Article

Characterizations of the Total Space (Indefinite Trans-Sasakian Manifolds) Admitting a Semi-Symmetric Metric Connection

Dae Ho Jin ${ }^{1, t}$ and Jae Won Lee ${ }^{2, *, \dagger}$
1 Department of Mathematics, Dongguk University, Gyeongju 38066, Korea; jindh@dongguk.ac.kr
2 Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828, Korea
* Correspondence: leejaew@gnu.ac.kr; Tel.: +82-55-772-2251
\dagger These authors contributed equally to this work.

Received: 19 August 2018; Accepted: 7 September 2018; Published: 10 September 2018

Abstract

We investigate recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. In these hypersurfaces, we obtain several new results. Moreover, we characterize that the total space (an indefinite generalized Sasakian space form) with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces.

Keywords: lightlike hypersurfaces; indefinite trans-Sasakian; Lie-recurrent; Hopf; semi-symmetric metric connection

1. Introduction

A semi-symmetric connection $\bar{\nabla}$ on a semi-Riemannian manifold (\bar{M}, \bar{g}) was introduced by Friedmann-Schouten [1] in 1924, whose torsion tensor \bar{T} satisfies

$$
\begin{equation*}
\bar{T}(\bar{X}, \bar{Y})=\theta(\bar{Y}) \bar{X}-\theta(\bar{X}) \bar{Y} \tag{1}
\end{equation*}
$$

where θ is a 1-form associated with a vector field ζ by $\theta(\bar{X})=\bar{g}(\bar{X}, \zeta)$. In particular, if it is a metric connection (i.e., $\bar{\nabla} \bar{g}=0$), then $\bar{\nabla}$ is said to be a semi-symmetric metric connection. This notion on a Riemannian manifold was introduced by Yano [2]. He proved that a Riemannian manifold admits a semi-symmetric metric connection whose curvature tensor vanishes if and only if a Riemannian manifold is conformally flat.

In a semi-Riemannian manifold, Duggal and Sharma [3] studied some properties of the Ricci tensor, affine conformal motions, geodesics, and group manifolds admitting a semi-symmetric metric connection. They also showed the geometric results had physical meanings.

In the following, we denote by \bar{X}, \bar{Y}, and \bar{Z} the smooth vector fields on \bar{M}.
Remark 1. Let $\widetilde{\nabla}$ be the Levi-Civita connection of the semi-Riemannian manifold (\bar{M}, \bar{g}) with respect to the metric \bar{g}. A linear connection $\bar{\nabla}$ on \bar{M} is a semi-symmetric metric connection if and only if

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \bar{Y}=\widetilde{\nabla}_{\bar{X}} \bar{Y}+\theta(\bar{Y}) \bar{X}-\bar{g}(\bar{X}, \bar{Y}) \zeta \tag{2}
\end{equation*}
$$

On the other hand, Bejancu and Duggal [4] showed the existence of almost contact metric manifolds and established examples of Sasakian manifolds in semi-Riemannian manifolds. They also classified real hypersurfaces of indefinite complex space forms with parallel structure vector field, and then proved that Sasakian real hypersurfaces of a semi-Euclidean space are either open sets of the
pseudo-sphere or of the pseudo-hyperbolic. In trans-Sasakian manifolds, which generalizes Sasakian manifolds and Kenmotsu manifolds, Prasad et al. [5] studied some special types of trans-Sasakian manifolds. De and Sarkar [6] studied the notion of (ϵ)-Kenmotsu manifolds. Shukla and Singh [7] extended the study to (ϵ)-trans-Sasakian manifolds with indefinite metric. Siddiqi et al. [8] also studied some properties of indefinite trans-Sasakian manifolds, which is closely related to this topic.

The object of study in this paper is recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold $(\bar{M}, J, \zeta, \theta, \bar{g})$ with a semi-symmetric metric connection $\bar{\nabla}$. We provide several results on such a lightlike hypersurface. In the last section, we characterize that an indefinite generalized Sasakian space form with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces.

