −gθ) is still a contact semi-Riemannian structure with ε̄ = −ε.
This second structure is obtained by Equation (13), i.e., reversing the first contact semi-Riemannian
structure.

3. Let η be a contact 1-form. Then, there exists an associated metric for η if and only if there exists
an almost complex structure J onH =kerη such that the Levi form Lη = dη(·, J·) is Hermitian.

A generalization of the basic results in pseudohermitian geometry to the case of a contact
Riemannian manifold whose almost CR structure is not integrable was started by S. Tanno [20].
Results in this direction are given also in [35–37].
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• Hypersurface of an indefinite Kaehler manifold.

The property (1) in Proposition 5 suggests to look the almost contact structure of a hypersurface
of an indefinite Kaehler manifold. Let (M̄, J̄, ḡ) be an indefinite (2n + 2)-Kaehler manifold (cf. [38] for
definitions and examples). Suppose that M is an orientable non-degenerate real hypersurface of M̄.
Let N be a normal vector field, ḡ(N, N) = ε, that defines the orientation of M. Then, the tensors

ξ = − J̄N, g = ḡ|M, η = εg(ξ, ·), ϕ = J̄ − εḡ( J̄, N)N, (37)

define an almost contact semi-Riemannian structure. Moreover, we have (see, for example, Ref. [39])

(a) (∇X ϕ)Y = η(Y)AX− εg(AX, Y)ξ, (b) ∇Xξ = ϕAX, (38)

where A = −∇̄N is the shape operator. Now, consider the almost CR structure induced
(H = ker η, J = ϕ|H). In particular, for X, Y ∈ H, ([JX, Y] + [X, JY]) ∈ H is a consequence of
Equation (38)b. In fact,

g([JX, Y] + [X, JY], ξ) = g([ϕX, Y] + [X, ϕY], ξ)

= g(∇ϕXY−∇Y ϕX +∇X ϕY−∇ϕYX, ξ)

= −g(∇ϕXξ, Y) + g(∇Yξ, ϕX)− g(∇Xξ, ϕY) + g(∇ϕYξ, X)

= −g(ϕAϕX, Y) + g(ϕAY, ϕX)− g(ϕAX, ϕY) + g(ϕAϕY, X)

= g(AϕX, ϕY) + g(AY, X)− g(AX, Y)− g(AϕY, ϕX)

= 0.

Next, since ([JX, Y] + [X, JY]) ∈ H, from Equation (33) we have

S(X, Y) = ϕ([ϕX, Y] + [X, ϕY])− [ϕX, ϕY] + [X, Y]

= −(∇ϕX ϕ)Y + (∇ϕY ϕ)X− (∇X ϕ)ϕY + (∇Y ϕ)ϕX.

On the other hand, by Equation (38)a, we have (∇X ϕ)Y = −εg(AX, Y)ξ for any X, Y ∈ H, and so
we get S(X, Y) = 0 for any X, Y ∈ H. Therefore, by 1) of Proposition 5, the almost CR structure (H, J)
is integrable. So, we proved the following

Proposition 9. Let (M̄, J̄, ḡ) be an indefinite Kaehler manifold. Suppose that M is an orientable non-degenerate
real hypersurface of M̄. Then, the almost contact semi-Riemannian structure on M given by (37) defines a CR
structure (H, J) on M.

Now, we see when the almost contact semi-Riemannian structure defined by (37) is Sasakian.
Suppose that this structure is Sasakian. Then, comparing Equation (15) with Equation (38)a, we get

η(Y)AX− εg(AX, Y)ξ = g(X, Y)ξ − εη(Y)X,
and taking Y = ξ, we have

AX = η(AX)ξ + εη(X)ξ − εX. (39)

In particular, Aξ = η(Aξ)ξ. Then, η(AX) = εg(AX, ξ) = εg(X, Aξ) = εg(X, η(Aξ)ξ) = η(Aξ)η(X),
and so from Equation (39) we obtain

A = −εI + αη ⊗ ξ, α = η(Aξ) + ε. (40)

Conversely, if A is given by Equation (40), by Equation (38)a we get Equation (15). Then we get
the following (cf. [39], and [2] Theorem 6.15 in the Riemannian case).
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Theorem 12. Let (M̄, J̄, ḡ) be an indefinite Kaehler manifold. Suppose that M is an orientable non-degenerate
hypersurface of M̄. Then, the almost contact semi-Riemannian structure on M given by Equation (37) is
Sasakian if and only if the shape operator is given by Equation (40).

By Proposition 9, the standard pseudohermitian almost CR structure (H, θ, J) of an orientable
non-degenerate real hypersurface, that is, the one induced by Equation (37), is integrable.
Then, Proposition 6 gives that (H, θ, J) is always a pseudohermitian CR structure. Moreover, by using
Equation (38)b, i.e., ∇ξ = ϕA, we have

2dη(X, Y) = −η[X, Y] = −εg(ξ,∇XY−∇YX) = εg(ϕA + Aϕ)X, Y), X, Y ∈ H. (41)

Consequently, the condition dη = g(·, ϕ) is satisfied if and only if

ϕA + Aϕ = −2εϕ. (42)

Then, we have the following (cf. [2], Theorem 4.12, for the Riemannian case)

Theorem 13. Let M be an orientable non-degenerate real hypersurface of an indefinite Kaehler manifold M̄.
Then, the almost CR structure (H, θ, J) induced on M is always a pseudohermitian CR structure. Moreover,
it is a non-degenerate CR structure if and only if the shape operator satisfies Equation (42).

• Levi-flatness

The “opposite”of Levi non-degenerate is the following definition.

Definition 4. A pseudohermitian almost CR structure (H, J, θ) is said to be Levi-flat, or Levi-degenerate, if
the Levi form Lθ vanishes.

In particular, an almost contact structure (η, ξ, ϕ) on an odd-dimensional manifold M, with dη = 0,
defines a pseusdohermitian Levi-flat almost CR structure (H = ker η, θ = η, J = ϕ|H). If (M,H, J, ϑ)

is a Levi-flat pseudohermitian almost CR manifold, then dθ is zero onH and the Frobenius Theorem
shows thatH defines a foliation.

Examples of Levi-flat CR manifolds. First we recall some definitions which are related to the
Levi-flat manifolds. An almost α-coKähler structure is an almost contact metric structure (η, ξ, ϕ, g)
such that dη = 0 and dΦ = 2αη ∧Φ for some real constant α, where Φ = g(·, ϕ) is the fundamental
2-form (see [33] and the references there in). In particular, α = 0 gives an almost coKähler structure
(equivalently, an almost cosymplectic structure following Goldberg-Yano [40]) and α 6= 0 gives
an almost α-Kenmotsu structure. In any case, an almost α-coKähler structure defines a Levi-flat
pseudohermitian almost CR manifold.

In the case of an orientable non-degenerate real hypersurface of an indefinite Kaehler manifold
M̄, by using Equation (41), the standard pseudohermitian CR structure (H, θ, J) of M is Levi-flat, i.e.,
Lθ = 0, if and only if ϕA = −Aϕ on H. On the other hand, if we consider the fundamental 2-form
Φ, we have (dΦ)(X, Y, Z) = 0 (cf. [39]). Hence, an orientable non-degenerate real hypersurface of an
indefinite Kähler manifold M̄ is almost coKähler if and only if ϕA = −Aϕ.

Recently in the paper [33], see also [41], we proved that an orientable Riemannian three-manifold
(M, g) admits an almost α-coKähler structure with g as a compatible metric if and only if M admits
a foliation, defined by a unit closed 1-form, of constant mean curvature. Then, in the same paper we
show that a simply connected homogeneous almost α-coKähler three-manifold is either a Riemannian
product of type R × S2(k2), equipped with its standard coKähler structure, or it is a semidirect
product Lie group G = R2 oA R equipped with a left invariant almost α-coKähler structure.
All the three-manifolds listed in this classification are examples of Levi-flat pseudohermitian CR
three-manifolds.
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• The embeddability

A natural difference between the class of CR manifolds and the class of almost CR manifolds is
the question of embeddability. In fact, a question of principal interest in the theory of compact,
(2n+ 1)-dimensional CR-manifolds is to understand when a given strictly pseudo-convex CR-structure
can be realized by an embedding in Cm. This question is only of interest in the three-dimensional
case because a theorem of Boutet de Monvel [42] states that any strictly pseudo-convex CR-structure,
on a compact (2n + 1)-manifold, is realizable as an embedding in some Cm, provided n > 1.

The global embedding problem in CR geometry in dimension 3 has received a lot of attention.
In [43], Burns and Epstein considered perturbations of the standard CR structure on the three-sphere
S3. They showed that a generic perturbation is non-embeddable and gave a sufficient condition for
embeddability ([43], Theorem 5.3). In the same paper, they introduced the notion of stability for CR
embeddings. Then Lempert [44] considered the problem of stability of CR embeddings of a compact
three-dimensional CR manifold into C2, and proved that if a compact strictly pseudo-convex CR
manifold admits a CR embedding into C2 then this embedding is stable.

S. Chanillo, H. Chiu and P. Yang ([45,46]) discussed the relationship between the embeddability
of three- dimensional closed strictly pseudo-convex CR manifolds and the positivity of the CR Paneitz
operator and the CR Yamabe constant. In particular, they proved the embeddability into Cn for some n
when the CR Paneitz operator is non-negative and the CR Yamabe constant is positive.

3.3. The (Generalized) Tanaka-Webster Connection and the Pseudohermitian Torsion

Let (M,H, J, θ) be a non-degenerate almost CR manifold and (η = −θ, ξ = −T, ϕ, g = gθ) the
associated contact semi-Riemannian structure. The most convenient linear connection for studying
(M,H, J, θ) is the so-called (generalized) Tanaka-Webster connection ∇̂. This is the linear connection
given by

∇̂XY = ∇XY + εη(X) ϕY− η(Y)∇Xξ + {(∇Xη)Y} ξ (43)

for any X, Y ∈ X(M), where ∇ is the Levi-Civita connection of gθ . Equivalently, ∇̂ is defined by

∇̂ξY = ∇ξY + εϕY, ∇̂XY = π(∇XY) for X, Y ∈ H, ∇̂ξ = 0,

where π is the usual projection π : TM → H. The generalized Tanaka-Webster connection ∇̂ is
due to Tanno [20] (though confined to the positive definite case). For a nondegenerate almost CR
manifold, ∇̂ was considered in [47,48]. ∇̂ admits an axiomatic description similar to that of the
ordinary Tanaka-Webster connection (cf. Tanaka [10]) except for the property ∇̂ϕ = 0. More precisely,
∇̂ is the unique linear connection obeying to the axioms

∇̂η = 0, ∇̂ξ = 0, ∇̂g = 0, (44)

T̂(ξ, ϕX) + ϕ T̂(ξ, X) = 0, X ∈ X(M), (45)

T̂(X, Y) = 2(dη)(X, Y) ξ, X, Y ∈ H = ker η, (46)

(∇̂X ϕ)Y = Q(Y, X), X, Y ∈ X(M). (47)

Here T̂(X, Y) = ∇̂XY−∇̂YX− [X, Y] is the torsion tensor field of ∇̂, and Q is the Tanno tensor, i.e.,

Q(Y, X) = (∇X ϕ)Y + {(∇Xη)ϕY} ξ + η(Y) ϕ(∇Xξ).

We note that Q(ξ, X) = Q(Y, ξ) = 0 and Q(Y, X) = (∇X ϕ)Y − η
(
∇X ϕY

)
ξ for any X, Y ∈ H.

Then, by the same proof given in [20], Q = 0 if and only if (H, J) is integrable, that is:

∇̂ϕ = 0 ⇐⇒ (H, J) is a CR structure,

and then ∇̂ is the ordinary Tanaka-Webster connection.
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The pseudohermitian torsion of ∇̂ (introduced by Webster in the integrable case [11], see also [12],
p. 26) is the vector valued 1-form τ on M defined by

τX := T̂(T, X),
and thus

τ = −T̂(ξ, ·) = .... = ϕh = −hϕ, equivalently: h = τϕ = −ϕτ,

and

T̂ = 2(τ ∧ η + dη ⊗ ξ).

