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Abstract: We investigate recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite
trans-Sasakian manifold with a semi-symmetric metric connection. In these hypersurfaces, we obtain
several new results. Moreover, we characterize that the total space (an indefinite generalized Sasakian
space form) with a semi-symmetric metric connection is an indefinite Kenmotsu space form under
various lightlike hypersurfaces.
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1. Introduction

A semi-symmetric connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) was introduced by
Friedmann-Schouten [1] in 1924, whose torsion tensor T̄ satisfies

T̄(X̄, Ȳ) = θ(Ȳ)X̄− θ(X̄)Ȳ, (1)

where θ is a 1-form associated with a vector field ζ by θ(X̄) = ḡ(X̄, ζ). In particular, if it is a metric
connection (i.e., ∇̄ḡ = 0), then ∇̄ is said to be a semi-symmetric metric connection. This notion on a
Riemannian manifold was introduced by Yano [2]. He proved that a Riemannian manifold admits
a semi-symmetric metric connection whose curvature tensor vanishes if and only if a Riemannian
manifold is conformally flat.

In a semi-Riemannian manifold, Duggal and Sharma [3] studied some properties of the Ricci
tensor, affine conformal motions, geodesics, and group manifolds admitting a semi-symmetric metric
connection. They also showed the geometric results had physical meanings.

In the following, we denote by X̄, Ȳ, and Z̄ the smooth vector fields on M̄.

Remark 1. Let ∇̃ be the Levi-Civita connection of the semi-Riemannian manifold (M̄, ḡ) with respect to the
metric ḡ. A linear connection ∇̄ on M̄ is a semi-symmetric metric connection if and only if

∇̄X̄Ȳ = ∇̃X̄Ȳ + θ(Ȳ)X̄− ḡ(X̄, Ȳ)ζ. (2)

On the other hand, Bejancu and Duggal [4] showed the existence of almost contact metric
manifolds and established examples of Sasakian manifolds in semi-Riemannian manifolds. They also
classified real hypersurfaces of indefinite complex space forms with parallel structure vector field, and
then proved that Sasakian real hypersurfaces of a semi-Euclidean space are either open sets of the
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pseudo-sphere or of the pseudo-hyperbolic. In trans-Sasakian manifolds, which generalizes Sasakian
manifolds and Kenmotsu manifolds, Prasad et al. [5] studied some special types of trans-Sasakian
manifolds. De and Sarkar [6] studied the notion of (ε)-Kenmotsu manifolds. Shukla and Singh [7]
extended the study to (ε)-trans-Sasakian manifolds with indefinite metric. Siddiqi et al. [8] also
studied some properties of indefinite trans-Sasakian manifolds, which is closely related to this topic.

The object of study in this paper is recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces
of an indefinite trans-Sasakian manifold (M̄, J, ζ, θ, ḡ) with a semi-symmetric metric connection ∇̄.
We provide several results on such a lightlike hypersurface. In the last section, we characterize that an
indefinite generalized Sasakian space form with a semi-symmetric metric connection is an indefinite
Kenmotsu space form under various lightlike hypersurfaces.

2. Lightlike Hypersurfaces

An odd-dimensional pseudo-Riemannian manifold (M̄, ḡ) is called an indefinite almost contact
metric manifold if there exists an indefinite almost contact metric structure {J, ζ, θ, ḡ} with a (1, 1)-type
tensor field J, a vector field ζ, and a 1-form θ such that

J2X̄ = −X̄ + θ(X̄)ζ, ḡ(JX̄, JȲ) = ḡ(X̄, Ȳ)− εθ(X̄)θ(Ȳ), θ(ζ) = ε, (3)

where ε = 1 or −1 if ζ is spacelike or timelike, respectively.
From (3), we derive

Jζ = 0, θ ◦ J = 0, θ(X̄) = εḡ(X̄, ζ), ḡ(JX̄, Ȳ) = −ḡ(X̄, JȲ).

Without loss of generality, we assume that the structure vector field ζ is spacelike (i.e., ε = 1) in
the entire discussion of this article.

Definition 1. An indefinite almost contact metric manifold (M̄, J, ζ, θ, ḡ) is called an indefinite trans-Sasakian
manifold [9] if, for the Levi-Civita connection ∇̃ with respect to ḡ, there exist two smooth functions α and β

such that
(∇̃X̄ J)Ȳ = α{ḡ(X̄, Ȳ)ζ − θ(Ȳ)X̄}+ β{ḡ(JX̄, Ȳ)ζ − θ(Ȳ)JX̄}.

Here, {J, ζ, θ, ḡ} is called an indefinite trans-Sasakian structure of type (α, β).