2. Lightlike Hypersurfaces

An odd-dimensional pseudo-Riemannian manifold (\bar{M}, \bar{g}) is called an indefinite almost contact metric manifold if there exists an indefinite almost contact metric structure $\{J, \zeta, \theta, \bar{g}\}$ with a (1, 1)-type tensor field J, a vector field ζ, and a 1 -form θ such that

$$
\begin{equation*}
J^{2} \bar{X}=-\bar{X}+\theta(\bar{X}) \zeta, \quad \bar{g}(J \bar{X}, J \bar{Y})=\bar{g}(\bar{X}, \bar{Y})-\epsilon \theta(\bar{X}) \theta(\bar{Y}), \quad \theta(\zeta)=\epsilon, \tag{3}
\end{equation*}
$$

where $\epsilon=1$ or -1 if ζ is spacelike or timelike, respectively.
From (3), we derive

$$
J \zeta=0, \quad \theta \circ J=0, \quad \theta(\bar{X})=\epsilon \bar{g}(\bar{X}, \zeta), \quad \bar{g}(J \bar{X}, \bar{Y})=-\bar{g}(\bar{X}, J \bar{Y}) .
$$

Without loss of generality, we assume that the structure vector field ζ is spacelike (i.e., $\epsilon=1$) in the entire discussion of this article.

Definition 1. An indefinite almost contact metric manifold $(\bar{M}, J, \zeta, \theta, \bar{g})$ is called an indefinite trans-Sasakian manifold [9] if, for the Levi-Civita connection $\widetilde{\nabla}$ with respect to \bar{g}, there exist two smooth functions α and β such that

$$
\left(\widetilde{\nabla}_{\bar{X}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) \bar{X}\}+\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) J \bar{X}\}
$$

Here, $\{J, \zeta, \theta, \bar{g}\}$ is called an indefinite trans-Sasakian structure of type (α, β).
Note that $\operatorname{Sasakian}(\alpha=1, \beta=0), \operatorname{Kenmotsu}(\alpha=0, \beta=\epsilon)$ and $\operatorname{cosymplectic}(\alpha=\beta=0)$ manifolds are important kinds of trans-Sasakian manifolds.

Let $\bar{\nabla}$ be a semi-symmetric metric connection on an indefinite trans-Sasakian manifold $\bar{M}=(\bar{M}, J, \zeta, \theta, \bar{g})$. By using (2), (3) and the fact that $J \zeta=0$ and $\theta \circ J=0$, we see that

$$
\begin{equation*}
\left(\bar{\nabla}_{\bar{X}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) \bar{X}\}+(\beta+1)\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) J \bar{X}\} . \tag{4}
\end{equation*}
$$

Setting $\bar{Y}=\zeta$ in (4), $J \zeta=0$, and $\theta\left(\bar{\nabla}_{\bar{X}} \zeta\right)=0$ imply that

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \zeta=-\alpha J \bar{X}+(\beta+1)\{\bar{X}-\theta(\bar{X}) \zeta\} . \tag{5}
\end{equation*}
$$

From the covariant derivative of $\theta(\bar{Y})=\bar{g}(\bar{Y}, \zeta)$ in terms of \bar{X} with (1), (3), and (5), we have

$$
d \theta(\bar{X}, \bar{Y})=\alpha \bar{g}(\bar{X}, J \bar{Y})
$$

Let (M, g) be a hypersurface of \bar{M}. Denote by $T M$ and $T M^{\perp}$ the tangent and normal bundles of M, respectively. Then, there exists a screen distribution $S(T M)$ on M [10] such that

$$
T M=T M^{\perp} \oplus_{\text {orth }} S(T M)
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. Throughout this article, we assume that $F(M)$ is the algebra of smooth functions on M and $\Gamma(E)$ is the $F(M)$-module of smooth sections of a vector bundle E over M. Also, we denote the i-th equation of (3) by (3). These notations may be used in several terms throughout this paper.

For a null section $\xi \in \Gamma\left(\left.T M^{\perp}\right|_{\mathcal{U}}\right)$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null transversal vector field N of a unique transversal vector bundle $\operatorname{tr}(T M)$ in $S(T M)^{\perp}$ [10] satisfying

$$
\bar{g}(\xi, N)=1, \quad \bar{g}(N, N)=\bar{g}(N, X)=0, \quad \forall X \in \Gamma(S(T M)) .
$$

Then, we have the decomposition of the tangent bundle $T \bar{M}$ of \bar{M} as follows:

$$
T \bar{M}=T M \oplus \operatorname{tr}(T M)=\left\{T M^{\perp} \oplus \operatorname{tr}(T M)\right\} \oplus_{\text {orth }} S(T M)
$$

Let $P: T M \rightarrow S(T M)$ be the projection morphism. Then, we have the local Gauss-Weingarten formulas of M and $S(T M)$ as follows:

