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Abstract: In this paper a stochastic optimal control problem described by a quadratic performance
criterion and a linear controlled system modeled by a system of singularly perturbed Itô differential
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(satisfying a prescribed sign condition) to the corresponding stochastic algebraic Riccati equation
is derived. Furthermore, a near optimal control whose gain matrices do not depend upon small
parameters is discussed.
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1. Introduction

In the last 40 years, special attention was paid to the singular perturbation techniques applied
in both analysis and synthesis of control laws with prescribed performance specifications for the
regulation of systems whose mathematical models are described by a system of differential equations
of high dimension, and also contain a number of small parameters multiplying derivatives of a part of
the state variables of the physical phenomenon under discussion.

The large number of differential equations of the mathematical model of a physical process may
be caused by the presence of some “parasitic” parameters such as small time constants, resistances,
inductances, capacitances, moments of inertia, small masses, etc.

The presence of such small parameters is often a source of stiffness due to the simultaneous
occurrence of slow and fast phenomena. It is known that the stiffness can produce ill-conditioning of the
numerical computation involved in the process of designing the optimal control. This inconvenience
leads to the idea to simplify the mathematical model by neglecting the small parameters occurring in
the original model. Besides the stiffness, the necessity of the simplification of the mathematical model
by neglecting the small parameters is also imposed by the fact that, in many applications, the values of
these parasitic quantities are not exactly known. A fundamental problem is to check if the optimal
control design based on the reduced model provides a satisfactory behavior of the full system which
contains fast phenomena neglected during the designing process.

Remarkable results were obtained in the problem of the design of some near optimal controllers
in the case of some deterministic systems with several time scales. Such results may be found in the
monographs [1–4]. A common feature of the approaches in these works is the use of the singular
perturbations techniques, initially developed in connection with the study of qualitative properties of
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the solutions of some classes of differential equations starting with the classical work of Tichonov [5].
The interest for studying different problems regarding the singularly perturbed controlled systems is
still increasing. For the reader’s convenience, we refer to the recent papers [6–10].

Lately, the interest for studying optimal control problems for stochastic systems modeled by
singularly perturbed Itô differential equations also increased. Unlike the deterministic case, where the
reduced model is obtained by simply removing the small parameters, in the case of stochastic optimal
control problems driven by systems of singularly perturbed Itô differential equations, the definition
of the reduced model is not always intuitive and it is strongly dependent upon the intensity of the
white noise type perturbations affecting the diffusion part of the fast equations of the mathematical
model. Hence, problems related to singularly perturbed stochastic systems could not be viewed as
simple extensions of there deterministic counterparts. This makes the study of this class of systems a
challenging (and relatively not fully investigated) topic. The main results obtained in this field were
published in [11–14].

Very few results have been reported in the literature dealing with several fast time scales. We cite
here [15] for the deterministic case and [16] for the stochastic framework. Pursuing our efforts in the
study of singularly perturbed stochastic systems, we consider in this paper a stochastic optimal control
problem described by a quadratic performance criterion and a linear controlled system modeled by a
system of singularly perturbed Itô differential equations with two fast time scales.

Unlike [17] in the deterministic case or [14] in the stochastic case, where the fast time scales have
the same order of magnitude, in the present work, we consider the case in which the two fast time
scales have different order of magnitude. More precisely, if εj > 0, j = 1, 2 are the small parameters
associated with the two fast time scales, the ratio ε2

ε1
becomes the third small parameter which needs

to be considered in the asymptotic analysis performed here. The most part of our study is devoted
to the analysis of the asymptotic structure of the stabilizing solution of the algebraic Riccati equation
involved in the computation of the optimal control of the optimization problem under consideration.
The main tool in the derivation of the asymptotic structure of the stabilizing solution of the algebraic
Riccati equation under consideration around the origin (ε1, ε2, ε2

ε1
) = (0, 0, 0) is the implicit functions

theorem. To this end, we first investigate the solvability of the system of reduced equations obtained
setting εk = 0, k = 1, 2 and ε2

ε1
= 0 in the original algebraic Riccati equation. Unlike the deterministic

case, in the stochastic framework considered in this paper, the system of the reduced equations is a
system of strongly interconnected Riccati type algebraic equations. For this system of interconnected
Riccati type equations we introduce the concept of stabilizing solution and provide a set of necessary
and sufficient conditions which guarantee the existence of such a solution. Further, employing the
stabilizing solution of the system of the reduced equations and the corresponding stabilizing gain
matrices we show that one may apply the implicit functions theorem to obtain the existence, as well as
the asymptotic structure of, the stabilizing solution of the algebraic Riccati equation associated with the
optimal control problem under consideration. Based on the dominant part independent of the small
parameters of the stabilizing gain matrix, we construct a near optimal control whose gain matrices can
be computed without the knowledge of the precise values of the small parameters associated with the
fast time scales.

The paper is organized as follows: Section 2 provides the model description and the problem
formulation. In Section 3 we show how the system of reduced Riccati equations, which are not
dependent upon the small parameters, can be derived. Also, we introduce the concept of the stabilizing
solution for the system of reduced algebraic Riccati equations. Then, we provide conditions which
guarantee the existence of this stabilizing solution. In Section 4, we obtain the existence and the
asymptotic structure of the stabilizing solution for the Riccati equation associated with the original
linear quadratic control problem. Finally, we show how the asymptotic structure of the stabilizing
feedback gain can be used to construct a near optimal control.
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2. The Problem

Let us consider the stochastic optimal control problem asking for the minimization of the
quadratic functional

J(x0; u) = E[
∞̂

0

(
2

∑
j,k=0

xT
j (t)Mjkxk(t) + 2

2

∑
j=0

xT
j (t)Lju(t) + uT(t)Ru(t))dt (1)

along with the trajectories of the controlled system having the state space representation described by
the following system of singularly perturbed Itô differential equations

dx0(t) = (A00(ε)x0(t) + A01(ε)x1(t) + A02(ε)x2(t) + B0(ε)u(t))dt+

+ (C00(ε)x0(t) + C01(ε)x1(t) + C02(ε)x2(t) + D0(ε)u(t))dw(t)

x0(0) = x0
0 (2)

εkdxk(t) = (Ak0(ε)x0(t) + Ak1(ε)x1(t) + Ak2(ε)x2(t) + Bk(ε)u(t))dt+

+
√

εk(Ck0(ε)x0(t) + Ck1(ε)x1(t) + Ck2(ε)x2(t) + Dk(ε)u(t))dw(t)

xk(0) = x0
k , k = 1, 2.

In (1) and (2) u(t) ∈ Rm is the vector of the control parameters and x(t) =(
xT

0 (t) xT
1 (t) xT

2 (t)
)T

∈ Rn is the vector of state parameters, x0 =(
x0T

0 x1T
0 x2T

0

)T
, n = n0 + n1 + n2; xj(t) ∈ Rnj , 0 ≤ j ≤ 2.

In (1), Mjk = MT
kj, 0 ≤ k, j ≤ 2, R = RT . In (2), εk > 0 are small parameters often not

exactly known.
In order to make more intuitive the developments in this paper we assume that the small

parameters εk, k = 1, 2 satisfy the assumption:

H1) εk = ϕk(η), where ϕk : [0, η∗]→ [0, ∞) are nondecreasing functions with the properties:
(i) ϕk(η) = 0 if and only if η = 0, k = 1, 2.
(ii) lim

η→0+
ϕk(η) = 0; lim

η→0+

ϕ2(η)
ϕ1(η)

= 0.

In the sequel, the dependence of εk upon the parameter η will be suppressed.

Remark 1. According to the terminology used in the framework of singularly perturbed differential equations,
x0(t) will be called slow state variables while x1(t), x2(t) will be named fast state variables. From the
condition imposed to the values of the ratio ε2

ε1
in H1), it follows that the states x2(t) are faster than x1(t). That

is why under the assumption H1) system (2) is a controlled system with two fast time scales.

