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Abstract: We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC,
the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a
Boolean topological group G without infinite separable pseudocompact subsets having the following
“selective” compactness property: For each free ultrafilter p on the set N of natural numbers and every
sequence (Un) of non-empty open subsets of G, one can choose a point xn ∈ Un for all n ∈ N in such
a way that the resulting sequence (xn) has a p-limit in G; that is, {n ∈ N : xn ∈ V} ∈ p for every
neighbourhood V of x in G. In particular, G is selectively pseudocompact (strongly pseudocompact)
but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and
the first listed author. The group G above is not pseudo-ω-bounded either. Furthermore, we show
that the free precompact Boolean group of a topological sum

⊕
i∈I Xi, where each space Xi is either

maximal or discrete, contains no infinite separable pseudocompact subsets.

Keywords: pseudocompact; strongly pseudocompact; p-compact; selectively sequentially pseudocompact;
pseudo-ω-bounded; non-trivial convergent sequence; separable; free precompact Boolean group; reflexive
group; maximal space; ultrafilter space

MSC: Primary: 22A05; Secondary: 54A20, 54D30, 54H11

All topological spaces considered in this paper are assumed to be Tychonoff and all topological groups are
assumed to be Hausdorff (and thus Tychonoff as well).

As usual, N denotes the set of natural numbers, and ω denotes the first infinite cardinal. We freely
identify N with ω. The symbol βN denotes the Stone-Čech compactification of N. Recall that βN \N
can be identified with the set of all free ultrafilters on N. For sets X and Y, the symbol YX denotes the
set of all functions from X to Y.

A group, of which each element has order 2, is called a Boolean group. Every Boolean group is
abelian, so x + x = 0 holds for each element x of a Boolean group. We use Z2 to denote the unique
(Boolean) group with two elements.

1. Definitions

Let p be a free ultrafilter on N. Recall that a point x of a topological space X is a p-limit of a
sequence {xn : n ∈ N} of points of X provided that {n ∈ N : xn ∈ V} ∈ p for every neighbourhood V
of x in X [1].

The next notion is due to Angoa, Ortiz-Castillo, and Tamariz-Mascarúa [2,3].
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Definition 1. Let p be a free ultrafilter on N. A space X is strongly p-pseudocompact if it has the following
property: For every sequence {Un : n ∈ N} of non-empty open subsets of X, one can choose a point xn ∈ Un for
all n ∈ N in such a way that the resulting sequence {xn : n ∈ N} has a p-limit in X.

We shall also consider a weaker property.

Definition 2. A space X is selectively pseudocompact (called also strongly pseudocompact) provided
that, for every sequence {Un : n ∈ N} of non-empty open subsets of X, one can choose a point xn ∈ Un for all
n ∈ N in such a way that the resulting sequence {xn : n ∈ N} has a p-limit in X for some free ultrafilter p on
N (depending on the sequence {Un : n ∈ N} in question).

This notion was introduced by García-Ferreira and Ortiz-Castillo [4] under the name “strongly
pseudocompact.” Dorantes-Aldama and the first listed author gave a list of equivalent descriptions of
this property in ([5], Theorem 2.1) and proposed an alternative name for it, calling a space with this
property “selectively pseudocompact” ([5], Definition 2.2). This terminology was later adopted in [6].

Clearly, strongly p-pseudocompact spaces are selectively pseudocompact (strongly pseudocompact).
The following notion is due to Dorantes-Aldama and the first listed author ([5], Definition 2.3).

Definition 3. A space X is selectively sequentially pseudocompact provided that, for every sequence
{Un : n ∈ N} of non-empty open subsets of X, one can choose a point xn ∈ Un for all n ∈ N in such a way that
the resulting sequence {xn : n ∈ N} has a convergent subsequence.

Selectively sequentially pseudocompact spaces are selectively pseudocompact (strongly
pseudocompact), while the converse does not hold in general [5].

When considering the property from Definition 1 for multiple ultrafilters p simultaneously,
one could obtain two natural versions as follows:

Definition 4. Let P be a non-empty subset of βN \N. A space X is

(i) strongly P-bounded provided that, for every sequence {Un : n ∈ N} of non-empty open subsets of X,
one can choose a point xn ∈ Un for all n ∈ N in such a way that the resulting sequence {xn : n ∈ N} has
a p-limit in X for every p ∈ P;

(ii) strongly P-pseudocompact provided that X is strongly p-pseudocompact for each p ∈ P.

The notion of strong P-boundedness is due to Angoa, Ortiz-Castillo, and Tamariz-Mascarúa [2,3].
To the best of our knowledge, the notion from Item (ii) of Definition 4 appears to be new.

For every non-empty subset P of βN \N, the implication

strongly P-bounded→ strongly P-pseudocompact (1)

trivially holds. It is also clear that the larger the subset P of βN \N is, the stronger the corresponding
property of strong P-boundedness and strong P-pseudocompactness is.

Remark 1. (i) A sequence in a topological space X has a p-limit in X for every p ∈ βN \N if and only if its
closure in X is compact [1]. Therefore, strong (βN \N)-boundedness of a space X is easily seen to be equivalent
to the following property: For every sequence {Un : n ∈ N} of non-empty open subsets of X, there exists a
compact subset K of X which has a non-empty intersection with each Un. The spaces having this property are
called pseudo-ω-bounded in [2,3].

(ii) Infinite strongly (βN \ N)-bounded spaces contain infinite compact subsets. Indeed, an infinite
space X contains a sequence {Un : n ∈ N} of pairwise disjoint non-empty open subsets. If X is strongly
(βN \N)-bounded, then the compact subspace K of X as in Item (i) must be infinite.
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Recall that a space X is ω-bounded if every countable subset of X has compact closure in X. A space
is pseudocompact if every real-valued continuous function on it is bounded.

2. Introduction

The diagram in Figure 1 summarizes implications between notions introduced in Section 1.
The double arrow in Figure 1 denotes the implication which holds only in the class of topological

groups and fails for general topological spaces, as has been shown in [5].

compact

strongly (βN \N)-bounded ω-bounded

strongly (βN \N)-pseudo. count. compact seq. compact

strongly p-pseudo. sel. pseudo. sel. seq. pseudo.

pseudocompact

2

1

3

4

6

5

Figure 1. Implications between notions introduced in Section 1

Now we shall discuss the reversibility of arrows in Figure 1 in the class of topological groups.
In Example 1, we show that Arrow 1 is not reversible. Our Corollary 2 shows that Arrow 2 is not
reversible. In the text following ([7], Question 2.6), García-Ferreira and Tomita mention that there exist
two free ultrafilters p and q on N and a topological group G which is strongly p-pseudocompact but
not strongly q-pseudocompact; in particular, G is not strongly (βN \N)-pseudocompact. This shows
that Arrow 3 is not reversible.

Assuming Continuum Hypothesis CH, García-Ferreira and Tomita gave an example of a
selectively pseudocompact group G whose square G2 is not selectively pseudocompact [6]. Since strong
p-pseudocompactness is preserved by products [3] and implies selective pseudocompactness, G cannot
be strongly p-pseudocompact for any free ultrafilter p on N. This shows that Arrow 4 is not reversible
under CH. The reversibility of this arrow in ZFC alone remains unclear; see Question 6.

Next, we turn our attention to Arrows 5 and 6.
García-Ferreira and Tomita in [7] gave an example demonstrating that Arrow 6 is not reversible in

the class of topological groups. The authors later showed in [8] that many examples of pseudocompact
groups known in the literature fail to be selectively pseudocompact, thereby establishing relative
abundance of examples witnessing non-reversibility of Arrow 6 for topological groups.

Dorantes-Aldama and the first listed author gave a consistent example of a countably
compact (thus, selectively pseudocompact) topological group which is not selectively sequentially
pseudocompact ([5], Example 5.7), and they asked whether such an example exists in ZFC alone ([5],
Question 8.3):

Question 1. (i) Is there a ZFC example of a selectively pseudocompact (abelian) group which is not selectively
sequentially pseudocompact?

(ii) Is there a ZFC example of a countably compact (abelian) group which is not selectively sequentially
pseudocompact?
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We shall answer Item (i) of this question positively in Corollary 5, thereby showing that Arrow 5
of Figure 1 is not reversible in the class of topological groups. Moreover, an example we construct has
much stronger property than mere selective pseudocompactness; see Corollary 4 (i).

Item (ii) of Question 1 remains open.
We refer the reader to [5] for examples witnessing the non-reversibility of arrows in Figure 1

without numbers assigned to them in the class of topological groups.
The paper is organized as follows. Section 3 contains our results related to Question 1. The main

result here is Theorem 1. Corollary 2 in this section shows that the implication in Equation (1) is not
reversible for P = βN \N, even in the class of topological groups. Section 4 collects definitions of
and background material on free Boolean groups over a set and free precompact Boolean groups of
a topological space. In Section 5, we define a notion of a coherent map f and introduce a topology
on its domain so that the continuity of f with respect to this topology becomes equivalent to f being
coherent. Splitting maps are defined in Section 6. The notion of a coherent splitting map is used in the
proof of Theorem 1. The main result in this section is Theorem 2 and its Corollary 7. In Section 7, we
apply the latter to show that for every infinite subset A of the free precompact Boolean group G of an
arbitrary topological sum

⊕
k∈K Xk, where each space Xk is either discrete or maximal, one can find

a continuous group homomorphism ϕ : G → Z2 such that the set {a ∈ A : ϕ(a) = z} is infinite for
every z ∈ Z2 (Theorem 3). This result is applied to deduce that all separable pseudocompact subsets of
G as above are finite (Theorem 4). In Section 8, we discuss some connections of our results to known
results in the literature. Theorem 2 is proved in Section 9, and Section 10 is devoted to the proof of
Theorem 1. Open questions are listed in Section 11.

3. Results

The main goal of the paper is to prove the following theorem.

