

Article Characterizations of the Total Space (Indefinite Trans-Sasakian Manifolds) Admitting a Semi-Symmetric Metric Connection

Dae Ho Jin^{1,†} and Jae Won Lee^{2,*,†}

- ¹ Department of Mathematics, Dongguk University, Gyeongju 38066, Korea; jindh@dongguk.ac.kr
- ² Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828, Korea
- * Correspondence: leejaew@gnu.ac.kr; Tel.: +82-55-772-2251
- + These authors contributed equally to this work.

Received: 19 August 2018; Accepted: 7 September 2018; Published: 10 September 2018

Abstract: We investigate recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. In these hypersurfaces, we obtain several new results. Moreover, we characterize that the total space (an indefinite generalized Sasakian space form) with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces.

Keywords: lightlike hypersurfaces; indefinite trans-Sasakian; Lie-recurrent; Hopf; semi-symmetric metric connection

1. Introduction

A semi-symmetric connection $\overline{\nabla}$ on a semi-Riemannian manifold $(\overline{M}, \overline{g})$ was introduced by Friedmann-Schouten [1] in 1924, whose torsion tensor \overline{T} satisfies

$$\bar{T}(\bar{X},\bar{Y}) = \theta(\bar{Y})\bar{X} - \theta(\bar{X})\bar{Y},\tag{1}$$

where θ is a 1-form associated with a vector field ζ by $\theta(\bar{X}) = \bar{g}(\bar{X}, \zeta)$. In particular, if it is a metric connection (i.e., $\bar{\nabla}\bar{g} = 0$), then $\bar{\nabla}$ is said to be a *semi-symmetric metric connection*. This notion on a Riemannian manifold was introduced by Yano [2]. He proved that a Riemannian manifold admits a semi-symmetric metric connection whose curvature tensor vanishes if and only if a Riemannian manifold is conformally flat.

In a semi-Riemannian manifold, Duggal and Sharma [3] studied some properties of the Ricci tensor, affine conformal motions, geodesics, and group manifolds admitting a semi-symmetric metric connection. They also showed the geometric results had physical meanings.

In the following, we denote by \bar{X} , \bar{Y} , and \bar{Z} the smooth vector fields on \bar{M} .

Remark 1. Let $\widetilde{\nabla}$ be the Levi-Civita connection of the semi-Riemannian manifold $(\overline{M}, \overline{g})$ with respect to the metric \overline{g} . A linear connection $\overline{\nabla}$ on \overline{M} is a semi-symmetric metric connection if and only if

$$\bar{\nabla}_{\bar{X}}\bar{Y} = \tilde{\nabla}_{\bar{X}}\bar{Y} + \theta(\bar{Y})\bar{X} - \bar{g}(\bar{X},\bar{Y})\zeta.$$
(2)

On the other hand, Bejancu and Duggal [4] showed the existence of almost contact metric manifolds and established examples of Sasakian manifolds in semi-Riemannian manifolds. They also classified real hypersurfaces of indefinite complex space forms with parallel structure vector field, and then proved that Sasakian real hypersurfaces of a semi-Euclidean space are either open sets of the

pseudo-sphere or of the pseudo-hyperbolic. In trans-Sasakian manifolds, which generalizes Sasakian manifolds and Kenmotsu manifolds, Prasad et al. [5] studied some special types of trans-Sasakian manifolds. De and Sarkar [6] studied the notion of (ϵ)-Kenmotsu manifolds. Shukla and Singh [7] extended the study to (ϵ)-trans-Sasakian manifolds with indefinite metric. Siddiqi et al. [8] also studied some properties of indefinite trans-Sasakian manifolds, which is closely related to this topic.

The object of study in this paper is recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold $(\overline{M}, J, \zeta, \theta, \overline{g})$ with a semi-symmetric metric connection $\overline{\nabla}$. We provide several results on such a lightlike hypersurface. In the last section, we characterize that an indefinite generalized Sasakian space form with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces.

2. Lightlike Hypersurfaces

An odd-dimensional pseudo-Riemannian manifold $(\overline{M}, \overline{g})$ is called an *indefinite almost contact metric manifold* if there exists an indefinite almost contact metric structure { $J, \zeta, \theta, \overline{g}$ } with a (1, 1)-type tensor field J, a vector field ζ , and a 1-form θ such that

$$J^{2}\bar{X} = -\bar{X} + \theta(\bar{X})\zeta, \ \bar{g}(J\bar{X}, J\bar{Y}) = \bar{g}(\bar{X}, \bar{Y}) - \epsilon\theta(\bar{X})\theta(\bar{Y}), \ \theta(\zeta) = \epsilon,$$
(3)

where $\epsilon = 1$ or -1 if ζ is spacelike or timelike, respectively.

From (3), we derive

$$J\zeta = 0, \quad \theta \circ J = 0, \quad \theta(\bar{X}) = \epsilon \bar{g}(\bar{X}, \zeta), \quad \bar{g}(J\bar{X}, \bar{Y}) = -\bar{g}(\bar{X}, J\bar{Y}).$$

Without loss of generality, we assume that the structure vector field ζ is spacelike (i.e., $\epsilon = 1$) in the entire discussion of this article.

Definition 1. An indefinite almost contact metric manifold $(\overline{M}, J, \zeta, \theta, \overline{g})$ is called an indefinite trans-Sasakian manifold [9] if, for the Levi-Civita connection $\widetilde{\nabla}$ with respect to \overline{g} , there exist two smooth functions α and β such that

$$(\bar{\nabla}_{\bar{X}}J)\bar{Y} = \alpha\{\bar{g}(\bar{X},\bar{Y})\zeta - \theta(\bar{Y})\bar{X}\} + \beta\{\bar{g}(J\bar{X},\bar{Y})\zeta - \theta(\bar{Y})J\bar{X}\}.$$

Here, $\{J, \zeta, \theta, \overline{g}\}$ *is called an indefinite trans-Sasakian structure of type* (α, β) *.*

Note that $\text{Sasakian}(\alpha = 1, \beta = 0)$, $\text{Kenmotsu}(\alpha = 0, \beta = \epsilon)$ and $\text{cosymplectic}(\alpha = \beta = 0)$ manifolds are important kinds of trans-Sasakian manifolds.