In the deterministic framework, the asymptotic structure of the solutions of some systems with
several time fast scales was studied in [18] while in [19] were derived uniform upper bounds of the
block components of the fundamental matrix solution of the systems of linear differential equations
with several fast time scales.

In (2), {w(t)}t≥0 is a 1-dimensional standard Wiener process defined on a given probability space
(Ω,F ,P). The consideration of the case with an 1-dimensional standard Wiener process is only to easy
the exposition. The extension to the case of a multidimensional Wiener process can be done without
difficulty.

Regarding the coefficients of system (2), we make the following assumption:

H2) ε = (ε1, ε2) → (Ajk(ε), Bj(ε), Cjk(ε), Dj(ε)) are C1 matrix valued functions defined on a
neighborhood of the origin (ε1, ε2) = (0, 0).
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We set

A(ε) =

 A00(ε) A01(ε) A02(ε)
1
ε1

A10(ε)
1
ε1

A11(ε)
1
ε1

A12(ε)
1
ε2

A20(ε)
1
ε2

A21(ε)
1
ε2

A22(ε)

 ,B(ε) =

 B0(ε)
1
ε1

B1(ε)
1
ε2

B2(ε)

 ,

C(ε) =

 C00(ε) C01(ε) C02(ε)
1√
ε1

C10(ε)
1√
ε1

C11(ε)
1√
ε1

C12(ε)
1√
ε2

C20(ε)
1√
ε2

C21(ε)
1√
ε2

C22(ε)

 ,D(ε) =

 D0(ε)
1√
ε1

D1(ε)
1√
ε2

D2(ε)

 (3)

M =

 M00 M01 M02

MT
01 M11 M12

MT
02 MT

12 M22

 =MT ,L =

 L0

L1

L2

 . (4)

With these notations (1) and (2) may be written in a compact form as:

J(x0; u) = E[
∞̂

0

(xT(t)Mx(t) + 2xT(t)Lu(t) + uT(t)Ru(t))dt] (5)

and

dx(t) = (A(ε)x(t) +B(ε)u(t))dt + (C(ε)x(t) +D(ε)u(t))dw(t) (6)

x(0) = x0.

One sees that for each ε = (ε1, ε2) fixed, the optimal control asking for the minimization of the
quadratic cost (5) in the class of controls that stabilizes system (6) is a standard stochastic linear
quadratic optimal control problem, which was studied starting with [20].

In [21,22] it was shown that a stochastic linear quadratic control problem, with control dependent
terms in the diffusion part of the controlled system, is still well possed even if the cost weight matrices
of the states and the control are allowed to be indefinite. The optimal control is given by:

uopt(t) = −(R +DT(ε)X̃(ε)D(ε))−1(BT(ε)X̃(ε) +DT(ε)X̃(ε)C(ε) +LT)x(t) (7)

where X̃(ε) is the unique stabilizing solution of the algebraic Riccati equation of stochastic control
(SARE):

AT(ε)X + XA(ε) +CT(ε)XC(ε)− (XB(ε) +CT(ε)XD(ε) +L)× (8)

×(R +DT(ε)XD(ε))−1(BT(ε)X +DT(ε)XC(ε) +LT) +M = 0

satisfying the sign condition

R +DT(ε)XD(ε) > 0. (9)

The condition (9) supplies the absence of the information regarding the sign of the matrix R.
In [22], necessary and sufficient conditions that guarantee the existence of the stabilizing solution of a
SARE were provided as (8) satisfying the sign condition (9) and a procedure for numerical computation
of this solution using the so called semidefinite programming (SDP) was proposed. Also, an iterative
procedure for numerical computation of the constrained SARE of type (8) and (9) was proposed in
Section 5.8 from [23]. Unfortunately, the way in which the small parameters εk > 0, k = 1, 2 affect the
coefficients of SARE (8) and (9) may produce ill-conditioning of the numerical computation involved
in obtaining the stabilizing solution X̃(ε) of the SARE under consideration. In order to avoid the
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ill-conditioning of the numerical computations generated by the high difference between the order
of magnitude of the coefficients, knowledge of the asymptotic structure of the solution X̃(ε) in a
neighborhood of the origin ε = (ε1, ε2) = (0, 0) is useful. As a consequence of such a study, a system
of Riccati type equations not depending upon the small parameters εk, k = 1, 2, often named a system
of reduced algebraic Riccati equations, which allows us to compute the dominant part of the solution
X̃(ε) can be displayed.

In the deterministic case, see for example [1–4,24], the system of reduced algebraic Riccati
equations is obtained by simply removing all of the small parameters. In the stochastic framework,
when the controlled systems are modeled by singularly perturbed Itô differential equations, the
definition of the system of reduced algebraic Riccati equations cannot be done by a simple neglection
of the small parameters. From [11] or [12,25], one sees that the definition of the system of reduced
algebraic Riccati equations is strongly dependent upon the magnitude of the white noise perturbations
affecting the equations of the fast variables in the controlled system.

In order to obtain the asymptotic structure with respect to the small parameters εk > 0, k = 1, 2 of
the stabilizing solution of SARE (8), we shall use the implicit functions theorem. To this end, we need
a rigourous definition of the corresponding system of reduced algebraic Riccati equations (SRARE)
and to point out a special kind of solution of this system which helps us to apply the implicit functions
theorem. That is why in the next section we shall show how the system of reduced algebraic Riccati
equations in the case of SARE (8) and (9) can be defined. Next, we shall introduce a concept of
stabilizing solution of the obtained SRARE and we shall provide a set of conditions which guarantee
the existence of this stabilizing solution of SRARE. In Section 4, using reasoning based on the implicit
functions theorem, we shall obtain the asymptotic structure of the stabilizing solution of SARE (8)
satisfying the sign condition (9), as well as the asymptotic structure of the corresponding stabilizing
feedback gain.

3. The System of Reduced Algebraic Riccati Equations

3.1. Derivation of the System of Reduced Algebraic Riccati Equations

Setting F = −(R + DT(ε)XD(ε))−1(BT(ε)X + DT(ε)XC(ε) + LT) one obtains that if X is a
solution of SARE (8) satisfying the sign condition (9), then (X, F) is a solution of the system:

Γ(X, ε)F +BT(ε)X +DT(ε)XC(ε) +LT = 0

AT(ε)X + XA(ε) +CT(ε)XC(ε)− FTΓ(X, ε)F +M = 0 (10)

Γ(X, ε) = R +DT(ε)XD(ε).

Conversely, if (X, F) is a solution of system (10) satisfying Γ(X, ε) > 0, then X is a solution of the
constrained SARE (8) and (9). To obtain the asymptotic structure of the stabilizing solution of SARE (8)
and (9), we shall analyse the asymptotic structure of the solution (X̃(ε), F̃(ε)) of system (10) with the
additional property that the closed-loop system

dx(t) = (A(ε) +B(ε)F̃(ε))x(t)dt + (C(ε) +D(ε)F̃(ε))x(t)dw(t) (11)

is exponentially stable in mean square (ESMS).
We are looking for the solution (X, F) of (10) having the partition:

X =

 X00 ε1X01 ε2X02

ε1XT
01 ε1X11 ε2X12

ε2XT
02 ε2XT

12 ε2X22

 , F =
(

F0 F1 F2

)
(12)

where Xjk ∈ Rnj×nk , Fk ∈ Rm×nk , 0 ≤ j, k ≤ 2.
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Employing the partitions (3) and (4) of the coefficients of SARE (8) we may obtain a partition of
system (10).