Theorem 1. Let κ be an infinite cardinal such that κω = κ and P be a non-empty subset of βN \ N
satisfying |P| ≤ κ. There exists a dense strongly P-pseudocompact subgroup of Zκ

2 without infinite separable
pseudocompact subsets.

The proof of this theorem is postponed until Section 10.
Let c denote the cardinality of the continuum. Applying Theorem 1 to P = βN \N and κ = 2c,

we obtain the following:

Corollary 1. There exists a dense strongly (βN \ N)-pseudocompact subgroup G of Z2c
2 without infinite

separable pseudocompact subsets.

The group G in this corollary is clearly infinite. By Remark 1 (ii), infinite strongly (βN \
N)-bounded spaces contain infinite compact subsets (and thus, also infinite separable pseudocompact
subsets). Therefore, “strong (βN \N)-pseudocompactness” of G in Corollary 1 cannot be strengthened
to its “strong (βN \N)-boundedness.” By the same reason, the topological group G from Corollary 1
witnesses the validity of the following corollary, showing that Arrow 2 in Figure 1 is not reversible,
even for topological groups.

Corollary 2. A strongly (βN \N)-pseudocompact Boolean group need not be strongly (βN \N)-bounded.

This corollary shows that the implication in Equation (1) is not reversible when P = βN \N, even
in the class of topological groups.

Given a free ultrafilter p on N, we can apply Theorem 1 to P = {p} and κ = c to obtain the
following:
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Corollary 3. For every free ultrafilter p on N, there exists a dense strongly p-pseudocompact subgroup of Zc
2

without infinite separable pseudocompact subsets.

If κ is an infinite cardinal, then every dense subset of Zκ
2 must be infinite. Since infinite selectively

sequentially pseudocompact spaces contain non-trivial convergent sequences by ([5], Proposition 3.1)
and convergent sequences are separable and pseudocompact, the topological groups from Theorem 1
and its Corollaries 1 and 3 are not selectively sequentially pseudocompact. In particular, we have the
following corollary.

Corollary 4. (i) There exists a dense strongly (βN \ N)-pseudocompact subgroup of Z2c
2 which is not

selectively sequentially pseudocompact.
(ii) For every free ultrafilter p on N, there exists a dense strongly p-pseudocompact subgroup of Zc

2 which is
not selectively sequentially pseudocompact.

As can be seen from Figure 1, the topological groups from Corollary 4 are selectively
pseudocompact. Therefore, the following particular version of Corollary 4 (ii) provides a positive
answer to Question 1 (i).

Corollary 5. There exists a selectively pseudocompact Boolean group (of weight c) which is not selectively
sequentially pseudocompact.

Our next remark clarifies the strength of the condition “without infinite separable pseudocompact
subsets” appearing in Theorem 1 and its Corollaries 1 and 3. Indeed, this remark shows that the
topological groups in these results contain no infinite subsets which belong to any of the following
classes of spaces:

• countably pseudocompact;
• countably pracompact;
• countably compact;
• compact.

Remark 2. (i) Hernández and Macario [9] say that a space X is countably pseudocompact if, for every
countable subset A of X, there exists a countable subset B of X such that A ⊆ B and B is pseudocompact.
(Here B denotes the closure of B in X.) It is immediately obvious from this definition that every infinite
countably pseudocompact space contains an infinite separable pseudocompact subset.

(ii) A space X is said to be countably pracompact if X contains a dense set Y such that every infinite subset
of Y has an accumulation point in X; see ([10], Ch. III, Sec. 4). Let X be an infinite countably pracompact
space, and let Y be its dense subspace such that every infinite subset of Y has an accumulation point in
X. Since X is infinite and Y is dense in X, the set Y must be infinite. Fix a countably infinite subset S
of Y. Then C = S is a separable space. Note that every infinite subset of S has an accumulation point in
C. Since S is dense in C, it easily follows that C is pseudocompact. We proved that an infinite countably
pracompact space contains an infinite separable pseudocompact subset.

(iii) Since countably compact spaces are countably pracompact, it follows from (ii) that every infinite countably
compact space contains an infinite separable pseudocompact subset.

(iv) Since compact spaces are countably compact, it follows from (iii) that every infinite compact space contains
an infinite separable pseudocompact subset.

Remark 3. The topological groups from Theorem 1 and all its corollaries above are (Pontryagin) reflexive.
Indeed, the topological group G from Theorem 1 has no infinite separable pseudocompact subsets, so all compact
subsets of G are finite by Remark 2 (iv). Since G is pseudocompact, it is reflexive by ([11], Theorem 2.8) (this also
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follows from ([12], Lemma 2.3 and Theorem 6.1)). Finally, the topological groups from all corollaries of Theorem 1
are obtained by application of this theorem, so they inherit their reflexivity from it.

Corollaries 1 and 3 and Figure 1 suggest the following natural question:

Question 2. Does there exist an infinite abelian (or even Boolean) strongly (βN \ N)-bounded group G
satisfying one of the following conditions:

(i) G is not selectively sequentially pseudocompact;
(ii) G does not have non-trivial convergent sequences?

Since infinite selectively sequentially pseudocompact spaces contain non-trivial convergent
sequences by ([5], Proposition 3.1), Item (ii) of this question is stronger than Item (i). By Remark 1 (ii),
Item (ii) of the question cannot be further strengthened by requiring all compact subsets of G to
be finite.

According to the double arrow in Figure 1, a positive answer to Question 2 (i) would provide
an example of a strongly (βN \ N)-bounded (abelian) group which is not ω-bounded. However,
a topological group with these properties can be easily constructed.

Example 1. Strongly (βN \N)-bounded abelian groups need not be ω-bounded. Indeed, let κ be an uncountable
cardinal, and let H be a countably infinite subgroup of the torus group T. For every h ∈ H, let ch ∈ Tκ

be the constant function from κ to T defined by ch(α) = h for all α ∈ κ. Define C = {ch : h ∈ H}.
Let D = { f ∈ Tκ : |{α ∈ κ : f (α) 6= 0}| ≤ ω} be the Σ-product in Tκ , and let G be the smallest subgroup of
Tκ containing C ∪ D. Note that C is a closed subgroup of G which is not compact. Indeed, if C were compact,
its projection H on a fixed coordinate would be compact as well, and as H would be an infinite compact subgroup
of T, we would find that H = T, in contradiction to our assumption that H is countable. Since C is a countably
infinite non-compact closed subgroup of G, this shows that G is not ω-bounded. Since G has a dense ω-bounded
subgroup D, it is strongly (βN \N)-bounded.

Example 1 shows that Arrow 1 in Figure 1 is not reversible, even for topological groups.
The next remark shows that the assumption in Theorem 1 that the cardinal κ satisfies κω = κ is

essential and cannot be omitted, at least in ZFC.

Remark 4. Under the Generalized Continuum Hypothesis (GCH), if κω > κ, then every dense pseudocompact
subgroup G of Zκ

2 contains a non-trivial convergent sequence [13]. Further results in this direction can be found
in [14].

4. Free Boolean Groups B(X) and Free Precompact Boolean Groups FPB(X)

Let X be a set. The set B(X) = [X]<ω of all finite subsets of X becomes an abelian group with the
symmetric difference E + F = (E \ F) ∪ (F \ E) as its group operation + and the empty set as its zero
element. Clearly, if E, F ∈ B(X) are disjoint, then E + F = E ∪ F. Each element E of B(X) has order 2,
as E + E = 0, so B(X) is a Boolean group.

If one abuses notation by identifying an element x ∈ X with the singleton {x} ∈ B(X), then each
element E ∈ B(X) of the group B(X) admits a unique decomposition E = ∑x∈E x, so the set X can be
naturally considered as the set of generators of B(X). (Here we agree that ∑x∈∅ x = 0.)

Every map f : X → Z2 has a unique extension f̃ : B(X)→ Z2 to a homomorphism of B(X) to Z2

defined by
f̃ (E) = ∑

x∈E
f (x) for E ∈ B(X), (2)

where the sum is taken in the group Z2. Since the variety A2 of all Boolean groups is generated by
the single group Z2, the group B(X) coincides with the free group in the variety A2 over a set X [15].
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Thus, B(X) is the free Boolean group over X. (Note that the trivial group is the free Boolean group over
the empty set.)

Recall that a topological group is precompact if it is a subgroup of some compact group,
or equivalently, if its completion is compact. The class of all precompact Boolean groups forms
a variety V of topological groups [16,17]. Therefore, given a topological space X, there exists the free
object FPB(X) of X in V [18,19] which we shall call the free precompact Boolean group of X.

Definition 5. Let V be the variety of all precompact Boolean groups. For a topological space X, a topological
group FPB(X) is said to be the free precompact Boolean group of X provided it satisfies two properties:

(i) FPB(X) ∈ V ,
(ii) there exists a continuous map ηX : X → FPB(X) such that

(a) FPB(X) is algebraically generated by ηX(X), and
(b) for every continuous map ϕ : X → G with G ∈ V , there exists a continuous homomorphism

ϕ̂ : FPB(X)→ G such that ϕ = ϕ̂ ◦ ηX .

A description of FPB(X) as the reflection of the free (abelian) topological group of a space X in
the class V of precompact Boolean groups can be found in ([20], Section 9). Another description for
zero-dimensional spaces X is given in Lemma 2 below. The reason why zero-dimensionality of a space
X plays such an important role can be seen from the following lemma.

Lemma 1. For a topological space X, the following conditions are equivalent:

(i) The map ηX from Item (ii) of Definition 5 is a homeomorphic embedding;
(ii) X is zero-dimensional.

Proof. (i) → (ii) Since FPB(X) ∈ V by Definition 5 (i), FPB(X) is a precompact Boolean group.
Then the completion K of FPB(X) is a compact Boolean group, so K is zero-dimensional. Since ηX(X) ⊆
FPB(X) ⊆ K, the subspace ηX(X) of K is zero-dimensional as well. Finally, since ηX(X) is
homeomorphic to X by our assumption, it follows that X is zero-dimensional.

