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Abstract: In this paper, we study relations between shadowing and inverse shadowing for
homeomorphisms of a compact space. We present an example of a smooth diffeomorphism of a compact
three-dimensional manifold that has the shadowing property and does not have the inverse shadowing
property. For some classes of inverse shadowing, we construct examples of homeomorphisms that have
the inverse shadowing property but do not have the shadowing property.
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1. Introduction

In the theory of dynamical systems, a lot of publications are devoted to the problems of shadowing of
pseudotrajectories and of inverse shadowing (let us mention the monographs [1,2] and also the papers [3,4]).

At present, we do not have a complete answer to the question: How are these two properties related?
In this paper, we give a review of the existing answers to the above question and extend the list of

examples which show that the two properties are nonequivalent.
Let us formulate the main definitions which we need.
Let f : M→ M be a homeomorphism of a metric space (M, dist).

Definition 1. Fix a d > 0. We say that a sequence of points ξ = {ξi ∈ M | i ∈ Z} is a d-pseudotrajectory of f if
the inequalities

dist( f (ξi), ξi+1) < d

hold for all i ∈ Z.

Definition 2. We say that f has the shadowing property if for any ε > 0 there exists a d = d(ε) > 0 such that for
any d-pseudotrajectory ξ = {ξi} one can find a point p ∈ M such that the inequalities

dist( f i(p), ξi) < ε

hold for any i ∈ Z. In this case, we say that the point p ∈ M ε-shadows the pseudotrajectory ξ.

We also need a stronger variant of Definition 2.

Definition 3. If there exist constants L, d0 > 0 and γ ∈ (0, 1) such that for any d-pseudotrajectory ξ of f with
d ∈ (0, d0) one can find a point p ∈ M that Ldγ-shadows the pseudotrajectory ξ, we say that the homeomorphism f
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has the Hölder shadowing property with Hölder exponent γ. If γ = 1, we say that the homeomorphism f has the
Lipschitz shadowing property.

Now, we define the inverse shadowing property for a homeomorphism of a metric space. There exist
several various definitions of this property (see, for example, [1,5]).

For definiteness, in this paper, we only consider the class Θs( f , d) of d-methods (for details, see [4,5]).

Definition 4. Fix a number d > 0. We say that a sequence of continuous mappings

gn : M→ M, n ∈ Z (1)

is a continuous d-method for f if the inequalities

dist( f (gn−1(x)), gn(x)) < d (2)

hold for any n ∈ Z and any point x ∈ M.

Definition 5. We say that a homeomorphism f has the inverse shadowing property if for any ε > 0 there exists a
d > 0 such that for any continuous d-method {gk} and for any point x ∈ M one can find a point p ∈ M for which
the following inequalities hold:

dist(gk(p), f k(x)) < ε, k ∈ Z. (3)

Similarly to Definition 3, one can define Hölder and Lipschitz inverse shadowing properties.
Naturally, there arises the question of distinguishing systems that satisfy Definitions 2 and 5 and their

Lipschitz analogs.
Let us start with a survey of the corresponding results.
First, we formulate definitions of two properties that are closely related to the shadowing and inverse

shadowing properties: Axiom A and the strong transversality condition.

Definition 6. A diffeomorphism f : M → M of a smooth manifold M satisfies Axiom A if its nonwandering set
Ω( f ) is hyperbolic and periodic points are dense in this set:

Clos(Per( f )) = Ω( f ).

It is well known that for any point p of a hyperbolic set K ⊆ M of a diffeomorphism f
there exist its stable and unstable manifolds Ws(p) and Wu(p) that are smoothly embedded disks of
complementary dimensions,

dim(Ws(p)) + dim(Wu(p)) = dim M.

The strong transversality condition is formulated as follows.

Definition 7. Let f : M → M be a diffeomorphism of a smooth manifold that satisfies Axiom A. We say that f
satisfies the strong transversality condition if for any points p1, p2 ∈ Ω( f ), any point q ∈Ws(p1) ∩Wu(p2) is a
point of transverse intersection of the manifolds Ws(p1) and Wu(p2).

The following theorem has been proved in a series of papers [1,6–8].

