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Makrina Agaoglou 1,2, Michal Fečkan 1,3,* , Michal Pospíšil 1,3, Vassilis M. Rothos 2 and
Alexander F. Vakakis 4

1 Mathematical Institute of Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia;
makrina_agao@hotmail.com (M.A.); michal.pospisil@fmph.uniba.sk (M.P.)

2 Department of Mechanical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece; rothos@auth.gr

3 Department of Mathematical Analysis and Numerical Mathematics, Comenius University in Bratislava,
Mlynská dolina, 842 48 Bratislava, Slovakia

4 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA; avakakis@illinois.edu

* Correspondence: michal.feckan@fmph.uniba.sk

Received: 31 July 2018; Accepted: 19 September 2018; Published: 22 September 2018
����������
�������

Abstract: In this work, we study the in-plane oscillations of a finite lattice of particles coupled by
linear springs under distributed harmonic excitation. Melnikov-type analysis is applied for the
persistence of periodic oscillations of a reduced system.
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1. Introduction

We analytically study the persistence of periodic oscillations for certain three-dimensional systems
of ordinary differential equations (ODEs) with periodic perturbations and a slowly-varying variable.
The considered ODEs are derived from a model of a finite lattice of particles coupled by linear springs
under distributed harmonic excitation, which is described in detail in Section 2. This model presents
a low-energy nonlinear acoustic vacuum. We refer the reader for more motivations, further details
and applications to [1,2]. Following the computations of [1], we consider just two modes in Section 3,
and we postpone higher modes investigation to our future paper, since another approach will be used.
Melnikov analysis is demonstrated in Section 4 for finding conditions for the existence of periodic
solutions for the perturbed ODEs corresponding to two modes. More precisely, following [1], we
derive a three-dimensional periodically-perturbed system of ODEs with a slowly-varying variable.
Then, we analyze an unperturbed autonomous system of ODEs to compute its family of periodic
solutions by revising the results of [1] in more detail. Since we are interested in the persistence of
periodic solutions for the perturbed ODEs, we compute the corresponding Melnikov functions by [3].
Due to the difficulty of finding simple roots of these Melnikov functions explicitly, we outline an
asymptotic approach for the location of some of them. Note that the simple roots of Melnikov functions
predict the persistence and location of periodic solutions for perturbed ODEs. This is a novelty and
a contribution of our paper. Section 5 outlines possible future research along with summarizing our
achievements in this paper.

2. The Model

We consider a lattice consisting of N identical particles coupled by identical linear springs
(they are un-stretched when the lattice is in the horizontal position) and executing in-plane oscillations
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(see Figure 1). Fixed boundary conditions and dissipative terms are imposed, and the transverse
harmonic forces are also applied. The equations of motion can be expressed as follows,

m
d2ui
dt2 +

(
Ti − ξ

dεi
dt

)
cos φi −

(
Ti+1 − ξ

dεi+1

dt

)
cos φi+1 = 0

m
d2vi
dt2 +

(
Ti − ξ

dεi
dt

)
sin φi −

(
Ti+1 − ξ

dεi+1

dt

)
sin φi+1 − Fi = 0

(1)

with ui, vi being the longitudinal and transversal displacements of the i-th particle, respectively, φi
the angle between the i-th spring and the horizontal direction, ξ the damping coefficient, εi = l′i − li
the deformation of the i-th spring, Fi the exciting transverse force and m the mass of each particle of
the lattice. The tensile forces are proportional to the deformations of the springs, and considering the
geometry of the deformed state of the lattice (see Figure 1), one may write:

Ti = k(l′i − li),
εi = l′i − li = [(vi − vi−1)

2 + (li + ui − ui−1)
2]1/2 − li

with li being the equilibrium length of the i-th spring (each spring has the same length) and k the
linear stiffness coefficient of each coupling spring. Introducing δi = εi/li, si = ui/li, wi = vi/li,
c = ξ/(km)1/2, where si and wi are the normalized axial and transverse displacements, and the “slow”
time scale τ = ( k

m )1/2t, Equation (1) can be rewritten in normalized form:

d2si
dτ2 = δi cos φi − δi−1 cos φi−1 + cδ′i cos φi − cδ′i−1 cos φi−1

d2wi
dτ2 = δi sin φi − δi−1 sin φi−1 + cδ′i sin φi − cδ′i−1 sin φi−1 + fi,

(2)

where:
δi = [(wi+1 − wi)

2 + (1 + si+1 − si)]
1/2 − 1,

δ′i =
(wi+1−wi)(w′i+1−w′i)+(1+si+1−si)(s′i+1−s′i)

[(wi+1−wi)2+(1+si+1−si)2]1/2

and:
cos φi =

1+si+1−si
[(wi+1−wi)2+(1+si+1−si)2]1/2 ,

sin φi =
wi+1−wi

[(wi+1−wi)2+(1+si+1−si)2]1/2 ,

fi = Fi
k .