(ii) → (i) Since X is zero-dimensional, there exists a homeomorphic embedding ϕ : X → G,
where G = Zκ

2 for a suitable cardinal κ. Let ηX and ϕ̂ be as in Definition 5 (ii). Since ϕ = ϕ̂ ◦ ηX
is an injection, so is ηX. Therefore, ηX : X → ηX(X) is a bijection, so it has its inverse map η−1

X :
ηX(X) → X. Similarly, since ϕ : X → ϕ(X) is a bijection, it has its inverse ϕ−1 : ϕ(X) → X. Now,
ϕ ◦ η−1

X = ϕ̂ ◦ ηX ◦ η−1
X = ϕ̂ �ηX(X) by Definition 5 (ii) (b), so η−1

X = ϕ−1 ◦ ϕ̂ �ηX(X). Since ϕ is a
homeomorphic embedding, its inverse ϕ−1 is continuous. Since ϕ̂ is continuous as well, so is the
composition η−1

X = ϕ−1 ◦ ϕ̂ �ηX(X). Since ηX is continuous by Definition 5 (ii), we conclude that
ηX : X → ηX(X) is a homeomorphism. We have proved that ηX : X → FPB(X) is a homeomorphic
embedding.

Lemma 2. Let X be a zero-dimensional topological space and let FX be the family of all continuous maps
f : X → Z2 from X to the group Z2 endowed with the discrete topology. Consider the initial topology
TX on B(X) with respect to the family F̃X = { f̃ : f ∈ FX} of homomorphisms; that is, the family
{ f̃−1(z) : f ∈ FX, z ∈ Z2} forms a subbase for the topology TX. Then the topological group (B(X), TX)

coincides with the free precompact Boolean group FPB(X) of X, as witnessed by the natural inclusion map of
X into B(X) (sending each x ∈ X to {x} ∈ B(X)) taken as ηX. Furthermore, TX induces on X the original
topology of X.

Proof. First, we check Items (i) and (ii) of Definition 5.
(i) Since TX is the initial topology with respect to the family F̃X consisting of homomorphisms

into the compact group Z2, it is precompact. Since B(X) is a Boolean group, we have (B(X), TX) ∈ V .
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(ii) Item (a) is clear, as ηX(X) = X algebraically generates B(X). To check Item (b), suppose that
G ∈ V and ϕ : X → G is a continuous map. It follows from G ∈ V that G is a precompact Boolean
group, so its completion K is a compact Boolean group. The standard facts of the duality theory imply
that K is topologically isomorphic to the Cartesian product Zτ

2 for some cardinal τ. Therefore, we can
identify G with a subgroup of Zτ

2 .
Let α < τ be arbitrary. Consider the projection πα : Zτ

2 → Z2 on the αth coordinate. Then the
composition map ϕα = πα ◦ ϕ : X → Z2 is continuous, so ϕα ∈ FX . Now ϕ̃α ∈ F̃X by our definition
of F̃X. Since the topology TX has the family F̃X as its subbase, it follows that the homomorphism
ϕ̃α : (B(X), TX)→ Z2 is continuous.

Let ϕ̂ : B(X) → Zτ
2 be the continuous homomorphism defined by ϕ̂(E) = (ϕ̃α(E))α<τ for

E ∈ B(X). Note that ϕ̂(x) = (ϕ̃α(x))α<τ = (ϕα(x))α<τ = (πα(ϕ(x)))α<τ = ϕ(x) for x ∈ X, as each
ϕ̃α extends ϕα. This shows that ϕ̂ �X= ϕ. Since ϕ : X → G is a homomorphism, X algebraically
generates B(X), and G is a subgroup of Zτ

2 , it follows that ϕ̂(B(X)) ⊆ G. We have defined a continuous
homomorphism ϕ̂ : (B(X), TX)→ G. Since ηX : X → B(X) is the natural inclusion map, from ϕ̂ �X= ϕ

we conclude that ϕ̂ ◦ ηX = ϕ.
It follows from (i) and (ii) that (B(X), TX) coincides with the free precompact Boolean group

FPB(X) of X, as witnessed by the natural inclusion map of X into B(X) taken as ηX. Since X is
zero-dimensional, from Lemma 1 we conclude that ηX is a homeomorphic embedding, which implies
that TX induces the original topology on X.

Definition 6. We shall say that a subspace Y of a topological space X is Z2-embedded in X provided that
every continuous map g : Y → Z2 can be extended to a continuous map f : X → Z2.

Remark 5. A clopen subset of a topological space is Z2-embedded in it.

We finish this section with the lemma which will be needed in the future proofs.

Lemma 3. Let X be a zero-dimensional space.

(i) If Y is a zero-dimensional space and ϕ : Y → X is a continuous injection, then the continuous
homomorphism ϕ̂ : FPB(Y)→ FPB(X) extending ϕ is an injection as well.

(ii) If a closed subset Y of X is Z2-embedded in X, then FPB(Y) is a closed subgroup of FPB(X).

Proof. (i) It follows from Lemma 2 that, algebraically, ϕ̂ : B(Y) → B(X) and ϕ̂ �Y= ϕ. Since ϕ is an
injection, so is ϕ̂.

(ii) By Lemma 2, we can identify FPB(X) and FPB(Y) with (B(X), TX) and (B(Y), TY),
respectively. Since B(Y) ⊆ B(X), it suffices to show that

(a) TX induces the topology TY on B(Y), and
(b) B(Y) is TX-closed in B(X).

In the proof below, we freely use notations from Lemma 2.
(a) Since Y is a subspace of X, one has { f �Y : f ∈ FX} ⊆ FY. Since Y is Z2-embedded in X,

from Definition 6 we obtain the inverse inclusion FY ⊆ { f �Y : f ∈ FX}. This establishes the equality
FY = { f �Y : f ∈ FX}, which implies (a) by definition of TX and TY.

(b) Suppose that E ∈ B(X) \ B(Y). There then exists x0 ∈ E \Y. Since E is a finite subset of X and
Y is TX-closed in X, the set F = Y ∪ (E \ {x0}) is TX-closed in X as well. Since X is zero-dimensional,
we can find a clopen subset W of X such that F ⊆W and x0 6∈W. Define the function f : X → Z2 by
f (W) ⊆ {0} and f (X \W) ⊆ {1}. Since W is clopen in X, we have f ∈ FX, which implies f̃ ∈ F̃X.
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Therefore, O = f̃−1(1) ∈ TX by our definition of TX. Since E \ {x0} ⊆ F ⊆ W ⊆ f−1(0) ⊆ f̃−1(0)
and x0 ∈ X \W ⊆ f−1(1) ⊆ f̃−1(1), we have

f̃ (E) = ∑
x∈E

f̃ (x) = f̃ (x0) + ∑
x∈E\{x0}

f̃ (x) = 1 + 0 = 1

by Equation (2), so E ∈ O. Since Y ⊆W ⊆ f−1(0) ⊆ f̃−1(0), Y algebraically generates B(Y) and f̃ is a
homomorphism, we obtain f̃ (B(Y)) ⊆ {0}. This shows that O ∩ B(Y) = ∅.

We refer the reader to ([21], Section 2) for properties of free precompact (abelian) groups and [22]
for those of free precompact Boolean groups.

5. Coherent Maps

Definition 7. Given sets P ⊆ βN \N and K, define X = P× K× (ω + 1) and X∗ = P× K× {ω}.

Definition 8. Let X be a set as in Definition 7. We shall say that a map f : X → Z2 is coherent provided that

{n ∈ ω : f (p, k, n) = f (p, k, ω)} ∈ p for every p ∈ P and each k ∈ K. (3)

Note that the map f : X → Z2 is coherent if and only if f (p, k, ω) is a p-limit of the sequence
{ f (p, k, n) : n ∈ N} whenever p ∈ P and k ∈ K.

Definition 9. We introduce the topology on a set X as in Definition 7 by declaring each point of X \ X∗ to be
isolated and a basic open neighbourhood of a point (p, k, ω) ∈ X∗ to be of the form {(p, k, ω)} ∪ {(p, k, n) :
n ∈ F} for a given element F ∈ p.

Remark 6. Let X be a topological space from Definition 9.

(i) Note that Xp,k = {(p, k, n) : n ∈ ω + 1} for (p, k) ∈ P×K is a clopen subset of X, so X =
⊕

(p,k)∈P×K Xp,k
is a topological sum of Xp,k.

(ii) Since each Xp,k for (p, k) ∈ P × K is a space with a single non-isolated point, it is zero-dimensional.
It follows from this and (i) that X is zero-dimensional as well.

The straightforward verification of the following lemma is left to the reader.

Lemma 4. Let X be a set as in Definition 7. Then a map f : X → Z2 is coherent in the sense of Definition 8
if and only if it is continuous with respect to the topology on X described in Definition 9 and the discrete topology
on Z2.

We finish this section with two technical lemmas which will be needed in future proofs. The reader
can safely skip them during the first pass.

Lemma 5. Let X and X∗ be sets as in Definition 7. Then every map g : X \X∗ → Z2 admits a unique coherent
extension f : X → Z2 over X.

Proof. For fixed p ∈ P and k ∈ K, we have

{n ∈ ω : g(p, k, n) = 0} ∪ {n ∈ ω : g(p, k, n) = 1} = ω ∈ p.

Since p is an ultrafilter on ω, there exists a unique ip,k = 0, 1 such that

{n ∈ ω : g(p, k, n) = ip,k} ∈ p. (4)
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Define f (p, k, ω) = ip,k for every p ∈ P and k ∈ K. Finally, let f (p, k, n) = g(p, k, n) for all
(p, k, n) ∈ X \ X∗ = P× K×ω. It follows from this definition and Equation (4) that Equation (3) holds;
that is, f is coherent by Definition 8.

