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Abstract

:

A well-known result of Ferri and Galindo asserts that the topological group   c 0   is not reflexively representable and the algebra WAP  (  c 0  )   of weakly almost periodic functions does not separate points and closed subsets. However, it is unknown if the same remains true for a larger important algebra Tame  (  c 0  )   of tame functions. Respectively, it is an open question if   c 0   is representable on a Rosenthal Banach space. In the present work we show that Tame  (  c 0  )   is small in a sense that the unit sphere S and   2 S   cannot be separated by a tame function f ∈ Tame  (  c 0  )  . As an application we show that the Gromov’s compactification of   c 0   is not a semigroup compactification. We discuss some questions.
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1. Introduction


Recall that for every Hausdorff topological group G the algebra WAP  ( G )   of all weakly almost periodic functions on G determines the universal semitopological semigroup compactification    u w  : G →  G w    of G. This map is a topological embedding for many groups including the locally compact case. For some basic material about WAP  ( G )   we refer to [1,2].



The question if   u w   always is a topological embedding (i.e., if   WAP ( G )   determines the topology of G) was raised by Ruppert [2]. This question was negatively answered in [1] by showing that the Polish topological group   G : =  H +   [ 0 , 1 ]    of orientation preserving homeomorphisms of the closed unit interval has only constant WAP functions and that every continuous representation   h : G → I s ( V )   (by linear isometries) on a reflexive Banach space V is trivial. The WAP triviality of    H +   [ 0 , 1 ]    was conjectured by Pestov.



Recall also that for   G : =  H +   [ 0 , 1 ]    every Asplund (hence also every WAP) function is constant and every continuous representation   G →   Iso  ( V )   on an Asplund (hence also reflexive) space V must be trivial [3]. In contrast one may show (see [4,5]) that    H +   [ 0 , 1 ]    is representable on a (separable) Rosenthal space (a Banach space is Rosenthal if it does not contain a subspace topologically isomorphic to   l 1  ).



We have the inclusions of topological G-algebras


  WAP ( G ) ⊂ Asp ( G ) ⊂ Tame ( G ) ⊂ RUC ( G ) .  











For details about   Tame ( G )   and definition of   Asp ( G )   see [5,6,7]. We only remark that   f ∈ Tame ( G )   if and only if f is a matrix coefficient of a Rosenthal representation. That is, there exist: a Rosenthal Banach space V; a continuous homomorphism   h : G → I s ( V )   into the topological group of all linear isometries   V → V   with strong operator topology; two vectors   v ∈ V  ;   ψ ∈  V *    (the dual of V) such that   f ( g ) = ψ ( h ( g ) v )   for every   g ∈ G  .



Similarly, it can be characterized   f ∈ Asp ( G )   replacing Rosenthal spaces by the larger class of Asplund spaces. A Banach space is Asplund if the dual of every separable subspace is separable. Every reflexive space is Asplund and every Asplund is Rosenthal. A standard example of an Asplund but nonreflexive space is just   c 0  .



Recall that   c 0  , as an additive abelian topological group, is not representable on a reflexive Banach space by a well-known result of Ferri and Galindo [8]. In fact,   WAP (  c 0  )   separates the points but not points and closed subsets. The group   c 0   admits an injective continuous homomorphism   h :  c 0  → I s  ( V )    with some reflexive V but such h cannot be a topological embedding.



Presently it is an open question if every topological group (abelian, or not) G is Rosenthal representable and if   Tame ( G )   determines the topology of G. Note that the algebra   Tame ( G )   appears as an important modern tool in some new research lines in topological dynamics motivating its detailed study [5,7].



One of the good reasons to study   Tame ( G )   is a special role of tameness in the dynamical Berglund-Fremlin-Talagrand dichotomy [5]; as well as direct links to Rosenthal’s   l 1  -dychotomy. In a sense   Tame ( G )   is a set of all functions which are not dynamically massive.



By these reasons and since    H +   [ 0 , 1 ]    is Rosenthal representable, it seems to be an attractive concrete question if   c 0   is Rosenthal representable and it is worth studying how large is   Tame (  c 0  )  . In the present work we show that   Tame (  c 0  )   is quite small (even for the discrete copy of   c 0  , see Theorem 3).



Theorem 1.

  Tame (  c 0  )   does not separate the unit sphere S and   2 S  .





So, the closures of S and   2 S   intersect in the universal tame compactification of   c 0   (a fortiori, the same is true for the universal Asplund (HNS) semigroup compactification).



Another interesting question is if   c 0   admits an embedding into a metrizable semigroup compactification. Note that any metrizable semigroup compactification of    H +   [ 0 , 1 ]    is trivial.