To ease the exposition, let us regroup the block components from (3), (4) and (12) as:

A(ε) = Π−1(ε)

(
A11(ε) A12(ε)

A21(ε) A22(ε)

)
, (13a)

B(ε) = Π−1(ε)

(
B1(ε)

B2(ε)

)
, (13b)

C(ε) = Π−1(
√

ε)

(
C11(ε) C12(ε)

C21(ε) C22(ε)

)
, (13c)

D(ε) = Π−1(
√

ε)

(
D1(ε)

D2(ε)

)
, (13d)

M =

(
M11 M12

MT
12 M22

)
, (13e)

L =

(
L1

L2

)
, (13f)

where

Π(ε) = diag(In0 , ε1 In1 , ε2 In2), (14a)

A11(ε) =

(
A00(ε) A01(ε)

A10(ε) A11(ε)

)

A12(ε) =

(
A02(ε)

A12(ε)

)
,A21(ε) =

(
A20(ε) A21(ε)

)
(14b)

B1(ε) =

(
B0(ε)

B1(ε)

)
, (14c)

C11(ε) =

(
C00(ε) C01(ε)

C10(ε) C11(ε)

)

C12(ε) =

(
C02(ε)

C12(ε)

)
,C21(ε) =

(
C20(ε) C21(ε)

)
(14d)

D1(ε) =

(
D0(ε)

D1(ε)

)
, (14e)

M11 =

(
M00 M01

MT
01 M11

)
,M12 =

(
M02

M12

)
,L1 =

(
L0

L1

)
(14f)

From (12) one obtains the following structure of X and F:

X = Π(ε)

(
U1(X, ε) ∆(ε)X12

XT
12 X22

)
(15)

F =
(
F1 F2

)
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where

U1(X, ε) =

(
X00 ε1X01

XT
01 X11

)
(16a)

X12 =

(
X02

X12

)
(16b)

∆(ε) = diag(ε2 In0 , ε2/ε1 In1), (16c)

F1 =
(

F0 F1

)
. (16d)

We also have

Π−1(
√

ε)XΠ−1(
√

ε) =

(
U2(X, ε) ∆(

√
ε)X12

XT
12∆(
√

ε) X22

)
(17)

where U2(X, ε) =

(
X00

√
ε1X01√

ε1XT
01 X11

)
, ∆(
√

ε) = diag(
√

ε2 In0 ,
√

ε2
ε1

In1).

With these notations we obtain the following partition of system (10)

BT
1 (ε)U1(X, ε) + BT

2 (ε)XT
12 +DT

1 (ε)U2(X, ε)C11(ε) + DT
2 (ε)XT

12∆(
√

ε)C11(ε)+ (18a)

+DT
1 (ε)∆(

√
ε)X12C21(ε) + DT

2 (ε)X22C21(ε) +LT
1 + Γ(X, ε)F1 = 0

BT
1 (ε)∆(ε)X12 + BT

2 (ε)X22 +DT
1 (ε)U2(X, ε)C12(ε) + DT

2 (ε)XT
12∆(
√

ε)C12(ε)+ (18b)

+DT
1 (ε)∆(

√
ε)X12C22(ε) + DT

2 (ε)X22C22(ε) + LT
2 + Γ(X, ε)F2 = 0

AT
11(ε)U1(X, ε) + UT

1 (X, ε)A11(ε) +AT
21(ε)XT

12 +X12A21(ε)+

CT
11(ε)U2(X, ε)C11(ε) +CT

21(ε)XT
12∆(
√

ε)C11(ε) +CT
11(ε)∆(

√
ε)X12C21(ε)+ (18c)

+CT
21(ε)X22C21(ε)− FT

1 Γ(X, ε)F1 +M11 = 0

AT
11(ε)∆(ε)X12 +AT

21(ε)X22 + UT
1 (X, ε)A12(ε) +X12 A22(ε)+

CT
11(ε)U2(X, ε)C12(ε) +CT

21(ε)XT
12∆(
√

ε)C12(ε) +CT
11(ε)∆(

√
ε)X12C22(ε)+ (18d)

CT
21(ε)X22C22(ε)− FT

1 Γ(X, ε)F2 +M12 = 0

AT
12(ε)∆(ε)X12 + AT

22(ε)X22 +XT
12∆(ε)A12(ε) + X22 A22(ε) +CT

12(ε)U2(X, ε)C12(ε)+

+CT
22(ε)XT

12∆(
√

ε)C12(ε) +CT
12(ε)∆(

√
ε)X12C22(ε) + CT

22(ε)X22C22(ε)− (18e)

−FT
2 Γ(X, ε)F2 + M22 = 0

Γ(X, ε) = R +DT
1 (ε)U2(X, ε)D1(ε) + DT

2 (ε)XT
12∆(
√

ε)D1(ε)+

+DT
1 (ε)∆(

√
ε)X12D2(ε) + DT

2 (ε)X22D2(ε) (18f)
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Setting formally εj = 0, j = 1, 2 and ε2
ε1

= 0, in (18) we obtain the equations:

BT
1 (0)U1(X, 0) + BT

2 (0)XT
12 +DT

1 (0)U2(X, 0)C11(0)+

+DT
2 (0)X22C22 +LT

1 + Γ(X, 0)F1 = 0 (19a)

BT
2 (0)X22 +DT

1 (0)U2(X, 0)C12(0) + DT
2 (0)X22C22(0) + LT

2 + Γ(X, 0)F2 = 0 (19b)

AT
11(0)U1(X, 0) + UT

1 (X, 0)A11(0) +AT
12(0)XT

12 +X12A21(0)+

+CT
11(0)U2(X, 0)C11(0) +CT

21(0)X22C21(0)− FT
1 Γ(X, 0)F1 +M11 = 0 (19c)

AT
21(0)X22 + UT

1 (X, 0)A12(0) +X12 A22(0) +CT
11(0)U2(X, 0)C12(0)+

+CT
21(0)X22C22(0)− FT

1 Γ(X, 0)F2 +M12 = 0 (19d)

AT
22(0)X22 + X22 A22(0) +CT

12(0)U2(X, 0)C12(0)+

+CT
22(0)X22C22(0)− FT

2 Γ(X, 0)F2 + M22 = 0 (19e)

Γ(X, 0) = R +DT
1 (0)U2(X, 0)D1(0) + DT

2 (0)X22D2(0). (19f)

Having in mind (15) and (16), we remark that (19) is a system of nonlinear algebraic equations with
the unknowns (X00, X01, X11, X02, X12, X22, F0, F1, F2) ∈ Sn0 ×Rn0×n1 ×Sn1 ×Rn0×n2 ×Rn1×n2 ×Sn2 ×
Rm×n0 ×Rm×n1 ×Rm×n2 .

We recall that Sq denotes the linear space of symmetric matrices of size q× q.
Assuming that A22(0) is invertible we obtain from (19d):

X12 = −AT
21(0)X22 A−1

22 (0)−UT
1 (X, 0)A12(0)A−1

22 (0)−C
T
11(0)U2(X, 0)C12(0)A−1

22 (0) (20)

−CT
21(0)X22C22(0)A−1

22 (0) + F
T
1 Γ(X, 0)F2 A−1

22 (0)−M12 A−1
22 (0).