Theorem 1. Let f : M → M be a diffeomorphism of a smooth closed manifold M. Then, the following three
statements are equivalent:
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(1) f has the Lipschitz shadowing property;
(2) f has the Lipschitz inverse shadowing property;
(3) f satisfies Axiom A and the strong transversality condition.

Thus, for a diffeomorphism of a smooth closed manifold, the Lipschitz shadowing property and
Lipschitz inverse shadowing property are equivalent.

In the paper [9], it was shown that for diffeomorphisms of two-dimensional surfaces that satisfy
Axiom A, shadowing property and inverse shadowing property are equivalent. Namely, the following
result has been proved.

Theorem 2. Let f : M→ M be a diffeomorphism of a two-dimensional surface that satisfies Axiom A. Then, the
following three statements are equivalent:

(1) f has the shadowing property;
(2) f has the inverse shadowing property;
(3) f satisfies the C0 transversality condition.

Note that the two-dimensional C0 transversality condition used in the paper [9] has a natural
multidimensional generalization (see [10]). At the same time, the multidimensional analog of Theorem 2
does not hold; the paper [11] contains an example of a diffeomorphism of a three-dimensional manifold
that satisfies Axiom A, has the Hölder shadowing property, and has two hyperbolic fixed points such that
their one-dimensional stable and unstable manifolds have a point of intersection (thus, the C0 transversality
condition formulated in the paper [10] is violated).

In the next section, we show that for a diffeomorphism that satisfies Axiom A, the C0 transversality
condition is necessary for inverse shadowing. Thus, the example constructed in [11] is an example of a
diffeomorphism that has the shadowing property and does not have the inverse shadowing property.

Let us also mention the example of the shift homeomorphism on the space of binary sequences
Σ2 = {0, 1}Z:

σ : Σ2 → Σ2,

σ(x)i = xi+1.

It was shown in the paper [12] that the shift homeomorphism has the shadowing property and does
not have the inverse shadowing property. However, the peculiarity of this example is the fact that the
space Σ2 is not a manifold, while in known examples where this space appears as a hyperbolic set of a
diffeomorphism (for example, in the Smale horseshoe), the corresponding diffeomorphism has the inverse
shadowing property.

If we modify Definition 5 and require that, for a d-method, any mapping gn : M → M is a
homeomorphism, then it follows from the paper [13] that any pseudo-Anosov system on a two-dimensional
surface has the inverse shadowing property with respect to such a class of d-methods. In Section 2, we
give a simpler example of a homeomorphism of a metric space that has the inverse shadowing property
with respect to such a class of d-methods.

2. Shadowing Property Does Not Imply Inverse Shadowing Property

We start this section with the definition of the notion of C0-transversality (see [10]) which we need in
what follows.

Let (M, dist) be a connected, smooth, closed manifold with Riemannian metric dist and let A be a
topological space.
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We endow the space of all continuous mappings from A to the manifold M (which we denote by
C(A, M)) with the C0-uniform metric defined as follows: for f1, f2 ∈ C(A, M) we set

| f1, f2|C0 = sup
x∈A

(dist( f1(x), f2(x))).

Definition 8. Let δ > 0, let A, B be topological spaces, let UA ⊆ A and UB ⊆ B be arbitrary subsets, and
let h1 : A → M and h2 : B → M be continuous mappings. We say that the intersection h1(UA) ∩ h2(UB) is
δ-essential if

ĥ1(UA) ∩ ĥ2(UB) 6= ∅

for any continuous mappings
ĥ1 : A→ M

and
ĥ2 : B→ M

such that |ĥ1, h1|C0 ≤ δ and |ĥ2, h2|C0 ≤ δ.

Definition 9. Let, as above, A, B be topological spaces, let h1 : A→ M and h2 : B→ M be continuous mappings,
and let h1(a) = h2(b) for points a ∈ A and b ∈ B. We say that the mappings h1 and h2 are C0-transverse at the
pair (a, b) if for any open sets U(a) ⊆ A and U(b) ⊆ B such that a ∈ U(a), b ∈ U(b) there exists a number δ > 0
such that the intersection h1(U(a)) ∩ h2(U(b)) is δ-essential.