Figure 1. Forced and damped lattice oscillating in the plane (see [2]).

The normalized system (2) is referred to as the “exact lattice” in the following sections.
According to the previous research [1], when we introduce this system (2) without extra transverse

force and damping terms, an interesting feature is that in the low energy limit and under the assumption
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that the axial displacements are assumed to be an order of magnitude smaller compared to the
transverse ones, it was shown that, correct to the leading order of approximation, the transverse
oscillations decouple from the axial ones and are governed by the following reduced system of
equations for predominantly transverse oscillations of the particles:

d2wi
dτ2 + 2−1(N + 1)−1

N

∑
q=0

(wq+1 − wq)
2(2wi − wi+1 − wi−1) = 0,

i = 1, · · · , N, w0(0) = wN+1(0) = 0.

(3)

Then, the nearly linear axial oscillations are driven by the transverse responses (see [1,2] for more
details). Therefore, we focus our analysis like in [1] just on Equation (3), which presents a low-energy
nonlinear acoustic vacuum, because in the absence of linear terms, it possesses zero speed of sound in
the context of classical linear acoustics. What is more, it is notable that the existence of the strongly
nonlocal multiplier 2−1(N + 1)−1 ∑N

q=0(wq+1 − wq)2 indicates that the response of each particle is
dependent (and hence, it is coupled) on the responses of all other particles. Equation (3) admits N
exact nonlinear standing waves, or nonlinear normal modes (NNMs), in the form:

wi(τ) = Ap(τ) sin
πpi

N + 1
, i = 1, · · · , N

for the p-th NNM, 1 ≤ p ≤ N, where Ap(τ) denotes the p-th modal amplitude. These, by construction,
are mutually orthogonal, and there are no other NNMs in this system, nor any NNM bifurcations [1].
Substituting this NNM ansatz into Equation (3) yields a set of N uncoupled nonlinear equations
governing the time-dependent amplitudes of the NNMs:

A′′p(τ) + (1/4)ω4
p A3

p(τ) = 0

with:
ωp = 2 sin

πp
2(N + 1)

,

which is the p-th natural frequency of the corresponding linear system Equation (3) and the prime
denoting differentiation with respect to τ. The exciting force, which is applied on each particle in the
transverse direction, is expressed as:

fi = Fp cos ωpτ sin
piπ

n + 1

where i = 1, · · · , N, for the p-th NNM, 1 ≤ p ≤ N, and this exciting force includes NNMs in the form
sin piπ

n+1 , i = 1, · · · , N, for the p-th NNM, 1 ≤ p ≤ N and the p-th natural linear frequency ωp.
The frequency of the p-th NNM is tunable with the force and energy, and it also paves the way

for nonlinear resonances between NNMs widely separated in the nonlinear spectrum, given that their
energies tune their frequencies to satisfy certain rational relationships.

Summarizing, we can write (3) as:

d2w
dτ2 + 2−1(N + 1)−1〈Mw, w〉Mw = 0,
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where w = [w1, · · · , wN ] ∈ RN , M is a symmetric matrix given by

M =


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
...

...
0 · · · −1 2 −1
0 · · · 0 −1 2


and 〈·, ·〉 is the standard scalar product on RN . The eigenvectors of M are φ

p
= [sin pπ

N+1 , · · · , sin pNπ
N+1 ]

with the corresponding eigenvalues ω2
p, 1 ≤ p ≤ N. Moreover, it holds (see [4], p. 37):

〈φ
p
, φ

p
〉 =

N

∑
i=1

sin2 piπ
N + 1

=
N + 1

2
,

〈φ
p
, φ

k
〉 =

N

∑
i=1

sin
piπ

N + 1
sin

kiπ
N + 1

=
1
2

N

∑
i=1

(
cos

(p− k)iπ
N + 1

− cos
(p + k)iπ

N + 1

)
= 0, p 6= k.