Substituting (20) in (19a) and (19c) we obtain after algebraic calculations:

(B1(0)−A12(0)A−1
22 (0)B2(0))TU1(X, 0) + (D1(0)−C12(0)A−1

22 (0)B2(0))TU2(X, 0)

×(C11(0)−C12(0)A−1
22 (0)C21(0)) + (D2(0)− C22(0)A−1

22 (0)B2(0))TX22(C21(0)−
−C22(0)A−1

22 (0)A21(0)) + (Im + F2 A−1
22 (0)B2(0))TΓ(X, 0)(F1 − F2 A−1

22 (0)A21(0)) + (21a)

+(L1 +M12 A−1
22 (0)B2(0))T − (L2 −M22 A−1

22 (0)B2(0))T A−1
22 (0)A21(0) = 0

(A11(0)−A12(0)A−1
22 (0)A21(0))TU1(X, 0) + UT

1 (X, 0)(A11(0)−A12(0)A−1
22 A21(0)) +

+(C11(0)−C12(0)A−1
22 (0)A21(0))TU2(X, 0)(C11(0)−C12(0)A−1

22 (0)A21(0)) +

+(C21(0)− C22(0)A−1
22 (0)A21(0))TX22(C21(0)− C22(0)A−1

22 (0)A21(0))−
−(F1 − F2 A−1

22 (0)A21(0))TΓ(X, 0)(F1 − F2 A−1
22 (0)A21(0)) +M11 −M12 A−1

22 (0)A21(0)− (21b)

−AT
21(0)A−T

22 (0)MT
12 +AT

21(0)A−T
22 (0)M22 A−1

22 (0)A21(0) = 0
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Using (3) written for (ε1, ε2) = (0, 0) we introduce the notations(
A1

00 A1
01

A1
10 A1

11

)
, A11(0)−A12(0)A−1

22 (0)A21(0) (22a)(
C1

00 C1
01

C1
10 C1

11

)
, C11(0)−C12(0)A−1

22 (0)A21(0) (22b)(
C1

20 C1
22

)
, C21(0)− C22(0)A−1

22 (0)A21(0) (22c)(
B1

0
B1

1

)
, B1(0)−A12(0)A−1

22 (0)B2(0) (22d)(
D1

0
D1

1

)
, D1(0)−C12(0)A−1

22 (0)B2(0) (22e)

D1
2 , D2(0)− C22(0)A−1

22 (0)B2(0) (22f)(
M1

00 M1
01

(M1
01)

T M1
11

)
, M11 −M12 A−1

22 (0)A21(0)−AT
21(0)A−T

22 (0)MT
12 +

+AT
21(0)A−T

22 (0)M22 A−1
22 (0)A21(0) (22g)(

L1
0

L1
1

)
, L1−AT

21(0)A−T
22 (0)L2−(M12−AT

21(0)A−T
22 (0)M22)A−1

22 (0)B2(0) (22h)

R1 = R−LT
2 A−1

22 (0)B2(0)−BT
2 (0)A−T

22 (0)L2+

+BT
2 (0)A−T

22 (0)M22 A−1
22 (0)B2(0). (22i)

The next result allows us to reduce the number of equations and the number of unknowns of system
(19).

Lemma 1. Assume that A22(0) is invertible.
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(i) If (X00, X01, X11, X02, X12, X22, F0, F1, F2) is a solution of system (19) with the property that A22(0) +
B2(0)F2 is an invertible matrix, then (X00, X01, X11, X22, F1

0 , F1
1 , F2) is a solution of the following system

(B1
0)

TX00 + (B1
1)

TXT
01 +

2

∑
j=0

(D1
j )

TXjjC1
j0 + (L1

0)
T + Γ1(X00, X11, X22)F1

0 = 0 (23a)

(B1
1)

TX11 +
2

∑
j=0

(D1
j )

TXjjC1
j1 + (L1

1)
T + Γ1(X00, X11, X22)F1

1 = 0 (23b)

BT
2 (0)X22 +

2

∑
j=0

DT
j (0)XjjCj2(0) + LT

2 + Γ(X00, X11, X22)F2 = 0 (23c)

(A1
00)

TX00 + (A1
10)

TXT
01 + X00 A1

00 + X01 A1
10 +

2

∑
j=0

(C1
j0)

TXjjC1
j0−

−(F1
0 )

TΓ1(X00, X11, X22)F1
0 + M1

00 = 0 (23d)

(A1
10)

TX11 + X00 A1
01 + X01 A1

11 +
2

∑
j=0

(C1
j0)

TXjjC1
j1−

(F1
0 )

TΓ1(X00, X11, X22)F1
1 + M1

01 = 0 (23e)

(A1
11)

TX11 + X11 A1
11 +

2

∑
j=0

(C1
j1)

TXjjC1
j1 − (F1

1 )
TΓ1(X00, X11, X22)F1

1 + M1
1 = 0 (23f)

AT
22(0)X22 + X22 A22(0) +

2

∑
j=0

CT
j2(0)XjjCj2(0)− FT

2 Γ(X00, X11, X22)F2 + M22 = 0 (23g)

Γ1(X00, X11, X22) = R1 +
2

∑
j=0

(D1
j )

TXjjD1
j (23h)

Γ(X00, X11, X22) = R +
2

∑
j=0

DT
j (0)XjjDj(0) (23i)

where

F1
j , (Im + F2 A−1

22 (0)B2(0))−1(Fj − F2 A−1
22 (0)A2j(0)), j = 0, 1. (24)

(ii) If (X00, X01, X11, X22, F1
0 , F1

1 , F2) is a solution of system (23) with the property that A22(0) + B2(0)F2

is an invertible matrix, then (X00, X01, X11, X02, X12, F0, F1, F2) is a solution of system (19) where

Fj = (Im + F2 A−1
22 (0)B2(0))F1

j + F2 A−1
22 (0)A2j(0), j = 0, 1 (25)

and

X02 = −[AT
20(0)X22 + X00 A02(0) + X01 A12(0) +

2

∑
j=0

CT
j0(0)XjjCj2(0)−

−(F0)
T(R +

2

∑
j=0

DT
j (0)XjjDj(0)) + F2 + M02]A−1

22 (0) (26a)

X12 = −[AT
21(0)X22 + X11 A12(0) +

2

∑
j=0

CT
j1(0)XjjCj2(0)−

−FT
1 (R +

2

∑
j=0

DT
j (0)XjjDj(0))F2 + M12]A−1

22 (0) (26b)
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Proof. The result follows directly combining (21) with (19b), (19c) and taking into account
(22). It is worth noticing that if A22(0) and A22(0) + B2(0)F2 are invertible, then
Im + F2 A−1

22 (0)B2(0) is invertible too.

Assuming that A1
11 is invertible we may compute X01 from (23e) as:

X01 = −[(A1
10)

TX11 + X00 A1
01 +

2

∑
j=0

(C1
j0)

TXjjC1
j1 −

−(F1
0 )

T(R1 +
2

∑
j=0

(D1
j )

TXjjD1
j )F1

1 + M1
01](A1

11)
−1. (27)

Substituting (27) in (23a) and (23d) we obtain after some algebraic calculation the equations:

(B1
01 − A1

01(A1
11)
−1B1

1)
TX00 +

2

∑
j=0

(D1
j − C1

j1(A1
11)
−1B1

1)
TXjj×

(C1
j0−C1

j1(A1
11)
−1 A1

10)+(Im+F1
1 (A1

11)
−1B1

1)Γ
1(X00, X11, X22)(F1

0−F1
1 (A1

11)
−1 A1

10) (28a)

+(L1
0−M1

01(A1
11)
−1B1

1)
T−(R1

1)
T(A1

11)
−1 A1

10+(B1
1)

T(A1
11)
−T M1

11(A1
11)
−1 A1

10 = 0

(A1
00 − A1

01(A1
11)
−1 A1

10)
TX00 + X00(A1

00 − A1
01(A1

11)
−1 A1

10) +
2

∑
j=0

(C1
j0 − C1

j1(A1
11)
−1 A1

10)
T×

Xjj(C1
j0−C1

j1(A1
11)
−1 A1

10)−(F1
0 − F1

1 (A1
11)
−1 A1

10)
TΓ1(X00, X11, X22)(F1

0−F1
1 (A1

11)
−1 A1

10) (28b)

+M1
00−(A1

10)
T(A1

11)
−T(M1

01)
T−M1

01(A1
11)
−1 A1

10+(A1
10)

T(A1
11)
−T M1

11(A1
11)
−1 A1

10 = 0

We introduce the notations:

A0
00 = A1

00 − A1
01(A1

11)
−1 A1

10 (29a)

B0
0 = B1

0 − A1
01(A1

11)
−1B1

1 (29b)

C0
j0 = C1

j0 − C1
j1(A1

11)
−1 A1

10 (29c)

D0
j = D1

j − C1
j (A1

11)
−1B1

1 , 0 ≤ j ≤ 2 (29d)

M0
00 = M1

00 − (A1
10)

T(A1
11)
−T(M1

01)
T −M1

01(A1
11)
−1 A1

10 +

+(A1
10)

T(A1
11)
−T M1

11(A1
11)
−1 A1

10 (29e)

L0
0 = L1

0 − (A1
10)

T(A1
11)
−T L1

1 − (M1
01 − (A1

10)
T(A1

11)
−T M1

11)(A1
11)
−1B1

1 (29f)

R0 = R1 − (B1
1)

T(A1
11)
−T L1

1 − (L1
1)

T(A1
11)
−1B1

1 + (B1
1)

T(A1
11)
−T M1

11(A1
11)
−1B1

1. (29g)

The next result allows us to reduce the number of unknowns and the number of the equations in
system (23).