Let $\overline{\nabla}$ be a semi-symmetric metric connection on an indefinite trans-Sasakian manifold $\overline{M} = (\overline{M}, J, \zeta, \theta, \overline{g})$. By using (2), (3) and the fact that $J\zeta = 0$ and $\theta \circ J = 0$, we see that

$$(\bar{\nabla}_{\bar{X}}J)\bar{Y} = \alpha\{\bar{g}(\bar{X},\bar{Y})\zeta - \theta(\bar{Y})\bar{X}\} + (\beta+1)\{\bar{g}(J\bar{X},\bar{Y})\zeta - \theta(\bar{Y})J\bar{X}\}.$$
(4)

Setting $\bar{Y} = \zeta$ in (4), $J\zeta = 0$, and $\theta(\bar{\nabla}_{\bar{X}}\zeta) = 0$ imply that

$$\bar{\nabla}_{\bar{X}}\zeta = -\alpha J\bar{X} + (\beta+1)\{\bar{X} - \theta(\bar{X})\zeta\}.$$
(5)

From the covariant derivative of $\theta(\bar{Y}) = \bar{g}(\bar{Y}, \zeta)$ in terms of \bar{X} with (1), (3), and (5), we have

$$d\theta(\bar{X},\bar{Y}) = \alpha \,\bar{g}(\bar{X},J\bar{Y}).$$

Let (M, g) be a hypersurface of \overline{M} . Denote by TM and TM^{\perp} the tangent and normal bundles of M, respectively. Then, there exists a screen distribution S(TM) on M [10] such that

$$TM = TM^{\perp} \oplus_{orth} S(TM),$$

where \bigoplus_{orth} denotes the orthogonal direct sum. Throughout this article, we assume that F(M) is the algebra of smooth functions on M and $\Gamma(E)$ is the F(M)-module of smooth sections of a vector bundle E over M. Also, we denote the *i*-th equation of (3) by (3)_{*i*}. These notations may be used in several terms throughout this paper.

For a null section $\xi \in \Gamma(TM^{\perp}|_{\mathcal{U}})$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null transversal vector field *N* of a unique transversal vector bundle tr(TM) in $S(TM)^{\perp}$ [10] satisfying

$$\bar{g}(\xi, N) = 1$$
, $\bar{g}(N, N) = \bar{g}(N, X) = 0$, $\forall X \in \Gamma(S(TM))$.

Then, we have the decomposition of the tangent bundle $T\overline{M}$ of \overline{M} as follows:

$$T\overline{M} = TM \oplus tr(TM) = \{TM^{\perp} \oplus tr(TM)\} \oplus_{orth} S(TM).$$

Let $P : TM \rightarrow S(TM)$ be the projection morphism. Then, we have the local Gauss–Weingarten formulas of *M* and *S*(*TM*) as follows:

$$\bar{\nabla}_X Y = \nabla_X Y + B(X, Y)N,\tag{6}$$

$$\bar{\nabla}_X N = -A_N X + \tau(X) N, \tag{7}$$

$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi, \tag{8}$$

$$\nabla_X \xi = -A^*_{\xi} X - \tau(X)\xi, \tag{9}$$

respectively, where $\nabla(\nabla^*)$ is the induced linear connection on TM(S(TM), resp.), B(C) is the local second fundamental form on TM(S(TM), resp.), $A_N(A_{\xi}^*)$ is the shape operator on TM(S(TM), resp.), and τ is a 1-form on TM. Then, it is well known that ∇ is a semi-symmetric non-metric connection and

$$(\nabla_X g)(Y, Z) = B(X, Y)\eta(Z) + B(X, Z)\eta(Y), \tag{10}$$

$$T(X,Y) = \theta(Y)X - \theta(X)Y.$$
(11)

B is symmetric on *TM*, where *T* is the torsion tensor with respect to the induced connection ∇ on *M* and $\eta(\bullet) = \bar{g}(\bullet, N)$ is a 1-form on *TM*.

 $B(X, Y) = \bar{g}(\bar{\nabla}_X Y, \xi)$ implies that *B* is independent of the choice of the screen distribution S(TM), and we have

$$B(X,\xi) = 0. \tag{12}$$

Moreover, two local second fundamental forms *B* and *C* for *TM* and S(TM) give the relations with their shape operators, respectively, as follows:

$$B(X,Y) = g(A_{\xi}^*X,Y), \qquad \bar{g}(A_{\xi}^*X,N) = 0, \qquad (13)$$

$$C(X, PY) = g(A_N X, PY), \qquad \bar{g}(A_N X, N) = 0.$$
(14)

From (13), A^*_{ξ} is a S(TM)-valued real self-adjoint operator and satisfies

$$A^*_{\mathcal{Z}}\xi = 0. \tag{15}$$

3. Semi-Symmetric Metric Connections

Let *M* be a lightlike hypersurface of an indefinite almost contact metric manifold \overline{M} , and denote by $J(TM^{\perp})$ and J(tr(TM)) sub-bundles of S(TM), of rank 1 [11], respectively. Now we assume that the structure vector field ζ is tangent to *M*. Călin [12] proved that *if* $\zeta \in \Gamma(TM)$, then

 $\zeta \in \Gamma(S(TM))$. Then, there exist two non-degenerate almost complex distributions D_o (i.e., $J(D_o) = D_o$) and D (i.e., J(D) = D) with respect to J such that

$$S(TM) = J(TM^{\perp}) \oplus J(tr(TM)) \oplus_{orth} D_o,$$

$$D = TM^{\perp} \oplus_{orth} J(TM^{\perp}) \oplus_{orth} D_o.$$

From these two distributions, we have a decomposition of *TM* as follows:

$$TM = D \oplus J(tr(TM)). \tag{16}$$

Consider two null vector fields *U* and *V* and their 1-forms *u* and *v* such that

$$U = -JN, \quad V = -J\xi, \quad u(X) = g(X, V), \quad v(X) = g(X, U).$$
(17)

Denote by $S : TM \to D$ the projection morphism of TM on D. $X \in \Gamma(TM)$ is expressed as X = SX + u(X)U. Then, it is obtained

$$JX = FX + u(X)N, (18)$$

where *F* is the structure tensor field of type (1, 1) globally defined on *M* by FX = JSX.