Let now f : M → M be a diffeomorphism that satisfies Axiom A, let p, q ∈ Ω( f ), and let x ∈
Ws(p) ∩Wu(q). Denote by

iWs(p) : Dns ↪→ M

and
iWu(q) : Dnu ↪→ M

the corresponding embeddings of open disks of dimensions ns, nu, respectively, so that

Im(iWs(p)) = Ws(p)

and
Im(iWu(q)) = Wu(q).

Let also xs ∈ Dns and xu ∈ Dnu be the points corresponding to x ∈ M, i.e., such that

iWs(p)(xs) = iWu(q)(xu) = x.

Definition 10. We say that the point x is a point of C0-transverse intersection of the manifolds Ws(p) and Wu(q)
if the imbeddings iWs(p) and iWu(q) are C0-transverse at the pair (xs, xu).

Finally, we say that f satisfies the C0-transversality condition if for any points p, q ∈ Ω( f ), any point
x ∈Ws(p) ∩Wu(q) is a point of C0-transverse intersection of the manifolds Ws(p) and Wu(q).

Let us note (see [10]) that a point of transverse intersection of two submanifolds is a point of
C0-transverse intersection (while, in general, the converse is not true).

The paper [11] contains an example of a diffeomorphism of a three-dimensional manifold

f : S1 × S2 → S1 × S2
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having the following properties:

(1) f satisfies Axiom A;
(2) Ω( f ) = {p1, p2, p3, p4}, where p1 is a repelling fixed point, p4 is an attracting fixed point, and p2 and

p3 are saddle fixed points such that

dim Wu(p2) = dim Ws(p3) = 1;

(3) Wu(p2) ∩Ws(p3) = O(x, f ) 6= ∅ (here O(x, f ) denotes the trajectory of a point x);
(4) f has the shadowing property.

Since one-dimensional stable and unstable manifolds of fixed points of f have a point of intersection,
f does not satisfy the C0-transversality condition.

In the following theorem, we will show that this violation of the C0-transversality condition implies
that the diffeomorphism f does not have the inverse shadowing property.

Theorem 3. Diffeomorphism f : S1 × S2 → S1 × S2 from [11] has a shadowing property but does not have an
inverse shadowing property.

Proof. Our proof follows the corresponding reasoning of the paper [9] (see Lemma 3.1 there). To get a
contradiction, let us assume that f has the inverse shadowing property. Let M = S1 × S2. For a fixed
number d > 0, there exists a diffeomorphism φ : M→ M such that

|idM, φ|C1 < d,

supp φ ⊆ B(d, x),

and
φ(Ws(p3) ∩ B(d, x)) ∩Wu(p2) = ∅.

Here, B(d, x) is the open ball of radius d > 0 centered at a point x.
Set g = φ ◦ f . It is easily seen that g is a diffeomorphism that satisfies Axiom A, Ω(g) = {p1, p2, p3, p4},

and
Wu

g (p2) ∩Ws
g(p3) = ∅ (4)

(here Wu
g and Ws

g are the unstable and stable manifolds of the corresponding fixed points for the
diffeomorphism g).

Define a d-method {gk : M→ M} by the formula

gk = gk, k ∈ Z.

Let α > 0 be so small that the following statements hold:

(1) for any point p ∈ M, the inequalities

dist(gk(p), p3) < α, k > 0,

imply that p ∈Ws
g(p3);

(2) for any point p ∈ M, the inequalities

dist(gk(p), p2) < α, k < 0,
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imply that p ∈Wu
g (p2).

We get a contradiction; it is easily seen that the trajectory O(x, f ) cannot be α/2-shadowed by the
constructed d-method gk for any d > 0.

Indeed, otherwise there exists a point p ∈ M such that

dist(gk(p), f k(x)) < α/2, k ∈ Z;

in this case, the choice of the number α would imply the inclusion p ∈Wu
g ∩Ws

g contradicting relation (4).