Lemma 2. Assume that the matrices A22(0) and A1
11 are invertible.
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(i) If (X00, X01, X11, X22, F1
0 , F1

1 , F2) is a solution of system (23) such that A1
11 + B1

1 F1
1 is an invertible

matrix, then (X00, X11, X22, F1
0 , F1

1 , F2
2 ) is a solution of the following system:

(B0
00)

TX00 +
2

∑
j=0

(D0
j )

TXjjC0
j0 + (L0

0)
T + Γ0(X00, X11, X22)F0

0 = 0 (30a)

(B1
11)

TX11 +
2

∑
j=0

(D1
j )

TXjjC1
j1 + (L1

1)
T + Γ1(X00, X11, X22)F1

1 = 0 (30b)

(B2
2)

TX22 +
2

∑
j=0

(D2
j )

TXjjC2
j2 + (L2

2)
T + Γ2(X00, X11, X22)F2

2 = 0 (30c)

(A0
00)

TX00 + X00 A0
00 +

2

∑
j=0

(C0
j0)

TXjjC0
j0 − (F0

0 )
TΓ0(X00, X11, X22)F0

0 + M0
00 = 0 (30d)

(A1
11)

TX11 + X11 A1
11 +

2

∑
j=0

(C1
j1)

TXjjC1
j1 − (F1

1 )
TΓ1(X00, X11, X22)F1

1 + M1
11 = 0 (30e)

(A2
22)

TX22 + X22 A2
22 +

2

∑
j=0

(C2
j2)

TXjjC2
j2 − (F2

2 )
TΓ2(X00, X11, X22)F2

2 + M2
22 = 0 (30f)

Γk(X00, X11, X22) , Rk +
2

∑
j=0

(Dk
j )

TXjjDk
j , k = 0, 1, 2 (30g)

where

F0
0 , (Im + F1

1 (A1
11)
−1B1

1)
−1(F1

0 − F1
1 (A1

11)
−1 A1

10) (31a)

F2
2 , F2 (31b)

and

A2
22 , A22(0), B2

2 , B2(0), C2
j2 , Cj2(0), D2

j , Dj(0), 0 ≤ j ≤ 2,

L2
2 = L2, M2

22 = M22, R2 , R (32)

(ii) If (X00, X11, X22, F0
0 , F1

1 , F2
2 ) is a solution of system (30) with the property that

A1
11 + B1

11F1
1 is an invertible matrix, then (X00, X01, X11, X22, F1

0 , F1
1 , F2) is a solution of system (23),

where

F1
0 = (Im + F1

1 (A1
11)
−1B1

1)F0
0 + F1

1 (A1
11)
−1 A1

10 (33)

F2 = F2
2

and X01 is computed via (27).

Proof. The proof may be done by direct calculation implying (23), (27), (33). The notations (32) were
adopted only for the sake of symmetry of the equations (30).



Axioms 2019, 8, 30 13 of 22

For the values of Xjj for which the matrices Γk(X00, X11, X22) are invertible, we may eliminate the
unknowns Fk

kk from (30) obtaining the following system of nonlinear equations with the unknown
(X0, X1, X2) := (X00, X11, X22) :

(Ak
kk)

TXk + Xk Ak
kk +

2

∑
j=0

(Ck
jk)

TXjCk
jk − (XkBk

k +
2

∑
j=0

(Ck
jk)

TXjDk
j + Lk

k)×

(Γk(X0, X1, X2))
−1((Bk

k)
TXk +

2

∑
j=0

(Dk
j )

TXjCk
jk + (Lk

k)
T) + Mk

kk = 0, (34a)

Γk(X0, X1, X2) = Rk +
2

∑
j=0

(Dk
j )

TXjDk
j , k = 0, 1, 2. (34b)

Remark 2. (a) In the deterministic case, i.e., the special case of (2) when Cjk(ε) = 0, Dj(ε) = 0, j, k = 0, 1, 2,
system (34) reduces to

(Ak
kk)

TXk + Xk Ak
kk − (XkBk

k + Lk
k)(Rk)−1((Bk

k)
TXk + (Lk

k)
T) + Mk

k = 0, k = 0, 1, 2. (35)

System (35) is a system of three uncoupled algebraic Riccati equations of lower dimensions named the system
of reduced algebraic Riccati equations (for details see e.g., [24]). That is why, in the sequel, system (34) will
be named system of reduced algebraic Riccati equations (SRARE), associated with SARE (8). We shall
see that in this stochastic framework, system (34), plays a similar role as system (35) in the deterministic case.
Unlike the deterministic case, where the system of reduced algebraic Riccati Equation (35) is obtained by simply
removing the small parameters εk, k = 1, 2 in the controlled system, in the stochastic framework SRARE (34)
cannot be obtained directly by such a procedure.

(b) When Cjk(0) = 0, Dj(0) = 0, j = 1, 2, k = 0, 1, 2, system (34) becomes the system of reduced algebraic
Riccati equations derived in [16]. In this special case (34) is:

(A0
00)

TX0 + X0 A0
00 + (C0

00)
TX0C0

00 − (X0B0
0 + (C0

00)
TX0D0

0 + L0
0)×

(R0 + (D0
0)

TX0D0
0)
−1((B0

0)
TX0 + (D0

0)
TX0C0

00 + (L0
0)

T) + M0
00 = 0 (36a)

(A1
11)

TX1 + X1 A1
11 + (C1

01)
TX0C1

01 − (X1B1
1 + (C1

01)
TX0D1

0 + L1
1)×

(R1 + (D1
0)

TX0D1
0)
−1((B1

1)
TX1 + (D1

0)
TX0C1

01 + (L1
1)

T) + M1
11 = 0 (36b)

(A2
22)

TX2 + X2 A2
22 + (C2

02)
TX0C2

02 − (X2B2
2 + (C2

02)
TX0D2

0 + L2
2)×

(R2 + (D2
0)

TX0D2
0)
−1((B2

2)
TX2 + (D2

0)
TX0C2

02 + (L2
2)

T) + M2
22 = 0. (36c)

One sees that (36a) is the SARE of type (8) associated with the stochastic reduced linear quadratic optimal control
problem described by

dx0(t) = (A0
00x0(t) + B0

0u(t))dt + (C0
00x0(t) + D0

0u(t))dw(t), x0(0) = x0
0

and

J0(x0
0; u) = E[

∞̂

0

(xT
0 (t)M0

00x0(t) + 2xT
0 (t)L0

0u(t) + uT(t)R0u(t))dt].