Lemma 6. Let X be a set as in Definition 7. If P′ ⊆ P, K′ ⊆ K and h ∈ B(X) \ B(P′ × K′ × (ω + 1)),
then there exists a coherent map f : X → Z2 such that f̃ (B(P′ × K′ × (ω + 1))) ⊆ {0} and f̃ (h) = 1.

Proof. Fix a finite set F ⊆ X such that h = ∑(p,k,n)∈F{(p, k, n)}. It follows from h ∈ B(X) \ B(P′ ×
K′ × (ω + 1)) that F 6⊆ P′ × K′ × (ω + 1), so we can fix

(p0, k0, n0) ∈ F \ (P′ × K′ × (ω + 1)). (5)

Since F is finite, there exists m ∈ ω such that (p0, k0, n) 6∈ F for all n ∈ ω with n ≥ m. Define
f : X → Z2 by

f (p, k, n) =

{
1 if p = p0, k = k0 and either n = n0 or n ≥ m
0 otherwise

for (p, k, n) ∈ X. (6)

Let p ∈ P and k ∈ K be arbitrary. If either p 6= p0 or k 6= k0, then f (p, k, n) = 0 for every n ∈ ω + 1
by Equation (6), so ω = {n ∈ ω : f (p, k, n) = f (p, k, ω) = 0} ∈ p. Suppose now that p = p0 and
k = k0. Then

{n ∈ ω : n ≥ m} ⊆ {n ∈ ω : f (p0, k0, n) = f (p0, k0, ω) = 1} = N

by Equation (6). Since p is a free ultrafilter on ω, we have {n ∈ ω : n ≥ m} ∈ p. This implies that
N ∈ p, and therefore, f is coherent by Definition 8.

If (p, k, n) ∈ P′ × K′ × (ω + 1), then either p 6= p0 or k 6= k0 by Equation (5), so f (p, k, n) = 0 by
Equation (6). Therefore, f (P′ × K′ × (ω + 1)) ⊆ {0}. Since f̃ is a homomorphism extending f , it easily
follows that f̃ (B(P′ × K′ × (ω + 1))) ⊆ {0}.

From the choice of m and Equation (6), we conclude that f (p, k, n) = 0 for all (p, k, n) ∈ F \
{(p0, k0, n0)}. Furthermore, f (p0, k0, n0) = 1 by Equation (6).

Since f̃ is a homomorphism extending f , we obtain

f̃ (h) = f̃

 ∑
(p,k,n)∈F

{(p, k, n)}

 = ∑
(p,k,n)∈F

f̃ {(p, k, n)} = ∑
(p,k,n)∈F

f (p, k, n) = f (p0, k0, n0) = 1.

This finishes the proof of our lemma.

6. Coherent Splitting Maps and Their Continuity

Definition 10. Let X be a set. We shall say that a map f : X → Z2 splits a subset A of B(X) provided that
the set {a ∈ A : f̃ (a) = i} is infinite for each i ∈ Z2, where f̃ : B(X)→ Z2 is the homomorphism defined in
Equation (2).

Clearly, a subset split by some map must be infinite. The converse also holds:

Lemma 7. For an arbitrary set X, every infinite subset of B(X) can be split by some map f : X → Z2.

This lemma is part of folklore and can be proved by a straightforward induction. It can also be
derived from ([23], Lemma 4.1).

The secondary goal of this paper is to prove the following theorem strengthening Lemma 7 by
additionally requiring the splitting map to be coherent.
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Theorem 2. If X is a set as in Definition 7, then every infinite subset of B(X) can be split by some coherent
map f : X → Z2.

This theorem constitutes the main technical tool in the proof of Theorem 1 in Section 10. The proof
of Theorem 2 is postponed until Section 9.

The next corollary provides a topological reformulation of Theorem 2.

Corollary 6. Let X be a set as in Definition 7 equipped with the topology described in Definition 9. Then for
every infinite subset A of the free precompact Boolean group FPB(X) of X, there exists a continuous
homomorphism π : FPB(X)→ Z2 such that the set {a ∈ A : π(a) = i} is infinite for each i ∈ Z2.

Proof. In this proof, we use notations from Lemma 2. The space X is zero-dimensional by Remark 6 (ii).
By Lemma 2, we can identify FPB(X) with (B(X), TX). After this identification, we can think of A
as being an infinite subset of B(X). By Theorem 2, A is split by some coherent map f : X → Z2.
By Lemma 4, f is continuous, and so f ∈ FX, which implies that π = f̃ ∈ F̃X. Since TX is
the initial topology with respect to the family F̃X, the map π is TX-continuous. Recalling our
identification of FPB(X) with (B(X), TX), we conclude that the homomorphism π : FPB(X)→ Z2 is
continuous. Since A is split by f , it follows from this and Definition 10 that π satisfies the conclusion
of our corollary.

Definition 11. For simplicity, we shall say that a topological space is elementary if it is homeomorphic to a
subspace of βN of the form N∪ {p}, where p ∈ βN \N.

Corollary 7. Let K be a non-empty set. For every k ∈ K, let Yk be either an at most countable discrete space
or an elementary space. Let Y =

⊕
k∈K Yk be the topological sum of the family {Yk : k ∈ K}. Then for every

infinite subset A of FPB(Y), there exists a continuous homomorphism h : FPB(Y) → Z2 such that the set
{a ∈ A : h(a) = i} is infinite for each i ∈ Z2.

Proof. Let P = βN \N and let X = P× K× (ω + 1) be the set as in Definition 7. We equip X with the
topology described in Definition 9. In this proof, we use notations from Remark 6 (i).

Fix a free ultrafilter q on N. Let k ∈ K. If Yk is an at most countable discrete space, then we
can fix an injection ϕk : Yk → Xq,k which will obviously be continuous. If Yk is an elementary space,
then Definition 11 allows us to identify the space Yk with the subspace N∪ {pk} of βN, for a suitable
pk ∈ βN \N. Now we can fix an injection ϕk : Yk → Xpk ,k which sends each point n ∈ N to the point
(pk, k, n) ∈ Xpk ,k and the point pk ∈ Yk to (pk, k, ω) ∈ Xpk ,k. Clearly, ϕk is a homeomorphism between
Yk and Xpk ,k.

Let ϕ : Y =
⊕

k∈K Yk → X be the map such that ϕ �Yk= ϕk for every k ∈ K. Since each ϕk is an
injection, so is ϕ. Since each ϕk is continuous, it follows from our definition of ϕ and Remark 6 (i) that
ϕ is continuous as well.

Clearly, Y is zero-dimensional, and X is zero-dimensional by Remark 6 (ii). Since ϕ : Y → X is a
continuous injection, ϕ̂ : FPB(Y)→ FPB(X) is a continuous monomorphism by Lemma 3 (i).

Let A be an infinite subset of FPB(Y). Then B = ϕ̂(A) is an infinite subset of FPB(X).
By Corollary 6, we can find a continuous homomorphism π : FPB(X) → Z2 such that the set
{b ∈ B : π(b) = i} is infinite for each i ∈ Z2. Now the composition h = π ◦ ϕ̂ : FPB(Y) → Z2 is the
desired homomorphism, as ϕ̂ �A: A→ B is a one-to-one map.

7. Applications to Free Precompact Boolean Groups of Topological Sums of Maximal Spaces

Definition 12. Recall that a space is maximal if it is non-discrete, yet any strictly stronger topology on it
is discrete.



Axioms 2018, 7, 86 12 of 23

One easily sees that every maximal space X has exactly one non-isolated point p such that the
trace of the filter of neighbourhoods of p on the set D = X \ {p} of isolated points of X is an ultrafilter
on D. In particular, X is zero-dimensional.

Clearly, elementary spaces from Definition 11 are precisely the countably infinite maximal spaces.

Lemma 8. Let X be either a discrete or a maximal topological space, and let Y be an at most countable closed
subspace of X. Then

(i) Y is either elementary or discrete, and
(ii) Y is Z2-embedded in X.

Proof. The conclusion of our lemma is trivial when X is a discrete space. Therefore, from now on we
shall assume that X is a maximal space. Let p be the non-isolated point of X. We consider two cases.

Case 1. p ∈ Y. If p is a non-isolated point in Y, then every neighbourhood of p intersects the set
Y \ {p}. By the maximality of X, we conclude that Y is a neighbourhood of p in X. This means that Y
is clopen in X, and therefore Z2-embedded in X by Remark 5. Applying maximality of X once again,
we conclude that Y is an elementary space.

Suppose now that p is an isolated point of Y. Then Y is discrete and there exists an open subset U
of X such that U ∩Y = {p}. If g : Y → Z2 is a continuous map, then the map f : X → Z2 defined by

f (x) =


g(x) if x ∈ Y \ {p}
g(p) if x ∈ U
0 otherwise

is continuous and extends g. This shows that Y is Z2-embedded in X.

Case 2. p ∈ X \Y. Since p is the only non-isolated point of X, all points of Y are isolated in X, so Y
is discrete and open in X. Since Y is also closed in X, it is clopen in X, and so Z2-embedded in X by
Remark 5.

Lemma 9. Let X =
⊕

j∈J Xj be the topological sum of a family {Xj : j ∈ J}, where each space Xj is either
discrete or maximal. Let A be an at most countable subset of FPB(X). Then there exist an at most countable
set K ⊆ J and an at most countable closed subspace Yk of Xk for each k ∈ K such that the topological sum
Y =

⊕
k∈K Yk satisfies the following conditions:

(i) each Yk is either elementary or discrete;
(ii) FPB(Y) is an at most countable closed subgroup of FPB(X);

(iii) every continuous homomorphism h : FPB(Y) → Z2 can be extended to a continuous homomorphism
ϕ : FPB(X)→ Z2;

(iv) A ⊆ FPB(Y).