Note that Sasakian(α = 1, β = 0), Kenmotsu(α = 0, β = ε) and cosymplectic(α = β = 0)
manifolds are important kinds of trans-Sasakian manifolds.

Let ∇̄ be a semi-symmetric metric connection on an indefinite trans-Sasakian manifold
M̄ = (M̄, J, ζ, θ, ḡ). By using (2), (3) and the fact that Jζ = 0 and θ ◦ J = 0, we see that

(∇̄X̄ J)Ȳ = α{ḡ(X̄, Ȳ)ζ − θ(Ȳ)X̄}+ (β + 1){ḡ(JX̄, Ȳ)ζ − θ(Ȳ)JX̄}. (4)

Setting Ȳ = ζ in (4), Jζ = 0, and θ(∇̄X̄ζ) = 0 imply that

∇̄X̄ζ = − αJX̄ + (β + 1){X̄− θ(X̄)ζ}. (5)

From the covariant derivative of θ(Ȳ) = ḡ(Ȳ, ζ) in terms of X̄ with (1), (3), and (5), we have

dθ(X̄, Ȳ) = α ḡ(X̄, JȲ).

Let (M, g) be a hypersurface of M̄. Denote by TM and TM⊥ the tangent and normal bundles of
M, respectively. Then, there exists a screen distribution S(TM) on M [10] such that

TM = TM⊥ ⊕orth S(TM),
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where ⊕orth denotes the orthogonal direct sum. Throughout this article, we assume that F(M) is the
algebra of smooth functions on M and Γ(E) is the F(M)-module of smooth sections of a vector bundle
E over M. Also, we denote the i-th equation of (3) by (3)i. These notations may be used in several
terms throughout this paper.

For a null section ξ ∈ Γ(TM⊥|U ) on a coordinate neighborhood U ⊂ M, there exists a unique null
transversal vector field N of a unique transversal vector bundle tr(TM) in S(TM)⊥ [10] satisfying

ḡ(ξ, N) = 1, ḡ(N, N) = ḡ(N, X) = 0, ∀X ∈ Γ(S(TM)).

Then, we have the decomposition of the tangent bundle TM̄ of M̄ as follows:

TM̄ = TM⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

Let P : TM → S(TM) be the projection morphism. Then, we have the local Gauss–Weingarten
formulas of M and S(TM) as follows:

∇̄XY = ∇XY + B(X, Y)N, (6)

∇̄X N = −AN X + τ(X)N, (7)

∇XPY = ∇∗XPY + C(X, PY)ξ, (8)

∇Xξ = −A∗ξ X− τ(X)ξ, (9)

respectively, where ∇ (∇∗) is the induced linear connection on TM (S(TM), resp.), B (C) is
the local second fundamental form on TM (S(TM), resp.), AN

(
A∗ξ
)

is the shape operator on
TM (S(TM), resp.), and τ is a 1-form on TM. Then, it is well known that ∇ is a semi-symmetric
non-metric connection and

(∇X g)(Y, Z) = B(X, Y)η(Z) + B(X, Z)η(Y), (10)

T(X, Y) = θ(Y)X− θ(X)Y. (11)

B is symmetric on TM, where T is the torsion tensor with respect to the induced connection ∇ on M
and η(•) = ḡ(•, N) is a 1-form on TM.

B(X, Y) = ḡ(∇̄XY, ξ) implies that B is independent of the choice of the screen distribution S(TM),
and we have

B(X, ξ) = 0. (12)

Moreover, two local second fundamental forms B and C for TM and S(TM) give the relations
with their shape operators, respectively, as follows:

B(X, Y) = g(A∗ξ X, Y), ḡ(A∗ξ X, N) = 0, (13)

C(X, PY) = g(AN X, PY), ḡ(AN X, N) = 0. (14)

From (13), A∗ξ is a S(TM)-valued real self-adjoint operator and satisfies

A∗ξ ξ = 0. (15)

3. Semi-Symmetric Metric Connections

Let M be a lightlike hypersurface of an indefinite almost contact metric manifold M̄, and
denote by J(TM⊥) and J(tr(TM)) sub-bundles of S(TM), of rank 1 [11], respectively. Now we
assume that the structure vector field ζ is tangent to M. Cǎlin [12] proved that if ζ ∈ Γ(TM), then



Axioms 2018, 7, 68 4 of 15

ζ ∈ Γ (S(TM)). Then, there exist two non-degenerate almost complex distributions
Do (i.e., J(Do) = Do) and D (i.e., J(D) = D) with respect to J such that

S(TM) = J(TM⊥)⊕ J(tr(TM))⊕orth Do,

D = TM⊥ ⊕orth J(TM⊥)⊕orth Do.