The Equations (36b) and (36c) can be interpreted as algebraic Riccati equations associated with some deterministic
reduced linear quadratic control problems described by:

ẋk(t) = Ak
kkxk(t) + Bk

ku(t)

xk(0) = x0
k
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and

Jk(x0
k , u) =

∞̂

0

(xT
k (t)M̃kxk(t) + 2xT

k (t)L̃ku(t) + uT(t)R̃ku(t)dt

where
M̃k = Mk

k + (Ck
0k)

Tx0Ck
0k

L̃k = Lk
k + (Ck

0k)
Tx0Dk

0

R̃k = Rk + (Dk
0)

Tx0Dk
0, k = 1, 2.

The solution X0 of SARE (36a) is involved as a parameter that affects the weights matrices from the performance
criteria Jk(x0

k ; u).
(c) A complete decoupling of the equations from SRARE (34) may be possible in the special case when the

following conditions are simultaneously satisfied:

Dj(0) = 0, j = 0, 1, 2, Cjk(0) = 0, k = 1, 2, Cil(0) = 0, i = 1, 2, l = 0, 1, 2.

In the next subsection we introduce the concept of stabilizing solution of SRARE (34) and we shall
provide a set of conditions equivalent to the existence of that solution.

3.2. The Stabilizing Solution of the SRARE

Let X be the linear space defined by X = Sn0 × Sn1 × Sn2 . An element X lies in X if and only if
X = (X0, X1, X2), Xk being symmetric matrices of size nk × nk.
On X we introduce the inner product

< X, Y >=
2

∑
j=0

Tr[Xj, Yj] (37)

for all X = (X0, X1, X2), Y = (Y0, Y1, Y2) ∈ X. In (37) Tr[·] is the trace operator. Equipped with the
inner product (37), X becomes a finite dimensional real Hilbert space.

On X we consider the order relation < induced by the closed, solid, convex cone

X = {X ∈ X|X = (X0, X1, X2), Xj ≥ 0, j = 0, 1, 2}.

Here, Xj ≥ 0 means that Xj is a positive semidefinite matrix. In the sequel, we rewrite SRARE (34) as a
generalized Riccati equation on X as

ATX + XA + Π1[X]− (XB + Π2[X] + L)× (38)

(R + Π3[X])−1(XB + Π2[X] + L)T + M = 0

where A = (A0
00, A1

11, A2
22) ∈ Rn0×n0 ×Rn1×n1 ×Rn2×n2 , B = (B0

0, B1
1, B2

2) ∈ Rn0×m ×Rn1×m ×Rn2×m,
L = (L0

0, L1
1, L2

2) ∈ Rn0×m ×Rn1×m ×Rn2×m, M = (M0
0, M1

1, M2
2) ∈ X, R = (R0, R1, R2) ∈ Sm × Sm ×
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Sm, X→ Π1[X] : X→ X, X→ Π2[X] : X→ Rn0×m×Rn1×m×Rn2×n, X→ Π3[X] : X→ Sm×Sm×Sm

are defined by

Π1[X] =
2

∑
j=0

((C0
j0)

TXjC0
j0, (C1

j1)
TXjC1

j1, (C2
j2)

TXjXjC2
j2)

Π2[X] =
2

∑
j=0

((C0
j0)

TXjD0
j , (C1

j1)
TXjD1

j , (C2
j2)

TXjD2
j ) (39)

Π3[X] =
2

∑
j=0

((D0
j )

TXjD0
j , (D1

j )
TXjD1

j , (D2
j )

TXjD2
j ).

Based on the operators Πk, k = 1, 2, 3 we may define the following operator
X→ Π[X] , (Π1[X], Π2[X], Π3[X]).

A feedback gain is a triple of the form F = (F0, F1, F2) where Fk ∈ Rm×nk , k = 0, 1, 2. For
any feedback gain F, we associate the following linear operator: X → LF[X] : X → X by LF[X] =
(LF0[X],LF1[X],LF2[X]), where for each k = 0, 1, 2 we have:

LFk[X] = (Ak
kk + Bk

k Fk)Xk + Xk(Ak
kk + Bk

k Fk)
T +

2

∑
j=0

(Ck
jk + Dk

j Fk)Xj(Ck
jk + Dk

j Fk)
T . (40)

The next result summarizes some useful properties of the operator LF.

Proposition 1. (i) The adjoint operator L∗F of the operator LF (with respect to the inner product (37)) is given
by L∗F[X] = (L∗F0[X],L∗F1[X],L∗F2[X]), where for each k = 0, 1, 2 :

L∗Fk[X] = (Ak
kk + Bk

k Fk)
TXk + Xk(Ak

kk + Bk
k Fk) +

2

∑
j=0

(Ck
jk + Dk

j Fk)
TXj(Ck

jk + Dk
j Fk). (41)

(ii) The operator LF generates positive evolution on the space X i.e., eLFtX+ ⊂ X+ for all t ≥ 0.
(iii) The spectrum of the linear operator LF is located in the half plane C− = {λ ∈ C, Reλ < 0} if and

only if there exists Y = (Y0, Y1, Y2) � 0 such that LF[Y] ≺ 0.

Proof. (i) follows by direct calculation specializing the definition of the adjoint operator to the case of
the operator defined in (40) and the inner product (37).

(ii) follows applying Corollary 2.2.6 from [23].
(iii) follows from the equivalence (iv)↔ (v) in the Corollary 2.3.9 from [23].

Now we are in the position to introduce the concept of stabilizing solution of SRARE (34).

Definition 1. A solution X̃ = (X̃0, X̃1, X̃2) of SRARE (34) is named stabilizing solution if the spectrum of
the linear operator LF̃ is located in the half plane C−, LF̃ being the linear operator of type (40) associated with
the feedback gain F̃ = (F̃0, F̃1, F̃2), where for each k = 0, 1, 2

F̃k , −(Rk +
2

∑
j=0

(Dk
j )

TX̃jDk
j )
−1((Bk

k)
TX̃k +

2

∑
j=0

(Dk
j )

TX̃jCk
jk + (Lk

k)
T). (42)

Before stating the result providing the conditions which guarantee the existence of the stabilizing
solution of SRARE (34), we introduce the concept of stabilizability of the triple (A, B, Π).
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Definition 2. We say that the triple (A, B, Π) is stabilizable if there exists a feedback gain F = (F0, F1, F2)

with the property that the spectrum of the corresponding linear operator LF of type (40) is inclosed in the
half-plane C−.

The next result provides a set of conditions equivalent to the stabilizability of the triple (A, B, Π).

Proposition 2. The following are equivalent:
(i) the triple (A, B, Π) is stabilizable,
(ii) there exist Y = (Y0, Y1, Y2), Z = (Z0, Z1, Z2), Yk ∈ Snk , Yk > 0, Zk ∈ Rm×nk , k = 0, 1, 2, satisfying

the following system of LMIs: (
Ξk

1(Y, Z) Ξk
2(Y, Z)

(Ξk
2(Y, Z))T Ξk

3(Y)

)
< 0 (43)

where
Ξk

1(Y, Z) = Ak
kkYk + Yk(Ak

kk)
T + Bk

k Zk + ZT
k (Bk

k)
T

Ξk
2(Y, Z) =

(
Ck

0kY0 + Dk
0Z0 Ck

1kY1 + Dk
1Z1 Ck

2kY2 + Dk
2Z2

)
, k = 0, 1, 2

Ξk
3(Y) = diag(−Y0,−Y1,−Y2).

Furthermore, if (Y, Z) is a solution of the system of LMIs (43), then F = (Z0Y−1
0 , Z1Y−1

1 , Z2Y−1
2 ) is a

stabilizing feedback gain.

Proof. Following from (iii) of Proposition 3 combined with Schur complement technique.