The forced (3) has the form:

d2w
dτ2 + 2−1(N + 1)−1〈Mw, w〉Mw =

N

∑
p=1

Fp cos ωpτφ
p
. (4)

Therefore, considering the basis {φ
p
}N

p=1 of RN , we take w(τ) = ∑N
p=1 Cp(τ)φp

in (4) to get:

C′′p (τ) +
1
4

(
N

∑
i=1

C2
i (τ)ω

2
i

)
ω2

pCp(τ) = Fp cos ωpτ, 1 ≤ p ≤ N. (5)

Next, applying the coordinate transformation to (5):

Ap(τ) =
ωp

2
Cp(τ), 1 ≤ p ≤ N,

we get:

A′′p(τ) +

(
N

∑
i=1

A2
i (τ)

)
ω2

p Ap(τ) =
Fpωp

2
cos ωpτ, 1 ≤ p ≤ N.

3. Two-Mode System

In this paper, we consider just two modes: k and p, so we study the system:

A′′k (τ) + [A2
k(τ) + A2

p(τ)]ω
2
k Ak(τ) + εµ1 cos(ωkτ) = 0

A′′p(τ) + [A2
k(τ) + A2

p(τ)]ω
2
p Ap(τ) + εµ2 cos(ωpτ) = 0,

(6)

for ε 6= 0 small and parameters µ1, µ2. Using the transformation:

ψ1(τ) = A′k(τ) + jΩAk(τ) ≡ ζ1(τ)ejΩτ

ψ2(τ) = A′p(τ) + jΩAp(τ) ≡ ζ2(τ)ejΩτ ,
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and performing an averaging approach like in [1], Equation (6) is modified to the form:

ζ ′1 +
jΩ
2

ζ1 −
jω2

k
8Ω3 (ζ

2
2ζ∗1 + 2|ζ2|2ζ1 + 3|ζ1|2ζ1) + εµ1 cos(ωkτ)e−jΩτ = 0

ζ ′2 +
jΩ
2

ζ2 −
jω2

p

8Ω3 (ζ
2
1ζ∗2 + 2|ζ1|2ζ2 + 3|ζ2|2ζ2) + εµ2 cos(ωpτ)e−jΩτ = 0.

Introducing ζi = aiejβi and ∆ = β2 − β1, we get:

a′1 +
ω2

k
8Ω3 a2

2a1 sin 2∆ + εµ1 cos(ωkτ) cos(Ωτ + β1) = 0

a′2 −
ω2

p

8Ω3 a2
1a2 sin 2∆ + εµ2 cos(ωpτ) cos(Ωτ + β1 + ∆) = 0

∆′ −
ω2

p

8Ω3 (3a2
2 + a2

1 cos 2∆ + 2a2
1) +

ω2
k

8Ω3 (3a2
1 + a2

2 cos 2∆ + 2a2
2)

− εµ2

a2
cos(ωpτ) sin(Ωτ + β1 + ∆) +

εµ1

a1
cos(ωkτ) sin(Ωτ + β1) = 0

(7)

where we consider β1 as a constant parameter. Now, by introducing the coordinate transformations
a1 = ( ρ

ωp
) sin θ and a2 = ( ρ

ωk
) cos θ into Equation (7), we get:

ρ′ = −εµ1ωp sin θ cos(ωkτ) cos(Ωτ + β1)− εµ2ωk cos θ cos(ωpτ) cos(Ωτ + ∆ + β1)

θ′ +
ρ2

16Ω3 sin 2θ sin 2∆ + εµ1ωp
cos θ

ρ
cos(ωkτ) cos(Ωτ + β1)

−εµ2ωk
sin θ

ρ
cos(ωpτ) cos(Ωτ + ∆ + β1) = 0

∆′ − ρ2

8Ω3

[
3ω2

p

ω2
k

cos2 θ −
3ω2

k
ω2

p
sin2 θ − cos 2θ(2 + cos 2∆)

]
− εµ2ωk

ρ cos θ
cos(ωpτ) sin(Ωτ + ∆ + β1) +

εµ1ωp

ρ sin θ
cos(ωkτ) sin(Ωτ + β1) = 0.