From these two distributions, we have a decomposition of TM as follows:

TM = D⊕ J(tr(TM)). (16)

Consider two null vector fields U and V and their 1-forms u and v such that

U = −JN, V = −Jξ, u(X) = g(X, V), v(X) = g(X, U). (17)

Denote by S : TM → D the projection morphism of TM on D. X ∈ Γ(TM) is expressed as
X = SX + u(X)U. Then, it is obtained

JX = FX + u(X)N, (18)

where F is the structure tensor field of type (1, 1) globally defined on M by FX = JSX.
Applying J to (18) with (17) and (18), we have

F2X = −X + u(X)U + θ(X)ζ. (19)

Here, the vector field U is called the structure vector field of M.
Replacing Y by ζ in (6) with (5) and (18), one gets

∇Xζ = −αFX + (β + 1){X− θ(X)ζ}, (20)

B(X, ζ) = −αu(X). (21)

From the covariant derivative of ḡ(ζ, N) = 0 in terms of X with (5), (7), and (14), it is obtained that

C(X, ζ) = −αv(X) + (β + 1)η(X). (22)

Applying ∇̄X to (17) and (18) and using (4), (6), and (7), we get

B(X, U) = C(X, V), (23)

∇XU = F(AN X) + τ(X)U − {αη(X) + (β + 1)v(X)}ζ, (24)

∇XV = F(A∗ξ X)− τ(X)V − (β + 1)u(X)ζ, (25)

(∇X F)(Y) = u(Y)AN X− B(X, Y)U + α{g(X, Y)ζ − θ(Y)X} (26)

+ (β + 1){ḡ(JX, Y)ζ − θ(Y)FX},
(∇Xu)(Y) = −u(Y)τ(X)− B(X, FY)− (β + 1)θ(Y)u(X), (27)

(∇Xv)(Y) = v(Y)τ(X)− g(AN X, FY) (28)

− {αη(X) + (β + 1)v(X)}θ(Y).

Theorem 1. Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold M̄ with a semi-symmetric
metric connection. If either ∇U = 0 or ∇V = 0, then τ = 0 and M̄ is an indefinite Kenmotsu manifold. That
is, α = 0 and β = −1.
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Proof. (1) If ∇U = 0, then, taking the scalar product with ζ and V to (24) by turns, it is obtained

α = 0, β = −1, τ = 0.

As α = 0 and β = −1, M̄ is an indefinite Kenmotsu manifold. Applying F to (24): F(AN X) = 0
and using (19) and (22), it is obtained that

AN X = u(AN X)U. (29)

(2) If ∇V = 0, then, taking the scalar product with ζ and U to (25) by turns, we have β = −1 and
τ = 0. Applying F to (25): F(A∗ξ X) = 0 and using (19) and (21), one gets

A∗ξ X = −αu(X)ζ + u(A∗ξ X)U.

Taking the scalar product with U to the above equation, we have

B(X, U) = 0. (30)

Replacing X by ζ in (30) and using (21), we have α = 0. Hence, M̄ is an indefinite
Kenmotsu manifold.

4. Recurrent, Lie-Recurrent, and Hopf Hypersurfaces

Definition 2. The structure tensor field F of M is said to be recurrent [13] if there exists a 1-form v on M
such that

(∇X F)Y = v(X)FY.

A lightlike hypersurface M of an indefinite trans-Sasakian manifold M̄ is said to be recurrent if its structure
tensor field F is recurrent.

Theorem 2. Let M be a recurrent lightlike hypersurface of an indefinite trans-Sasakian manifold M̄ with a
semi-symmetric metric connection. Then

(1) α = 0 and β = −1 (i.e., M̄ is an indefinite Kenmotsu manifold),
(2) F is parallel in terms of the induced connection ∇ on M,
(3) D and J(tr(TM)) are parallel distributions on M, and
(4) M is locally a product manifold CU ×M], where CU is a null curve tangent to J(tr(TM)) and M] is a

leaf of the distribution D.

Proof. (1) From (26), we have

v(X)FY = u(Y)AN X− B(X, Y)U + α{g(X, Y)ζ − θ(Y)X}
+ (β + 1){ḡ(JX, Y)ζ − θ(Y)FX}.

(31)

Setting Y = ζ in (31) with (3) and (21), it is obtained that

α{−X + u(X)U + θ(X)ζ} − (β + 1)FX = 0.

Taking X = ξ to this equation and using the fact that Fξ = −V, we have

−αξ + (β + 1)V = 0.

Taking the scalar product with N and U to the above equation by turns, we get

α = 0, β = −1. (32)
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Therefore, M̄ is an indefinite Kenmotsu manifold.

(2) Taking Y by ξ to (31) and using (12), we get v(X)V = 0. It follows that v = 0. Thus, F is
parallel with respect to the connection ∇.