3. Inverse Shadowing Property Does Not Imply Shadowing Property

To the best of our knowledge, at present, it is not proved that in the case of a diffeomorphism of a
closed manifold, inverse shadowing property does not imply shadowing property.

We devote this section to some partial results in this direction.

Example 1. Our first example in this section is an example of a homeomorphism of a compact metric space that
does not have the shadowing property but has the inverse shadowing property in the case where mappings (1) of a
d-method are homeomorphisms.

Thus, let f : S1 → S1 be a North Pole–South Pole mapping and let n, s be the North Pole and South
Pole, respectively (i.e., they are fixed points of f , n is a repeller, and s is an attractor). It is well known that
f has both the shadowing property and the inverse shadowing property.

Set M = S1 × {0}⊔ S1 × {1}/(s, 0) ∼ (n, 1). Consider the mapping

F : M→ M

determined by the rule: F(x, 0) = f (x) and F(x, 1) = f (x). Obviously, F does not have the
shadowing property.

Clearly, for any homeomorphism G : M → M that is C0-close enough to F, the following
relations hold:

G(S1 × {0}) = S1 × {0}

and
G(S1 × {1}) = S1 × {1}.

Since f has the inverse shadowing property and any trajectory of F belongs either to S1 × {0} or to
S1 × {1}, the homeomorphism f itself has the inverse shadowing property.

Example 2. Now, we construct an example of a diffeomorphism of a noncompact manifold that does not have the
shadowing property but has the inverse shadowing property.

Consider the Banach space
X = R×R×RZ

in which the norm is defined as follows: for v ∈ X, where v = (x, y, {wn}n∈Z),

|v| = max

(
|x|, |y|, sup

n∈Z
|wn|

)
.
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It is convenient for us to denote coordinates of a point q ∈ X with respect to the representation of X
in the form of a direct product:

q = (qx, qy, qw),

where qx, qy ∈ R, qw ∈ RZ.
We take as the manifold M on which we define a diffeomorphism f the subset of X which consists of

a countable union of disjoint lines sm ⊂ X, um ⊂ X, m ∈ Z.
We define f so that f maps a line sm to the line sm+1 and a line um to the line um+1; f contracts on the

lines sm and expands on the lines um.
Let h : R→ [0, 1] be a continuous function such that

h|[−1,1] ≡ 0

and
h|(−∞,−2]∪[2,∞) ≡ 1.

Introduce the following notation: for m ∈ Z set

αm =
m

∑
0

sign(m)
|m|+ 1

+
1

3m + 1

and

βm =
m

∑
0

sign(m)
|m|+ 1

+
1

3m + 2
.

Define sets um, sm, m ∈ Z, as follows:

sm = {(t, αm, e2mh(t)) | t ∈ R}

and
um = {(t, βm, e2m+1h(t)) | t ∈ R}.

Here, ej is the jth unit coordinate vector in RZ.
Set

M = tm∈Z(um ∪ sm).

Clearly, M is a complete metric space.
Define f by the formula

• for x = (t, αm, e2mh(t)) ∈ sm,

f (x) =
(

t/2, αm+1, e2(m+1)h(t/2)
)

;

• for x = (t, βm, e2m+1h(t)) ∈ um,

f (x) =
(

2t, βm+1, e2(m+1)+1h(2t)
)

.

Clearly, the constructed mapping f is a diffeomorphism and the following relations hold for any
n ∈ Z:

f (sn) = sn+1, f (un) = un+1. (5)
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Let us show that f does not have the shadowing property. For an arbitrary d > 0, we construct a
d-pseudotrajectory that cannot be 1/2-shadowed by an exact one.

Fix a d > 0. Clearly, there exists an N ∈ N such that

100 ·
(

1
2

)N
< 1

and ∣∣∣∣ 1
3N + 1

− 1
3N + 2

∣∣∣∣ < d.

Define a d-pseudotrajectory ξ = {ξk} as follows. Set

ξ0 = (100, α0, e0) ∈ s0,

ξi = f i(ξ0), i < 0,

ξi = f i(ξ0), i = 1, 2, . . . , N − 1,

ξN = f (ξN−1) + (0,
1

3N + 2
− 1

3N + 1
, 0) ∈ uN ,

and
ξN+1+i = f i(ξN+1), i ∈ N.