Proof. Since X is zero-dimensional, Lemma 2 allows us to identify FPB(X) with (B(X), TX), so we
can view A as a subset of B(X). Since A is countable, there exists an at most countable set S ⊆ X such
that A ⊆ B(S). Since X =

⊕
j∈J Xj, we can find an at most countable set K ⊆ J, and for every k ∈ K

we can fix an at most countable subset Yk of Xk such that S ⊆ Y, where Y =
⊕

k∈K Yk. Without loss of
generality, we may assume that each Yk contains the unique non-isolated point of Xk whenever Xk is a
maximal space. This assumption means that Yk is closed in Xk for each k ∈ K.

(i) By Lemma 8, each space Yk is either elementary or discrete, and Yk is Z2-embedded in Xk.
(ii) Since Yk is a closed Z2-embedded subspace of Xk for every k ∈ K, we conclude that Y is a closed

Z2-embedded subspace of X. Therefore, FPB(Y) is a closed subgroup of FPB(X) by Lemma 3 (ii).
Since Y is zero-dimensional, Lemma 2 allows us to identify FPB(Y) with (B(Y), TY). Since Y is at
most countable, so is B(Y) and thus FPB(Y).
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(iii) Let h : FPB(Y) → Z2 be an arbitrary continuous homomorphism. Since the topology of
FPB(Y) induces the original topology of Y by Lemma 2, the restriction g = h �Y : Y → Z2 of h to Y is
continuous. Since Y is Z2-embedded in X, we can find a continuous map f : X → Z2 extending g.
Since FPB(X) coincides with (B(X), TX) and FPB(Y) coincides with (B(Y), TY), it follows that ϕ = f̃
is a continuous homomorphism from FPB(X) to Z2 whose restriction to FPB(Y) coincides with h = g̃.

(iv) Since A ⊆ B(S) and S ⊆ Y, we have A ⊆ B(S) ⊆ B(Y). Therefore, we can view A as a subset
of FPB(Y).

Theorem 3. Let X =
⊕

j∈J Xj be the topological sum of a family {Xj : j ∈ J}, where each space Xj is either
discrete or maximal. Then for every infinite subset A of FPB(X), there exists a continuous homomorphism
ϕ : FPB(X)→ Z2 such that the set {a ∈ A : ϕ(a) = i} is infinite for each i ∈ Z2.

Proof. Without loss of generality, we may assume that A is countably infinite. Applying Lemma 9 to
this A, we can obtain a subspace Y of X as in the conclusion of Lemma 9. By Item (i) of this lemma,
we can apply Corollary 7 to find a continuous homomorphism h : FPB(Y) → Z2 such that the set
{a ∈ A : h(a) = i} is infinite for each i ∈ Z2. Applying Item (iii) of Lemma 9, we can find a continuous
homomorphism ϕ : FPB(X)→ Z2 extending h. Since A ⊆ FPB(Y) by Item (iv) of Lemma 9, we have
{a ∈ A : ϕ(a) = i} = {a ∈ A : h(a) = i} for each i ∈ Z2.

Lemma 10. Let X be a topological space such that the closure of each at most countable subset of X is at most
countable. Then every separable pseudocompact subspace K of X is compact and metrizable. Moreover, if K is
infinite, then K contains a non-trivial convergent sequence.

Proof. Let K be a separable pseudocompact subset of X. Let S be an at most countable dense subset of
K. Then its closure C in X is at most countable by the assumption of our lemma. Since S is dense in K,
we have K ⊆ C. Thus, K is an at most countable pseudocompact space, so it must be compact. An at
most countable compact space is metrizable [24], so K is a metrizable compact space. The last sentence
of our lemma follows from the fact that every infinite compact metrizable space has a non-trivial
convergent sequence.

Theorem 4. Let X =
⊕

j∈J Xj be the topological sum of a family {Xj : j ∈ J}, where each space Xj is
either discrete or maximal. Let G = FPB(X) be the free precompact Boolean group of X. Then all separable
pseudocompact subsets of G are finite.

Proof. First, we check that each at most countable subset A of G = FPB(X) has at most countable
closure in G. If A is finite, then it is closed in G. Suppose now that A is infinite. Applying Lemma 9 to
this A, we can obtain a subspace Y of X as in the conclusion of Lemma 9. By Item (ii) of this lemma,
H = FPB(Y) is an at most countable closed subgroup of FPB(X) = G. Note that A ⊆ H by Item (iv)
of Lemma 9. Therefore, the closure of A in G is contained in the (at most countable) set H.

Let A be a countably infinite subset of G. Applying Theorem 3, we can find a continuous
homomorphism ϕ : G → Z2 such that the set {a ∈ A : ϕ(a) = i} is infinite for each i ∈ Z2. Since ϕ is
continuous, Ai = {a ∈ A : ϕ(a) = i} is a closed subset of A for i ∈ Z2 = {0, 1}. Since A = A0 ∪ A1 is a
partition of A into two disjoint infinite closed sets, A cannot be a convergent sequence. We have proved
that G does not contain non-trivial convergent sequences. By Lemma 10, all separable pseudocompact
subsets of G are finite.

The group G = FPB(X) in Theorem 4 is precompact, so its completion H is a compact group.
Being compact, the group H contains many non-trivial convergent sequences. Since these non-trivial
convergent sequences in H might appear already in its subgroup G, this demonstrates that Theorem 4
is not completely trivial.
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8. Discussion

The topic of this paper is related to a long-standing open problem of van Douwen about the
existence in ZFC alone of a countably compact group without non-trivial convergent sequences.
(The existence of such a group in some additional set-theoretic axioms, such as Continuum Hypothesis
(CH) or Martin’s Axiom (MA), is well-known.) Indeed, it was noted in ([5], Example 5.7) that a solution
to this problem would bring a positive solution to Question 1 (ii) and thus to the weaker Question 1 (i).

The question of the existence of pseudocompact groups without infinite compact subsets (and its weaker
version which only prohibits non-trivial convergent sequences) has been studied extensively [12–14,25,26].
For example, Galindo and Macario proved that, under a mild additional set-theoretic assumption
beyond ZFC, every pseudocompact abelian group admits a pseudocompact group topology without
infinite compact subsets [12]. Corollary 1 contributes to this topic by constructing an abelian topological
group without infinite compact subsets (in fact, even without infinite separable pseudocompact subsets)
which has a much stronger property than mere pseudocompactness.

Topological groups without infinite compact subsets play a prominent role in Pontryagin duality
theory [27] due to the fact that pseudocompact abelian groups without infinite compact subsets are
(Pontryagin) reflexive ([11], Theorem 2.8) (this also follows from ([12], Lemma 2.3 and Theorem 6.1)).
All topological groups we construct in this paper are reflexive by Remark 3.

The strongest precompact group topology on an abelian group is called its Bohr topology. It is
a classical result of Glicksberg that the Bohr topology on any abelian group does not have infinite
compact subsets [28]; see also ([29], Section 6) for an alternative proof. Since the free precompact
Boolean group FPB(X) of a topological space X is precompact, its topology TX is weaker than the
corresponding Bohr topology, so TX can have more compact subsets than the Bohr topology (in which
all compact subsets are finite). Note that, when X is discrete, then TX coincides with the Bohr topology
on FPB(X), so it does not have infinite compact subsets by Glicksberg’s result. Our Theorem 4 can
be viewed as an extension of Glicksberg’s theorem over free precompact Boolean groups FPB(X) of
spaces X very close to being discrete (indeed, maximal spaces are one step from being discrete by
Definition 12).

The idea of splitting of a given infinite subset A of a discrete abelian group G via a homomorphism
ϕ from G to some target topological group H (usually Z2 or the torus group T) is a classical technique
for producing a group topology on G without non-trivial convergent sequences. Such a splitting is
always possible, modulo natural algebraic restrictions on H and A; see [23,29,30]. However, if G is
equipped with a non-discrete group topology T , finding a T -continuous homomorphism ϕ which
splits A is a much more difficult task, and the authors are not aware of any known results in this
direction. Therefore, our Theorem 3 can be viewed as a first, albeit somewhat modest, contribution to
what is undoubtedly quite an interesting topic.

9. Proof of Theorem 2

In this section, we fix a non-empty set P ⊆ βN \N, a non-empty set K and consider sets

X = P× K× (ω + 1) and X∗ = P× K× {ω}

from Definition 7. We also fix an infinite subset A of B(X).

Lemma 11. If X∗ ∩ (
⋃

A) is finite, then some coherent map f : X → Z2 splits A.

Proof. Since J = X∗ ∩ (
⋃

A) is finite and A is infinite, there exists I ∈ [J]<ω such that the set

A′ = {a ∈ A : a ∩ X∗ = I} (7)

is infinite. Then
B = {a \ X∗ : a ∈ A′} = {a \ I : a ∈ A′} (8)
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is an infinite subset of B(X \ X∗). By Lemma 7, there exists a map g : X \ X∗ → Z2 which splits B.
Let f : X → Z2 be the unique coherent map extending g given by Lemma 5. Clearly, f̃ �B(X\X∗)= g̃.
Since B ⊆ B(X \ X∗) and g splits B, the map f splits B as well. It follows from this, Equation (8), and
Definition 10 that

{a ∈ A′ : f̃ (a \ I) = i} is infinite for every i ∈ Z2. (9)

Define j = f̃ (I). Clearly, j ∈ Z2. It follows from Equations (7) and (8) that a = (a \ I) ∪ I for every
a ∈ A′, so a = (a \ I) + I holds in B(X); therefore,

f̃ (a) = f̃ (a \ I) + f̃ (I) = f̃ (a \ I) + j for a ∈ A′, (10)

as f̃ is a homomorphism. Combining Equations (9) and (10), we conclude that {a ∈ A′ : f̃ (a) = i} is
infinite for every i ∈ Z2. Since A′ ⊆ A, the same conclusion holds when A′ is replaced by A. According
to Definition 10, this means that f splits A.