(3) Taking the scalar product with V to (31), it is obtained that

B(X, Y) = u(Y)u(AN X).

Setting Y = V and Y = FZo, Zo ∈ Γ(Do) to the above equation by turns with the fact that
u(FZo) = 0 as FZo = JZo ∈ Γ(Do), we have

B(X, V) = 0, B(X, FZo) = 0. (33)

Generally, from (6), (9), (13), and (25), we derive

g(∇Xξ, V) = −B(X, V), g(∇XV, V) = 0,

g(∇XZo, V) = B(X, FZo), ∀ Zo ∈ Γ(Do).

From these equations and (33), we see that

∇XY ∈ Γ(D), ∀X ∈ Γ(TM), ∀Y ∈ Γ(D),

and hence D is a parallel distribution on M.
On the other hand, setting Y = U in (31) with (32), we have

AN X = B(X, U)U. (34)

Using FU = 0 in (34), it is obtained that

F(AN X) = 0.

Using this result and (32), Equation (24) is reduced to

∇XU = τ(X)U. (35)

It follows that
∇XU ∈ Γ(J(tr(TM))), ∀X ∈ Γ(TM),

and hence J(tr(TM)) is parallel on M.

(4) From (16), D and J(tr(TM)) are parallel. By the decomposition theorem [14], M is locally a
product manifold CU ×M], where CU is a null curve tangent to J(tr(TM)) and M] is a leaf of D.

Definition 3. The structure tensor field F of M is said to be Lie-recurrent [13] if

(LX F)Y = ϑ(X)FY,

for some 1-form ϑ on M, where LX denotes the Lie derivative on M with respect to X. That is,

(LX F)Y = [X, FY]− F[X, Y].

F is said to be Lie-parallel if LX F = 0. A lightlike hypersurface M of an indefinite trans-Sasakian manifold
M̄ is said to be Lie-recurrent if its structure tensor field F is Lie-recurrent.
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Theorem 3. Let M be a Lie-recurrent lightlike hypersurface of an indefinite trans-Sasakian manifold M̄ with a
semi-symmetric metric connection. Then, the following statements are satisfied:

(1) F is Lie-parallel,
(2) α = 0 and M̄ is an indefinite β-Kenmotsu manifold,
(3) τ = −βθ on TM, and
(4) A∗ξ U = 0 and A∗ξ V = 0.

Proof. (1) From (11) and θ(FY) = 0, it is obtained that

ϑ(X)FY = (∇X F)Y−∇FYX + F∇YX + θ(Y)FX.

(26) implies that

ϑ(X)FY = −∇FYX + F∇YX + u(Y)AN X− B(X, Y)U

+ α{g(X, Y)ζ − θ(Y)X}+ (β + 1)ḡ(JX, Y)ζ − βθ(Y)FX.
(36)

Taking Y = ξ in (36) with (12), we have

− ϑ(X)V = ∇V X + F∇ξ X + (β + 1)u(X)ζ. (37)

Taking the scalar product with both V and ζ in (37) by turns, we get

u(∇V X) = 0, θ(∇V X) = −(β + 1)u(X). (38)

Replacing Y by V in (36) and using θ(V) = 0, we have

ϑ(X)ξ = −∇ξ X + F∇V X− B(X, V)U + αu(X)ζ.

Applying F to the above equation with (19) and (38), it is obtained that

ϑ(X)V = ∇V X + F∇ξ X + (β + 1)u(X)ζ.

Comparing the above equation with (37), we get ϑ = 0. Therefore, F is Lie-parallel.

(2) Replacing X by U in (36) and using (14), (17), (19), (22)–(24), and FU = 0 and Fζ = 0,
it is obtained that

u(Y)AN U − F(AN FY)− AN Y− τ(FY)U (39)

+ {αv(Y) + (β + 1)η(Y)}ζ − αθ(Y)U = 0.

Taking the scalar product with ζ into (39) and using (22), it is obtained that αv(Y) = 0, and hence,
α = 0. That is, M̄ is an indefinite β-Kenmotsu manifold.

(3) Taking the scalar product with N to (36) and using (14)2, we have

− ḡ(∇FYX, N) + ḡ(∇YX, U) = βθ(Y)v(X), (40)

because α = 0. Replacing X by ξ in (40) and using (9) and (13), we get

B(X, U) = τ(FX). (41)

Taking X = U to (41) and using (23) and FU = 0, we have

C(U, V) = B(U, U) = 0. (42)
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Taking the scalar product with V in (39) and using (14), (23), (42), and α = 0, it is obtained that

B(X, U) = −τ(FX).