Then, by using
Lξ g = 2g(·, hϕ·) = −2g(·, τ·) = −2g(τ·, ·),

(2) of Proposition 5 and Theorem 11, one gets:

Theorem 14. Let (M,H, J, θ) be a non-degenerate almost CR manifold. Then,

• the Reeb vector field ξ is Killing with respect to Webster metric gθ if and only if pseudohermitian torsion τ

vanishes, equivalently Lξ J = 0;
• the almost contact structure (ξ, ϕ, η) is normal, equivalently the Webster metric gθ is Sasakian, if and only

if the almost CR structure is integrable and the pseudohermitian torsion τ vanishes;
• a non-degenerate CR manifold is Sasakian if and only if Lξ J = 0.

Next, we recall that given a semi-Riemannian manifold (M̄, ḡ), with ∇̄ the Levi-Civita connection,
and a smooth nondegenerate distribution D : x 7→ Dx ⊂ Tx M̄ on M̄, then D is called minimal
distribution if traceḡ(B) = 0, where

B(X, Y) = (∇̄XY)⊥ for any X, Y ∈ D,

and (∇̄XY)⊥ is the natural projection on D⊥. Moreover, the distribution D is called totally geodesic if
the symmetrized second fundamental form Bs(X, Y) := (1/2)

(
B(X, Y) + B(Y, X)

)
vanishes.

Consider the non-degenerate almost CR manifold (M,H(M), J, θ). For the Levi distribution
H(M), the second fundamental form B(X, Y) is given by B(X, Y) = ε g(∇XY, ξ)ξ , and by using
Equation (4) we get

traceg(B) = ε
2n

∑
i=1

εi g(∇Ei Ei, ξ)ξ = −ε
2n

∑
i=1

εig(∇Ei ξ, Ei)ξ

= −ε
2n

∑
i=1

εi g(−εϕEi − ϕhEi, Ei)ξ = ε(traceg ϕh)ξ,

where Ei is a local orthonormal basis. Since traceg(ϕh) = 0, we get traceg(B) = 0. Moreover, by using
Equation (4), the symmetrized second fundamental form is given by

Bs(X, Y) = (ε/2) {g(∇XY, ξ) + g(∇YX, ξ)} ξ = −(ε/2) {g(∇Xξ, Y) + g(∇Yξ, X)} ξ

= εg(ϕhX, Y)ξ = −εg(τX, Y)ξ.

Then, we get

Proposition 10. ([34]) For any non-degenerate almost CR manifold (M,H, J, θ), the Levi distributionH(M)

is minimal in (M, gθ), and it is totally geodesic if and only if the pseudohermitian torsion τ vanishes.

Now, we give some properties related to the pseudohermitian curvature of a non-degenerate almost
CR manifold (M,H, J, θ). Denote by R̂ the pseudohermitian curvature tensor, that is, the curvature
tensor associated to the generalized Tanaka-Webster connection ∇̂. Then, following Tanno [20,49],
the pseudohermitian Ricci tensor R̂ic and the pseudohermitian scalar curvature r̂ are defined by
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R̂ic(X, Z) = TrgR̂(X, ·)Z, r̂ = TrgR̂ic.

The pseudohermitian scalar curvature r̂ is also called the (generalized) Tanaka-Webster scalar
curvature [20]. In [48] we considered the following

Definition 5. A nondegenerate almost CR manifold (M,H, J, θ), dim M = (2n + 1), is said to be
pseudo-Einstein if the pseudohermitian Ricci tensor R̂ic is proportional to the Levi form, that is, R̂ic|H = λLθ ,
where λ = r̂/2n.

In the case of a non-degenerate CR manifold with vanishing pseudohermitian torsion our
definition of pseudo-Einstein structure coincides with the definition of J.M. Lee [50]. In general,
the pseudo-Einstein condition does not imply that the pseudohermitian scalar curvature is constant,
so such a structure is less rigid than an Einstein structure on a semi-Riemannian manifold [50].
Next, we show that this notion is related to the notion of η-Einstein contact semi-Riemannian manifold
given in Section 2.2.

Consider a non-degenerate almost CR manifold (M,H, J, θ), dim M = (2n + 1),
with pseudohermitian torsion τ = 0. In this case, Equation (43) gives

∇̂XY = ∇XY + εη(X)ϕY + εη(Y)ϕX− g(ϕX, Y)ξ,
and in particular

∇̂Xξ = 0, ∇̂ξY = ∇ξY + εϕY.
Then, the pseudohermitian Ricci tensor R̂ic and the Tanaka-Webster scalar curvature r̂ are given by

R̂ic(ξ, ξ) = R̂ic(X, ξ) = 0, R̂ic(X, Y) = Ric(X, Y) + 2 ε Lθ(X, Y), X, Y ∈ H, (48)

r̂ = r + 2nε, (49)

where Ric and r denote the Ricci tensor and the scalar curvature of the Webster metric gθ . So, we get

Proposition 11. ([48]) Let (M,H, J, θ) be a non-degenerate almost CR manifold with pseudohermitian torsion
τ = 0. Then, the structure (H, J, θ) is pseudo-Einstein if and only if the corresponding semi-Riemannian
contact structure is η-Einstein.

When the pseudohermitian torsion τ 6= 0, there are other conditions on τ with an interesting
meaning. Given an oriented, compact, contact manifold (M, η), denote by M(η) the set of all
Riemannian metrics associated to the contact form η and by A(η) the set of all almost CR structures
J for which the Levi form is positive definite. By Proposition 8, the sets M(η) and A(η) can be
identified.

• The condition ∇̂ξ τ = 0. Tanno [20] considered the Dirichlet energy

E(g) =
∫

M
‖Lξ g‖2dv (50)

defined for any g ∈ M(η). Then, he found the critical point condition ([20], Theorem 5.1)

∇ξLξ g = 2(Lξ g)ϕ, equivalently ∇ξ h = −2ϕh. (51)

We note that this condition has a tensorial character, so it holds also in the non compact
case. The Dirichlet energy Equation (50) was studied by Chern and Hamilton [51] for compact
contact three-manifolds as a functional defined on the set A(η) (there was an error in
their calculation of the critical point condition, as was pointed out by Tanno). Moreover,
since Ric(ξ, ξ) = 2n− trh2 = 2n− ‖Lξ g‖2/4, the functional Equation (50) is equivalent to the
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functional L(g) =
∫

M Ric(ξ, ξ)dv studied in general dimension, for compact regular contact manifold,
by Blair ([2], Section 10.3).

Now, since Lξ g = 2g(ϕ·, h·) = −2g(τ·, ·), where g = gθ and τ = ϕh is the pseudohermitian
torsion, we have

‖Lξ g‖2 = 4‖τ‖2.

Then, to consider the Dirichlet energy Equation (50) is equivalent to consider the following

E(g) =
∫

M
‖τ‖2dv (52)

defined on the set A(η). Moreover, using the Tanaka-Webster connection given by Equation (43),
we get

∇̂ξ τ = ϕ∇̂ξ h = ∇ξ τ + 2εϕτ, equivalently ∇̂ξ h = ∇ξ h + 2εϕh, where ε = 1.
Thus, the critical point condition Equation (51) becomes

∇̂ξτ = 0.

If T1M is the tangent sphere bundle of a Riemannian manifold of constant curvature −1,
equipped with its standard contact structure. Then, the standard associated Riemannian metric
(cf. Section 5.1) satisfies the critical point condition ∇̂ξ τ = 0, equivalently ∇ξ h = −2ϕh (cf. proof of
Theorem 10.13 in [2]). Moreover, we recall the following (see [15,52]):

Theorem 15. Let (M, η, g) be a compact H-contact (2n + 1)-manifold such that ∇̂ξτ = 0, i.e., g is critical for
the Dirichlet energy E(g). If Ric + cg is positive definite for some constant c < 2− 2‖τ‖/

√
2n, then the first

Betti number of M vanishes.

• The condition ∇̂ξ τ = 2εϕτ. This condition, equivalently ∇ξ τ = 0, or also ∇ξ h = 0, is related to
some interesting property. It is equivalent to the curvature property [34]:

the ξ-sectional curvatures K(ξ, X) and K(ξ, ϕX) are equal for any X ∈ H,

where if Xp is null, K(ξp, Xp) is a lightlike sectional curvature (cf., for example, Ref. [53] p. 95).
Moreover, if (M, η, g) is an oriented, compact contact Riemannian three-manifold, the condition
∇ξτ = 0 (equivalently ∇̂ξτ = 2ϕτ) is the critical point condition for the functional

I(g) =
∫

M rdv defined on the setM(η),

where r is the Riemannian scalar curvature [54]. If T1M is the tangent sphere bundle of
a flat Riemannian manifold, equipped with its standard contact structure, then the standard
associated Riemannian metric (cf. Section 5.1), satisfies the critical point condition ∇̂ξ τ = 2ϕτ,
equivalently ∇ξ h = 0 (cf. Theorem 9.7 in [2]).

Recall that if M is an oriented compact manifold, by a classical result of Hilbert (see also
Nagano [55]), a Riemannian metric g on M is a critical point of the integral of the scalar curvature,
I(g) =

∫
M rdv, as a functional on the set of all Riemannian metrics of the same total volume on

M, if and only if g is an Einstein metric. Now, by using a result of [54], we get that a contact
Riemannian three-manifold is η-Einstein if and only if it is H-contact and satisfies the critical
point condition ∇̂ξ τ = 2ϕτ (equivalently, ∇ξ τ = 0).

• The Chern-Hamilton functional. In CR geometry a natural functional is the the integral of the
generalized Tanaka-Webster scalar curvature. For a strictly pseudo-convexity almost CR manifold,



Axioms 2019, 8, 6 26 of 50

i.e., for a contact Riemannian manifold, the generalized Tanaka-Webster scalar curvature r̂ is
given by (cf. [20])

r̂ = r− Ric(ξ, ξ) + 4n. (53)

This is eight times the Webster scalar curvature W as defined by Chern and Hamilton [51]
on three-dimensional contact manifolds. In the same paper, Chern and Hamilton proved, in
dimension three, that the critical point condition for the functional

Iw(g) =
∫

M r̂dv defined on the setA(η),

is the vanishing of the pseudohermitian torsion τ. An alternate proof of this important result was
given by the present author [54]. Tanno [20] studied the functional Iw(g) in arbitrary dimension.

• An interpretation of the Tanaka-Webster scalar curvature. Recall that a contact form η on a compact
manifold M is called regular if its Reeb vector field ξ is regular, i.e., any point of M has
a neighborhood such that any integral curve of ξ passing through the neighborhood passes
through only once. In this case M is a principal S1-bundle over a symplectic manifold B whose
fundamental 2-form Ω has integral periods (a Hodge manifold). The corresponding fibration
p : M → B = M is known as the Boothby-Wang fibration [56]. Now, let (M, η, g) be a compact
simply connected regular Sasakian, (2n + 1)-manifold. Then, the base of the Boothby-Wang
fibration is a compact Kähler manifold of complex dimension n, with Kähler metric g̃ and
fundamental 2-form Ω satisfying (cf., for example, Ref. [57,58])

g = p∗ g̃ + η ⊗ η, dη = p∗Ω.

Moreover, the scalar curvatures r,r̃ of (M, g) and (B, g̃), respectively, are related by

r̃ = r + 2n.

On the other hand, in the Sasakian case, Equation (53) becomes

r̂ = r + 2n.

So, in this case, the Tanaka-Webster scalar curvature r̂ is the scalar curvature r̃ of the Kähler
manifold (B, g̃) base of the Boothby-Wang fibration. We note that a compact simply connected
homogeneous Sasakian manifold is regular [57].

3.4. Contact Geometry of CR Manifolds

In this subsection we give a presentation of some results about the study of CR manifolds, i.e.,
the CR integrable case, from the point of view of contact geometry.