Applying J to (18) with (17) and (18), we have

$$F^2 X = -X + u(X)U + \theta(X)\zeta.$$
(19)

Here, the vector field *U* is called the *structure vector field* of *M*. Replacing Υ by ζ in (6) with (5) and (18), one gets

$$\nabla_X \zeta = -\alpha F X + (\beta + 1) \{ X - \theta(X) \zeta \}, \tag{20}$$

$$B(X,\zeta) = -\alpha u(X). \tag{21}$$

From the covariant derivative of $\bar{g}(\zeta, N) = 0$ in terms of X with (5), (7), and (14), it is obtained that

$$C(X,\zeta) = -\alpha v(X) + (\beta + 1)\eta(X).$$
⁽²²⁾

Applying $\overline{\nabla}_X$ to (17) and (18) and using (4), (6), and (7), we get

$$B(X,U) = C(X,V),$$
(23)

$$\nabla_X U = F(A_N X) + \tau(X)U - \{\alpha\eta(X) + (\beta + 1)v(X)\}\zeta,$$
(24)

$$\nabla_X V = F(A^*_{\zeta} X) - \tau(X)V - (\beta + 1)u(X)\zeta,$$
⁽²⁵⁾

$$(\nabla_X F)(Y) = u(Y)A_N X - B(X,Y)U + \alpha \{g(X,Y)\zeta - \theta(Y)X\} + (\beta + 1)\{\bar{g}(JX,Y)\zeta - \theta(Y)FX\},$$
(26)

$$(\nabla_X u)(Y) = -u(Y)\tau(X) - B(X, FY) - (\beta + 1)\theta(Y)u(X), \tag{27}$$

$$(\nabla_X v)(Y) = v(Y)\tau(X) - g(A_N X, FY)$$
(28)

$$- \{ \alpha \eta(X) + (\beta + 1)v(X) \} \theta(Y).$$

Theorem 1. Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold \overline{M} with a semi-symmetric metric connection. If either $\nabla U = 0$ or $\nabla V = 0$, then $\tau = 0$ and \overline{M} is an indefinite Kenmotsu manifold. That is, $\alpha = 0$ and $\beta = -1$.

Proof. (1) If $\nabla U = 0$, then, taking the scalar product with ζ and V to (24) by turns, it is obtained

$$\alpha = 0$$
, $\beta = -1$, $\tau = 0$.

As $\alpha = 0$ and $\beta = -1$, \overline{M} is an indefinite Kenmotsu manifold. Applying *F* to (24): *F*(*A*_N*X*) = 0 and using (19) and (22), it is obtained that

$$A_{N}X = u(A_{N}X)U. (29)$$

(2) If $\nabla V = 0$, then, taking the scalar product with ζ and U to (25) by turns, we have $\beta = -1$ and $\tau = 0$. Applying *F* to (25): *F*(A_{ζ}^*X) = 0 and using (19) and (21), one gets

$$A_{\xi}^*X = -\alpha u(X)\zeta + u(A_{\xi}^*X)U.$$

Taking the scalar product with *U* to the above equation, we have

$$B(X, U) = 0.$$
 (30)

Replacing *X* by ζ in (30) and using (21), we have $\alpha = 0$. Hence, \overline{M} is an indefinite Kenmotsu manifold. \Box

4. Recurrent, Lie-Recurrent, and Hopf Hypersurfaces

Definition 2. The structure tensor field F of M is said to be recurrent [13] if there exists a 1-form ω on M such that

$$(\nabla_X F)Y = \mathcal{O}(X)FY.$$

A lightlike hypersurface M of an indefinite trans-Sasakian manifold \overline{M} is said to be recurrent if its structure tensor field F is recurrent.

Theorem 2. Let M be a recurrent lightlike hypersurface of an indefinite trans-Sasakian manifold \overline{M} with a semi-symmetric metric connection. Then

- (1) $\alpha = 0$ and $\beta = -1$ (*i.e.*, \overline{M} is an indefinite Kenmotsu manifold),
- (2) *F* is parallel in terms of the induced connection ∇ on *M*,
- (3) D and J(tr(TM)) are parallel distributions on M, and
- (4) *M* is locally a product manifold $C_{u} \times M^{\sharp}$, where C_{u} is a null curve tangent to J(tr(TM)) and M^{\sharp} is a leaf of the distribution *D*.

Proof. (1) From (26), we have

$$\varpi(X)FY = u(Y)A_N X - B(X,Y)U + \alpha\{g(X,Y)\zeta - \theta(Y)X\}
+ (\beta + 1)\{\bar{g}(JX,Y)\zeta - \theta(Y)FX\}.$$
(31)

Setting $Y = \zeta$ in (31) with (3) and (21), it is obtained that

$$\alpha\{-X+u(X)U+\theta(X)\zeta\}-(\beta+1)FX=0.$$

Taking *X* = ξ to this equation and using the fact that $F\xi = -V$, we have

$$-\alpha\xi + (\beta + 1)V = 0.$$

Taking the scalar product with *N* and *U* to the above equation by turns, we get

$$\alpha = 0, \qquad \beta = -1. \tag{32}$$

Therefore, \overline{M} is an indefinite Kenmotsu manifold.

(2) Taking *Y* by ξ to (31) and using (12), we get $\omega(X)V = 0$. It follows that $\omega = 0$. Thus, *F* is parallel with respect to the connection ∇ .

(3) Taking the scalar product with V to (31), it is obtained that

$$B(X,Y) = u(Y)u(A_N X).$$

Setting Y = V and $Y = FZ_o$, $Z_o \in \Gamma(D_o)$ to the above equation by turns with the fact that $u(FZ_o) = 0$ as $FZ_o = JZ_o \in \Gamma(D_o)$, we have

$$B(X, V) = 0,$$
 $B(X, FZ_0) = 0.$ (33)

Generally, from (6), (9), (13), and (25), we derive

$$g(\nabla_X \xi, V) = -B(X, V), \qquad g(\nabla_X V, V) = 0,$$

$$g(\nabla_X Z_o, V) = B(X, FZ_o), \qquad \forall Z_o \in \Gamma(D_o).$$

From these equations and (33), we see that

$$abla_X Y \in \Gamma(D), \quad \forall X \in \Gamma(TM), \quad \forall Y \in \Gamma(D),$$

and hence *D* is a parallel distribution on *M*.