Comparing the above equation with (41), it is obtained that τ(FX) = 0.
Replacing X by V in (40) and using (25), we have

B(FY, U) + βθ(Y) = −τ(Y).

Taking Y = U and Y = ζ and using FU = Fζ = 0, it is obtained that

τ(U) = 0, τ(ζ) = −β. (43)

Replacing X by FY to τ(FX) = 0 and using (19) and (43), it is obtained that τ(X) = −βθ(X).
Thus, we have (3).

(4) As τ(FX) = 0, from (13) and (41), we have g(A∗ξ U, X) = 0. The non-degeneracy of S(TM)

implies A∗ξ U = 0. Replacing X by ξ to (37) and using (15) and τ(FX) = 0, it is obtained that
A∗ξ V = 0.

Definition 4. The structure vector field U is said to be principal [13] (with respect to the shape operator A∗ξ ) if
there exists a smooth function κ such that

A∗ξ U = κ U. (44)

A lightlike hypersurface M of an indefinite almost contact manifold is called a Hopf lightlike hypersurface
if its structure vector field U is principal.

Taking the scalar product with X in (44) and using (13), we get

B(X, U) = κv(X), C(X, V) = κv(X). (45)

Theorem 4. Let M be a Hopf-lightlike hypersurface of an indefinite trans-Sasakian manifold with a
semi-symmetric metric connection. Then, α = 0.

Proof. Replacing X by ζ in (45)1 and using (21), we get α = 0.

5. Indefinite Generalized Sasakian Space Forms

For the curvature tensors R̄, R, and R∗ of the semi-symmetric metric connection ∇̄ on M̄, and the
induced linear connections ∇ and ∇∗ on M and S(TM), respectively, two Gauss equations for M and
S(TM) follow as

R̄(X, Y)Z = R(X, Y)Z + B(X, Z)AN Y− B(Y, Z)AN X

+ {(∇XB)(Y, Z)− (∇YB)(X, Z) + τ(X)B(Y, Z) (46)

− τ(Y)B(X, Z) + B(T(X, Y), Z)}N,

R(X, Y)PZ = R∗(X, Y)PZ + C(X, PZ)A∗ξ Y− C(Y, PZ)A∗ξ X

+ {(∇XC)(Y, PZ)− (∇YC)(X, PZ)− τ(X)C(Y, PZ) (47)

+ τ(Y)C(X, PZ) + C(T(X, Y), PZ)}ξ,

respectively.
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Definition 5. An indefinite generalized Sasakian space form M̄( f1, f2, f3) [15] is an indefinite trans-Sasakian
manifold (M̄, J, ζ, θ, ḡ) with

R̃(X, Y)Z = f1{ḡ(Ȳ, Z̄)X̄− ḡ(X̄, Z̄)Ȳ}
+ f2{ḡ(X̄, JZ̄)JȲ− ḡ(Ȳ, JZ̄)JX̄ + 2ḡ(X̄, JȲ)JZ̄}

+ f3{θ(X̄)θ(Z̄)Ȳ− θ(Ȳ)θ(Z̄)X̄

+ ḡ(X̄, Z̄)θ(Ȳ)ζ − ḡ(Ȳ, Z̄)θ(X̄)ζ}

(48)

for some three smooth functions f1, f2 and f3 on M̄, where R̃ denote the curvature tensor of the Levi-Civita
connection ∇̃ on M̄.

Note that Sasakian
(

f1 = c+3
4 , f2 = f3 = c−1

4

)
, Kenmotsu

(
f1 = c−3

4 , f2 = f3 = c+1
4

)
, and

cosymplectic
(

f1 = f2 = f3 = c
4
)

space forms are important kinds of generalized Sasakian space forms,
where c is a constant J-sectional curvature of each space form.

By directed calculations from (1) and (2), we see that

R̄(X̄, Ȳ)Z̄ = R̃(X̄, Ȳ)Z̄ + ḡ(X̄, Z̄)∇̄Ȳζ − ḡ(Ȳ, Z̄)∇̄X̄ζ

+ {(∇̄X̄θ)(Z̄)− ḡ(X̄, Z̄)}Ȳ− {(∇̄Ȳθ)(Z̄)− ḡ(Ȳ, Z̄)}X̄.
(49)

Taking the scalar product with ξ and N in (49) by turns and substituting (46) and (48) to the
resulting equations and using (5) and (47), we get

(∇XB)(Y, Z)− (∇YB)(X, Z)

+ {τ(X)− θ(X)}B(Y, Z)− {τ(Y)− θ(Y)}B(X, Z)

+ α{u(Y)g(X, Z)− u(X)g(Y, Z)}
= f2{u(Y)ḡ(X, JZ)− u(X)ḡ(Y, JZ) + 2u(Z)ḡ(X, JY)},

(50)