• The Olszak’s result in the semi-Riemannian setting

First rigidity results concerning non-degenerate almost CR manifold with the Webster metric
of constant curvature were obtained in the Riemannian case by D.E. Blair and Z. Olszak. Blair [59]
showed that a contact form does not admit any flat associated Riemannian metric in dimension ≥ 5.
Then, Olszak [60] generalizing this result proved that if a contact Riemannian (2n + 1)-manifold, n ≥ 2,
is of constant curvature κ, then the manifold is Sasakian and κ = 1. In the semi-Riemannian case,
we have ([7,8])

Theorem 16. Let (M, η, g) be a contact semi-Riemannian (2n + 1)-manifold. If n ≥ 2 and (M, g) is of
constant sectional curvature κ, then κ = ε = g(ξ, ξ) and h2 = 0.

In terms of CR geometry, Theorem 16 becomes
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Theorem 17. Let (M,H, J, θ) be a (2n + 1)-dimensional non-degenerate almost CR manifold, n ≥ 2. If the
Webster metric gθ is of constant sectional curvature κ, then κ = ε = gθ(ξ, ξ) and the pseudohermitian torsion
satisfies τ2 = 0.

In particular, since ε = ±1, a non-degenerate almost CR structure does not admit any flat
semi-Riemannian Webster metric in dimension ≥ 5, so Blair’s result also holds in the semi-Riemannian
setting. But, there are examples of non-degenerate almost CR manifold with τ2 = 0 and τ 6= 0. In fact we
have the following (see [34] for details).

Example 5. Consider the space M = R5(x1, x2, x3, x4, z) and two smooth functions α, β ∈ C∞(R5). We put
∂i =

∂
∂xi

, i = 1, 2, 3, 4, and ∂z =
∂
∂z . Define the vector fields Xi, = 1, ..., 5 on M by

√
2X1 = α∂1 + ∂2 + ∂3 − 2x1∂z,

√
2X2 = ∂1 − β∂2 − ∂4 + 2x2∂z,

√
2X3 = −α∂1 + ∂2 − ∂3 + 2x1∂z,

√
2X4 = ∂1 + β∂2 + ∂4 − 2x2∂z, X5 = ∂z.

Moreover, we define the 1-form η = 2x1dx3 + 2x2dx4 + dz, the vector field ξ = X5 = ∂z, the tensor ϕ by

ϕ(X1) = −X2, ϕ(X2) = X1, ϕ(X3) = −X4, ϕ(X4) = X3, ϕ(X5) = 0

and the semi-Riemannian metric g of signature (−,−,+,+,±) by

g(X1, X1) = g(X2, X2) = −1, g(X3, X3) = g(X4, X4) = 1, g(Xi, Xj) = 0, i 6= j, g(X5, X5) = ε = ±1.

Then (ξ, ϕ, η, g) defines a contact semi-Riemannian structure, and so a non-degenerate almost CR structure
on M, with Levi distribution H = ker η =span(X1, X2, X3, X4). Moreover, we can construct a frame
{E1, E2, E3, E4, ξ} of vector fields on R5 with Ei ∈ H null vector fields which satisfy

τE1 = 0, τE2 = 0, τE3 = −∂z (β− α)

2
E1, τE4 =

∂z (β− α)

2
E2.

Therefore, τ2 = 0. Moreover, τ = 0 if and only if ∂z (β− α) = 0. So, taking the functions α, β such that
∂zβ 6= ∂zα, we obtain a non-degenerate almost CR structure with τ2 = 0 and τ 6= 0. Moreover, this structure
in general is not a CR structure. In fact, taking for example X = E1 and Y = E3, one gets that the integrability
condition Equation (32) is satisfied if and only if

(
∂1 (β + α) , ∂2 (β− α)

)
= (0, 0).

If the almost CR structure is integrable, we get the Olszak’s result in the semi-Riemannian setting.
In fact, we have the following.

Theorem 18. ([34]) Let (M,H, J, θ) be a non-degenerate CR manifold, dim M = 2n + 1, n ≥ 2. If the
Webster metric gθ is of constant sectional curvature κ, then κ = ε = gθ(ξ, ξ) and the pseudohermitian torsion
τ = 0, i.e., the Webster metric is Sasakian.

Remark 9. In dimension three, a non-degenerate CR manifold with the Webster metric gθ locally symmetric
(in particular, of constant sectional curvature) is either flat or of constant sectional curvature κ = ε = g(ξ, ξ),
and in the second case the metric is Sasakian [7].

• (κ, µ)-spaces

We recall that a contact metric manifold (M, η, ξ, ϕ, g) is said to be a (κ, µ)-space if its structure
satisfies the (k, µ)-nullity condition, that is, the curvature tensor satisfies

R(X, Y)ξ = κ
(
η(X)Y− η(Y)X

)
+ µ

(
η(X)hY− η(Y)hX

)
, (54)

for some κ, µ ∈ R. This condition, which is a generalization of the Sasakian condition Equation (23),
defines an interesting class of contact metric manifolds introduced by Blair, Koufogiorgos and



Axioms 2019, 8, 6 28 of 50

Papantoniou [61]. We note that this class is invariant for D-deformations. A classification Theorem of
the (κ, µ)-spaces is given by E. Boechx [62]. Moreover, we recall the following (cf. [2], p. 124)

Theorem 19. A (κ, µ)-space M is a strictly pseudoconvex CR-manifold. Moreover, κ ≤ 1, and if κ = 1 the
pseudohermitian torsion vanishes and thus the structure is Sasakian. If κ < 1, the (κ, µ) condition determines
the curvature of M completely.

In particular, the Ricci operator Q and the scalar curvature r of a (2n+ 1)-dimensional (κ, µ)-space
M, κ < 1, are given by

QX =
(
2(n− 1)− nµ

)
X +

(
2(n− 1) + µ

)
hX + (n(2κ + µ)− 2(n− 1))η(X)ξ,

r = 2n
(
2(n− 1) + κ − nµ

)
.

Then, (κ, µ)-spaces are examples of H-contact manifolds. For a non-Sasakian (κ, µ) space,
Boeckx Boechx [62] introduced an invariant

IM =
2− µ

2
√

1− κ
(55)

and showed that for two non-Sasakian (κ, µ) spaces M, M′, we have IM = IM′ if and only if up to
a D-homothetic deformation, the two spaces are locally isometric as contact metric manifolds.

• Sasakian geometry by using a variational theory

In paper [63], Barletta and Dragomir built a variational theory of geodesics of the Tanaka-Webster
connection ∇̂ on a strictly pseudoconvex CR manifold M. They obtained the first and second variation
formulae for the Riemannian length of a curve in M and showed, in particular, that in general geodesics
of ∇̂ admitting horizontally conjugate points do not realize the Riemannian distance. The paper
also contained interesting results concerning the pseudohermitian sectional curvature Kθ , that is,
the sectional curvature defined by the tensor

R̂(X, Y, Z, W) = gθ(R(X, Y)Z, W),

where R̂(X, Y)Z is the pseudohermitian curvature tensor associated to the Tanaka-Webster
connection∇̂, and gθ is the Webster metric. For example they proved (cf. Theorems 4 and 5 of [63])
the following.

Theorem 20. Let M be a a strictly pseudoconvex CR manifold.

(1) If M has non-positive pseudohermitian sectional curvature, then it has no horizontally conjugate points.
(2) If M, of CR dimension n > 1, has constant pseudohermitian sectional curvature, then it has vanishing

pseudohermitian torsion (τ = 0) if and only if the Tanaka-Webster connection of M is flat.

• Almost contact structures belonging to a CR structure

Let (H, J) be a CR structure on a odd-dimensional manifold M. We say that an almost contact
structure (θ, ξ, ϕ) belongs to the CR structure (H, J) if ker θ = H and J = ϕ|H. Then, by Lemma 1.1
of [64], two almost contact structures (θ, ξ, ϕ) and (θ′, ξ ′, ϕ′) belong to the same CR structure (H, J) if
and only if

θ′ = εeλθ, ξ ′ = εe−λ(ϕX0 + ξ), ϕ′ = ϕ + θ ⊗ X0

for some smooth function λ and vector field X0 ∈ H, where ε = ±1.
Denote by (θ, ξ, ϕ)∗ an almost contact structure belongs to a non-degenerate CR structure (H, J)

and satisfying the condition [ξ,H] ⊂ H. Then, K.Sakamoto and Y. Takemura [64] proved the existence
of a unique linear connection associated to (θ, ξ, ϕ)∗. Moreover in [65], they obtained a curvature
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invariant of the pseudo-conformal geometry, that is, a tensor field invariant under the change of almost
contact structures belonging to the same non-degenerate CR-structure. For the case of a normal almost
contact structure the invariant tensor field is just the Bochner curvature tensor.

4. Homogeneous Non-Degenerate CR Three-Manifolds

The main purpose of this Section is to give a presentation of some results about homogeneous
non-degenerate CR three-manifolds.

4.1. The Classification Theorem

Recall some definitions about the homogeneity.
A contact manifold (M, η) is said to be homogeneous if there exists a (connected) Lie group G of

diffeomorphisms acting transitively on M and leaving η invariant. A contact semi-Riemannian manifold
(M, η, g) is said to be homogeneous if there exists a (connected) Lie group G of isometries acting
transitively on M and leaving η invariant, that is, for any x, y ∈ M there exists f ∈ G such that
y = f (x), and f ∗η = η for every f ∈ G.

A C∞ map f : M→ M′ between almost CR manifolds is a CR map if

f∗x(Hx) ⊂ H′f (x) and f∗x ◦ Jx = J′f (x) ◦ f∗x.

In particular a CR transformation is a diffeomorphism f such that

f∗x(Hx) = H′f (x) and f∗x ◦ Jx = J′f (x) ◦ f∗x,

for any x ∈ M. If M = M′ a CR transformation is also called CR automorphism.

Remark 10. Typical examples of CR maps are got as traces of holomorphic maps of Kaehlerian manifolds on
real hypersurfaces. Precisely, let M̄ be a Kaehlerian manifold. Any orientable real hypersurface M ⊂ M̄ admits
a natural CR structure (cf. Proposition 9). If M′ ⊂ M̄ ′ is another oriented real hypersurface in the Kaehlerian
manifold M̄ ′ and F : M̄→ M̄ ′ is a holomorphic map such that F(M) ⊂ M′ then f ≡ F|M : M→ M′ is a CR
map. The statements above hold true for traces of holomorphic maps among indefinite Kaehlerian manifolds [47].
A characterization of K-contact structures in terms of CR maps is presented in Theorem 32 of this paper.

Let θ and θ′ be pseudohermitian structures on the almost CR manifolds M and M′ respectively.
If f : M→ M′ is a CR map, then f ∗θ′ = µ θ for some µ ∈ C∞(M). In particular, a CR map f is called
pseudohermitian map if µ = c for some c ∈ R. Also f is isopseudohermitian if c = 1.

Let (M,H, θ, J) be a pseudohermitian almost CR manifold. Denote by Psh(M, θ) the group of all
CR automorphisms f : M→ M such that f ∗θ = θ.

In general the group Psh(M, θ) is not a Lie group, but if M is a pseudohermitian,
or a non-degenerate, CR manifold then Psh(M, θ) is a Lie group (Ref. [12], p. 60; Ref. [66], p. 218) of
dimension ≤ (n + 1)2, where (2n + 1) = dim M.

A non-degenerate, or pseudohermitian, CR manifold (M,H, θ, J) is said to be homogeneous
non-degenerate, or pseudohermitian, CR manifold if there exists a Lie group G ⊆ Psh(M, θ) acting
transitively on M (cf. [12] p. 341), that is, for any x, y ∈ M there exists f ∈ G such that y = f (x), and

f ∗θ = θ, f∗x ◦ Jx = J f (x) ◦ f∗x for every f ∈ G.