On the other hand, setting Y = U in (31) with (32), we have

$$A_N X = B(X, U)U. (34)$$

Using FU = 0 in (34), it is obtained that

$$F(A_N X) = 0.$$

Using this result and (32), Equation (24) is reduced to

$$\nabla_X U = \tau(X) U. \tag{35}$$

It follows that

 $\nabla_X U \in \Gamma(J(tr(TM))), \quad \forall X \in \Gamma(TM),$

and hence J(tr(TM)) is parallel on *M*.

(4) From (16), *D* and J(tr(TM)) are parallel. By the decomposition theorem [14], *M* is locally a product manifold $C_u \times M^{\sharp}$, where C_u is a null curve tangent to J(tr(TM)) and M^{\sharp} is a leaf of *D*. \Box

Definition 3. The structure tensor field F of M is said to be Lie-recurrent [13] if

$$(\mathcal{L}_X F)Y = \vartheta(X)FY,$$

for some 1-form ϑ on M, where \mathcal{L}_X denotes the Lie derivative on M with respect to X. That is,

$$(\mathcal{L}_{X}F)Y = [X, FY] - F[X, Y].$$

F is said to be Lie-parallel if $\mathcal{L}_{x}F = 0$. A lightlike hypersurface *M* of an indefinite trans-Sasakian manifold \overline{M} is said to be Lie-recurrent if its structure tensor field *F* is Lie-recurrent.

Theorem 3. Let M be a Lie-recurrent lightlike hypersurface of an indefinite trans-Sasakian manifold \overline{M} with a semi-symmetric metric connection. Then, the following statements are satisfied:

- (1) *F* is Lie-parallel,
- (2) $\alpha = 0$ and \overline{M} is an indefinite β -Kenmotsu manifold,
- (3) $\tau = -\beta \theta$ on TM, and
- (4) $A_{\xi}^* U = 0 \text{ and } A_{\xi}^* V = 0.$

Proof. (1) From (11) and $\theta(FY) = 0$, it is obtained that

$$\vartheta(X)FY = (\nabla_X F)Y - \nabla_{FY}X + F\nabla_Y X + \theta(Y)FX$$

(26) implies that

$$\vartheta(X)FY = -\nabla_{FY}X + F\nabla_{Y}X + u(Y)A_{N}X - B(X,Y)U + \alpha\{g(X,Y)\zeta - \theta(Y)X\} + (\beta + 1)\bar{g}(JX,Y)\zeta - \beta\theta(Y)FX.$$
(36)

Taking $Y = \xi$ in (36) with (12), we have

$$-\vartheta(X)V = \nabla_V X + F \nabla_{\xi} X + (\beta + 1)u(X)\zeta.$$
(37)

Taking the scalar product with both *V* and ζ in (37) by turns, we get

$$u(\nabla_V X) = 0, \qquad \theta(\nabla_V X) = -(\beta + 1)u(X). \tag{38}$$

Replacing *Y* by *V* in (36) and using $\theta(V) = 0$, we have

$$\vartheta(X)\xi = -\nabla_{\xi}X + F\nabla_{V}X - B(X,V)U + \alpha u(X)\zeta,$$

Applying F to the above equation with (19) and (38), it is obtained that

$$\vartheta(X)V = \nabla_V X + F \nabla_{\tilde{c}} X + (\beta + 1)u(X)\zeta.$$

Comparing the above equation with (37), we get $\vartheta = 0$. Therefore, *F* is Lie-parallel.

(2) Replacing X by U in (36) and using (14), (17), (19), (22)–(24), and FU = 0 and $F\zeta = 0$, it is obtained that

$$u(Y)A_{N}U - F(A_{N}FY) - A_{N}Y - \tau(FY)U$$

$$+ \{\alpha v(Y) + (\beta + 1)\eta(Y)\}\zeta - \alpha \theta(Y)U = 0.$$
(39)

Taking the scalar product with ζ into (39) and using (22), it is obtained that $\alpha v(Y) = 0$, and hence, $\alpha = 0$. That is, \overline{M} is an indefinite β -Kenmotsu manifold.

(3) Taking the scalar product with N to (36) and using (14)₂, we have

$$-\bar{g}(\nabla_{FY}X,N) + \bar{g}(\nabla_{Y}X,U) = \beta\theta(Y)v(X), \tag{40}$$

because $\alpha = 0$. Replacing X by ξ in (40) and using (9) and (13), we get

$$B(X,U) = \tau(FX). \tag{41}$$

Taking X = U to (41) and using (23) and FU = 0, we have

$$C(U, V) = B(U, U) = 0.$$
 (42)

Taking the scalar product with V in (39) and using (14), (23), (42), and $\alpha = 0$, it is obtained that

$$B(X, U) = -\tau(FX)$$

Comparing the above equation with (41), it is obtained that $\tau(FX) = 0$. Replacing *X* by *V* in (40) and using (25), we have

$$B(FY, U) + \beta\theta(Y) = -\tau(Y).$$

Taking Y = U and $Y = \zeta$ and using $FU = F\zeta = 0$, it is obtained that

$$\tau(U) = 0, \qquad \tau(\zeta) = -\beta. \tag{43}$$

Replacing X by *FY* to $\tau(FX) = 0$ and using (19) and (43), it is obtained that $\tau(X) = -\beta\theta(X)$. Thus, we have (3).