(∇XC)(Y, PZ)− (∇YC)(X, PZ)

− {τ(X) + θ(X)}C(Y, PZ) + {τ(Y) + θ(Y)}C(X, PZ)

− {(∇̄Xθ)(PZ) + βg(X, PZ)}η(Y)
+ {(∇̄Yθ)(PZ) + βg(Y, PZ)}η(X)

+ α{v(Y)g(X, PZ)− v(X)g(Y, PZ)}
= f1{g(Y, PZ)η(X)− g(X, PZ)η(Y)}
+ f2{v(Y)ḡ(X, JPZ)− v(X)ḡ(Y, JPZ) + 2v(PZ)ḡ(X, JY)}
+ f3{θ(X)η(Y)− θ(Y)η(X)}θ(PZ).

(51)

Theorem 5. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form M̄( f1, f2, f3)

with a semi-symmetric metric connection. Then, α, β, f1, f2, and f3 satisfy that α is a constant on M,
αβ = 0, and

f1 − f2 = α2 − β2, f1 − f3 = α2 − β2 − ζβ.

Proof. From the covariant derivative of θ(V) = 0 with respect to X and (6) and (25), it is obtained that

(∇̄Xθ)(V) = (β + 1)u(X). (52)
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Applying ∇X to (23): B(Y, U) = C(Y, V) and using (21)–(25), we get

(∇XB)(Y, U) = (∇XC)(Y, V)− 2τ(X)C(Y, V)

− α(β + 1){u(Y)v(X)− u(X)v(Y)}
− α2u(Y)η(X)− (β + 1)2u(X)η(Y)

− g(A∗ξ X, F(AN Y))− g(A∗ξ Y, F(AN X)).

Substituting this equation and (23) into (50) with Z = U, we have

(∇XC)(Y, V)− (∇YC)(X, V)

− {τ(X) + θ(X)}C(Y, V) + {τ(Y) + θ(Y)}C(X, V)

− α(2β + 1){u(Y)v(X)− u(X)v(Y)}
− {α2 − (β + 1)2}{u(Y)η(X)− u(X)η(Y)}
= f2{u(Y)η(X)− u(X)η(Y) + 2ḡ(X, JY)}.

Comparing the above equation with (51) such that PZ = V and using (52), it is obtained that

{ f1 − f2 − α2 + β2}{u(Y)η(X)− u(X)η(Y)}
= 2αβ{u(Y)v(X)− u(X)v(Y)}.

Taking Y = U, X = ξ and Y = U, X = V to the above equation by turns, it is obtained that

f1 − f2 = α2 − β2, αβ = 0. (53)

From the covariant derivative of θ(ζ) = 1 with respect to X, (5) implies

(∇̄Xθ)(ζ) = 0. (54)

From the covariant derivative of η(Y) = ḡ(Y, N) with respect to X, (7) implies

(∇Xη)(Y) = −g(AN X, Y) + τ(X)η(Y). (55)

Applying ∇Y to (22) and using (20), (22), (28), and (55), we get

(∇XC)(Y, ζ) = −(Xα)v(Y) + (Xβ)η(Y)

− α{v(Y)τ(X)− g(AN X, FY)− g(AN Y, FX)

− αθ(Y)η(X) + θ(X)v(Y)− θ(Y)v(X)}
+ (β + 1){τ(X)η(Y)− g(AN X, Y)− g(AN Y, X)

+ (β + 1)θ(X)η(Y)}.

Substituting this and (22) into (51) with PZ = ζ and using (54), we get

−(Xα)v(Y) + (Yα)v(X) + (Xβ)η(Y)− (Yβ)η(X)

= ( f1 − f3 − α2 + β2){θ(Y)η(X)− θ(X)η(Y)}.

Taking Y = ζ, X = ξ and Y = U, X = V to this by turns, it is obtained that

f1 − f3 = α2 − β2 − ζβ, Uα = 0.
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Applying ∇Y to (21) and using (20), (21), and (27), we have

(∇XB)(Y, ζ) = −(Xα)u(Y)− (β + 1)B(X, Y)

+ α{u(Y)τ(X) + θ(Y)u(X)− θ(X)u(Y)

+ B(X, FY) + B(Y, FX)}.

Substituting this equation and (21) into (50) with Z = ζ, it is obtained that

(Xα)u(Y) = (Yα)u(X).

Taking Y = U, we get Xα = 0. It follows that α is a constant on M.

Definition 6. (a) A screen distribution S(TM) is said to be totally umbilical [10] in M if

C(X, PY) = γg(X, Y)

for some smooth function γ on a neighborhood U . In particular, case S(TM) is totally geodesic in M if γ = 0.