Definition 13. We denote by Q the set of all triples q = 〈Pq, Kq, f q〉, where Pq ∈ [P]<ω, Kq ∈ [K]<ω and
f q : Pq × Kq × (ω + 1) → Z2 is a coherent map. For q = 〈Pq, Kq, f q〉, r = 〈Pr, Kr, f r〉 ∈ Q, we let q ≤ r
provided that Pr ⊆ Pq, Kr ⊆ Kq, and f q extends f r.

One easily sees that (Q,≤) is a poset. Clearly, 〈∅, ∅, ∅〉 ∈ Q, so Q 6= ∅.
Recall that a set D ⊆ Q is said to be dense in (Q,≤) provided that for every r ∈ Q there exists

q ∈ D such that q ≤ r.

Lemma 12. (i) For every p ∈ P, the set Cp = {q ∈ Q : p ∈ Pq} is dense in (Q,≤).
(ii) For every k ∈ K, the set Ek = {q ∈ Q : k ∈ Kq} is dense in (Q,≤).

Proof. (i) Suppose that r ∈ Q \ Cp. Then p ∈ P \ Pr. Note that the extension f q : Pq × Kq × (ω + 1)→
Z2 of f r, obtained by letting f q(p, k, n) = 0 for all k ∈ Kq = Kr and n ∈ ω + 1, is coherent. Then
q = 〈Pq, Kq, f q〉 ∈ Q. Clearly, q ∈ Cp and q ≤ r.

(ii) Suppose that r ∈ Q \ Ek. Then k ∈ K \ Kr. Define Pq = Pr and Kq = Kr ∪ {k}. Note that the
extension f q : Pq × Kq × (ω + 1) → Z2 of f r, obtained by letting f q(p, k, n) = 0 for all p ∈ Pq = Pr

and n ∈ ω + 1, is coherent. Then q = 〈Pq, Kq, f q〉 ∈ Q. Clearly, q ∈ Ek and q ≤ r.

Lemma 13. If X∗ ∩ (
⋃

A) is infinite, then for every B ∈ [A]<ω and each i ∈ Z2, the set

DB,i = {q ∈ Q : ∃a ∈ A \ B (a ⊆ Pq × Kq × (ω + 1) and f̃ q(a) = i)} (11)

is dense in (Q,≤).

Proof. Let r ∈ Q, B ∈ [A]<ω, and i ∈ Z2 be arbitrary. We need to find q ∈ Q and a ∈ A \ B such that
q ≤ r, a ⊆ Pq × Kq × (ω + 1), and f̃ q(a) = i.

Since B is finite, the intersection X∗ ∩ (
⋃

B) is also finite. Furthermore, since both Pr and Kr are
finite sets, so is the set Pr × Kr × {ω}. Therefore,

F = (X∗ ∩ (
⋃

B)) ∪ (Pr × Kr × {ω}) (12)

is a finite subset of X∗. By our hypothesis, X∗ ∩ (
⋃

A) is infinite, so there exists a ∈ A such that
(a ∩ X∗) \ F 6= ∅. Fix p0 ∈ P, k0 ∈ K, and a ∈ A such that (p0, k0, ω) ∈ a \ F. It follows from this and
Equation (12) that a ∈ A \ B.

Since a is a finite subset of X = P× K× (ω + 1), there exist finite sets Pq ⊆ P and Kq ⊆ K such
that a ⊆ Pq ×Kq × (ω + 1). By Lemma 12, without loss of generality, we may also assume that Pr ⊆ Pq

and Kr ⊆ Kq.
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Let a′ = a ∩ (Pr × Kr × (ω + 1)). Then j = f̃ r(a′) ∈ Z2 is well-defined. There exists a unique
l ∈ Z2 such that j + l = i. Note that (p0, k0) ∈ (Pq × Kq) \ (Pr × Kr), so we can define a map
f q : Pq × Kq × (ω + 1)→ Z2 by

f q(p, k, n) =


f r(p, k, n) if (p, k, n) ∈ Pr × Kr × (ω + 1)
l if (p, k) = (p0, k0) and either n = ω or (p, k, n) 6∈ a
0 otherwise

(13)

for all (p, k, n) ∈ Pq × Kq × (ω + 1).

Claim 1. q = 〈Pq, Kq, f q〉 ∈ Q and q ≤ r.

Proof. Since Pq ∈ [P]<ω and Kq ∈ [K]<ω by our construction, we only need to check that the map
f q : Pq × Kq × (ω + 1)→ Z2 is coherent. Let p ∈ Pq and k ∈ Kq be arbitrary. If (p, k) ∈ Pr × Kr, then

{n ∈ ω : f q(p, k, n) = f q(p, k, ω)} = {n ∈ ω : f r(p, k, n) = f r(p, k, ω)} ∈ p

by Equation (13) and coherency of f r. Suppose now that (p, k) ∈ (Pq × Kq) \ (Pr × Kr). If (p, k) 6=
(p0, k0), then f q(p, k, n) = 0 for all n ∈ ω + 1 by Equation (13), so {n ∈ ω : f q(p, k, n) = f q(p, k, ω) =

0} = ω ∈ p. Finally, if (p, k) = (p0, k0), then the second line of Equation (13) implies that f q(p, k, ω) = l
and f q(p, k, n) = l for all but finitely many n ∈ ω, as the set a is finite. Therefore, {n ∈ ω : f q(p, k, n) =
f q(p, k, ω)} is a cofinite subset of ω, so it belongs to p, as p is a free ultrafilter on ω. This finishes the
check of the inclusion q ∈ Q.

Finally, note that f q extends f r by the first line of Equation (13). It follows from this, Pr ⊆ Pq,
Kr ⊆ Kq, and Definition 13 that q ≤ r.

Claim 2. f̃ q(a \ a′) = l.

Proof. Since a′ = a ∩ (Pr × Kr × (ω + 1)), we have a \ a′ ⊆ ((Pq × Kq) \ (Pr × Kr)) × (ω + 1), so
Equation (13) implies that f q(p0, k0, ω) = l and f q(p, k, n) = 0 for all (p, k, n) ∈ a \ (a′ ∪ {(p0, k0, ω)}).
Since f̃ q is a homomorphism and (p0, k0, ω) ∈ a \ a′ by our choice, this implies

f̃ q(a \ a′) = ∑
(p,k,n)∈a\a′

f̃ q({p, k, n}) = ∑
(p,k,n)∈a\a′

f q(p, k, n) = f q(p0, k0, ω) = l.

This establishes our claim.

Claim 3. q ∈ DB,i.

Proof. The only condition in Equation (11) that remains to be checked is the equality f̃ q(a) = i. Since
a′ ⊆ Pr × Kr × (ω + 1) ⊆ Pq × Kq × (ω + 1), we have f̃ q(a′) = f̃ r(a′) = j. Note that a = (a \ a′) ∪ a′,
so a = (a \ a′)+ a′. Since f̃ q is a homomorphism, f̃ q(a) = f̃ q(a \ a′)+ f̃ q(a′) = l + j = i by Claim 2.

Since r ∈ Q was chosen arbitrarily, the conclusion of our lemma follows from Claims 1 and 3.

We shall need the following folklore lemma.

Lemma 14. If D is an at most countable family of dense subsets of a non-empty poset (Q,≤), then there exists
an at most countable subset F of Q such that (F,≤) is a linearly ordered set and F∩ D 6= ∅ for every D ∈ D .

Proof. Since the family D is at most countable, we can fix an enumeration D = {Dn : n ∈ N \ {0}} of
elements of D . Since Q 6= ∅, there exists q0 ∈ Q. By induction on n ∈ N \ {0}, we can choose qn ∈ Dn
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such that qn ≤ qn−1; this is possible because Dn is dense in (Q,≤). Now F = {qn : n ∈ N \ {0}} is the
desired subset of Q.

Lemma 15. If P and K are at most countable sets and X∗ ∩ (
⋃

A) is infinite, then some coherent map
f : X → Z2 splits A.

Proof. By Lemmas 12 and 13, the family

D = {Cp : p ∈ P} ∪ {Ek : k ∈ K} ∪ {DB,i : B ∈ [A]<ω, i ∈ Z2}

consists of dense subsets of (Q,≤). Since P, K, and A are at most countable, so is D . By Lemma 14,
there exists a set F = {qn : n ∈ N} ⊆ Q such that q0 ≥ q1 ≥ · · · ≥ qn ≥ qn+1 ≥ . . . and F∩ D 6= ∅ for
every D ∈ D .

We claim that f =
⋃{ f qn : n ∈ N} is a coherent map from X to Z2 splitting A. Since F intersects

each Cp and every Ek, the domain of f coincides with X = P× K× (ω + 1). Since each f qn is coherent
and f extends all f qn , it easily follows that f is coherent as well.

Suppose that f does not split A. Then the set B = {a ∈ A : f̃ (a) = i} must be finite for some
i ∈ Z2, so B ∈ [A]<ω and thus DB,i ∈ D . Therefore, qn ∈ DB,i for some n ∈ N. Applying Equation (11),
we can find a ∈ A \ B such that a ⊆ Pqn × Kqn × (ω + 1) and ˜f qn(a) = i. Since f qn ⊆ f , this implies
f̃ (a) = ˜f qn(a) = i. Therefore, a ∈ B by the definition of the set B, in contradiction with a ∈ A \ B.

Proof of Theorem 2. Let A be an infinite subset of B(X). Choose a countably infinite subset A′ of A.
Since A′ ⊆ B(X) = [X]<ω, there exist at most countable sets P′ ⊆ P and K′ ⊆ K such that A ⊆ B(X′),
where X′ = P′×K′× (ω + 1). Combining Lemmas 11 and 15, we can find a coherent map f ′ : X′ → Z2

splitting A′. Let f : X → Z2 be the extension of f ′ over X obtained by letting f take 0 everywhere on
X \ X′. Clearly, f is a coherent map which splits A′. Since A′ ⊆ A, f splits A as well.