In the rest of the paper, we assume ωp = ωk = P and Ω = kP for a natural number k, so we study
the periodically-perturbed system:

ρ′ = −εµ1 sin θ cos(Pτ) cos(kPτ + β1)− εµ2 cos θ cos(Pτ) cos(kPτ + ∆ + β1)

θ′ +
ρ2

16k3P3 sin 2θ sin 2∆ + εµ1
cos θ

ρ
cos(Pτ) cos(kPτ + β1)

−εµ2
sin θ

ρ
cos(Pτ) cos(kPτ + ∆ + β1) = 0

∆′ − ρ2

4k3P3 cos 2θ sin2 ∆ +
εµ1

ρ sin θ
cos(Pτ) sin(kPτ + β1)

− εµ2

ρ cos θ
cos(Pτ) sin(kPτ + ∆ + β1) = 0

(8)

where we scaled Pµi ↔ µi, i = 1, 2. We may suppose:

µ2
1 + µ2

2 = 1.
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First, consider the unperturbed case where ε = 0, so the system:

ρ′ = 0

θ′ +
ρ2

16k3P3 sin 2θ sin 2∆ = 0

∆′ − ρ2

4k3P3 cos 2θ sin2 ∆ = 0.

(9)

By introducing the temporal variable τ2 = ρ2

8k3P3 τ in Equation (9), we get:

dθ

dτ2
= − 1

2 sin 2θ sin 2∆

d∆
dτ2

= 2 cos 2θ sin2 ∆
(10)

which is fully integrable and gives us the first integral I = sin 2θ sin ∆ = K = const. of the
degenerate slow flow. If we consider the following initial conditions: θ(0) = θ0, where 0 < θ0 < π

4
and ∆(0) = π/2, then we get K = sin 2θ0 ∈ (0, 1). To find exact solutions of (10), we first derive:

dτ2

dθ
= − 2

sin 2θ sin 2∆
= − 1

K cos ∆
=

1

K
√

1− sin2 ∆

=
1

K
√

1− K2

sin2 2θ

=
1
K

sin 2θ√
sin2 2θ − K2

,

for τ2 > 0 small, since (10) gives 0 < θ < π
2 , 0 < ∆ < π (see Figure 2) and d∆

dτ2
(0) = 2 cos 2θ0 > 0,

so for τ2 > 0 small, we have ∆(τ2) >
π
2 .

By using the formula in [4] ((2.599.4) p. 205), we obtain:

τ2 =
∫ θ

θ0

1
K

sin 2θ√
sin2 2θ − K2

dθ =
1

2K

(
π

2
− sin−1

(
cos 2θ√
1− K2

))
,

which gives:

θ(τ2) =
1
2

cos−1
(√

1− K2 cos(2Kτ2)
)

, (11)

recalling 0 < θ < π
2 . Of course, Formula (11) holds for all τ2, not just for small positive ones. Next,

using (10) and (11), we have:
d∆
dτ2

= 2
√

1− K2 cos(2Kτ2) sin2 ∆,

which can be easily solved to arrive at:

∆(τ2) = π − cot−1

(√
1− K2

K
sin(2Kτ2)

)
.
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Figure 2. Top panel: Graph for θ for different initial values of θ0. Bottom panel: Graph for ∆ for
different initial values of θ0.

Hence, the exact solution of the system (10) is given as:

θ(τ2) =
1
2

cos−1
(√

1− K2 cos(2Kτ2)
)

∆(τ2) = π − cot−1

(√
1− K2

K
sin(2Kτ2)

)

where the period is:

T(θ0) =
2
K

∫ π
2 −θ0

θ0

dθ(
1− sin2 2θ0

sin2 2θ

)1/2 =
π

K
.

It is easy to verify the following symmetry property (see Figure 3):

∆
(

τ2 +
T
2

)
= π − ∆(τ2), θ

(
τ2 +

T
2

)
=

π

2
− θ(τ2).
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Figure 3. Orbits in the phase portrait of (10), where (θ, ∆) ∈ [0, π
2 ]× [0, π].

Summarizing, the exact solution of the unperturbed (9) is the following:

ρ(τ) = const.

θ(τ) =
1
2

cos−1
(√

1− K2 cos
(

Kρ2

4k3P3 τ

))
∆(τ) = π − cot−1

(√
1− K2

K
sin
(

Kρ2

4k3P3 τ

))

with the period:

T =
8k3P3π

Kρ2 .