In Section 3 we show that the Gromov’s compactification   γ :  c 0  ↪ P  , which is metrizable (and  γ  is a G-embedding), is not a semigroup compactification.



Theorem 2.

Let   γ :  c 0  ↪ P   be the Gromov’s compactification of the metric space   (  c 0  ,  d  1 + d   )  , where   d ( x , y ) : = | | x − y | |  . Then γ is not a semigroup compactification.





This gives an example of a naturally defined separable unital (original topology determining) G-subalgebra of   RUC ( G )   (for   G =  c 0   ) which is not left m-introverted in the sense of [9].




2. Tame Functions on c0


Recall that a sequence   f n   of real-valued functions on a set X is said to be independent if there exist real numbers   a < b   such that


   ⋂  n ∈ P    f n  − 1    ( − ∞ , a )  ∩  ⋂  n ∈ M    f n  − 1    ( b , ∞ )  ≠ ∅  








for all finite disjoint subsets   P , M   of  N . Every bounded independent sequence is an   l 1  -sequence [10].



As in [6,7] we say that a bounded family F of real-valued (not necessarily continuous) functions on a set X is a tame family if F does not contain an independent sequence.



Let G be a topological group,   f : G → R   be a real-valued function. For every   g ∈ G   define   f g : G → R   as   ( f g ) ( x ) = f ( g x )   (for multiplicative G). Denote by   RUC ( G )   the algebra of all bounded right uniformly continuous functions on G. So,   f ∈ RUC ( G )   means that f is bounded and for every   ϵ > 0   there exists a neighborhood U of the identity e (of the multiplicative group G) such that   | f ( u x ) − f ( x ) | < ϵ   for every   x ∈ G   and   u ∈ U  . This algebra   RUC ( G )   corresponds to the greatest G-compactification   G →  β G  G   of G (with respect to the left action), greatest ambit of G.



We say that   f ∈ RUC ( G )   is a tame function if the orbit   f G : =   { f g }   g ∈ G     is a tame family. That is,   f G   does not contain an independent sequence; notation   f ∈ Tame ( G )  .



2.1. Proof of Theorem 1


We have to show that   Tame (  c 0  )   does not separate the spheres S and   2 S   (where   S : = { x ∈  c 0  : | | x | | = 1 }  ). In fact we show the following stronger result.



Theorem 3.

Let   G =  c 0    be the additive group of the classical Banach space   c 0  . Assume that   f :  c 0  → R   be any (not necessarily continuous) bounded function such that


       f ( x ) ≤ a      ∀  | | x | | = 1       b ≤ f ( x )     ∀  | | x | | = 2       








for some pair   a < b   of real numbers. Then f is not a tame function on the discrete copy of the group   c 0  .





Proof. 

For every   n ∈ N   consider the function


   f n  :  c 0  → R , x ↦ f  (  e n  + x )  ,  








where   e n   is a vector of   c 0   having 1 as its n-th coordinate and all other coordinates are 0. Clearly,    f n  = f  g n    where    g n  =  e n  ∈  c 0   . We have to check that   f G   is an untame family. It is enough to show that the sequence    {  f n  }   n ∈ N    in   f G   is an independent family of functions on   c 0  . We have to show that for every finite nonempty disjoint subsets   I , J   in  N  the intersection


   ⋂  n ∈ I    f n  − 1    ( − ∞ , a ]  ∩  ⋂  n ∈ J    f n  − 1    [ b , ∞ )   








is nonempty.



Define   v =   (  v k  )   k ∈ N   ∈  c 0    as follows:    v j  = 1   for every   j ∈ J   and    v k  = 0   for every   k ∉ J  . Then




	(1)

	
  v ∈  c 0    and   | | v | | = 1  .




	(2)

	
   | |   e i  + v  | |  = 1  ,    f i   ( v )  = f  (  e i  + v )  ≤ a   for every   i ∈ I  .




	(3)

	
   | |   e j  + v  | |  = 2  ,    f j   ( v )  = f  (  e j  + v )  ≥ b   for every   j ∈ J  .









So we found v such that


  v ∈  ⋂  n ∈ I    f n  − 1    ( − ∞ , a ]  ∩  ⋂  n ∈ J    f n  − 1    [ b , ∞ )  .  








 □





Corollary 1.

The bounded RUC function


   f :  c 0  →  [ − 1 , 1 ]  , x ↦   | | x | |   1 + | | x | |     








is not tame on   c 0   (even on the discrete copy of the group   c 0  ).





Proof. 