If (M, η, ξ, ϕ, g) is a contact semi-Riemannian manifod and f a diffeomorphism of M, then

(a) f ∗η = η ⇒ f∗ξ = ξ; (b) f ∗η = η and f ∗g = g ⇒ f∗x ◦ ϕx = ϕ f (x) ◦ f∗x. (56)

Note that two contact semi-Riemannian manifolds (M, η, g, ξ, ϕ, ), (M′, η′, g′, ξ ′, ϕ′) are called
isomorphic (or equivalent) if there exists a isometry f : (M, g)→ (M′, g′) such that

f ∗η′ = η, f∗ξ = ξ ′ and f∗ ◦ ϕ = ϕ′ ◦ f∗.

By using Equation (56), we get the following
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Proposition 12. Let (M,H, θ, J) a non-degenerate CR manifold and (η = −θ, ξ = −T, ϕ, g = gθ) the
corresponding contact semi-Riemannian structure. Then,

(M,H, θ, J) is homogeneous if and only if (M, η, ξ, ϕ, g) is homogeneous.

In other words,

f ∗θ = θ and f∗x ◦ Jx = J f (x) ◦ f∗x if and only if f ∗η = η and f ∗g = g.

Recall that there is a canonical way to associate a contact Riemannian structure to a contact
Lorentzian structure (and conversely). If (η, ξ, ϕ, gL) is a contact Lorentzian structure on a smooth
manifold M, dim M = 2n + 1, where the Reeb vector field ξ is time-like, then (cf. Section 2.2 and also
Equation (36))

(η, ξ, ϕ, g = gL + 2η ⊗ η)

is a contact Riemannian structure on M. The scalar curvatures rR and rL of g and gL are related by
Equation (20):

rL = rR + 4n + 2 tr h2.

Now, let (M,H, θ, J) be a non-degenerate CR three-manifold. Then, the Levi form Lθ is definite,
and we can assume Lθ positive definite (if necessary, we change θ with −θ). Therefore, without loss in
generality, in dimension three, we can consider either gθ Lorentzian with T time-like or gθ Riemannian.
In particular, the Sasakian condition τ = 0 does not depend on the causal character of the Reeb vector
field T. Moreover, for a non-degenerate CR three-manifold, the Tanaka-Webster scalar curvature is
given by

r̂ = r + ε(2 + tr h2), where ε = gθ(T, T).

So, the Tanaka-Webster scalar curvature r̂ does not depend on the causal character of the Reeb
vector field T, i.e., r̂L = r̂R. In fact,

r̂L = rL − (2 + tr h2) = rR + 4 + 2 tr h2 − (2 + tr h2) = r̂R .

If we consider the scalar torsion ‖Lξ gθ‖ introduced by Chern and Hamilton in [51] in their study
of contact Riemannian three-manifolds, since Lξ gθ = 2gθ(ϕ·, h·) = −2gθ(τ·, ·), we have

‖Lξ gθ‖2 = 4‖τ‖2 = 4trh2,

and thus

r̂ = r + 2 + trh2 = r + 2 + ‖τ‖2 = 8W,

where W is the Webster scalar curvature as defined by Chern and Hamilton [51].
Since the Webster scalar curvature W and the scalar pseudohermitian torsion ‖τ‖ do not depend

on the causal character of the Reeb vector field T, that is, they depend only on Levi form Lθ , then it
is natural to consider these invariants in order to classify the homogeneous nondegenerate CR
three-manifolds. More precisely, we consider the invariant W in the Sasakian case, and the invariant

p :=
2
√

2 W
‖τ‖ (57)

in the non Sasakian case. Then, the classification Theorem of [67], can be reformulated in the
following form.

Theorem 21. A simply connected, homogeneous, non-degenerate CR three-manifold (M,H, θ, J) is a Lie group
G equipped with a left-invariant non-degenerate CR structure. More precisely, one of the following cases occurs:
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• Sasakian case (i.e., the pseudohermitian torsion τ = 0).

(1) If G is unimodular, then it is

(i) the Heisenberg group H3 when W = 0;
(ii) the 3-sphere group SU(2), i.e., the special unitary group, when W > 0;

(iii) S̃L(2,R), the universal covering of the special linear group SL(2,R), when W < 0;

(2) If G is non-unimodular, then its Lie algebra is given by

[e1, e2] = αe2 + 2ξ, [e1, ξ] = [e2, ξ] = 0, (58)

where α 6= 0. In this case, W = −α2/4 < 0.

• Non Sasakian case (i.e., the pseudohermitian torsion τ 6= 0).

(1) If G is unimodular, then it is

(i) SU(2) when p > 1;
(ii) Ẽ(2), universal covering of the Lie group of orientation-preserving rigid motions of Euclidean

plane, when p = 1;
(iii) E(1, 1), the group of rigid motions of Minkowski plane, when p = −1;
(iv) S̃L(2, R) when −1 6= p < 1.

(2) If G is non-unimodular, then its Lie algebra is given by

[e1, e2] = αe2 + 2ξ, [e1, ξ] = γe2, [e2, ξ] = 0, (59)

where α, γ 6= 0. In this case, W = −(α2 + γ)/4, ‖τ‖ = (1/
√

2)|γ| and thus p < 1.

Remark 11. In [67] we used the notation τ to denote Lξ gθ . Moreover, in the same paper, in the statement of
Theorem 21 we used the Riemannian Webster metric gθ .

The structure on the unimodular Lie groups in Theorem 21 satisfy, in the Riemannian case,
the (κ, µ)-nullity condition Equation (54), that is, they are (κ, µ)-space. Besides, we note that in the non
Sasakian case the role played by the invariant p defined by Equation (57). Since, W = (2− µ)/4 and

‖Lξ g‖2 = 8(1− κ), i.e., ‖τ‖ =
‖Lξ g‖

2
=
√

2
√

1− κ, then

p =
2
√

2 W
‖τ‖ =

2− µ

2
√

1− κ

which is the invariant IM of Boeckx defined by Equation (55).

4.2. Consequences of the Classification Theorem

In this subsection we examine some interesting consequences of the classification Theorem. A first
immediate consequence is the following

Corollary 3. The 3-sphere group SU(2) is the only simply connected 3-manifold which admits a homogeneous
non-degenerate CR structure with Webster scalar curvature W > (1/2

√
2) ‖τ‖.

In particular, the sphere S3 is the only simply connected 3-manifold which admits a homogeneous Sasakian
structure with Webster scalar curvature W > 0 (W = 1 for the standard Sasakian structure).

Moreover, examining the proof of Theorem 21, more precisely by using (3.3) and (3.10) of [67],
we get
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Proposition 13. The Lie group Ẽ(2) is the only simply connected 3-manifold which admits a homogeneous
non-degenerate CR structure with flat Riemannian Webster metric. In such a case W = +1/2.

In the Lorentzian case, one gets

Proposition 14. ([7]) The Lie group E(1, 1) is the only simply connected 3-manifold which admits
a homogeneous non-degenerate CR structure with flat Lorentzian Webster metric. In such a case W = −1/2.

H. Geiges [68] proved that a compact 3-manifold admits a Sasakian structure if and only if it is
diffeomorphic to a left invariant quotient of SU(2), the Heisenberg group H3 or S̃L(2,R) by a discrete
group. As a consequence of Theorem 21 we have

Proposition 15. The unimodular Lie groups SU(2), the Heisenberg group H3, S̃L(2,R), and the
non-unimodular Lie group with Lie algebra defined by Equation (58), are the only simply connected
three-manifolds which admit a homogeneous Sasakian structure.

Now, let (η, g) be a homogeneous Sasakian structure on the sphere S3, with Webster scalar
curvature W > 0. Since W = (r + 2)/8 > 0, then η̃ = tη and g̃ = tg + t(t − 1)η ⊗ η, for t = W,
define a Sasakian structure on S3 with g̃ of constant sectional curvature +1 (cf. [52], Section 3).
In particular, (η̃, g̃) is isomorphic to the standard Sasakian structure (η0, g0) [4]. Then, we can assume
(η̃, g̃) = (η0, g0), and consequently we have

g =
1
t

g0 +
(1− t)

t2 tη ⊗ tη =
1
t

(
g0 +

(1
t
− 1
)
η0 ⊗ η0

)
= a ga

where ga = g0 +
(
a − 1

)
η0 ⊗ η0, a = 1/W > 0, is a Berger metric, that is, a metric defined as the

canonical variation ga, a > 0, of the standard metric g0 on S3, obtained deforming g0 along the fibres
of the Hopf fibration:

ga |ξ⊥0
= g0|ξ⊥0

, ga(ξ0, ·) = ag0(ξ0, ·) = aη0, ga(ξ0, ξ⊥0 ) = 0,

where ξ0 denotes the standard Hopf vector field on S3. Therefore we get:

Proposition 16. In the second part of Corollary 3, the Sasakian metric on S3 is homothetic to a Berger metric.

Remark 12. The main result of [51] says that any contact structure on a compact and orientable three-manifold
has a contact form and a contact Riemannian metric whose Webster scalar curvature W is either a constant ≤ 0
or is everywhere strictly positive. Now, if M is a compact Sasakian 3-manifold with Webster scalar curvature
W > 0, then M admits a contact Riemannian structure of positive Ricci curvature [69]. If, in addition, M is
simply connected, by a deep result of R.S. Hamilton [70], M is diffeomorphic to the sphere S3. However, this fact
is not too surprising since a compact simply connected manifold which admits a nonsingular Killing vector field
is diffeomorphic to S3 (cf. [52] Section 4).

By the proof of Theorem 21, the Lie algebra of the lie group S̃L(2, R) is defined by

[e2, e3] = 2ξ, [e3, ξ] = λ2e2, [ξ, e2] = λ3e3,

where for (λ2, λ3) we have the following possibilities: (−,−), (−,+), and (+,−). Moreover the
Webster scalar curvature is given by W = (λ2 + λ3)/4. So, for λ3 = −λ2 we get W = 0. For the
non-unimodular Lie group with Lie algebra defined by Equation (59), the the Webster scalar curvature
is given by W = −(α2 + γ)/4 and so W = 0 for γ = −α2. Then, we get the following (which corrects
Corollary 3.3 of [67]).

Corollary 4. The Heisenberg group H3, S̃L(2, R) and the non-unimodular Lie group with its Lie algebra
defined by Equation (59), are the only simply connected 3-manifolds which admit a homogeneous nondegenerate
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CR structure with Webster scalar curvature W = 0. In particular, the Heisenberg group H3 is the only simply
connected three-manifold which admits a non-degenerate CR structure with pseudohermitian torsion τ = 0 and
Webster scalar curvature W = 0.

In Theorem 21, if we consider gθ Lorentzian and denote by rL the corresponding scalar curvature,
then in the Sasakian case (i.e., when τ = 0), the conditions W = 0, W > 0, W < 0, and W = −α2/4
are equivalent to rL = 2, rL > 2, rL < 2, and rL = −2α2 + 2 < 2, respectively. On the other hand,
for a Lorentzian Sasakian three-manifold, when rL < 2, the Lorentzian K-contact structure (η̃, g̃)
obtained by a D-homothetic deformation in correspondence to t = (2− rL)/8 = −W is Einstein
(see Section 2.2), and so of constant sectional curvature −1. Therefore, we get the following corollary
which does not have a Riemannian counterpart.

Corollary 5. The unimodular Lie group S̃L(2, R) and the non-unimodular Lie group with Lie algebra defined by
Equation (58), are the only simply connected three-manifolds which admit a homogeneous Lorentzian-Sasakian
structure of constant sectional curvature κ = −1.