Consequently, for any:
ρ > 2kP2

√
k,

taking:

K(ρ) =
4k3P4

ρ2 ∈ (0, 1),

Equation (9) has the T = 2π/P-periodic solution:

θ(ρ, τ) =
1
2

cos−1

(√
ρ4 − 16k6P8

ρ2 cos(Pτ)

)

∆(ρ, τ) = π − cot−1

(√
ρ4 − 16k6P8

4k3P4 sin(Pτ)

)
.

(12)
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4. Melnikov Analysis for Periodic Oscillations

Writing (8) as:

θ′ +
ρ2

16k3P3 sin 2θ sin 2∆ = ερ−1g1(ρ, θ, ∆, τ)

∆′ − ρ2

4k3P3 cos 2θ sin2 ∆ = ερ−1g2(ρ, θ, ∆, τ)

ρ′ = εg3(ρ, θ, ∆, τ)

and using [5], (3.5.11), p. 111, with α = 0, and [6], Lemma 2.5, p. 283, we compute the
Melnikov function:

M(β1, ρ) = (M1(β1, ρ), M2(β1, ρ))

as:

M1(β1, ρ) =
∫ T

0

(
∂I
∂θ

ρ−1g1 +
∂I
∂∆

ρ−1g2 −
∂I
∂θ

∂θ

∂ρ
g3 −

∂I
∂∆

∂∆
∂ρ

g3

)
dτ

=
∫ T

0

(
∂I
∂θ

ρ−1g1 +
∂I
∂∆

ρ−1g2

)
dτ − dK

dρ

∫ T

0
g3dτ

(13)

since differentiating by ρ the identity:

I(θ(ρ, τ), ∆(ρ, τ)) = K(ρ),

we get:
∂I
∂θ

∂θ

∂ρ
+

∂I
∂∆

∂∆
∂ρ

=
dK
dρ

,

which is independent of τ, and:

M2(β1, ρ) =
∫ T

0
g3dτ. (14)

Formulas (13) and (14) are similar to [3], (2.7). We are looking for a simple zero of M, which is
equivalent to considering:

M̄(β1, ρ) = (M̄1(β1, ρ), M̄2(β1, ρ))

M̄1(β1, ρ) =
∫ T

0

(
∂I
∂θ

g1 +
∂I
∂∆

g2

)
dτ, M̄2(β1, ρ) =

∫ T

0
g3dτ.

Since:
gi = µ1gi1 + µ2gi2, i = 1, 2, 3

for:
g11(ρ, θ, ∆, τ) = − cos θ cos(Pτ) cos(kPτ + β1)

g12(ρ, θ, ∆, τ) = sin θ cos(Pτ) cos(kPτ + ∆ + β1)

g21(ρ, θ, ∆, τ) = −cos(Pτ)

sin θ
sin(kPτ + β1)

g22(ρ, θ, ∆, τ) =
cos(Pτ)

cos θ
sin(kPτ + ∆ + β1)

g31(ρ, θ, ∆, τ) = − sin θ cos(Pτ) cos(kPτ + β1)

g32(ρ, θ, ∆, τ) = − cos θ cos(Pτ) cos(kPτ + ∆ + β1)

we get:
M̄i(β1, ρ) = µ1M̄i1(β1, ρ) + µ2M̄i2(β1, ρ), i = 1, 2,
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for

M̄1j(β1, ρ) =
∫ T

0

(
∂I
∂θ

g1j +
∂I
∂∆

g2j

)
dτ, M̄2j(β1, ρ) =

∫ T

0
g3jdτ, j = 1, 2.

To solve:
µ1M̄i1(β1, ρ) + µ2M̄i2(β1, ρ) = 0, i = 1, 2,

we first solve the scalar equation:

M̃(β1, ρ) = M̄11(β1, ρ)M̄22(β1, ρ)− M̄12(β1, ρ)M̄21(β1, ρ) = 0 (15)

to get its root β1,0 and ρ0. Then, we look for µ1,0 and µ2,0 with µ2
1,0 + µ2

2,0 = 1 such that:

µ1,0M̄i1(β1,0, ρ0) + µ2,0M̄i2(β1,0, ρ0) = 0, i = 1, 2

det

(
µ1,0∇M̄11(β1,0, ρ0)

> + µ2,0∇M̄12(β1,0, ρ0)
>

µ1,0∇M̄21(β1,0, ρ0)
> + µ2,0∇M̄22(β1,0, ρ0)

>

)
6= 0.