Observe that   f  ( S )  =  1 2  , f  ( 2 S )  =  2 3    and apply Theorem 3. □





Theorem 3 remains true for the spheres   r S   and   2 r S   for every   r > 0  . In the case of Polish   c 0   it is unclear if the same is true for any pair of different spheres around the zero. If, yes then this will imply that   Tame (  c 0  )   does not separate the zero and closed subsets. The following question remains open even for any topological group [5,7].



Question 1.

Is it true that   Tame (  c 0  )   separates the points and closed subsets ? Is it true that Polish group   c 0   is Rosenthal representable ?







3. Gromov’s Compactification Need Not Be a Semigroup Compactification


Studying topological groups G and their dynamics we need to deal with various natural closed unital G-subalgebras  A  of the algebra   RUC ( G )  . Such subalgebras lead to G-compactifications of G (so-called G-ambits,11]). That is we have compact G-spaces K with a dense orbit   G z ⊂ K   such that the Gelfand algebra which corresponds to the compactification   G → K , g ↦ g z   is just  A . Frequently but not always such compactifications are the so-called semigroup compactifications, which are very useful in topological dynamics and analysis. Compactifications of topological groups already is a fruitful research line. See among others [12,13,14] and references there. In our opinion semigroup compactifications deserve even much more attention and systematic study in the context of general topological group theory.



A semigroup compactification of G is a pair   ( α , K )   such that K is a compact right topological semigroup (all right translations are continuous), and  α  is a continuous semigroup homomorphism from G into K, where   α ( G )   is dense in K and the left translation   K → K , x ↦ α ( g ) x   is continuous for every   g ∈ G  .



One of the most useful references about semigroup compactifications is a book of Berglund, Junghenn and Milnes [9]. For some new directions (regarding topological groups) see also [3,4,15,16].



Question 2.

Which natural compactifications of topological groups G are semigroup compactifications? Equivalently which Banach unital G-subalgebras of RUC  ( G )   are left m-introverted (in the sense of [9])?





Recall that left m-introversion of a subalgebra  A  of   RUC ( G )   means that for every   v ∈ A   and every   ψ ∈ M M ( A )   the matrix coefficient   m ( v , ψ )   belongs to  A , where


  m  ( v , ψ )  : G → R , g ↦ ψ  (  g  − 1   v )   








and   M M  ( A )  ⊂  A *    denotes the spectrum (Gelfand space) of  A .



It is not always easy to verify left m-introversion directly. Many natural G-compactifications of G are semigroup compactifications. For example, it is true for the compactifications defined by the algebras   RUC ( G )  ,   Tame ( G ) ,     Asp ( G )  ,   WAP ( G )  . Of course, the 1-point compactification is a semitopological semigroup compactification for any locally compact group G.



As to the counterexamples. As it was proved in [3], the subalgebra   UC ( G ) : = RUC ( G ) ∩ LUC ( G )   of all uniformly continuous functions is not left m-introverted for   G : = H ( C )  , the Polish group of homeomorphisms of the Cantor set.



In this section we show that the Gromov’s compactification of a metrizable topological group G need not be a semigroup compactification.



Let  ρ  be a bounded metric on a set X. Then the Gromov’s compactification of the metric space   ( X , ρ )   is a compactification   γ : X → P   induced by the algebra  A  which is generated by the bounded set of functions


    {  ρ z  : X → R ,  ρ z   ( x )  = ρ  ( z , x )  }   z ∈ X   .  











Then  γ  always is a topological embedding. If X is separable then P is metrizable. Moreover, if   ( X , ρ )   admits a continuous  ρ -invariant action of a topological group G then  γ  is a G-compactification of X; see [17].



Here we examine the following particular case. Let G be a metrizable topological group. Choose any left invariant metric d on G. Denote by   γ : G → P   the Gromov’s compactification of the bounded metric space   ( G , ρ )  , where   ρ =  d  1 + d    .



Consider the following natural bounded RUC function


  f : G → R , x ↦   | | x | |   1 + | | x | |    








where   | | x | | : = d ( e , x )  . By   A f   we denote the smallest closed unital G-subalgebra of   RUC ( G )   which contains   f G = { f g : g ∈ G }  . Then   A f   is the algebra which corresponds to the compactification  γ . Indeed,    ρ  g  − 1     ( x )  = ρ  (  g  − 1   , x )  =  ( f g )   ( x )    for every   g , x ∈ G  .



Proof of Theorem 2


We have to prove Theorem 2.



Proof. 