• Homogeneous bi-contact metric three-manifolds

We close this subsection with a very short presentation of a recent notion introduced by the present
author in [71]. H. Geiges and J. Gonzalo ([72,73]) introduced and studied the notion of taut contact circle
on a three-manifold, that is, a pair of contact forms (η1, η2) such that the 1-forms ηa = a1η1 + a2η2 are
contact forms with the same volume form for all a ∈ S1. In the paper [71] we introduce a Riemannian
approach to the study of taut contact circles on three-manifolds. A natural related notion, that we
introduce, is the one of taut contact metric circle (η1, η2, g), that is, (η1, η2) is a taut contact circle and g is
a Riemannian metric associated to both the contact forms η1 and η2. More in general, we introduce the
notion of bi-contact metric structure (η1, η2, g), where (η1, η2) is a pair of arbitrary contact forms and g is
a Riemannian metric associated to both the contact forms η1 and η2 such that the same contact forms
are orthogonal with respect to g, i.e., the corresponding Reeb vector fields ξ1, ξ2 are orthogonal. On the
other hand, in the classical definition of three-contact metric structure (η1, η2, η3, g), also called contact
metric three-structure, we have three contact forms and a Riemannian metric g associated to the three
contact forms, satisfying additional conditions that imply the orthogonality of the three forms with
respect to g (see, for example, Ref. [2] Chapter 14 and [3] Chapter 13).

Moreover, a three-contact metric structure is three-Sasakian (see, for example, Ref. [2]
p. 293, Theorem 14.1), and a three-Sasakian three-manifold is of constant sectional curvature +1
(see, for example, Ref. [2] p. 294, Theorem 14.3). So, our definition of bi-contact metric structure seems
more appropriate, at least in dimension three, in the sense that it is very less rigid. In particular,
we characterize the existence of a taut contact metric circle and of a bi-contact metric structure on
a three-manifold. Note that a taut contact metric circle is a bi-contact metric structure, but the converse
is not true. Then, we give a complete classification of simply connected three-manifolds which admit
a bi-H-contact metric structure. In particular, by using the classification given in Theorem 21, we get
(cf. [71], Corollary 4.7).

Theorem 22. A simply connected three-manifold admits a homogeneous bi-contact metric structure if and only
if it is diffeomorphic to one of the following Lie groups: SU(2), S̃L(2,R), Ẽ(2), E(1, 1).

4.3. Some Results in Arbitrary Dimension

Now we briefly recall some results, in arbitrary dimension, about contact homogeneity and
spherical CR manifolds.

• D. E. Blair (see [2], p. 120) conjectured the non-existence of contact Riemannian manifolds having
non positive sectional curvature, with the exception of the flat 3-dimensional case. In this direction,
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A. Lotta [74] got the following (as a consequence of a more general theorem and by using the
classification given in Theorem 21).

Theorem 23. The only simply connected homogeneous contact Riemannian (2n + 1)-manifold having
non-positive sectional curvature is the Lie group Ẽ(2) endowed with a flat left invariant contact Riemannian
structure.

• A contact Riemannian manifold is said to be a strongly locally ϕ-symmetric space if the reflections in
the integral curves of the Reeb vector field are isometries. Examples of strongly locally ϕ-symmetric
spaces include the non- Sasakian (κ, µ)-manifolds (see [2], p. 146; more in general we refer to [2]
Section 7.9 for a discussion on weakly and strongly locally ϕ-symmetric spaces). Boeckx and Cho in
the paper [75] proved the following

Theorem 24. Let M be a locally homogeneous contact Riemannian (2n + 1)-manifold. If M is strongly locally
ϕ-symmetric, then it is a (κ, µ)-space.

• Recently E.M. Correa [76] gives a new study on compact, (2n + 1)-dimensional, homogeneous
contact manifolds. More precisely, this paper contains:

a description of contact structure for any compact homogeneous contact manifold;

a description of G-invariant Sasaki-Einstein structure for any compact homogeneous contact
manifold;

a description of Calabi-Yau metrics on cones with compact homogeneous Sasaki-Einstein
manifolds as link of isolated singularity;

a description of crepant resolution of Calabi-Yau cones with certain compact homogeneous
Sasaki-Einstein manifolds as link of isolated singularity.

This study of homogeneous contact manifolds is based on the Kähler geometry of complex flag
manifolds.

• The present author and L. Vanhecke [77] proved that a compact, simply connected,
five-dimensional, homogeneous contact manifold M is diffeomorphic to S5 or S2 × S3. In both
cases the underlying homogeneous contact metric structure is Sasakian (and hence is a CR
structure). This result is based on the fact that the contact structure is regular and the base B of
the Boothby-Wang fibration π : M → B is a compact simply connected homogeneous Kähler
manifold of complex dimension two. In general, we note that every compact simply connected
homogeneous contact manifold is a homogeneous Sasaki-Einstein manifold (Ref. [76], Remark
2.17).

• D. V. Alekseevsky and A. Spiro [66,78] gave a classification of all compact, simply connected,
(2n + 1)-dimensional, homogeneous non-degenerate CR manifolds M. This classification is based
on a description of the maximal connected compact group of automorphisms of M.

• CR manifolds which are locally CR equivalent to the unit sphere S2n+1, endowed with the
standard CR structure as a real hypersurface of Cn+1, are called spherical CR manifolds. In particular,
non-degenerate CR manifolds with a vanishing Chern pseudoconformal curvature tensor are
spherical ([12], p. 61). If M is a spherical CR manifold, Burns and Shnider ([79], Section 1) defined
a development map f : M̃ → S2n+1, where M̃ is its universal cover. Moreover, they proved
that if the group of CR automorphisms is transitive on M, then f : M̃ → S2n+1 is a covering
and f (M̃) is homogeneous domain D in S2n+1. Thus to classify the simply connected spherical
homogeneous CR manifolds it suffices to classify homogeneous domain in S2n+1 ([79], Theorem
3.1). In particular, in dimension three, we have a list of five examples ([79], p. 229):

(1) D = S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1};
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(2) D = S3 − {(z, 0)};
(3) D = S3 − {(1, 0)};
(4) D = S3 − (S3 ∩R3);
(5) D = {(z, w) ∈ C2 : Imw = |z|2, Imz > 0}.

We note that domain (5) does not admit any compact quotients ([79], Proposition 5.5).
• R. Lehmann and D. Feldmueller [80] proved that the only CR-structure (of hypersurface type)

on S2n+1, n > 1, which admits a transitive action of a Lie group of CR-transformations is the
standard CR-structure. For S3 all possible homogeneous CR-structures of hypersurface type are
classified in [81] (cf. also [80], p. 524).

• G. Dileo and A. Lotta [82] studied spherical symmetric CR manifolds. A strictly pseudo-convex
CR manifold M is said to be CR-symmetric if for each point x ∈ M there exists a CR-isometry
σ : M→ M such that σ(x) = x and (dσ)x|Hx = −Id. In particular, they proved the following. Let
M be a strictly pseudo-convex CR manifold, dim M > 3, with pseudohermitian torsion τ 6= 0.
Then, M is locally CR-symmetric if and only if the underlying contact metric structure (η, ξ, ϕ, g)
satisfies the (k, µ)-nullity condition, that is, the curvature tensor satisfies Equation (54). In such
a case M is spherical if and only if the Webster scalar curvature vanishes.

5. Geometry of Tangent Hyperquadric Bundles

The geometry of the unit tangent sphere bundle T1M of a Riemannian manifold (M, g) equipped
with the Sasaki metric, and in particular with the standard contact Riemannian structure, has been
studied by many authors. A motivation of this study depends of the fact that often properties of T1M
characterize the base manifold (see, for example, Blair’s book [2] Chapter 9, and from the point of view
of the CR geometry Tanno [83]).

If (M, g) is a semi-Riemannian manifold of index ν > 0, the Sasaki metric induced on tangent
hyperquadrics bundle Tε M, ε = ±1, is a semi-Riemannian metric of index 2ν− 1 if ε = −1 and the
index is 2ν if ε = +1. In such case we have few results about the the geometry of Tε M (see [84],
Ref. [85] and more recently [48]). In this Section we discuss some results of [48] on the geometry of
Tε M equipped with the standard non-degenerate almost CR structure.

5.1. The Standard Non-Degenerate Amost CR Structure on Tε M

Let (M, g) be a semi-Riemannian manifold of index ν, 0 ≤ ν ≤ n = dim M. At any point (x, u) of
its tangent bundle TM, the tangent space of TM splits into the horizontal and vertical subspaces:

(TM)(x,u) = H(x,u) ⊕V(x,u).

Each tangent vector Z̃ ∈ (TM)(x,u) can be written in the form Z̃ = Xh + Yv, where X, Y ∈ Mx are
uniquely determined vectors.

The tangent bundle TM can be endowed in a natural way with a semi-Riemannian metric,
the Sasaki metric G, depending only on the semi-Riemannian metric g. It is determined by

Gz(Xh, Yh) = Gz(Xv, Yv) = gx(X, Y), Gz(Xh, Yv) = 0, (60)

for any z = (x, u) ∈ TM and for any X, Y ∈ Mx. G is a semi-Riemannian metric of signature
(2ν, 2n− 2ν), and both Hz and Vz have index ν. There is also an almost complex structure J on TM
given by

JXh = Xv, JXv = −Xh ,

then the Sasaki metric G is Hermitian with respect to the almost complex structure J. We denote
by N(x,u) the canonical vertical vector field on TM and by ζ(x,u) the geodesic flow on TM. They are
defined by

N(x,u) = uv
(x,u) and ζ(x,u) = uh

(x,u).
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The Liouville form β on TM, defined by

β(X̃)z = G(X̃z, ζz) = gx(π∗zX̃z, u),

satisfies the following (see Prop. 2 of [84], and [2] p. 139)

2(dβ)(X̃, Ỹ) = G(X̃, JỸ),

that is, 2(dβ) is the fundamental 2-form, and so (TM, J, G) is an indefinite almost Kaehler manifold.
Besides (see ([84], Proposition 3): J is integrable if and only if the semi-Riemannian manifold (M, g) is locally
isometric to the semi-Euclidean space Rn

ν .
Consider the tangent hyperquadric bundle

Tε(M, g) = {(x, u) ∈ TM|gx(u, u) = ε}, ε ∈ {±1}.

The vertical vector field N is normal to Tε(M, g) in (TM, G) and G(N ,N ) = ε along Tε(M, g),
moreover the geodesic flow ζ is tangent to Tε(M, g). Any horizontal vector Xh is tangent to Tε(M, g),
and a vertical vector Xv is tangent to Tε(M, g) if and only if Xv is orthogonal to Nz. Consequently,
the tangent space of Tε(M, g), at a point z = (x, u) ∈ Tε(M, g), is given by

(Tε(M, g))z = {Xh + Yv/X ∈ Mx, Y ∈ {u}⊥ ⊂ Mx}. (61)

In general, the tangential lift of a vector field X is a vector field on Tε(M, g) defined by

Xt = Xv − εG(Xv,N )N , that is, Xt
z = Xv

z − εgx(X, u)uv
z .

The Sasaki metric on Tε(M, g) is the semi-Riemannian metric G̃ on Tε(M, g) induced from G,
it is completely determined by the identities

G̃z(Xh, Yh) = gx(X, Y),
G̃z(Xh, Yt) = 0,
G̃z(Xt, Yt) = gx(X, Y)− ε gx(X, u)gx(Y, u),

(62)

for all z = (x, u) ∈ Tε(M, g) and X, Y ∈ Mx. Since the Sasaki metric on the tangent bundle TM is of
signature (2ν, 2n− 2ν), G(N ,N ) = ε and Tε(M, g) is an orientable semi-Riemannian hypersurface of
(TM, G) of sign ε, then

the index of T−1(M, g) is 2ν− 1 and the index of T1(M, g) is 2ν.