(4) As $\tau(FX) = 0$, from (13) and (41), we have $g(A_{\xi}^*U, X) = 0$. The non-degeneracy of S(TM) implies $A_{\xi}^*U = 0$. Replacing X by ξ to (37) and using (15) and $\tau(FX) = 0$, it is obtained that $A_{\xi}^*V = 0$. \Box

Definition 4. The structure vector field U is said to be principal [13] (with respect to the shape operator A_{ξ}^*) if there exists a smooth function κ such that

$$A^*_{\mathcal{F}}U = \kappa \, U. \tag{44}$$

A lightlike hypersurface M of an indefinite almost contact manifold is called a Hopf lightlike hypersurface if its structure vector field U is principal.

Taking the scalar product with X in (44) and using (13), we get

$$B(X, U) = \kappa v(X), \qquad C(X, V) = \kappa v(X). \tag{45}$$

Theorem 4. Let *M* be a Hopf-lightlike hypersurface of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. Then, $\alpha = 0$.

Proof. Replacing *X* by ζ in (45)₁ and using (21), we get $\alpha = 0$. \Box

5. Indefinite Generalized Sasakian Space Forms

For the curvature tensors \overline{R} , R, and R^* of the semi-symmetric metric connection $\overline{\nabla}$ on \overline{M} , and the induced linear connections ∇ and ∇^* on M and S(TM), respectively, two Gauss equations for M and S(TM) follow as

$$\bar{R}(X,Y)Z = R(X,Y)Z + B(X,Z)A_{N}Y - B(Y,Z)A_{N}X + \{(\nabla_{X}B)(Y,Z) - (\nabla_{Y}B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z) + B(T(X,Y),Z)\}N,$$
(46)

$$R(X,Y)PZ = R^{*}(X,Y)PZ + C(X,PZ)A_{\xi}^{*}Y - C(Y,PZ)A_{\xi}^{*}X + \{(\nabla_{X}C)(Y,PZ) - (\nabla_{Y}C)(X,PZ) - \tau(X)C(Y,PZ) + \tau(Y)C(X,PZ) + C(T(X,Y),PZ)\}\xi,$$
(47)

respectively.

Definition 5. An indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ [15] is an indefinite trans-Sasakian manifold $(\overline{M}, J, \zeta, \theta, \overline{g})$ with

$$\widetilde{R}(X,Y)Z = f_1\{\overline{g}(\overline{Y},\overline{Z})\overline{X} - \overline{g}(\overline{X},\overline{Z})\overline{Y}\}
+ f_2\{\overline{g}(\overline{X},J\overline{Z})J\overline{Y} - \overline{g}(\overline{Y},J\overline{Z})J\overline{X} + 2\overline{g}(\overline{X},J\overline{Y})J\overline{Z}\}
+ f_3\{\theta(\overline{X})\theta(\overline{Z})\overline{Y} - \theta(\overline{Y})\theta(\overline{Z})\overline{X}
+ \overline{g}(\overline{X},\overline{Z})\theta(\overline{Y})\zeta - \overline{g}(\overline{Y},\overline{Z})\theta(\overline{X})\zeta\}$$
(48)

for some three smooth functions f_1 , f_2 and f_3 on \overline{M} , where \widetilde{R} denote the curvature tensor of the Levi-Civita connection $\widetilde{\nabla}$ on \overline{M} .

Note that $\operatorname{Sasakian}\left(f_1 = \frac{c+3}{4}, f_2 = f_3 = \frac{c-1}{4}\right)$, $\operatorname{Kenmotsu}\left(f_1 = \frac{c-3}{4}, f_2 = f_3 = \frac{c+1}{4}\right)$, and $\operatorname{cosymplectic}\left(f_1 = f_2 = f_3 = \frac{c}{4}\right)$ space forms are important kinds of generalized Sasakian space forms, where *c* is a constant J-sectional curvature of each space form.

By directed calculations from (1) and (2), we see that

$$\bar{R}(\bar{X},\bar{Y})\bar{Z} = \bar{R}(\bar{X},\bar{Y})\bar{Z} + \bar{g}(\bar{X},\bar{Z})\bar{\nabla}_{\bar{Y}}\zeta - \bar{g}(\bar{Y},\bar{Z})\bar{\nabla}_{\bar{X}}\zeta
+ \{(\bar{\nabla}_{\bar{X}}\theta)(\bar{Z}) - \bar{g}(\bar{X},\bar{Z})\}\bar{Y} - \{(\bar{\nabla}_{\bar{Y}}\theta)(\bar{Z}) - \bar{g}(\bar{Y},\bar{Z})\}\bar{X}.$$
(49)

Taking the scalar product with ξ and N in (49) by turns and substituting (46) and (48) to the resulting equations and using (5) and (47), we get

$$(\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) + \{\tau(X) - \theta(X)\} B(Y, Z) - \{\tau(Y) - \theta(Y)\} B(X, Z) + \alpha \{u(Y)g(X, Z) - u(X)g(Y, Z)\} = f_2 \{u(Y)\bar{g}(X, JZ) - u(X)\bar{g}(Y, JZ) + 2u(Z)\bar{g}(X, JY)\},$$
(50)

$$\begin{aligned} (\nabla_{X}C)(Y,PZ) - (\nabla_{Y}C)(X,PZ) \\ &- \{\tau(X) + \theta(X)\}C(Y,PZ) + \{\tau(Y) + \theta(Y)\}C(X,PZ) \\ &- \{(\bar{\nabla}_{X}\theta)(PZ) + \beta g(X,PZ)\}\eta(Y) \\ &+ \{(\bar{\nabla}_{Y}\theta)(PZ) + \beta g(Y,PZ)\}\eta(X) \\ &+ \alpha \{v(Y)g(X,PZ) - v(X)g(Y,PZ)\} \\ &= f_{1}\{g(Y,PZ)\eta(X) - g(X,PZ)\eta(Y)\} \\ &+ f_{2}\{v(Y)\bar{g}(X,JPZ) - v(X)\bar{g}(Y,JPZ) + 2v(PZ)\bar{g}(X,JY)\} \\ &+ f_{3}\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}\theta(PZ). \end{aligned}$$
(51)

Theorem 5. Let *M* be a lightlike hypersurface of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a semi-symmetric metric connection. Then, α , β , f_1 , f_2 , and f_3 satisfy that α is a constant on *M*, $\alpha\beta = 0$, and

$$f_1 - f_2 = \alpha^2 - \beta^2$$
, $f_1 - f_3 = \alpha^2 - \beta^2 - \zeta \beta$.