10. Proof of Theorem 1

The following lemma is part of set-theoretic folklore. We include its proof only for convenience of
the reader.

Lemma 16. Let S and T be sets such that 1 ≤ |S| ≤ |T| and T is infinite. Then there exists an enumeration
S = {st : t ∈ T} such that |{t ∈ T : st = s}| = |T| for every s ∈ S.

Proof. Since 1 ≤ |S| ≤ |T|, we can fix a surjection f : T→ S. Since T is infinite, we have |T| = |T× T|,
so we can fix a bijection θ : T → T × T. Let π : T × T → T be the projection on the first coordinate.
Define st = f ◦ π ◦ θ(t) for every t ∈ T. We claim that {st : t ∈ T} is the desired enumeration. Indeed,
let s ∈ S be arbitrary. Since f is a surjection, s = f (t0) for some t0 ∈ T. Since |{t0} × T| = |T| and θ

is a bijection, the set T′ = θ−1({t0} × T) ⊆ T satisfies |T′| = |T|. Finally, for every t ∈ T′, we have
π ◦ θ(t) ∈ π(θ(T′)) ∈ π(θ(θ−1({t0} × T))) = π({t0} × T) = {t0}, so st = f ◦ π ◦ θ(t) = f (t0) = s.

Fix a cardinal κ such that κω = κ and a set K such that |K| = κ. Let K = K0 ∪ K1 be a partition of
K into pairwise disjoint sets Ki such that |Ki| = κ for i = 0, 1.

Let P be a non-empty subset of βN \N satisfying |P| ≤ κ. Consider the set

X = P× K× (ω + 1) (14)

as in Definition 7. Note that |X| = κ by Equation (14) and our assumption on K, P, and κ.
For a set S, we denote by [S]≤ω the family of at most countable subsets of S and by [S]ω the family

of all countably infinite subsets of X.
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Claim 4. (i) There exists an enumeration [B(X)]ω = {Aβ : β ∈ K0} such that |{β ∈ K0 : Aβ = A}| = κ

for every A ∈ [B(X)]ω.
(ii) There exists an enumeration [P]≤ω × [K]≤ω × B(X) = {(Pβ, Kβ, hβ) : β ∈ K1} such that |{β ∈ K1 :

Pβ = P′, Kβ = K′, hβ = h}| = κ whenever P′ ∈ [P]≤ω, K′ ∈ [K]≤ω and h ∈ B(X).

Proof. (i) Note that |B(X)| = |X<ω | = |X| = κ and |[B(X)]ω | = κω = κ = |K0| by our assumption on
κ and K0, so we can apply Lemma 16 (with S = [B(X)]ω and T = K0) to fix the desired enumeration
[B(X)]ω = {Aβ : β ∈ K0}.

(ii) Since |P| ≤ κ and |K| = |B(X)| = κ, we have |[P]≤ω × [K]≤ω × B(X)| ≤ κω = κ = |K1|, so the
existence of the desired enumeration [P]≤ω × [K]≤ω × B(X) = {(Pβ, Kβ, hβ) : β ∈ K1} follows from
Lemma 16 applied with S = [P]≤ω × [K]≤ω × B(X) and T = K1.

For every β ∈ K, we define a coherent map fβ : X → Z2 differently depending on whether β ∈ K0

or β ∈ K1.

Case 1. β ∈ K0. In this case, we use a Theorem 2 to fix a coherent map fβ : X → Z2 splitting Aβ.

Case 2. β ∈ K1. If hβ ∈ B(X) \ B(Pβ × Kβ × (ω + 1)), then we use Lemma 6 to fix a coherent map
fβ : X → Z2 such that f̃β(B(Pβ × Kβ × (ω + 1))) ⊆ {0} and f̃β(hβ) = 1; otherwise, we let fβ to be the
constant map sending X to {0} (this map is clearly coherent).

Claim 5. There exist an enumeration [K]ω = {Ik : k ∈ K} and a sequence {yk,n : n ∈ ω} ⊆ ZIk
2 for every

k ∈ K such that whenever I ∈ [K]ω and {yn : n ∈ ω} ⊆ ZI
2, one can find k ∈ K with Ik = I and yk,n = yn

for all n ∈ N.

Proof. Let S =
⋃{(ZI

2)
ω : I ∈ [K]ω}. (We recall that (ZI

2)
ω denotes the set of all functions from ω to

ZI
2; each such function s can be considered as a sequence {s(n) : n ∈ ω} of points of ZI

2.)
Since |(ZI

2)
ω | = c ≤ κ for every I ∈ [K]ω, we have |S| ≤ κω = κ = |K| by our assumption on

κ. Therefore, we can apply Lemma 16 with T = K to fix an enumeration S = {sk : k ∈ K} such that
{k ∈ K : sk = s} has cardinality κ for every s ∈ S.

Let k ∈ K. Then sk ∈ S, so sk ∈ (ZI
2)

ω for a unique I ∈ [K]ω; that is, sk is a function from ω to ZI
2.

We define Ik = I and yk,n = sk(n) for all n ∈ ω.
Let I ∈ [K]ω and {yn : n ∈ ω} ⊆ ZI

2 be arbitrary. Then the function s : ω → ZI
2, defined by s(n) =

yn for n ∈ ω, belongs to S. By the choice of our enumeration, the set {k ∈ K : sk = s} has cardinality κ.
In particular, there exists k ∈ K such that s = sk. Now Ik = I and yn = s(n) = sk(n) = yk,n for every
n ∈ ω.

Define
yp,k,n = yk,n for all (p, k, n) ∈ P× K×ω. (15)

For each (p, k) ∈ P× K, the sequence {yp,k,n : n ∈ ω} = {yk,n : n ∈ ω} of points of the compact

space ZIk
2 has a p-limit yp,k,ω ∈ ZIk

2 .
For each (p, k, n) ∈ X, define zp,k,n ∈ ZK

2 by

zp,k,n(β) =

{
yp,k,n(β) if β ∈ Ik
fβ(p, k, n) if β ∈ K \ Ik

for every β ∈ K. (16)

Claim 6. For every p ∈ P and each sequence {Wn : n ∈ N} of non-empty open subsets of ZK
2 , there exists

k ∈ K such that

(i) zp,k,n ∈Wn for all n ∈ N, and
(ii) zp,k,ω is a p-limit of the sequence {zp,k,n : n ∈ N}.
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Proof. Fix p ∈ P and a sequence {Wn : n ∈ N} of non-empty open subsets of ZK
2 . Without loss

of generality, we may assume that each Wn is a basic open subset of ZK
2 ; that is, Wn = ∏β∈K Wβ,n,

where each Wβ,n is a non-empty (open) subset of Z2 and supp(Wn) = {β ∈ K : Wβ,n 6= Z2} is a finite
subset of K. Then the set J =

⋃
n∈N supp(Wn) is at most countable, so we can fix a countably infinite

subset I of K containing J. For every n ∈ N, Vn = ∏β∈I Wβ,n is a non-empty subset of ZI
2, so we can

select yn ∈ Vn. By Equation (15) and Claim 5, there exists k ∈ K such that Ik = I and yp,k,n = yk,n = yn

for all n ∈ N.
(i) Fix n ∈ N. By Equation (16), we have

zp,k,n(β) = yp,k,n(β) = yn(β) ∈Wβ,n for every β ∈ Ik = I. (17)

Since supp(Wn) ⊆ I, this implies zp,k,n ∈Wn.
(ii) It suffices to check that zp,k,ω(β) is a p-limit of the sequence {zp,k,n(β) : n ∈ N} for every β ∈ K.

We consider two cases.

Case 1. β ∈ Ik. Since the sequence {yp,k,n : n ∈ N} ⊆ ZIk
2 has a p-limit yp,k,ω ∈ ZIk

2 , it follows that
yp,k,ω(β) is a p-limit of the sequence {yp,k,n(β) : n ∈ N}. Since β ∈ Ik, we have zp,k,ω(β) = yp,k,ω(β) by
Equation (16). Combining this with Equation (17), we obtain the desired conclusion.

Case 2. β ∈ K \ Ik. In this case, it follows from Equation (16) that zp,k,n(β) = fβ(p, k, n) for every
n ∈ ω + 1, and the conclusion follows from the fact that fβ is coherent.

Claim 7. The set
Z = {zp,k,n : (p, k, n) ∈ X} (18)

is dense in ZK
2 .

Proof. Consider an arbitrary non-empty open subset U of ZK
2 . Let Wn = U for every n ∈ N. Since

P is non-empty, we can choose p ∈ P. Let k ∈ K be as in the conclusion of Claim 6 applied to this p
and the sequence {Wn : n ∈ N}. Then zp,k,1 ∈W1 = U. Since (p, k, 1) ∈ X by Equation (14), we obtain
zp,k,1 ∈ Z by Equation (18), so Z ∩U 6= ∅.

Claim 8. Z is strongly P-pseudocompact.

Proof. By Definition 4 (ii), we need to check that Z is strongly p-pseudocompact for every p ∈ P.
Fix p ∈ P. Let {Un : n ∈ N} be a sequence of non-empty open subsets of Z. Since Z is a subspace of
ZK

2 , for every n ∈ N, there exists an open subset Wn of ZK
2 such that Un = Z ∩Wn; in particular, Wn is

non-empty. Let k ∈ K be as in the conclusion of Claim 6 applied to p and the sequence {Wn : n ∈ N}.
By Item (i) of this claim, we have zp,k,n ∈ Wn for every n ∈ N. Since (p, k, n) ∈ X by Equation (14),
zp,k,n ∈ Z by Equation (18), so zp,k,n ∈ Z ∩Wn = Un for every n ∈ N. By Item (ii) of Claim 6, zp,k,ω is a
p-limit of the sequence {zp,k,n : n ∈ N}. Since (p, k, ω) ∈ X by Equation (14), we obtain zp,k,ω ∈ Z by
Equation (18). According to Definition 1, this shows that Z is strongly p-pseudocompact.