(b) A lightlike hypersurface M is said to be screen conformal [11] if

C(X, PY) = ϕB(X, Y) (56)

for some non-vanishing smooth function ϕ on a neighborhood U .

Theorem 6. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form M̄( f1, f2, f3)

with a semi-symmetric metric connection. If one of the following five conditions is satisfied,

(1) M is recurrent,
(2) S(TM) is totally umbilical,
(3) M is screen conformal,
(4) ∇U = 0, and
(5) ∇V = 0,

then M̄( f1, f2, f3) is an indefinite Kenmotsu space form such that

α = 0, β = −1; f1 = −1, f2 = f3 = 0.

Proof. Applying ∇̄X to θ(U) = 0 and using (6) and (24), it is obtained

(∇̄Xθ)(U) = αη(X) + (β + 1)v(X). (57)

(a) Theorem 2 implies that α = 0 and β = −1. By directed calculation from (35), it is obtained that

R(X, Y)U = 2dτ(X, Y)U. (58)

On the other hand, since α = 0 and β = −1, we have ∇̄Xζ = 0 by (5) and f1 + 1 = f2 = f3 by
Theorem 5. Comparing the tangential components of the right and left terms of (49) and using (46)
and (48), it is obtained that
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R(X, Y)Z = B(Y, Z)AN X− B(X, Z)AN Y

+ (∇̄Xθ)(Z)Y− (∇̄Yθ)(Z)X

+ ( f1 + 1){g(Y, Z)X− g(X, Z)Y}
+ f2{ḡ(X, JZ)FY− ḡ(Y, JZ)FX + 2ḡ(X, JY)FZ}
+ f3{θ(X)θ(Z)Y− θ(Y)θ(Z)X

+ ḡ(X, Z)θ(Y)ζ − ḡ(Y, Z)θ(X)ζ}.

Setting Z = U in the above equation and using (57) and (58), we get

2dτ(X, Y)U = B(Y, U)AN X− B(X, U)AN Y

+ ( f1 + 1){v(Y)X− v(X)Y}
+ f2{η(X)FY− η(Y)FX}
+ f3{v(X)θ(Y)− v(Y)θ(X)}ζ.

Taking the scalar product with N to the above equation and using (14)2, we get

2 f2{v(Y)u(X)− v(X)u(Y)}.

It follows that f2 = 0. Thus, f1 + 1 = f2 = f3 = 0.

(b) Since S(TM) is totally umbilical, (22) is reduced to

γθ(X) = −αv(X) + (β + 1)η(X).

Taking X = ζ, X = V, and X = ξ to this equation by turns, we get γ = 0, α = 0, and β = −1,
respectively. As γ = 0, S(TM) is totally geodesic in M. As α = 0 and β = −1, M̄ is an indefinite
Kenmotsu manifold and f1 + 1 = f2 = f3 by Theorem 5.

Taking PZ = V in (51) and using (52) and the result: C = 0, we have

f2{u(Y)η(X)− u(X)η(Y) + 2ḡ(X, JY)} = 0.

Taking X = ξ and Y = U, we get f2 = 0. Thus, f1 = −1 and f2 = f3 = 0, and M̄( f1, f2, f3) is an
indefinite Kenmotsu space form with c = −1.

(c) Taking PY = ζ in (56) and using (21) and (22), we get

αv(X)− (β + 1)η(X) = αϕu(X).

Taking X = V and X = ξ by turns, we have α = 0 and β = −1, respectively. Thus, M̄ is an
indefinite Kenmotsu manifold and we get f1 + 1 = f2 = f3.

Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ).
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Substituting this equation into (51) and using (50), we have

{Xϕ− 2ϕτ(X)}B(Y, PZ)− {Yϕ− 2ϕτ(Y)}B(X, PZ)

− {(∇̄Xθ)(PZ)− g(X, PZ)}η(Y) + {(∇̄Yθ)(PZ)− g(Y, PZ)}η(X)

= f1{g(Y, PZ)η(X)− g(X, PZ)η(Y)}
+ f2{[v(Y)− ϕu(Y)]ḡ(X, JPZ)− [v(X)− ϕu(X)]ḡ(Y, JPZ)

+ 2[v(PZ)− ϕu(PZ)]ḡ(X, JY)}+ f3{θ(X)η(Y)− θ(Y)η(X)}θ(PZ).

Replacing Y by ξ in the above equation, it is obtained that

{ξϕ− 2ϕτ(ξ)}B(X, PZ) + (∇̄Xθ)(PZ)

− g(X, PZ)− (∇̄ξ θ)(PZ)η(X)

= f1g(X, PZ) + f2{v(X)− ϕu(X)}u(PZ)

+ 2 f2{v(PZ)− ϕu(PZ)}u(X)− f3θ(X)θ(PZ).