Proof. From the covariant derivative of $\theta(V) = 0$ with respect to *X* and (6) and (25), it is obtained that

$$(\bar{\nabla}_X \theta)(V) = (\beta + 1)u(X). \tag{52}$$

Applying ∇_X to (23): B(Y, U) = C(Y, V) and using (21)–(25), we get

$$\begin{aligned} (\nabla_X B)(Y, U) &= (\nabla_X C)(Y, V) - 2\tau(X)C(Y, V) \\ &- \alpha(\beta + 1)\{u(Y)v(X) - u(X)v(Y)\} \\ &- \alpha^2 u(Y)\eta(X) - (\beta + 1)^2 u(X)\eta(Y) \\ &- g(A_{\xi}^* X, F(A_N Y)) - g(A_{\xi}^* Y, F(A_N X)). \end{aligned}$$

Substituting this equation and (23) into (50) with Z = U, we have

$$\begin{aligned} (\nabla_X C)(Y,V) &- (\nabla_Y C)(X,V) \\ &- \{\tau(X) + \theta(X)\}C(Y,V) + \{\tau(Y) + \theta(Y)\}C(X,V) \\ &- \alpha(2\beta + 1)\{u(Y)v(X) - u(X)v(Y)\} \\ &- \{\alpha^2 - (\beta + 1)^2\}\{u(Y)\eta(X) - u(X)\eta(Y)\} \\ &= f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X,JY)\}. \end{aligned}$$

Comparing the above equation with (51) such that PZ = V and using (52), it is obtained that

$$\{f_1 - f_2 - \alpha^2 + \beta^2\} \{u(Y)\eta(X) - u(X)\eta(Y)\}$$

= $2\alpha\beta\{u(Y)v(X) - u(X)v(Y)\}.$

Taking $Y = U, X = \xi$ and Y = U, X = V to the above equation by turns, it is obtained that

$$f_1 - f_2 = \alpha^2 - \beta^2, \qquad \alpha \beta = 0.$$
 (53)

From the covariant derivative of $\theta(\zeta) = 1$ with respect to *X*, (5) implies

$$(\bar{\nabla}_X \theta)(\zeta) = 0. \tag{54}$$

From the covariant derivative of $\eta(Y) = \bar{g}(Y, N)$ with respect to *X*, (7) implies

$$(\nabla_X \eta)(Y) = -g(A_N X, Y) + \tau(X)\eta(Y).$$
(55)

Applying ∇_Y to (22) and using (20), (22), (28), and (55), we get

$$\begin{split} (\nabla_X C)(Y,\zeta) &= -(X\alpha)v(Y) + (X\beta)\eta(Y) \\ &- \alpha\{v(Y)\tau(X) - g(A_NX,FY) - g(A_NY,FX) \\ &- \alpha\theta(Y)\eta(X) + \theta(X)v(Y) - \theta(Y)v(X)\} \\ &+ (\beta+1)\{\tau(X)\eta(Y) - g(A_NX,Y) - g(A_NY,X) \\ &+ (\beta+1)\theta(X)\eta(Y)\}. \end{split}$$

Substituting this and (22) into (51) with $PZ = \zeta$ and using (54), we get

$$-(X\alpha)v(Y) + (Y\alpha)v(X) + (X\beta)\eta(Y) - (Y\beta)\eta(X)$$

= $(f_1 - f_3 - \alpha^2 + \beta^2)\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}.$

Taking $Y = \zeta$, $X = \xi$ and Y = U, X = V to this by turns, it is obtained that

$$f_1 - f_3 = \alpha^2 - \beta^2 - \zeta \beta, \qquad U\alpha = 0.$$

Applying ∇_Y to (21) and using (20), (21), and (27), we have

$$\begin{aligned} (\nabla_X B)(Y,\zeta) &= -(X\alpha)u(Y) - (\beta+1)B(X,Y) \\ &+ \alpha \{u(Y)\tau(X) + \theta(Y)u(X) - \theta(X)u(Y) \\ &+ B(X,FY) + B(Y,FX) \}. \end{aligned}$$

Substituting this equation and (21) into (50) with $Z = \zeta$, it is obtained that

$$(X\alpha)u(Y) = (Y\alpha)u(X).$$

Taking *Y* = *U*, we get $X\alpha = 0$. It follows that α is a constant on *M*. \Box

Definition 6. (a) A screen distribution S(TM) is said to be totally umbilical [10] in M if

$$C(X, PY) = \gamma g(X, Y)$$

for some smooth function γ on a neighborhood U. In particular, case S(TM) is totally geodesic in M if $\gamma = 0$.

(b) A lightlike hypersurface M is said to be screen conformal [11] if

$$C(X, PY) = \varphi B(X, Y) \tag{56}$$

for some non-vanishing smooth function φ on a neighborhood U.

Theorem 6. Let *M* be a lightlike hypersurface of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a semi-symmetric metric connection. If one of the following five conditions is satisfied,

- (1) *M* is recurrent,
- (2) S(TM) is totally umbilical,
- (3) *M* is screen conformal,
- (4) $\nabla U = 0$, and
- (5) $\nabla V = 0$,

then $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form such that

$$\alpha = 0, \quad \beta = -1; \qquad f_1 = -1, \quad f_2 = f_3 = 0.$$

Proof. Applying $\overline{\nabla}_X$ to $\theta(U) = 0$ and using (6) and (24), it is obtained

$$(\bar{\nabla}_X \theta)(U) = \alpha \eta(X) + (\beta + 1)v(X). \tag{57}$$

(a) Theorem 2 implies that $\alpha = 0$ and $\beta = -1$. By directed calculation from (35), it is obtained that

$$R(X,Y)U = 2d\tau(X,Y)U.$$
(58)