We now construct the standard non-degenerate almost CR structure on Tε(M, g). The tangent
hyperquadric bundle Tε(M, g) is an orientable non-degenerate hypersurface of the indefinite almost
Kaehler manifold (TM, J, G). Then, by the usual procedure, we construct the almost contact
semi-Riemannian structure (ξ ′, η′, ϕ′, G̃) induced on Tε(M, g), where

η′z(X̃z) = εG̃(X̃z, ξ ′z) = εG(X̃z, uh
z) = εβz(X̃z) (the Liouville form),

ξ ′z = −JNz = uh
z = ζz (the geodesic flow),

ϕ′(X̃z) = JX̃z − εG(JX̃z,Nz)Nz (the tangential component),

for z = (x, u) ∈ Tε(M, g) and X̃ vector field on Tε(M, g). Since 2ε(dη′)(X̃, Ỹ) = G̃(X̃, ϕ′Ỹ) for any
X̃, Ỹ vector fields on Tε(M, g), if we rescale the structure tensors appropriately by

η = (1/2ε)η′, ξ = 2εξ ′ , ϕ = ϕ′ and ḡ = (1/4)G̃,
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we get the standard contact semi-Riemannian structure on Tε M . In explicite form these tensors are given by

η(Xt
z) = 0, η(Xh

z ) =
1
2

g(Xx, u), ξz = 2ε uh
z , (63)

ϕ(Xt
z) = −Xh

z +
1
2

g(Xx, u)ξ̄z, ϕ(Xh
z ) = Xt

z , (64)


ḡ(Xh

z , Yh
z ) = 1

4 gx(Xx, Yx),
ḡ(Xh

z , Yt
z) = 0,

ḡ(Xt
z, Yt

z) = 1
4
(

gx(Xx, Yx)− ε gx(Xx, u)gx(Yx, u)
)
,

(65)

for any X, Y vector fields on M and z = (x, u) ∈ Tε(M, g), in particular ḡ(ξ, ξ) = ε. Hence,
the corresponding standard non-degenerate almost CR structure (H, J, θ) on Tε(M, g) is defined by

H = ker η, θ = −η, J = ϕ| ker η .

Besides, the corresponding Levi form Lθ is defined by

Lθ(Xh
z , Yt

z) = 0, Lθ(Xh
z , Yh

z ) = Lθ(Xt
z, Yt

z) = (1/4) gx(Xx, Yx),

for any z = (x, u) ∈ Tε(M, g), X, Y ∈ Mx, X, Y⊥u.

A natural problem for the standard non-degenerate almost CR structure (H, J, θ) on Tε(M, g) is
to see when it is a CR structure. By using

• formulas which give the Levi-Civita connection ∇̃ of G̃ in terms of ∇ and R (the Levi-Civita
connection and the curvature tensor of g);

• he generalized Tanaka-Webster connection ∇̂ associated to the standard non-degenerate almost CR
structure (H, J, θ), and

• a result of M.Dajczer - K.Nomizu [86] on the sectional curvatures of indefinite metrics, we get

Theorem 25. Let (M, g) be a semi-Riemannian manifold with dim M = n ≥ 3. Then, the standard
non-degenerate almost CR structure (H, J, θ) on Tε(M, g) is integrable, i.e., it is a non-degenerate CR structure
if, and only if, (M, g) has constant sectional curvature.

It is interesting to note that if (M, g) is a semi-Riemannian manifold of constant sectional curvature
c 6= 0, and of dimension n ≥ 2, then (TM, J) is not integrable but, by Theorem 25, the standard
non-degenerate almost CR structure (H, J, θ) on Tε(M, g) is integrable.

As a consequence of Theorems 18 and 25, we get

Corollary 6. Let (M,H0, J0, θ0) be a non-degenerate CR manifold, dim M = 2n + 1 ≥ 5. Then, the standard
non-degenerate almost CR structure (H, J, θ) of Tε(M, g) is integrable, i.e., is a non-degenerate CR structure,
if and only if the Webster metric gθ0 of M has constant sectional curvature c = ε and the pseudohermitian
torsion τ0 vanishes.

Remark 13. If we set T0(M, g)x = {u ∈ Tx(M) \ {0x} | gx(u, u) = 0}, x ∈ M, then T0(M, g)→ M is
a bundle of nullcones, and in such a case we can not consider the standard contact semi-Riemannian structure
on T0(M, g). In fact, also in this case the geodesic flow ζ(x,u), for (x, u) ∈ T0(M, g), is tangent to T0(M, g),
but now it is a lightlike vector field while the Reeb vector field is never lightlike.

In the Riemannian case Y. Tashiro (see [2], Section 9.2) proved that the standard contact
Riemannian structure on T1M is K-contact, equivalently the geodesic flow is Killing, if and only if the
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Riemannian manifold (M, g) has constant sectional curvature +1, and in such case the standard contact
Riemannian structure on T1M is Sasakian. Now, we consider the same question in the semi-Riemannian
setting and in terms of CR geometry.

By using

• formulas for the pseudohermitian torsion of Tε(M, g):

τXh
z = −εXt

z + ε
(

R(X, u)u
)t

z , τXt
z = −εXh

z +
ε

2
gx(X, u)ξ̄z + ε

(
R(X, u)u

)h
z ; (66)

• a result of K. Nomizu [87] on the sectional curvatures of indefinite metrics;
• Theorems 14 and 25, Equations (48) and (49);

we get the following

Theorem 26. Let (M, g) be a semi-Riemannian manifold of index ν, 0 ≤ ν ≤ n = dim M. Then, we have
the following

(i) The standard non-degenerate almost CR structure (H, θ, J) on Tε(M, g) has vanishing pseudohermitian
torsion if and only if (M, g) has constant sectional curvature c = ε.

In such a case (H, θ, J) is a pseudo-Einstein CR structure, which is Sasakian, and the Ricci tensor and
the pseudohermitian Ricci tensor are given by

R̄ic = 2 ε(2n− 3)ḡ− 2(n− 2)η ⊗ η , R̂ic = 4ε(n− 1)Lθ . (67)

(ii) If 0 < ν < n, the pseudo-Einstein CR structure of (i) is Einstein, i.e., the Webster metric is Einstein,
if and only if (M, g) is a Lorentzian surface of constant curvature c = ε. In such a case, Tε(M, g) has
constant sectional curvature c = ε.

Corollary 7. Let (M, g) be a semi-Riemannian manifold of index ν, 0 ≤ ν ≤ n = dim M. Then, the geodesic
flow of Tε(M, g) is Killing if and only if M has constant sectional curvature ε.

5.2. Sasaki-Einstein and H-Contact Structures on Tε M

The geometry of a H-contact unit tangent sphere bundles when the base manifold is a Riemannian
manifold has been extensively investigated (see, for example, Refs. [88–92]).

In the semi-Riemannian case, we have

Theorem 27. Let (M, g) be a semi-Riemannian manifold of constant sectional curvature c. Then, the standard
contact semi-Riemannian structure (η, ξ, ϕ, ḡ) on Tε(M, g) is H-contact. Moreover, the structure is η-Einstein
if and only if either c = ε or c = (n− 2)ε, n = dim M. In such a case, the Ricci tensor is given by

R̄ic = 2ε(2(n− 2) + c2)g− 2(n− 2)c2η ⊗ η, (68)

where c = ε or c = (n− 2)ε.

Remark 14. Recall that η-Einstein, K-contact and Sasakian semi-Riemannian manifolds are H-contact. Now,
we remark that:

• for c 6= ε, Theorem 27 gives examples of H-contact semi-Riemannian manifolds which are not K-contact;
• for c 6= ε and c 6= (n− 2)ε, Theorem 27 gives examples of H-contact semi-Riemannian manifolds which

are not η-Einstein.

As a consequence of Theorems 25–27, we obtain the following result.
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Theorem 28. Let (M, g) be a semi-Riemannian manifold, dim M = n ≥ 3.

(i) If n > 3, then the standard non-degenerate almost CR structure on Tε(M, g) is an η-Einstein CR
structure if and only if (M, g) has constant sectional curvature c = ε or c = (n− 2)ε 6= ε.

(j) If n = 3, then the standard non-degenerate almost CR structure on Tε(M, g) is an η-Einstein CR
structure if and only if (M, g) has constant sectional curvature c = ε. Moreover, in such case the
structure is pseudo-Einstein and Sasakian.

In general, for a contact semi-Riemannian manifold, the Reeb vector field ξ infinitesimal harmonic
transformation does not imply K-contact (cf. Example 3). If (M, g) is a semi-Riemannian n-manifold
of constant sectional curvature c, by Theorem 27 the standard contact semi-Riemannian structure
(ξ, η, ϕ, ḡ) on Tε(M, g) is H-contact. Moreover, by using Equation (66), we get

trh2 = trτ2 = 2n(c− ε)2 .

Then, by using Equation (27), we get

Corollary 8. Let (M, g) be a semi-Riemannian manifold of constant sectional curvature c. Then, the Reeb
vector field of the standard contact semi-Riemannian structure on Tε(M, g) is an infinitesimal harmonic
transformation if and only if the pseudohermitian torsion vanishes (i.e., the structure is K-contact and c = ε).

Now, given a K-contact semi-Riemannian structure (η, ξ, ϕ, g) on M, dim M = 2n + 1 > 3,
consider the new K-contact semi-Riemannian structure (η̃, ξ̃, ϕ̃, g̃) defined by the D-homothetic
deformation (or transverse homothety) Equation (16). Then, by Equations (18) and (19), the Ricci
tensors and the scalar curvatures of g and g̃ (ε̃ = ε) are related by

R̃ic = Ric− 2ε(t− 1)g + 2(t− 1)(nt + n + 1)η ⊗ η, r̃ =
r + 2nε

t
− 2nε.

In particular, if (η, g) is η-Einstein, that is,

Ric = (
r

2n
− ε)g + (− rε

2n
+ 2n + 1)η ⊗ η,

where the scalar curvature r is a constant because n > 1, then the Ricci tensor of the new K-contact
semi-Riemannian structure (η̃, g̃) is given by

R̃ic = (
r + 2nε

2nt
− 2ε)g̃−

(
rε + 2n

2nt
− 2(n + 1)

)
η̃ ⊗ η̃

= (
r̃

2n
− ε)g̃− (

r̃ε

2n
− (2n + 1))η̃ ⊗ η̃

= (
r̂

2nt
− 2ε)g̃−

(
εr̂

2nt
− 2(n + 1)

)
η̃ ⊗ η̃ ,

where r̂ = r + 2nε is the Tanaka-Webster scalar curvature (see Equation (49)) of the η-Einstein K-contact
semi-Riemannian structure (η, g). So, for any t 6= 0, the new K-contact semi-Riemannian structure
(η̃, g̃) is also η̃-Einstein. Moreover, if the scalar curvature r of the η-Einstein K-contact semi-Riemannian
manifold (η, g) satisfies r 6= −2nε, that is, the Tanaka-Webster scalar curvature r̂ 6= 0, then for

t =
εr̂

4n(n + 1)
6= 0, the corresponding K-contact semi-Riemannian structure (η̃, g̃) is Einstein. Then,

we get

Proposition 17. Let (M, η, g) be an η-Einstein K-contact semi-Riemannian (2n + 1)-manifold, n > 1. If the
Tanaka-Webster scalar curvature satisfies r̂ 6= 0, then there exists a unique transverse homothety whose resulting
structure (η̃, g̃) is an Einstein K-contact semi-Riemannian structure.
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Remark 15. If the scalar curvature r of the η-Einstein K-contact semi-Riemannian manifold (η, g) satisfies
r = −2nε, equivalently r̂ = 0, then by using Equations (48) and (49), the corresponding non-degenerate almost
CR structure is pseudo-Ricci flat, that is, the pseudohermitian Ricci tensor R̂ic vanishes.

Now, we apply the above considerations to the tangent hyperquadric bundle Tε(M, g),
where (M, g) is a semi-Riemannian manifold of constant sectional curvature c, dim M = n ≥ 2.

If c = ε, from Theorem 26 we know that (Tε(M, g), η, ḡ) is Einstein if and only if n = 2, i.e., (M, g)
is a surface of constant curvature ε. In such a case, (Tε(M, g), ḡ) is of constant sectional curvature ε.

If c 6= ε and 0 < ν < n, by using Equation (68), (Tε(M, g), η, ḡ) is Einstein if and only if (M, g) is
a flat Lorentzian surface. In such a case, (Tε(M, g), ḡ) is a flat contact Lorentzian 3-manifold.