(16)

Summarizing, we have the following result.

Theorem 1. If there are β1,0 ∈ [0, 2π), ρ0 satisfying (15), µ1,0 and µ2,0 with µ2
1,0 + µ2

2,0 = 1 solving (16),
then for any µ1 near µ1,0 and µ2 near µ2,0 with µ2

1 + µ2
2 = 1 and ε 6= 0 small, there are β1(ε) near β1,0 and

ρ(ε) near ρ0 such that (8) with β1 = β1(ε) and ρ = ρ(ε) has a T = 2π/P-periodic solution near (12) with
ρ = ρ(ε).

Note:

M̄11(β1, ρ) = −
∫ T

0

(
2 cos(2θ(ρ, τ)) sin ∆(ρ, τ) cos θ(ρ, τ) cos(Pτ) cos(kPτ + β1)

+2 cos θ(ρ, τ) cos ∆(ρ, τ) cos(Pτ) sin(kPτ + β1))
)

dτ

M̄12(β1, ρ) =
∫ T

0

(
2 cos(2θ(ρ, τ)) sin ∆(ρ, τ) sin θ(ρ, τ) cos(Pτ) cos(kPτ + ∆(ρ, τ) + β1)

+2 sin θ(ρ, τ) cos ∆(ρ, τ) cos(Pτ) sin(kPτ + ∆(ρ, τ) + β1)
)

dτ

M̄21(β1, ρ) = −
∫ T

0
sin θ(ρ, τ) cos(Pτ) cos(kPτ + β1)dτ

M̄22(β1, ρ) = −
∫ T

0
cos θ(ρ, τ) cos(Pτ) cos(kPτ + ∆(ρ, τ) + β1)dτ.

Next, taking ρ→ ∞ in (12), we obtain:

θ(∞, τ) =


Pτ

2
τ ∈

[
0,

π

P

]
,

π − Pτ

2
τ ∈

[
π

P
,

2π

P

]
,

∆(∞, τ) =



π τ ∈
(

0,
π

P

)
,

0 τ ∈
(

π

P
,

2π

P

)
,

π

2
τ ∈

{
0,

π

P
,

2π

P

}
,

∂θ

∂ρ
(∞, τ) = 0,

∂∆
∂ρ

(∞, τ) = 0.

(17)
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Hence:

M̄11(β1, ∞) =
∫ 2π

P

0
2 cos

Pτ

2
cos(Pτ) sin(kPτ + β1)dτ

=
16k(4k2 − 5) cos β1

(16k4 − 40k2 + 9)P

M̄12(β1, ∞) =
∫ 2π

P

0
2 sin

Pτ

2
cos(Pτ) sin(kPτ + β1)

)
dτ

= − 8(4k2 + 3) sin β1

(16k4 − 40k2 + 9)P

M̄21(β1, ∞) = −
∫ 2π

P

0
sin

Pτ

2
cos(Pτ) cos(kPτ + β1)dτ

=
4(4k2 + 3) cos β1

(16k4 − 40k2 + 9)P

M̄22(β1, ∞) =
∫ 2π

P

0
cos

Pτ

2
cos(Pτ) cos(kPτ + β1)dτ

= − 8k(4k2 − 5) sin β1

(16k4 − 40k2 + 9)P
.

Then, (15) gives as ρ→ ∞,

M̃(β1, ∞) = − 16 sin 2β1

(4k2 − 9)P2

with asymptotic solutions β∞
1,0 satisfying either sin β∞

1,0 = 0 or cos β∞
1,0 = 0. The asymptotic equation

of (16) is as follows:

0 = µ1,0M̄11(β∞
1,0, ∞) + µ2,0M̄12(β∞

1,0, ∞)

= µ1,0
16k(4k2 − 5) cos β∞

1,0

(16k4 − 40k2 + 9)P
− µ2,0

8(4k2 + 3) sin β∞
1,0

(16k4 − 40k2 + 9)P
,

which has solutions: µ∞
1,0 = 0 and µ∞

2,0 = ±1 when sin β∞
1,0 = 0 or µ∞

1,0 = ±1 and µ∞
2,0 = 0 when

cos β∞
1,0 = 0. However,

∂M̄ij
∂ρ (β1, ∞) = 0 for i, j ∈ {1, 2}, so Theorem 1 cannot be applied directly. Note

we consider just the first asymptotic equation of (16), since the second one is a scalar multiple of the
first one.