Taking X = V, PZ = U and then X = U, PZ = V to the above equation by turns and using (52),
(57), and the fact that f1 + 1 = f2, we have

{ξϕ− 2ϕτ(ξ)}B(V, U) = 2 f2,

{ξϕ− 2ϕτ(ξ)}B(U, V) = 3 f2,

respectively. From the last two equations, it is obtained that f2 = 0. Therefore, f1 = −1 and f2 = f3 = 0.
Consequently, we see that M̄( f1, f2, f3) is an indefinite Kenmotsu space form such that c = −1.

(d) Theorem 1 implies τ = 0, α = 0, β = −1, and (29). Thus, f1 + 1 = f2 = f3 by Theorem 5.

Taking the scalar product with U in (29), it is obtained that

C(X, U) = 0.

Applying ∇X to C(Y, U) = 0 and using ∇XU = 0, we have

(∇XC)(Y, U) = 0.

Substituting the last two equations into (51) with PZ = U and using (57) and the fact that
f1 + 1 = f2, we have

2 f2{v(Y)η(X)− v(X)η(Y)} = 0.

Taking X = V and Y = ξ, we get f2 = 0. Thus f1 + 1 = f2 = f3 = 0 and M̄( f1, f2, f3) is an
indefinite Kenmotsu space form such that c = −1.

(e) Theorem 1 implies τ = 0, α = 0, β = −1 and (30). Thus f1 + 1 = f2 = f3 by Theorem 5.

From (23) and (30), we get
C(X, V) = 0.

Applying ∇X to C(Y, V) = 0 and using the fact that ∇XV = 0, we have

(∇XC)(Y, V) = 0.

Substituting these into (51) with PZ = V and using (52), we get

f2{u(Y)η(X)− u(X)η(Y) + 2ḡ(X, JY)} = 0.
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Taking U = U and X = ξ, we have f2 = 0. Thus, f1 + 1 = f2 = f3 = 0 and M̄( f1, f2, f3) is an
indefinite Kenmotsu space form with c = −1.

Theorem 7. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form M̄( f1, f2, f3)

with a semi-symmetric non-metric connection. If M is a Lie-recurrent or Hopf lightlike hypersurface, then M̄ is
an indefinite β-Kenmotsu space form with

f1 = −β2, f2 = 0, f3 = ζβ.

Proof. (a) Theorem 3 implies α = 0 and

B(X, U) = 0. (59)

Applying ∇X to B(Y, U) = 0 and using (21) and (24), we have

(∇XB)(Y, U) = −B(Y, F(AN X)).

Setting Z = U in the last two equations into (50), we have

B(X, F(AN Y))− B(Y, F(AN X))

= f2{u(Y)η(X)− u(X)η(Y) + 2ḡ(X, JY)}.

Taking X = ξ and Y = U to the above equation and using (12) and (59), it is obtained that f2 = 0.
Therefore, Theorem 5 implies

f1 = −β2, f2 = 0, f3 = ζβ.

(b) Applying ∇Y to (45)1 and using (21), (24), and (28), it is obtained that

(∇XB)(Y, U) = (Xκ)v(Y)− B(Y, F(AN X))

− κ{(β + 1)θ(Y)v(X) + g(AN X, FY)},

because α = 0. Substituting this equation and (45)1 into (50), we have

(Xκ)v(Y)− (Yκ)v(X) + B(X, F(AN Y))− B(Y, F(AN X))

+ κ{β[θ(X)v(Y)− θ(Y)v(X)] + τ(X)v(Y)− τ(Y)v(X)

+ g(AN Y, FX)− g(AN X, FY)}
= f2{u(Y)η(X)− u(X)η(Y) + 2ḡ(X, JY)}.

Taking Y = U and X = ξ to the above equation and using (3), (18), (12), (14)1, 2, and (45)1, 2, we
get f2 = 0. Thus, by Theorem 5 we have

f1 = −β2, f2 = 0, f3 = ζβ.

This completes the proof of the theorem.

6. Conclusions

In the submanifold theory, some properties of a base space (a submanifold) is investigated from
the total space. In our case, we characterize that the total space (an indefinite generalized Sasakian
space form) with a semi-symmetric metric connection is an indefinite Kenmotsu space form under
various lightlike hypersurfaces, such as recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of
an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. The structure of a
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lightlike hypersurface in a semi-Riemannian manifold is not same as the one of a lightlike submanifold
(half lightlike submanifolds, generic lightlike, and several CR-type lightlike, etc.) in a semi-Riemannian
manifold. Our paper helps in solving more general cases in semi-Riemannian manifolds with a
semi-symmetric metric connection.
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