Note that, since h(t) = 0 for |t| ≤ 1, the inclusion ξN ∈ uN holds. Thus, the sequence {ξn} is well
defined and is a d-pseudotrajectory.

To get a contradiction, assume that there exists a point p = (px, py, pw) ∈ M that 1/2-shadows ξ.
Then, it is easily seen that the inequality

|p− ξ0| < 1/2

implies that p ∈ s0, and, taking (5) into account, we get the inclusions

f n(p) ∈ sn, n ∈ N.

The last relation for the points
f n(p) = (xn, yn, wn)

implies the estimates

|xn| ≤
(

1
2

)n
· |px|

for n ∈ N.
However, since ξN ∈ uN , we also have the relation

lim
i→∞
|(ξi)x| = +∞.

Hence, the pseudotrajectory ξ cannot be 1/2-shadowed by an exact one.
Let us now show that f has the Lipschitz inverse shadowing property. For that, we show that if

d > 0 is small enough (namely, if d < 1/2), then any d-method {gn} satisfies the following relations for all
n, m ∈ Z:

gn(sm) = sn+m, gn(um) = un+m. (6)
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After that, the Lipschitz inverse shadowing property for f follows from (6) and the known fact that a
hyperbolic linear mapping on the line R has the Lipschitz inverse shadowing property.

Relations (6) are easily obtained by induction. For example, let us prove (6) for the sets sm and for
n ≥ 0:

gn(sm) = sn+m. (7)

Indeed, for n = 0 the above equality is obvious. Assume that (7) holds for n ∈ N ∪ {0}. Let us
show that in this case, (7) holds for n + 1. Since the mapping gn+1 is continuous and the sets sm are
arcwise connected, the image gn+1(sm) belongs to one of the sets uk or sk for some k ∈ Z. Let us show that
k = n + m + 1. Take a point v ∈ sm+n,

v = (100, αn+m, e2(m+n)),

and an arbitrary point
ṽ ∈ g−1

n (v).

Then, ṽ ∈ sm by the induction assumption. On the other hand,

|gn+1(ṽ)− f (gn(ṽ))| = |gn+1(ṽ)− f (v)| < 1/2.

Since f (v) = (50, αn+m+1, e2(m+n+1)), the last relation implies that for the point gn+1(ṽ) = (x̃, ỹ, w̃),

w̃ = e2(m+n+1).

Thus,
gn+1(sm) ⊆ sm+n+1. (8)

To prove the converse inclusion, let us consider an arbitrary point

p = (x, βm+n+1, w) ∈ sm+n+1.

Take two points pl , pr ∈ sm+n+1 that lie far to the left and far to the right of p, respectively. Namely, set

pl = (x− |x| − 100, βm+n+1, e2(m+n+1)),

pr = (x + |x|+ 100, βm+n+1, e2(m+n+1)).

Now, take arbitrary points vl ∈ g−1
n ( f−1(pl)) and vr ∈ g−1

n ( f−1(pr)) (these points satisfy the relations
f (gn(vl)) = pl , f (gn(vr)) = pr).

We can estimate
|gn+1(vl)− pl | = |gn+1(vl)− f (gn(vl))| < 1/2, (9)

|gn+1(vr)− pr| = |gn+1(vr)− f (gn(vr))| < 1/2.

From (8), it follows that gn+1(vl) ∈ sm+n+1, and from inequality (9) we conclude that the point
gn+1(vl) also (as well as pl) lies far to the left of p.

Similary, gn+1(vr) ∈ sm+n+1 lies far to the right of p.
From the continuity of gn+1 it follows that the image gn+1([vl , vr]) ⊆ sm+n+1 must contain all

intermediate values between gn+1(vl) and gn+1(vr) (here by [vl , vr], we denote the set {(x, y, w) ∈ sn | x ≥
(vl)x, x ≤ (vr)x}).
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Thus, gn+1([vl , vr]) contains the point p. This proves the converse inclusion and completes the
induction step.

Thus, we have shown that f has the Lipschitz inverse shadowing property.
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