On the other hand, following the method of [5], p. 111, we get the following result.

Corollary 1. For any ρ > 0 sufficiently large and ε 6= 0 sufficiently small, there is µ1(ρ, ε), µ2(ρ, ε) with
µ2

1(ρ, ε) + µ2
2(ρ, ε) = 1 and β1(ρ, ε) such that (8) has a T-periodic solution near (17) for ε 6= 0 small and

either µ1(∞, 0) = 0, µ2(∞, 0) = ±1, sin β1(∞, 0) = 0 or µ1(∞, 0) = ±1, µ2(∞, 0) = 0, cos β1(∞, 0) = 0.

Proof. The bifurcation equation has the form (see [5], p. 111):

µ1M̄i1(β1, ρ) + µ2M̄i2(β1, ρ) = O(ε), i = 1, 2, µ2
1 + µ2

2 = 1

i.e.,
sin ΓM̄i1(β1, ρ) + cos ΓM̄i2(β1, ρ) = O(ε), i = 1, 2 (18)

for µ1 = sin Γ and µ2 = cos Γ. For ρ = ∞ and ε = 0, (18) takes the form:

16k(4k2 − 5)
(16k4 − 40k2 + 9)P

sin Γ cos β1 −
8(4k2 + 3)

(16k4 − 40k2 + 9)P
cos Γ sin β1 = 0

4(4k2 + 3) cos β1

(16k4 − 40k2 + 9)P
sin Γ cos β1 −

8k(4k2 − 5)
(16k4 − 40k2 + 9)P

cos Γ sin β1 = 0.
(19)
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The determinant of (19) is − 32
(4k2−9)P2 6= 0, so (19) has the only solutions:

sin Γ∞ = sin β∞
1,0 = 0, cos Γ∞ = cos β∞

1,0 = 0.

The determinants of Jacobians of (19) at these zeros are as follows:

det

 16k(4k2−5)
(16k4−40k2+9)P cos Γ∞ cos β∞

1,0 − 8(4k2+3)
(16k4−40k2+9)P cos Γ∞ cos β∞

1,0
4(4k2+3) cos β∞

1,0
(16k4−40k2+9)P cos Γ∞ cos β∞

1,0 − 8k(4k2−5)
(16k4−40k2+9)P cos Γ∞ cos β∞

1,0


= −

32 cos2 Γ∞ cos2 β∞
1,0

(4k2 − 9)P2 6= 0

and:

det

 8(4k2+3)
(16k4−40k2+9)P sin Γ∞ sin β∞

1,0 − 16k(4k2−5)
(16k4−40k2+9)P sin Γ∞ sin β∞

1,0
8k(4k2−5)

(16k4−40k2+9)P sin Γ∞ sin β∞
1,0 − 4(4k2+3) cos β∞

1,0
(16k4−40k2+9)P sin Γ∞ sin β∞

1,0


=

32 sin2 Γ∞ sin2 β∞
1,0

(4k2 − 9)P2 6= 0,

respectively. Hence, the zeroes Γ∞ and β∞
1,0 are simple, so we can apply the implicit function theorem

to get the result. The proof is complete.

5. Discussion

Melnikov analysis is applied for the persistence of periodic oscillations for periodically-perturbed
systems of ODEs with a slowly-varying variable. The ODEs are obtained from a model of a finite
lattice of particles coupled by linear springs under distributed harmonic excitation, which presents
a low-energy nonlinear acoustic vacuum (see [1]), but we consider just two modes. We extend the
study of [1] to a problem with small exciting harmonic forces. We apply an analytical method based
on derivation of Melnikov functions and then on the location of their simple roots. Melnikov functions
are derived by using the approach of [3,5] developed for slowly-varying ODEs. Since the Melnikov
functions are rather complicated, we follow an asymptotic way for solving the corresponding Melnikov
equations. It would be nice to solve these Melnikov equations numerically for finding other simple
roots, which is postponed to our next research. These roots determine and locate periodic solutions
of the periodically-perturbed systems of ODEs derived from the two-mode low-energy nonlinear
acoustic vacuum system. Moreover, our next investigation will be also to consider higher numbers of
modes represented by a system of ODEs in (5). The method used will be different from that in this
paper, since it will be based on the results of Section 3.3 of [5]. Note that higher modes of (2) were
numerically studied in [2], which is another challenge for our study.
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