In general, if c = ε, Theorem 26 gives that (Tε(M, g), η, ḡ) is is η-Einstein Sasakian with constant
scalar curvature

r̄ = 2(n− 1)(4n− 5)ε = 2m(4m− 1)ε 6= −2mε,

where dim T1M = 2m + 1 ≥ 3, m = n− 1. Then, by the D-homothetic deformation Equation (16)
with t = εr̂/4m(m + 1) = 2(n− 1)/n, we get (cf, also Proposition 17) the following

Theorem 29. Let (M, g) be a semi-Riemannian manifold, dim M = n ≥ 2, of constant sectional curvature ε.
Then, the tangent hyperquadric bundle Tε(M, g) admits a Sasaki-Einstein structure (η̃, ξ̃, ϕ̃, g̃) given by:

η̃ = (2(n− 1)/n)η, ξ̃ = (n/2(n− 1))ξ, ϕ̃ = ϕ, and

g̃ = (2(n− 1)/n)ḡ− 2(n− 1)(n− 2)
n2 η ⊗ η,

where (η, ξ, ϕ, ḡ) is the standard contact semi-Riemannian structure.

Remark 16. We note that for n = 2 the two structures (η, ξ, ϕ, ḡ) and (η̃, ξ̃, ϕ̃, g̃) coincide, on the other hand
for n = 2 the structure (ξ, η, ϕ, g) is Einstein.

Example 6. Consider the pseudo-sphere S2n+1
2s (1) and the pseudo-hyperbolic space H2n+1

2s−1 (−1). Then,
the tangent pseudo-sphere bundle T1(S2n+1

2s (1)) and the tangent pseudo-hyperbolic bundle T−1(H2n+1
2s−1 (−1))

admit a Sasaki-Einstein structure.

If we assume that (M, g) is Lorentzian (ν = 1), then (T−1(M, g), G̃) is Lorentzian. Then,
from Theorem 26, we get

Theorem 30. Let (M, g) be a n-dimensional Lorentzian manifold. Then the standard nondegenerate almost
CR structure on T−1(M, g) has vanishing pseudohermitian torsion if and only if (M, g) has constant sectional
curvature c = −1. Moreover, in such a case the corresponding standard contact Lorentzian structure (η, ξ, ϕ, ḡ)
is Sasakian η-Einstein with scalar curvature

r̄ = −2(n− 1)(4n− 5).

As an application in relativity theory, we have the the following

Corollary 9. Let (M, g) be a complete simply connected 4-dimensional Lorentzian manifold. Then, the standard
nondegenerate almost CR structure on T−1(M, g) has vanishing pseudohermitian torsion if and only if (M, g)
is isometric to the universal anti-de Sitter space H̃4

1(−1).

Remark 17. The standard examples of non Sasakian (κ, µ)-spaces are the tangent sphere bundles of Riemannian
space forms of constant curvature c different from −1 (see, for instance, Ref. [2] Teorem 7.9). In such a case,
the corresponding Boeckx invariant defined by Equation (55) is given by:
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IT1 M =
1 + c
|1− c|

Therefore as c varies over the reals, IT1 M assumes all the real values strictly greater than > −1. Boeckx found
examples of (κ, µ)-spaces, for every value of the invariant I ≤ −1, namely a two parameter family of Lie groups
with a left-invariant contact metric structure (cf. [62], and [2] pp. 125–126).

More recently, E. Loiudice and A. Lotta [93] showed that the tangent hyperquadric bundles T−1M over
Lorentzian space forms (M, g) of constant curvature c different from −1, equipped with a strictly pseudoconvex
CR structure, also provide non equivalent examples. For these space, the formula for the Boeckx invariant
changes as follows:

IT−1 M =
c− 1
|c + 1|

where c ∈ R, c 6= −1, so that for c ≤ 0, these examples cover all possible values of the Boeckx invariant in
(−∞,−1). This result makes E. Boeckx’s classification of (κ, µ)-spaces in [62] more geometric. We note that in
this case the Webster metric of T−1M is not the Lorentzian metric Equation (65) induced from the Sasaki metric
of TM.

6. Levi Harmonicity on Non-Degenerate Almost CR Manifolds

The papers [47,94] are devoted to the study of a class of variational principles whose
corresponding Euler-Lagrange equations are degenerate elliptic and generalize ordinary harmonic
map theory in the spirit of sub-Riemannian geometry (cf. [95]) i.e., given a smooth map f : M→ M′

of (semi) Riemannian manifolds (M, g) and (M′, g′) one replaces the Hilbert-Schmidt norm of d f
by the trace with respect to g of the restriction of f ∗g′ to a given codimension one distribution
H on M (rather than applying the same construction to the full f ∗g′). E. Barletta et al., Ref. [96],
introduced pseudoharmonic maps f : M→ M′ from a nondegenerate CR manifold M endowed with
a contact form θ into a Riemannian manifold M′. When M′ is itself a non-degenerate CR manifold
carrying the contact form θ′ a result in [96] describes pseudoharmonicity of CR maps f : M → M′.
R. Petit [97] considered the following (pseudohermitian analog to the) second fundamental form

β f (X, Y) = ∇̃′X f∗Y− f∗∇̂XY, X, Y ∈ X(M), (69)

where ∇̂ is the Tanaka-Webster connection of M and ∇̃′ = f−1∇′ is the pullback of the Levi-Civita
connection ∇′ of M′. The approach in [96] is to replace ∇′ by an arbitrary linear connection D′ on
M′, consider the restriction ΠHβ f of (69) to the Levi distribution H = ker θ, and take the trace with
respect to the Levi form Lθ . Then f is called pseudoharmonic (with respect to the data (θ, D′)) if
traceLθ

(
ΠHβ f

)
= 0.

More recently, Dragomir and R. Petit et al., [98], studied contact harmonic maps, i.e., C∞ maps
f : M→ M′ from a compact strictly pseudoconvex CR manifold M into a contact Riemannian manifold
M′ which are critical points of the functional

E( f ) =
1
2

∫
M

∥∥(d f )H,H′
∥∥2

θ ∧ (dθ)n ,

where θ is a contact form on M and (d f )H,H′ = prH′ ◦ f∗ : H → H′.
J. Konderak & R. Wolak, Ref. [99], introduced transversally harmonic maps as foliated maps

f : (M,F , g)→ (M′,F ′, g′) between foliated Riemannian manifolds satisfying a condition similar to
the vanishing of the tension field in Riemannian geometry.

As a natural continuation of the ideas in [96], and following the ideas of B. Fuglede (who started
the study of the semi-Riemannian case within harmonic map theory, cf. [100], and [101] pp. 427–455),
in the papers [47,94], S. Dragomir and the present author introduced the concept of Levi harmonic map
f from an almost contact semi-Riemannian manifold (M, η, ξ, ϕ, g) into a semi-Riemannian manifold
(M′, g′), i.e., C∞ solutions of τH( f ) ≡ traceg

(
ΠHβ f

)
= 0, where β f is the second fundamental form
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of f , and ΠHβ f is the restriction of β f to the Levi distributionH = ker η. Thus, we studied the Levi
harmonicity for CR maps between two almost contact semi-Riemannian manifolds. This is perhaps the
most general geometric setting (metrics are semi-Riemannian, in general the contact condition is not
satisfied and the underlying almost CR structures are not integrable). In such a study, an important
role is played by the notion of ϕ-condition:

∇ϕX ϕX +∇XX = ϕ[ϕX, X], equivalently : (∇X ϕ)ϕX = (∇ϕX ϕ)X, (70)

for any X ∈ H. Moreover, as emphasized in [47], the class of almost contact semi-Riemannian
manifolds obeying to Equation (70) is quite large. For instance, contact semi-Riemannian manifolds,
orientable real hypersurfaces in an indefinite Kaehler manifold (with the induced almost contact
semi-Riemannian structure) and quasi-cosimplectic manifolds (which contains cosymplectic and
almost cosympletic manifolds) satisfy the ϕ-condition. Moreover, the ϕ-condition extends (cf. [94],
Section 3) the so-called condition (A) of Rawnsley [102]. Rawnsley in his paper introduced the
condition (A) in order to study the harmonicity of f -holomorphic maps between an almost Hermitian
manifold with coclosed Kaehler form and a Riemannian manifold equipped with a f -structure.
Moreover, there is the following characterization of a contact Riemannian manifold ([103], Theorem 3.2):
an almost contact Riemannian manifold is a contact Riemannian manifold if and only the following
conditions are satisfied: the tensor h = (1/2)Lξ ϕ is symmetric, and

(∇X ϕ)Y + (∇ϕX ϕ)ϕY = 2g(X, Y)ξ − η(Y)X− η(X)η(Y)ξ − η(Y)hX for any X, Y ∈ X(M).

This last condition, for Y = ϕX, X ∈ ker η, implies the ϕ-condition.
In this Section we report some results of [47,94], for almost contact semi-Riemannian manifolds.

Let (M, η, ξ, ϕ, g) be a real (2n+ 1)-dimensional almost contact semi-Riemannian manifold and (M′, g′)
a semi-Riemannian manifold. Let f : M→ M′ be a C∞ map and f−1T(M′)→ M the pullback of T(M′)
by f . Let ∇̃′ = f−1∇′ be the pullback of the Levi-Civita connection∇′ of (M′, g′) i.e., the connection in
the vector bundle f−1T(M′)→ M induced by ∇′. If (U, xi) and (U′, yα) are local coordinate systems
on M and N such that f (U) ⊂ V then ∇̃′ is locally described by

∇̃′∂/∂xj
(∂/∂yβ)

f =
∂ f α

∂xj

(
Γ′γαβ ◦ f

)
(∂/∂yγ)

f

where Y f = Y ◦ f ∈ C∞( f−1(U′), f−1T(M′)) denotes the natural lift of Y ∈ X(U′) and Γ′γαβ are the
Christoffel symbolds of (M′, g′). Let H = kerη and J = ϕ|H be the almost CR structure underlying
(η, ξ, ϕ, g). The second fundamental form β f of f is given by

β f (X, Y) = ∇̃′X f∗Y− f∗∇XY, X, Y ∈ X(M). (71)

Here ∇ is the Levi-Civita connection of (M, g) and the vector field f∗X is given by
( f∗X)(x) = ( f∗x)Xx ∈ Tf (x)M′ for any x ∈ M and X ∈ X(M). Next, let τH( f ) ∈ C∞( f−1TM′) be
the tension field defined by

τH( f ) = traceg

(
ΠHβ f

)
(72)

where ΠHβ f is the restriction of β f to H ⊗ H. Note that the tension field
τ( f ) = τH( f ) + ε

(
∇̃′ξ f∗ξ − f∗∇ξ ξ

)
, ε = g(ξ, ξ).

Definition 6. Let (M, η, ξ, ϕ, g) an almost contact semi-Riemannian manifold and (M′, g′)
a semi-Riemannian manifold. A C∞ map f : M → M′ is said to be Levi harmonic with respect
toH = kerη if τH( f ) = 0.
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In the case of a CR map between two almost contact semi-Riemannian manifolds, we have
the following

Theorem 31. ([94]) Let (M, η, ξ, ϕ, g) and (M′, η′, ξ ′, ϕ′, g′) be two almost contact semi-Riemannian
manifolds with dim(M) = 2n + 1. Then, for each CR map f : M→ M′ we have

τH( f ) = −trace(ϕ∇ξ) ϕ̃′ f∗ ξ + ϕ̃′
(
trace|H f ∗∇′ϕ′

)
−
(
trace|H f ∗∇′η′

)
ξ ′ (73)

+ f∗
(

ϕ∇∗ϕ + (divξ)ξ + ε∇ξ ξ
)
,

where ε = g(ξ, ξ), ϕ̃′ = ϕ′ f : f−1T(M′) → f−1T(M′) is the pullback of ϕ′ by f , and ∇∗ is the operator
formal adjoint of ∇.