On the other hand, since $\alpha = 0$ and $\beta = -1$, we have $\bar{\nabla}_X \zeta = 0$ by (5) and $f_1 + 1 = f_2 = f_3$ by Theorem 5. Comparing the tangential components of the right and left terms of (49) and using (46) and (48), it is obtained that

$$\begin{split} R(X,Y)Z &= B(Y,Z)A_NX - B(X,Z)A_NY \\ &\quad + (\bar{\nabla}_X\theta)(Z)Y - (\bar{\nabla}_Y\theta)(Z)X \\ &\quad + (f_1+1)\{g(Y,Z)X - g(X,Z)Y\} \\ &\quad + f_2\{\bar{g}(X,JZ)FY - \bar{g}(Y,JZ)FX + 2\bar{g}(X,JY)FZ\} \\ &\quad + f_3\{\theta(X)\theta(Z)Y - \theta(Y)\theta(Z)X \\ &\quad + \bar{g}(X,Z)\theta(Y)\zeta - \bar{g}(Y,Z)\theta(X)\zeta\}. \end{split}$$

Setting Z = U in the above equation and using (57) and (58), we get

$$2d\tau(X,Y)U = B(Y,U)A_{N}X - B(X,U)A_{N}Y + (f_{1}+1)\{v(Y)X - v(X)Y\} + f_{2}\{\eta(X)FY - \eta(Y)FX\} + f_{3}\{v(X)\theta(Y) - v(Y)\theta(X)\}\zeta.$$

Taking the scalar product with N to the above equation and using $(14)_2$, we get

$$2f_2\{v(Y)u(X)-v(X)u(Y)\}.$$

It follows that $f_2 = 0$. Thus, $f_1 + 1 = f_2 = f_3 = 0$.

(b) Since S(TM) is totally umbilical, (22) is reduced to

$$\gamma\theta(X) = -\alpha v(X) + (\beta + 1)\eta(X).$$

Taking $X = \zeta$, X = V, and $X = \xi$ to this equation by turns, we get $\gamma = 0$, $\alpha = 0$, and $\beta = -1$, respectively. As $\gamma = 0$, S(TM) is totally geodesic in M. As $\alpha = 0$ and $\beta = -1$, \overline{M} is an indefinite Kenmotsu manifold and $f_1 + 1 = f_2 = f_3$ by Theorem 5.

Taking PZ = V in (51) and using (52) and the result: C = 0, we have

$$f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X, JY)\} = 0.$$

Taking $X = \xi$ and Y = U, we get $f_2 = 0$. Thus, $f_1 = -1$ and $f_2 = f_3 = 0$, and $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form with c = -1.

(c) Taking $PY = \zeta$ in (56) and using (21) and (22), we get

$$\alpha v(X) - (\beta + 1)\eta(X) = \alpha \varphi u(X).$$

Taking X = V and $X = \xi$ by turns, we have $\alpha = 0$ and $\beta = -1$, respectively. Thus, \overline{M} is an indefinite Kenmotsu manifold and we get $f_1 + 1 = f_2 = f_3$.

Applying ∇_X to $C(Y, PZ) = \varphi B(Y, PZ)$, we have

$$(\nabla_X C)(Y, PZ) = (X\varphi)B(Y, PZ) + \varphi(\nabla_X B)(Y, PZ).$$

Substituting this equation into (51) and using (50), we have

$$\begin{split} &\{X\varphi - 2\varphi\tau(X)\}B(Y,PZ) - \{Y\varphi - 2\varphi\tau(Y)\}B(X,PZ) \\ &- \{(\bar{\nabla}_X\theta)(PZ) - g(X,PZ)\}\eta(Y) + \{(\bar{\nabla}_Y\theta)(PZ) - g(Y,PZ)\}\eta(X) \\ &= f_1\{g(Y,PZ)\eta(X) - g(X,PZ)\eta(Y)\} \\ &+ f_2\{[v(Y) - \varphi u(Y)]\bar{g}(X,JPZ) - [v(X) - \varphi u(X)]\bar{g}(Y,JPZ) \\ &+ 2[v(PZ) - \varphi u(PZ)]\bar{g}(X,JY)\} + f_3\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}\theta(PZ). \end{split}$$

Replacing *Y* by ξ in the above equation, it is obtained that

$$\{\xi\varphi - 2\varphi\tau(\xi)\}B(X, PZ) + (\bar{\nabla}_X\theta)(PZ) - g(X, PZ) - (\bar{\nabla}_{\xi}\theta)(PZ)\eta(X) = f_1g(X, PZ) + f_2\{v(X) - \varphi u(X)\}u(PZ) + 2f_2\{v(PZ) - \varphi u(PZ)\}u(X) - f_3\theta(X)\theta(PZ)\}u(PZ)$$

Taking X = V, PZ = U and then X = U, PZ = V to the above equation by turns and using (52), (57), and the fact that $f_1 + 1 = f_2$, we have

$$\{\xi\varphi - 2\varphi\tau(\xi)\}B(V,U) = 2f_2, \\\{\xi\varphi - 2\varphi\tau(\xi)\}B(U,V) = 3f_2, \\$$

respectively. From the last two equations, it is obtained that $f_2 = 0$. Therefore, $f_1 = -1$ and $f_2 = f_3 = 0$. Consequently, we see that $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form such that c = -1.

(d) Theorem 1 implies $\tau = 0$, $\alpha = 0$, $\beta = -1$, and (29). Thus, $f_1 + 1 = f_2 = f_3$ by Theorem 5.

Taking the scalar product with U in (29), it is obtained that

$$C(X, U) = 0.$$

Applying ∇_X to C(Y, U) = 0 and using $\nabla_X U = 0$, we have

$$(\nabla_X C)(Y, U) = 0.$$

Substituting the last two equations into (51) with PZ = U and using (57) and the fact that $f_1 + 1 = f_2$, we have

$$2f_2\{v(Y)\eta(X) - v(X)\eta(Y)\} = 0.$$

Taking X = V and $Y = \xi$, we get $f_2 = 0$. Thus $f_1 + 1 = f_2 = f_3 = 0$ and $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form such that c = -1.

(e) Theorem 1 implies $\tau = 0$, $\alpha = 0$, $\beta = -1$ and (30). Thus $f_1 + 1 = f_2 = f_3$ by Theorem 5.