To obtain the asymptotic structure of the stabilizing solution of SARE (8) satisfying the sign
condition (9), we shall look for conditions under which SRARE (34) has a stabilizing solution X̃ =

(X̃0, X̃1, X̃2) satisfying the sign conditions

Rk +
2

∑
j=0

(Dk
j )

TX̃jDk
j > 0, k = 0, 1, 2. (44)

Theorem 1. Assume that the matrices A2
22 , A22(0) and A1

11 , A11(0) − A12(0)A−1
22 (0)A21(0) are

invertible. Under these conditions the following are equivalent:
(i) (a) the triple (A, B, Π) is stabilizable,

(b) there exists Y = (Y0, Y1, Y2) ∈ X satisfying the following system of LMIs(
Θ1k(Y) + Mk

kk Θ2k(Y) + Lk
k

(Θ2k(Y) + Lk
k)

T Θ3k(Y) + Rk

)
> 0 (45)

where

Θ1k(Y) = (Ak
kk)

TYk + Yk Ak
kk +

2

∑
j=0

(Ck
jk)

TYjCk
jk

Θ2k(Y) = YkBk
k +

2

∑
j=0

(Ck
jk)

TYjDk
j

Θ3k(Y) =
2

∑
j=0

(Dk
j )

TYjDk
j , k = 0, 1, 2,

(ii) the SRARE (34) has a unique stabilizing solution X̃ = (X̃0, X̃1, X̃2) satisfying the sign conditions (44).
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Proof. (hint) (i)⇒ (ii). For each p = 0, 1, ... one computes Xp+1 = (Xp+1
0 , Xp+1

1 , Xp+1
2 ) as the unique

solution of the linear equation on X

L∗Fp [Xp+1] + M + LFp + (Fp)TLT + (Fp)TRFp +
γ2

p + 1
I = 0 (46)

where L∗Fp is the adjoint of the linear operator LFp described by (41) with F replaced by Fp, I =

(In0 , In1 , In2) ∈ X. In (46), Fp = (Fp
0 , Fp

1 , Fp
2 ) are given by

Fp
k = −(Rk +

2

∑
j=0

(Dk
j )

TXp
j Dk

j )
−1((Bk

k)
TXp

k +
2

∑
j=0

(Dk
j )

TXp
j Ck

jk + (Lk
k)

T), p ≥ 1. (47)

When p = 0 the feedback gain F0 = (F0
0 , F0

1 , F0
2 ) is obtained based on the assumption of stabilizability

of the triple (A, B, Π). It has the property that the spectrum of the corresponding linear operator
LF0 is located in the half place C−. One shows inductively for p = 1, 2, ... that the spectrum of each
operator LFp is located in the half plane C−. Hence, Xp+1 is well defined as the unique solution of
the linear Equation (46). Moreover, based on the assumption (i) b) from the statement, one gets that
Xp � Xp+1 � Y, ∀p ≥ 0, where Y is a solution of the LMIs (45). So, we have obtained that the sequence
{Xp}p≥0 is convergent.

We set X̃ = lim
p→∞

Xp. One proves that under the considered assumptions, X̃ obtained in this way,

is just the stabilizing solution of SRARE (34). Since, Ỹ � Y, where Y is a solution of (45), it follows
that X̃ satisfies the sign conditions (44). The uniqueness of the stabilizing solution of SRARE (34) that
satisfies the sign condition (44) is a direct consequence of its maximality property.

The proof of the implication (ii)→ (i) is based on the fact that if the Riccati equation of type (38)
has a stabilizing solution X̃, satisfying the sign condition (44), then the algebraic Riccati type equation
obtained replacing in (38) the term M by M + δI has a small enough solution for δ < 0. The details are
omitted.

Remark 3. The iterations described by (46) and (47) can be used for numerical computation of the stabilizing
solution (X̃0, X̃1, X̃2) of SRARE (34) satisfying the sign conditions (44).

4. The Main Results

4.1. The Asymptotic Structure of the Stabilizing Solution of SARE

In this section we shall use the stabilizing solution of SRARE (34) to derive the asymptotic
structure of the stabilizing solution of SARE (8) satisfying the sign condition (9).
Let X̃ = (X̃0, X̃1, X̃2) be the stabilizing solution of SRARE (34) satisfying the sign conditions (44). Let
F̃ = (F̃0, F̃1, F̃2) be the corresponding stabilizing feedback gain associated via (42). We set

F̃1
0 , (Im + F̃1(A1

11)
−1B1

1)F̃0 + F̃1(A1
11)
−1 A1

10 (48a)

F̃1
1 , F̃1 (48b)

X̃01 , −[(A1
10)

TX̃1 + X̃0 A1
01 +

2

∑
j=0

(C1
j0)

TX̃jC1
j1− (49)

−(F̃1
0 )

T(R1 +
2

∑
j=0

(D1
j )

TX̃jD1
j )F̃1

1 + M1
01](A1

11)
−1
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From (42), (48) and (49) we obtain via Lemma 2 (ii) that (X̃0, X̃01, X̃1, X̃2, F̃1
0 , F̃1

1 , F̃2) is a solution of
system (23). To this end, we took into account that if the eigenvalues of the linear operator LF̃ are
inclosed in the half plane C− then the matrix A1

11 + B1
1 F̃1

1 is a Hurwitz matrix. Hence, it is invertible.
Further, we define

˜̃Fj , (Im + F̃2 A−1
22 (0)B2(0))F̃1

j + F̃2 A−1
22 (0)A2j(0), j = 0, 1 (50a)

˜̃F2 , F̃2 (50b)

X̃02 , −[AT
20(0)X̃2 + X̃0 A02(0) + X̃01 A12(0) +

2

∑
j=0

CT
j0(0)X̃jCj2(0)−

− ˜̃F
T
0 (R +

2

∑
j=0

DT
j (0)X̃jDj(0)) ˜̃F2 + M02]A−1

22 (0) (51a)

X̃12 , −[AT
21(0)X̃2 + X̃1 A12(0) +

2

∑
j=0

CT
j1(0)X̃jCj2(0)−

− ˜̃F
T
1 (R +

2

∑
j=0

DT
j (0)X̃jDj(0)) ˜̃F2 + M12]A−1

22 (0). (51b)

Since the eigenvalues of the linear operator LF̃ are in the half plane C−, we deduce via (50b) that the
matrix A22(0) + B2(0) ˜̃F2 is a Hurwitz matrix. Hence, it is invertible.

Applying Lemma 1 (ii), we deduce that (X̃0, X̃01, X̃1, X̃02, X̃12, X̃2, ˜̃F0, ˜̃F1, ˜̃F2) is a solution of system
(19) constructed starting from the stabilizing solution (X̃0, X̃1, X̃2) of SRARE (34).

Now, we are in the position to state the first main result of this paper:

Theorem 2. Assume: (a) the assumptions H1) and H2) are fulfilled;
(b) the matrices A22(0) and A11(0)− A12(0)A−1

22 (0)A21(0) are invertible;
(c) conditions from (i) of Theorem 1 are fulfilled.
Under these conditions there exists µ∗ > 0 with the property that for any εk > 0, k = 1, 2, such that

0 < ε1 + ε2 +
ε2
ε1
≤ (µ∗)2, the SARE (8) has a stabilizing solution X̃(ε1, ε2) satisfying the sign condition (9).

Furthermore X̃(ε1, ε2) and the corresponding stabilizing feedback gain F̃(ε1, ε2) have the asymptotic structure:

X̃(ε1, ε2) =

 X̃1 + O(µ) ε1(X̃01 + O(µ)) ε2(X̃02 + O(µ))

ε1(X̃01 + O(µ))T ε1(X̃1 + O(µ)) ε2(X̃12 + O(µ))

ε2(X̃02 + O(µ))T ε2(X̃12 + O(µ))T ε2(X̃2 + O(µ))

 (52)

F̃(ε1, ε2) =
(

˜̃F0 + O(µ) ˜̃F1 + O(µ) ˜̃F2 + O(µ)
)

(53)

where µ = (ε1 + ε2 +
ε2
ε1
)

1
2 , (X̃01, X̃02, X̃12) being computed by (49) and (51) based on the stabilizing solution

(X̃0, X̃1, X̃2) of SRARE (34) satisfying the sign conditions (44) and ˜̃Fk are computed by (48) and (50) starting
from the stabilizing feedback gains F̃j, j = 0, 1, 2, associated with the stabilizing solution of SRARE (34).