Proof. (sketch) Let {ξ, Eα , ϕEα : 1 ≤ α ≤ n} be a ϕ-basis and let us set εα = g(Eα , Eα) ∈ {±1}.
Then one has

τH( f ) =
n

∑
α=1

εα {∇̃′Eα
f∗Eα − f∗∇Eα Eα + ∇̃′ϕEα

f∗ϕEα − f∗∇ϕEα ϕEα}. (74)

We consider the operator∇∗, the formal adjoint of∇ (see for example [16], pp. 108–110), thus if S
is a tensor of type (1, 1), ∇∗S = −trace∇S. Then, after some computations, we get

n

∑
α=1

εα (∇Eα Eα +∇ϕEα ϕEα) =
n

∑
α=1

εα ϕ[ϕEα, Eα]− ϕ∇∗ϕ− (divξ)ξ − ε∇ξ ξ. (75)

Moreover, as f is a CR map,

n

∑
α=1

εα{(∇′f∗Eα
f∗Eα +∇′f∗ϕEα

f∗ϕEα) = (76)

= ϕ̃′
(
trace|H f ∗∇′ϕ′

)
−
(
trace|H f ∗∇′η′

)
ξ ′ +

n

∑
α=1

εα {ϕ̃′[ f∗ϕEα, f∗Eα]}.

Then, Equations (74)–(76) imply

τH( f ) =
n

∑
α=1

εα {(ϕ̃′ f∗ − f∗ϕ)[ϕEα, Eα]}+ f∗
(

ϕ∇∗ϕ + (divξ)ξ + ε∇ξ ξ
)

(77)

+ ϕ̃′
(
trace|H f ∗∇′ϕ′

)
−
(
trace|H f ∗∇′η′

)
ξ ′ .

By using Equation (77) one gets Equation (73).

Next, if M and M′ satisfy the ϕ-condition, from Equations (75) and (76) we have

ϕ∇∗ϕ + (divξ)ξ + ε∇ξξ = 0 and ϕ̃′
(
trace|H f ∗∇′ϕ′

)
−
(
trace|H f ∗∇′η′

)
ξ ′ = 0 .

Therefore, we obtain

Corollary 10. ([47]) Let (M, ϕ, ξ, η, g) and (M′, ϕ′, ξ ′, η′, g′) be two almost contact semi-Riemannian
manifolds, dim M = 2n + 1, satisfying the ϕ-condition. Then, for any CR map f : M→ M′

τH( f ) = −trace(ϕ∇ξ) ϕ̃′ f∗ ξ .

If additionally (M, ϕ, ξ, η, g) is a contact semi-Riemannian manifold, then

τH( f ) = −2n ε ϕ̃′ f∗ ξ,

where ε = g(ξ, ξ). Hence f is Levi harmonic if and only if f∗ ξ is collinear to ξ ′.
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There are several examples of Levi harmonic maps between almost contact semi Riemannian
manifolds. Here we report the following (cf. also [47,94]).

1. Invariant submanifolds and Levi harmonicity

Let M be a submanifold of a (2n̄ + 1)-dimensional almost contact Riemannian manifold
(M̄, ϕ̄, ξ̄, η̄, ḡ). M is an invariant submanifold of M̄ if ϕ̄xTx(M) ⊂ Tx(M) for any x ∈ M. Two extreme
cases may be distinguished (cf. [104]) as:

(I) ξ̄ is tangent to M (and then M is odd-dimensional i.e., dim M = 2n + 1), or
(II) ξ̄ is transverse to M (and then M is even-dimensional).

When M̄ is a contact Riemannian manifold case II doesn’t occur (cf. [2], p. 122). Here we only
consider case (I). Then M carries the induced almost contact Riemannian structure (η, ξ, ϕ, g)
defined by

η = i∗ η̄, ϕ̄ ◦ i∗ = i∗ ◦ ϕ, g = i∗ ḡ,

where i : M→ M̄ is the inclusion. In particular i is a CR map.

If (M̄, η̄, ξ̄, ϕ̄, ḡ) is an almost contact Riemannian manifold satisfying the ϕ-condition, then the
submanifold (M, η, ξ, ϕ, g) is an almost contact Riemannian manifold satisfying the ϕ-condition.
Moreover the map i : M → M̄ is Levi harmonic. The mean curvature H of i is defined by
(2n + 1)H = α(ξ, ξ), where α is the second fundamental form of i. If additionally ξ is geodesic then i
is minimal.

To give an explicit example, let M2m+3(c) be a complete simply connected Sasakian manifold of
constant ϕ-sectional curvature c. As well known M2m+3(c) is (up to an isometry) one of the Sasakian
manifolds S2m+3, R2m+3 or Dm+1 × R equipped with Sasakian structures of ϕ-sectional curvature
c > −3, c = −3 and c < −3 respectively, where Dm+1 ⊂ Cm+1 is a simply connected bounded domain.
Then, M2m+1(c) is an invariant submanifold of M2m+3(c) (cf. [105], p. 328), hence the inclusion
i : M2m+1(c)→ M2m+3(c) is Levi harmonic.

2. Levi harmonicity of Reeb vector fields

Let (M, g) be a Riemannian manifold. Let (η̄, ξ̄, ϕ̄, ḡ) be the standard contact Riemannian structure
on the tangent sphere bundle T1(M, g) which we denoted before by (η, ξ, ϕ, ḡ). Then, it is defined
by Equations (63)–(65). In particular the Reeb vector field ξ̄z = 2uh

z , z = (x, u) ∈ T1(M, g). Let t > 0,
consider the D-homothetic deformation(

η̄t = t η̄, ξ̄t = (1/t)ξ̄, ϕ̄t = ϕ̄, ḡt = tḡ + (t2 − t)η̄ ⊗ η̄
)

of (η̄, ξ̄, ϕ̄, ḡ). (78)

Then, Equation (78) is a g-natural contact Riemannian structure in the sense of [106], and ḡt is
the g-natural metric on T1M defined by the parameters a = t/4, b = c = 0, and d = (t2 − t)/4.
In particular, ḡt is of Kaluza-Klein type ([106], p. 1196).

Suppose that (M, η, ξ, ϕ, g) is an almost contact Riemannian manifold. Then, by Theorem 6.1
in [106] we get that ξ : (M, η, g) → (T1(M, g), η̄t, ḡt) is a CR map if and only if ∇ξ = −ϕ on
ker η. Moreover, since ḡt is of Kaluza-Klein type, by Theorem 6.2 in [106], (η, ξ, ϕ, g) is a K-contact
Riemannian structure if and only if

ξ is geodesic and ξ : (M, η, g)→ (T1(M, g), η̄t, ḡt) is a CR map.

Besides, the differential of ξ : M→ T1M, at x, is given by ξ∗xX = XH
z + (∇Xξ)T

z , z = (x, ξx).
Thus

ξ∗x(ξx) = ξH
z + (∇ξ ξ)T

z = (1/2) ξ̄z = (t/2) (ξ̄t)z, z = (x, ξx),

and
ξ∗η̄t = µ η, µ = (ξ∗η̄t)(ξ) = t/2.

Summing up, by using also Corollary 10, we get
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Theorem 32. Let (M, η, ξ, ϕ, g) be an almost contact Riemannian manifold and let (η̄t, ξ̄t, ϕ̄t, ḡt), t > 0,
a D-homothetic deformation of the standard contact Riemannian structure of T1(M, g). Then,
(η, g) is K-contact structure if and only if ξ is geodesic and ξ : (M, η, g)→ (T1(M, g), η̄t, ḡt) is a CR map.

In particular, if (η, g) is K-contact structure, then ξ : (M, η, g)→ (T1(M, g), η̄t, ḡt) is a Levi harmonic
map for any t > 0; moreover, ξ is a pseudohermitian map (isopseudohermitian for t = 2).

Let S2n+1 ⊂ Cn+1 be the unit sphere endowed with the canonical Sasakian structure (η0, ξ0, ϕ0, g0),
hence ξ0 is the standard Hopf vector field on S2n+1. Then

Corollary 11. ξ0 : (S2n+1, η0, g0)→ (T1S2n+1, η̄t, ḡ0t
)

is a Levi harmonic map for any t > 0.

Remark 18. About the harmonicity of Hopf vector fields, Han and Yim [107] proved that these fields, namely,
the unit Killing vector fields, are the unique unit vector fields on the unit sphere S3 which define harmonic maps
from S3 to (T1S3, ḡ0), where ḡ0 is the Sasaki metric. In [108], as a consequence of a more general result, we got
in particular that Han-Yim’s Theorem is invariant under a three-parameter deformation of the Sasaki metric
on T1S3.

Finally, we give a short presentation of the variational treatment of Levi harmonicity. Let (M, η, ξ, ϕ, g)
be a (2n + 1)-dimensional almost contact Riemannian manifold and (M′, g′) a Riemannian manifold.
If Ω ⊂ M is a relatively compact domain we set

EΩ( f ) =
1
2

∫
Ω

traceg
(
ΠH f ∗g′

)
dvg (79)

for any f ∈ C∞(M, M′). Then we obtain the following ([47], Theorem 6.1):

Theorem 33. Let Ω ⊂ M be a relatively compact domain. A C∞ map f : M → M′ is a critical point for
the energy functional EΩ : C∞(M, M′) → R defined by (79) if and only if τH( f ) = f∗

{
∇ξ ξ + div(ξ) ξ

}
.

If f : M→ M′ be an immersion and a critical point of EΩ, then f is Levi harmonic if and only if the Reeb field
ξ is geodesic and divergence free.

Remark 19. The many ramifications of harmonicity (subelliptic harmonic, contact harmonic, Levi harmonic,
and pseudoharmonic maps) seem to indicate that the theory of harmonic maps has reached a stage of mannerism.
However, the mentioned ramifications (to which one may add p-harmonic and exponentially harmonic maps,
Gromov’s tangentially harmonic maps and harmonic maps from Finslerian manifolds (cf. references in [47])) are
but a measure of the enormous success enjoyed by the theory.

7. Some Open Problems

Question 1. (related to the Section 2.3) It is an open problem, to our knowledge, to find examples of
non-Sasakian contact semi-Riemannian manifolds which satisfy Equation (23), or to give a proof that an
arbitrary contact semi-Riemannian manifolds satisfying Equation (23) is Sasakian.

Question 2. (related to the Section 2.4) In dimension ≥ 5, it is an open problem, to our knowledge,
the existence of non trivial semi-Riemannian contact Ricci solitons.

Question 3. (related to Section 3.2) Study the geometry of an almost contact (semi) Riemannian structure
(η, ξ, ϕ, g) when η defines a pseudohermitian structure.

Question 4. (related to the Section 3.4) In dimension ≥ 5, it is an open problem to see if the Olszak’s result
holds for a general non-degenerate almost CR manifold.



Axioms 2019, 8, 6 46 of 50

Question 5. (related to the Section 4 and Definition 4) Let (H, J, θ) be a pseudohermitian CR structure on
a simply connected three-manifold.

• If (H, J, θ) is homogeneous and non-degenerate, then Theorem 21 gives a complete classification.
• If (H, J, θ) is a homogeneous Levi-flat pseudohermitian CR structure induced by a homogeneous almost

α-coKähler structure, then we have a complete classification (cf. [33,41]).
• If (H, J, θ) is an arbitrary homogeneous Levi-flat pseudohermitian CR structure, we do not know

a classification.

So, a natural open problem is: Classify all simply connected three-manifolds which admit a homogeneous
Levi-flat pseudohermitian CR structure.

Question 6. In the Riemannian case, S.H. Chun et al. [90] proved the following: if (M, g) is an Einstein
Riemannian manifold, then the standard contact Riemannian manifold on T1(M, g) is H-contact if and only if
(M, g) is 2-stein. Then, a natural open problem (related to the Section 5.2) is the following.

Let (M, g) be an Einstein semi-Riemannian manifold. When is the standard non-degenerate almost CR
structure on Tε(M, g) H-contact?

Question 7. Another open problem (related to the Section 5.2) is the following. Let (M, g) be a emi-Riemannian
manifold (or an Einstein semi-Riemannian manifold). When is the Reeb vector field of (the standard
non-degenerate almost CR structure on) Tε(M, g) an i.h.t.?
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