From (23) and (30), we get

$$C(X,V)=0.$$

Applying ∇_X to C(Y, V) = 0 and using the fact that $\nabla_X V = 0$, we have

$$(\nabla_X C)(Y, V) = 0.$$

Substituting these into (51) with PZ = V and using (52), we get

$$f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X, JY)\} = 0.$$

Taking U = U and $X = \xi$, we have $f_2 = 0$. Thus, $f_1 + 1 = f_2 = f_3 = 0$ and $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form with c = -1. \Box

Theorem 7. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a semi-symmetric non-metric connection. If M is a Lie-recurrent or Hopf lightlike hypersurface, then \overline{M} is an indefinite β -Kenmotsu space form with

$$f_1 = -\beta^2$$
, $f_2 = 0$, $f_3 = \zeta \beta$.

Proof. (a) Theorem 3 implies $\alpha = 0$ and

$$B(X,U) = 0. (59)$$

Applying ∇_X to B(Y, U) = 0 and using (21) and (24), we have

$$(\nabla_X B)(Y, U) = -B(Y, F(A_N X)).$$

Setting Z = U in the last two equations into (50), we have

$$B(X, F(A_NY)) - B(Y, F(A_NX))$$

= $f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X, JY)\}$

Taking $X = \xi$ and Y = U to the above equation and using (12) and (59), it is obtained that $f_2 = 0$. Therefore, Theorem 5 implies

$$f_1 = -\beta^2$$
, $f_2 = 0$, $f_3 = \zeta \beta$.

(b) Applying ∇_Y to (45)₁ and using (21), (24), and (28), it is obtained that

$$\begin{split} (\nabla_X B)(Y,U) &= (X\kappa)v(Y) - B(Y,F(A_NX)) \\ &- \kappa\{(\beta+1)\theta(Y)v(X) + g(A_NX,FY)\}, \end{split}$$

because $\alpha = 0$. Substituting this equation and (45)₁ into (50), we have

$$\begin{split} &(X\kappa)v(Y) - (Y\kappa)v(X) + B(X,F(A_NY)) - B(Y,F(A_NX)) \\ &+ \kappa\{\beta[\theta(X)v(Y) - \theta(Y)v(X)] + \tau(X)v(Y) - \tau(Y)v(X) \\ &+ g(A_NY,FX) - g(A_NX,FY)\} \\ &= f_2\{u(Y)\eta(X) - u(X)\eta(Y) + 2\bar{g}(X,JY)\}. \end{split}$$

Taking Y = U and $X = \xi$ to the above equation and using (3), (18), (12), (14)_{1,2}, and (45)_{1,2}, we get $f_2 = 0$. Thus, by Theorem 5 we have

$$f_1 = -\beta^2$$
, $f_2 = 0$, $f_3 = \zeta \beta$.

This completes the proof of the theorem. \Box

6. Conclusions

In the submanifold theory, some properties of a base space (a submanifold) is investigated from the total space. In our case, we characterize that the total space (an indefinite generalized Sasakian space form) with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces, such as recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. The structure of a lightlike hypersurface in a semi-Riemannian manifold is not same as the one of a lightlike submanifold (half lightlike submanifolds, generic lightlike, and several CR-type lightlike, etc.) in a semi-Riemannian manifold. Our paper helps in solving more general cases in semi-Riemannian manifolds with a semi-symmetric metric connection.

Author Contributions: D.H.J. gave the idea to investigate various hypersurfaces of an indefinite tran-Sasakian manifold with a semi-symmetric metric connection. J.W.L. improve D.H.J.'s idea to characterize the total space as well as J.W.L. checked and polished the draft.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Friedmann, A.; Schouten, J.A. Uber die geometrie der halbsymmetrischen ubertragung. *Math. Z.* **1924**, *21*, 211–223. [CrossRef]
- 2. Yano, K. On semi-symmetric metric connection. Rev. Roum. Math. Pures Appl. 1970, 15, 1579–1586.
- 3. Duggal, K.L.; Sharma, R. Semi-symmetric metric connection in a semi-Riemannian manifold. *Indian J. Pure Appl. Math.* **1986**, *17*, 1276–1283.
- 4. Begancu, A.; Duggal, K.L. Real hypersurfaces of indefinite Kahler manifolds. *Int. J. Math. Math. Sci.* **1993**, *16*, 545–556. [CrossRef]
- 5. Prasad, R.; Tripathi, M.M.; Shukla, S.S. On Some special type of transSasakian manifolds. *Riv. Mater. Univ. Parma* **2009**, *8*, 1–17.
- 6. De, U.C.; Sarkar, A. On *ε*-Kenmotsu manifolds. *Hadron. J.* **2009**, *32*, 231–242.
- 7. Shukla, S.S.; Singh, D.D. On (ε)-Trans-Sasakian manifolds. *Int. J. Math. Anal.* 2010, 49, 2401–2414.
- 8. Siddiqi, M.D.; Haseeb, A.; Ahmad, M. A Note On Generalized Ricci-Recurrent (ϵ, δ)-Trans-Sasakian Manifolds. *Palestine J. Math.* **2015**, *4*, 156–163.
- 9. Oubina, J.A. New classes of almost contact metric structures. Publ. Math. Debr. 1985, 32, 187–193.
- 10. Duggal, K.L.; Bejancu, A. *Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications*; Kluwer Acad. Publishers: Dordrecht, The Netherlands, 1996.
- Jin, D.H. Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. *Indian J. Pure Appl. Math.* 2010, 41, 569–581. [CrossRef]
- Călin, C. Contributions to Geometry of CR-Submanifold. Ph.D. Thesis, University of Iasi, Iasi, Romania, 1998.
- 13. Jin, D.H. Special lightlike hypersurfaces of indefinite Kaehler manifolds. *Filomat* **2016**, *30*, 1919–1930. [CrossRef]
- 14. De Rham, G. Sur la réductibilité d'un espace de Riemannian. *Comment. Math. Helv.* **1952**, *26*, 328–344. [CrossRef]
- 15. Alegre, P.; Blair, D.E.; Carriazo, A. Generalized Sasakian space form. *Israel J. Math.* **2004**, *141*, 157–183. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).