By the discussion above, the unital G-subalgebra   A f   of   RUC ( G )   associated with  γ  is generated by the orbit   f G  , where   f : G → R , f  ( x )  =   | | x | |   1 + | | x | |    . Since   c 0   is separable the algebra   A f   is separable. Hence, P is metrizable. If we assume that  γ  is a semigroup compactification then the separability of   A f   guarantees by [4] ( Prop. 6.13) that    A f  ⊂ Asp  ( G )   . On the other hand, since   Asp ( G ) ⊂ Tame ( G )  , and   f ∈  A f    we have   f ∈ Tame ( G )  . Now observe that f separates the spheres S and   2 S   and we get a contradiction to Corollary 1. □





Question 3.

Is it true that the Polish group   c 0   admits a semigroup compactification   α :  c 0  ↪ P   such that P is metrizable and  α  is an embedding? What if P is first countable?





This question is closely related to the setting of this work. Indeed, by [4] (Prop. 6.13) (resp., by [4] (Cor. 6.20)) the metrizability (first countability) of P guarantees that the corresponding algebra is a subset of   Asp ( G )   (resp. of   Tame ( G )  ).








Funding


This research received no external funding.




Conflicts of Interest


The author declares no conflicts of interest.




References


	



Megrelishvili, M. Every semitopological semigroup compactification of the group H+[0,1] is trivial. Semigroup Forum 2001, 63, 357–370. [Google Scholar] [CrossRef]

	



Ruppert, W. Compact Semitopological Semigroups: An Intrinsic Theory; Lecture Notes in Mathematics, 1079; Springer: New York, NY, USA, 1984. [Google Scholar]

	



Glasner, E.; Megrelishvili, M. New algebras of functions on topological groups arising from G-spaces. Fundamenta Math. 2008, 201, 1–51. [Google Scholar] [CrossRef]

	



Glasner, E.; Megrelishvili, M. Banach representations and affine compactifications of dynamical systems. In Fields Institute Proceedings Dedicated to the 2010 Thematic Program on Asymptotic Geometric Analysis; Ludwig, M., Milman, V.D., Pestov, V., Tomczak-Jaegermann, N., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]

	



Glasner, E.; Megrelishvili, M. Representations of dynamical systems on Banach spaces. In Recent Progress in General Topology III; Hart, K.P., van Mill, J., Simon, P., Eds.; Atlantis Press: Amsterdam, The Netherlands, 2014; pp. 399–470. [Google Scholar]

	



Glasner, E.; Megrelishvili, M. Representations of dynamical systems on Banach spaces not containing l1. Trans. Am. Math. Soc. 2012, 364, 6395–6424. [Google Scholar] [CrossRef]

	



Glasner, E.; Megrelishvili, M. More on tame dynamical systems. In Lecture Notes S. vol. 2013, Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics; Ferenczi, S., Kulaga-Przymus, J., Lemanczyk, M., Eds.; Springer: New York, NY, USA, 2018. [Google Scholar]

	



Ferri, S.; Galindo, J. Embedding a topological group into its WAP-compactification. Studia Math. 2009, 193, 99–108. [Google Scholar] [CrossRef][Green Version]

	



Berglund, J.F.; Junghenn, H.D.; Milnes, P. Analysis on Semigroups; Wiley: New York, NY, USA, 1989. [Google Scholar]

	



Rosenthal, H.P. A characterization of Banach spaces containing ℓ1. Proc. Natl. Acad. Sci. USA 1974, 71, 2411–2413. [Google Scholar] [CrossRef] [PubMed]

	



de Vries, J. Elements of Topological Dynamics; Kluwer Academic Publishers: Norwell, MA, USA, 1993. [Google Scholar]

	



Uspenskij, V.V. Compactifications of topological groups. In Proceedings of the Ninth Prague Topological Symposium, Prague, Czech Republic, 19–25 August 2001; Simon, P., Ed.; Topology Atlas: Toronto, ON, Canada, April 2002; pp. 331–346. [Google Scholar]

	



Pestov, V. Topological groups: Where to from here? Topol. Proc. 1999, 24, 421–502. [Google Scholar]

	



Pestov, V. Dynamics of Infinite-Dimensional Groups. The Ramsey-Dvoretzky-Milman Phenomenon; University Lecture Series, 40; American Mathematical Society: Providence, RI, USA, 2006. [Google Scholar]

	



Galindo, J. On Group and Semigroup Compactifications of Topological Groups. preprint 2010. [Google Scholar]

	



Megrelishvili, M. Fragmentability and representations of flows. Topol. Proc. 2003, 27, 497–544. [Google Scholar]

	



Megrelishvili, M. Topological transformation groups: Selected topics. In Open Problems in Topology II; Pearl, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 423–438. [Google Scholar]







© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  axioms-07-00077


  
    		
      axioms-07-00077
    


  




  