Proof. The existence of the stabilizing solution X̃(ε1, ε2), as well as the asymptotic structure from (52)
and (53), are obtained applying the implicit functions theorem in the case of system (18). To this end,
we regard system (18) as an equation of the form:

Φ(W, ξ) = 0 (54)
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on the finite dimensional Banach space W , Sn0 × Rn0×n1 × Sn1 × Rn0×n2 × Rn1×n2 ×
Sn2 × Rm×n0 × Rm×n1 × Rm×n2 . In (54), W = (X0, X01, X1, X02, X12, X2, F0, F1, F2) and

ξ = (
√

ε1,
√

ε2,
√

ε2
ε1
). From (18) one sees thatW→ Φ(W, ξ) is a C∞-function and from the assumption

H2) we have that ξ → Φ(W, ξ) is a C1-function in a neighborhood of the origin 0 = (0, 0, 0).
We also remark that the reduced equation Φ(W, 0) = 0 coincides with system (19). So, from the
developments in the first part of this section we deduce that (W̃, 0) is a solution of the Equation (54)
when W̃ = (X̃0, X̃01, X̃1, X̃02, X̃12, X̃2, ˜̃F0, ˜̃F1, ˜̃F2). Let ΦW(W̃, 0) be the partial derivative of Φ(W, ξ)

evaluated in (W, ξ) = (W̃, 0).
First we show that the operator Ŵ→ �W(W̃, 0)[Ŵ] : W→W is injective.
To this end we consider the linear equation

ΦW(W̃, 0)[Ŵ] = 0 (55)

with the unknowns Ŵ = (X̂0, X̂01, X̂1, X̂02, X̂12, X̂2, F̂0, F̂1, F̂2) ∈W. After some algebraic manipulations
one obtains that (55) reduces to the linear equation

L∗F̃[Ŷ] = 0 (56)

with the unknowns Ŷ = (X̂0, X̂1, X̂2) ∈ X and LF̃ is the operator of type (40) associated with the
stabilizing feedback gain F̃ = (F̃0, F̃1, F̃2). Equation (56) only has the solution Ŷ = (0, 0, 0) because the
spectrum of the linear operator LF̃ lies in the half plane C−. Finally, one obtains that Equation (55) has
only the zero solution. This means that the kernel of the linear operator Ŵ→ ΦW(W̃, 0)[Ŵ] is the null
subspace. Since W is a finite dimensional vector space, we may conclude that Ŵ→ ΦW(W̃, 0)[Ŵ] is
invertible. Hence, we may apply the implicit functions theorem (see [26]) in the case of Equation (54).
This allows us to deduce that there exist µ0 > 0 and a C1-function ξ →W(ξ) : B(0, µ0)→W, which
satisfy Φ(W(ξ), ξ) = 0, for all ξ ∈ B(0, µ0) , {ξ ∈ R3||ξ| < µ0}. Further, W(ξ) = W̃+ O(|ξ|),
which yields

Xj(ε1, ε2) = X̃j + O(|ξ|), 0 ≤ j ≤ 2

X01(ε1, ε2) = X̃01 + O(|ξ|), (57)

Xk2(ε1, ε2) = X̃k2 + O(|ξ|), k = 0, 1

Fl(ε1, ε2) = ˜̃Fl + O(|ξ|), 0 ≤ l ≤ 2.

Plugging (57) into (12) we obtain (52), (53). We also obtain that (X̃(ε1, ε2), F̃(ε1, ε2)), constructed as
above, satisfies (10). On the other hand, from (18f) and (52) we deduce that there exists 0 ≤ µ1 ≤ µ0

with the property that X̃(ε1, ε2) satisfies (9) for any ε1 > 0, ε2 > 0, such that ε1 + ε2 +
ε2
ε1

< µ2
1. Thus,

we have obtained that X̃(ε1, ε2) with the asymptotic structure given in (52) is a solution of SARE (8)
which satisfies (9).

By a standard argument, based on singular perturbations technique, one shows that there exists
0 < µ∗ ≤ µ1 such that the closed-loop system (11), where F̃1(ε1, ε2) has the asymptotic structure (53),
is ESMS. Therefore, X̃(ε1, ε2) defined by (52) is just the stabilizing solution of (8) for any ε1 > 0, ε2 > 0
such that ε1 + ε2 +

ε2
ε1
≤ (µ∗)2. Thus the proof is complete.

In the sequel, (̃̃F0 ˜̃F1 ˜̃F2) will be named dominant part of the stabilizing feedback gain.

4.2. A Near Optimal Control

In this subsection, we show that the dominant part of the optimal gain matrix F̃(ε1, ε2) can be
used to obtain a near optimal stabilizing feedback gain for the optimal control problem described by
the quadratic functional (1) and the stochastic controlled system (2).
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We consider the control

uapp(t) = ˜̃F0x0(t) + ˜̃F1x1(t) + ˜̃F2x2(t) (58)

˜̃F being constructed by (48) and (50) based on the stabilizing feedback gains F̃j associated with the
stabilizing solution (X̃0, X̃1, X̃2) of SRARE (34).

Setting, Fapp =
(

˜̃F0, ˜̃F1, ˜̃F2

)
we may rewrite (58) in the following compact form:

uapp(t) = Fappx(t). (59)

Substituting (59) in (6) we obtain the closed-loop system

dx(t) = (A(ε) +B(ε)Fapp)x(t)dt + (C(ε) +D(ε)Fapp)x(t)dw(t). (60)

The next result provides an upper bound of the deviation of the value J(x0; uapp) from the minimal
value J(x0, uopt).

Theorem 3. Assume that the assumptions of Theorem 2 are fulfilled. Then there exist µ̃ > 0 such that the
closed-loop system (60) is ESMS for any εk > 0, k = 1, 2 which satisfy ε1 + ε2 +

ε2
ε1

< µ̃2. Moreover, the loss
of the performance produced by the use of the control (59) instead of the optimal control (7) is given by

0 ≤ J(x0, uapp)− J(x0, uopt) ≤ γ(ε1 + ε2 +
ε2

ε1
)|x0|2.

Proof. This may be done following a similar technique as the one used in [12] in the case of a single
fast time scale. The details are omitted.

5. Conclusions

The goal of the work has been the derivation of the asymptotic structure of the stabilizing solution
of an algebraic Riccati equation arising in connection with a stochastic linear quadratic optimal control
problem for a controlled system described by singularly perturbed Itô differential equations with two
fast time scales.

The main conclusion of our study is that, in the stochastic case when the controlled system
contains state multiplicative and/or control multiplicative white noise perturbations, the reduced
system of algebraic Riccati equations cannot be directly obtained by neglecting the small parameters
associated with the fast time scales of the controlled system as in the deterministic framework.

In Section 3 we have shown in detail how the system of reduced algebraic Riccati equations can
be defined in the considered stochastic framework. In the second part of Section 3, we have introduced
the concept of a stabilizing solution of SRARE, and we have provided a set of conditions equivalent to
the existence of this kind of solution of SRARE which satisfy a prescribed sign condition of type (44).
Employing the stabilizing solution of SRARE, as well as the corresponding stabilizing feedback gains,
we have obtained the asymptotic structure of the stabilizing solution of SARE and of the corresponding
stabilizing feedback gain. The dominant part of the stabilizing feedback gain was used to construct a
near optimal control whose gain matrices do not depend upon the small parameters associated with the
fast time scales. The extension of the study to the case of singularly perturbed linear stochastic systems
with N fast time scales, also including more complex systems such as jump Markov perturbations [27],
Levy noise perturbations [28] and semi-Markov switched systems [29] remains a challenge for future
research.
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