Let G be the subgroup of ZK
2 generated by Z. Let f : X → Z ⊆ G be the map defined by

f (p, k, n) = zp,k,n for every (p, k, n) ∈ X. (19)

Since G is a Boolean group, there exists a unique homomorphism f̃ : B(X) → G extending f .
Since f (X) = Z and the latter set algebraically generates G, the homomorphism f̃ is surjective.

Claim 9. For every at most countable set A ⊆ B(X), there exists an at most countable set I ⊆ K such that

πβ ◦ f̃ (a) = f̃β(a) whenever β ∈ K \ I and a ∈ A, (20)
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where πβ : ZK
2 → Z2 is the projection on β’th coordinate.

Proof. For every a ∈ A, there exists a finite set Ea ⊆ X such that

a = ∑
(p,k,n)∈Ea

{(p, k, n)}. (21)

Since A is at most countable, so is the set

J = {k ∈ K : ∃p ∈ P ∃ n ∈ (ω + 1) (p, k, n) ∈
⋃
{Ea : a ∈ A}}. (22)

Therefore, I =
⋃

k∈J Ik is an at most countable subset of K.
Let a ∈ A and β ∈ K \ I be arbitrary. Suppose that (p, k, n) ∈ Ea. Then k ∈ J by Equation (22).

Therefore, Ik ⊆ I by our choice of I. Since β 6∈ I, we conclude that β ∈ K \ Ik; thus, zp,k,n(β) = fβ(p, k, n)
by Equation (16). Since this holds for every (p, k, n) ∈ Ea and f̃β is a homomorphism, from Equations
(19) and (21) we conclude that

f̃β(a) = f̃β

 ∑
(p,k,n)∈Ea

{(p, k, n)}

 = ∑
(p,k,n)∈Ea

f̃β({(p, k, n)}) = ∑
(p,k,n)∈Ea

fβ(p, k, n) = ∑
(p,k,n)∈Ea

zp,k,n(β)

= ∑
(p,k,n)∈Ea

f (p, k, n)(β) = f̃

 ∑
(p,k,n)∈Ea

{(p, k, n)}

 (β) = f̃ (a)(β) = πβ ◦ f̃ (a).

This proves Equation (20).

Claim 10. G contains no non-trivial convergent sequences.

Proof. Consider an arbitrary countably infinite set S ⊆ G. Since f̃ : B(X)→ G is a surjection, we can
fix a countably infinite set A ⊆ B(X) such that f̃ (A) = S and f̃ �A: A→ S is a bijection. Let I ⊆ K be
the set as in the conclusion of Claim 9 (applied to our A). Since A ∈ [B(X)]ω , we can apply Claim 4 (i)
to conclude that the set |{β ∈ K0 : Aβ = A}| has cardinality κ. Since |K0| = κ ≥ c > ω ≥ |I|,
there exists β ∈ K0 \ I. Then fβ splits the set A = Aβ by our choice of fβ. This means that the set
Ai = {a ∈ A : f̃β(a) = i} is infinite for both i ∈ Z2.

Let i ∈ Z2 be arbitrary. Since f̃ �A: A → S is a bijection, the set Si = f̃ (Ai) ⊆ S is infinite.
It follows from Equation (20) that πβ ◦ f̃ (a) = f̃β(a) = i for a ∈ Ai, so πβ(s) = i for s ∈ Si. Since the
map πβ is continuous, it follows that Si is a closed subset of S.

Since f̃ �A: A → S is a bijection and A = A0 ∪ A1 is a partition of A into disjoint sets Ai, it
follows that S = S0 ∪ S1 is a partition of S into disjoint sets Si. Since each Si is infinite and closed in S,
this implies that S cannot be a convergent sequence in G.

Claim 11. If P′ ∈ [P]≤ω and K′ ∈ [K]≤ω, then the subgroup HP′ ,K′ of G generated by the set

ZP′ ,K′ = {zp,k,n : p ∈ P′, k ∈ K′, n ∈ ω + 1} (23)

is closed in G.

Proof. Fix P′ ∈ [P]≤ω and K′ ∈ [K]≤ω. Note that f̃ (B(P′ × K′ × (ω + 1))) = HP′ ,K′ by Equations (19)
and (23).

Let g ∈ G \ HP′ ,K′ be arbitrary. Since f̃ is surjective, f̃ (h) = g for some h ∈ B(X). Clearly,
h 6∈ B(P′ × K′ × (ω + 1)). Apply Claim 9 to at most countable subset

A = B(P′ × K′ × (ω + 1)) ∪ {h} (24)
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of B(X) to obtain at most countable set I ⊆ K as in the conclusion of this claim. Since (P′, K′, h) ∈
[P]≤ω × [K]≤ω × B(X), we can apply Claim 4 (ii) to conclude that the set K′1 = {β ∈ K1 : Pβ = P′, Kβ =

K′, hβ = h} has cardinality κ. Since |K′1| = κ ≥ c > ω ≥ |I|, there exists β ∈ K′1 \ I. Then Pβ = P′, Kβ =

K′ and hβ = h. Since hβ = h ∈ B(X) \ B(P′ × K′ × (ω + 1)) = B(X) \ B(Pβ × Kβ × (ω + 1)) by our
assumption, it follows from β ∈ K′1 ⊆ K1 and our choice of fβ that f̃β(B(P′ × K′ × (ω + 1))) ⊆ {0}
and f̃β(h) = 1. From this, β ∈ K \ I, Equations (20) and (24), we conclude that πβ ◦ f̃ (B(P′ × K′ ×
(ω + 1))) ⊆ {0} and πβ ◦ f̃ (h) = 1. Since HP′ ,K′ = f̃ (B(P′ × K′ × (ω + 1))) and g = f̃ (h), we get
πβ(HP′ ,K′) ⊆ {0} and πβ(g) = 1. Since πβ is continuous, Ug = π−1

β (1) is an open neighbourhood of g
in G disjoint from HP′ ,K′ .

For every g ∈ G \ HP′ ,K′ , we found an open neighbourhood Ug of G such that Ug ∩ HP′ ,K′ = ∅.
Therefore, HP′ ,K′ is closed in G.

Claim 12. The closure of each at most countable subset of G is at most countable.

Proof. Let S be an at most countable subset of G. Since Z algebraically generates G, from Equations
(18) and (23) we conclude that there exist P′ ∈ [P]≤ω and K′ ∈ [K]≤ω such that S ⊆ HP′ ,K′ . (Recall that
HP′ ,K′ is algebraically generated by ZP′ ,K′ .) Since HP′ ,K′ is closed in G by Claim 11, the closure of S is
contained in HP′ ,K′ . Since P′ and K′ are at most countable, so is ZP′ ,K′ and thus HP′ ,K′ as well.

Claim 13. All separable pseudocompact subsets of G are finite.

Proof. This follows from Claims 10 and 12 and Lemma 10.

Since Z ⊆ G ⊆ ZK
2 , and Z is dense in ZK

2 by Claim 7, Z is dense in G. Since Z is
strongly P-pseudocompact by Claim 8, so is G. By Claim 13, G does not contain infinite separable
pseudocompact subsets. Finally, since |K| = κ, the topological groups ZK

2 and Zκ
2 are topologically

isomorphic.

11. Further Open Questions

In this section we list natural open questions (besides Question 2) inspired by our results.
As was mentioned in Section 8, Galindo and Macario proved that, under a mild additional

set-theoretic assumption beyond ZFC, every pseudocompact abelian group admits a pseudocompact
group topology without infinite compact subsets [12]. Question 4 below asks for an analogue of their
result for other compactness-like properties listed on the left side of Figure 1, while Question 3 is
a version of Question 4 restricted to non-trivial convergent sequences. Item (iv) was excluded in
Question 4 due to Remark 1 (ii).

Question 3. Let P be one of the following properties:

(i) selectively pseudocompact;
(ii) strongly p-pseudocompact for some p ∈ βN \N;

(iii) strongly (βN \N)-pseudocompact;
(iv) strongly (βN \N)-bounded.

If an infinite abelian group admits a group topology with property P , must it also admit a group topology with
property P having no non-trivial convergent sequences?

Question 4. Let P be one of the properties (i)–(iii) from Question 3. If an infinite abelian group admits a group
topology with property P , must it also admit a group topology with property P having no infinite compact
subsets (or even without infinite separable pseudocompact subsets)?
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It makes no sense to ask Questions 3 and 4 for properties on the right side of Figure 1,
because infinite selectively sequentially pseudocompact spaces contain non-trivial convergent
sequences ([5], Proposition 3.1).

Question 5. If an abelian group admits a pseudocompact group topology, must it also admit a group topology
having one of the stronger properties (i)–(iv) listed in Question 3?

The version of Question 5 for “selective pseudocompactness” is due to García-Ferreira and Tomita ([7],
Question 2.7).

Our last question is related to the reversibility of Arrow 4 in Figure 1 in the class of topological groups.

Question 6. Does there exist a ZFC example of a selectively pseudocompact (abelian) group which is not
strongly p-pseudocompact for any free ultrafilter p on N?

An example under CH is mentioned in the text after Figure 1.

Author Contributions: Both authors contributed equally to this research work.

Funding: The first listed author was partially supported by the Grant-in-Aid for Scientific Research (C)
No. JP26400091 of the Japan Society for the Promotion of Science (JSPS). The second listed author was partially
supported by the 2016/2017 fiscal year grant of the Matsuyama Saibikai.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bernstein, A.R. A new kind of compactness for topological spaces. Fund. Math. 1970, 66, 185–193.
2. Angoa, J.; Ortiz-Castillo, Y.F.; Tamariz-Mascarúa, A. Compact-like properties in hyperspaces. Matematički Vesnik
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