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N, \tag{6}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N, \tag{7}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi, \tag{8}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi, \tag{9}
\end{align*}
$$

respectively, where $\nabla\left(\nabla^{*}\right)$ is the induced linear connection on $T M(S(T M)$, resp. $), B(C)$ is the local second fundamental form on $T M(S(T M)$, resp. $), A_{N}\left(A_{\xi}^{*}\right)$ is the shape operator on $T M(S(T M)$, resp. $)$, and τ is a 1-form on $T M$. Then, it is well known that ∇ is a semi-symmetric non-metric connection and

$$
\begin{gather*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{10}\\
T(X, Y)=\theta(Y) X-\theta(X) Y . \tag{11}
\end{gather*}
$$

B is symmetric on $T M$, where T is the torsion tensor with respect to the induced connection ∇ on M and $\eta(\bullet)=\bar{g}(\bullet, N)$ is a 1-form on $T M$.
$B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$ implies that B is independent of the choice of the screen distribution $S(T M)$, and we have

$$
\begin{equation*}
B(X, \xi)=0 . \tag{12}
\end{equation*}
$$

Moreover, two local second fundamental forms B and C for $T M$ and $S(T M)$ give the relations with their shape operators, respectively, as follows:

$$
\begin{array}{ll}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0, \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0 . \tag{14}
\end{array}
$$

From (13), A_{ξ}^{*} is a $S(T M)$-valued real self-adjoint operator and satisfies

$$
\begin{equation*}
A_{\xi}^{*} \xi=0 . \tag{15}
\end{equation*}
$$

3. Semi-Symmetric Metric Connections

Let M be a lightlike hypersurface of an indefinite almost contact metric manifold \bar{M}, and denote by $J\left(T M^{\perp}\right)$ and $J(\operatorname{tr}(T M))$ sub-bundles of $S(T M)$, of rank 1 [11], respectively. Now we assume that the structure vector field ζ is tangent to M. Cǎlin [12] proved that if $\zeta \in \Gamma(T M)$, then
$\zeta \in \Gamma(S(T M))$. Then, there exist two non-degenerate almost complex distributions D_{o} (i.e., $J\left(D_{o}\right)=D_{o}$) and D (i.e., $J(D)=D$) with respect to J such that

$$
\begin{gathered}
S(T M)=J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M)) \oplus_{\text {orth }} D_{o} \\
D=T M^{\perp} \oplus_{\text {orth }} J\left(T M^{\perp}\right) \oplus_{\text {orth }} D_{o}
\end{gathered}
$$

From these two distributions, we have a decomposition of $T M$ as follows:

$$
\begin{equation*}
T M=D \oplus J(\operatorname{tr}(T M)) \tag{16}
\end{equation*}
$$

Consider two null vector fields U and V and their 1-forms u and v such that

$$
\begin{equation*}
U=-J N, \quad V=-J \xi, \quad u(X)=g(X, V), \quad v(X)=g(X, U) \tag{17}
\end{equation*}
$$

Denote by $S: T M \rightarrow D$ the projection morphism of $T M$ on $D . X \in \Gamma(T M)$ is expressed as $X=S X+u(X) U$. Then, it is obtained

$$
\begin{equation*}
J X=F X+u(X) N \tag{18}
\end{equation*}
$$

where F is the structure tensor field of type $(1,1)$ globally defined on M by $F X=J S X$.
Applying J to (18) with (17) and (18), we have

$$
\begin{equation*}
F^{2} X=-X+u(X) U+\theta(X) \zeta \tag{19}
\end{equation*}
$$

Here, the vector field U is called the structure vector field of M.
Replacing Y by ζ in (6) with (5) and (18), one gets

$$
\begin{gather*}
\nabla_{X} \zeta=-\alpha F X+(\beta+1)\{X-\theta(X) \zeta\} \tag{20}\\
B(X, \zeta)=-\alpha u(X) \tag{21}
\end{gather*}
$$

From the covariant derivative of $\bar{g}(\zeta, N)=0$ in terms of X with (5), (7), and (14), it is obtained that

$$
\begin{equation*}
C(X, \zeta)=-\alpha v(X)+(\beta+1) \eta(X) . \tag{22}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to (17) and (18) and using (4), (6), and (7), we get

$$
\begin{gather*}
B(X, U)=C(X, V) \tag{23}\\
\nabla_{X} U=F\left(A_{N} X\right)+\tau(X) U-\{\alpha \eta(X)+(\beta+1) v(X)\} \zeta, \tag{24}\\
\nabla_{X} V=F\left(A_{\xi}^{*} X\right)-\tau(X) V-(\beta+1) u(X) \zeta \tag{25}\\
\left(\nabla_{X} F\right)(Y)=u(Y) A_{N} X-B(X, Y) U+\alpha\{g(X, Y) \zeta-\theta(Y) X\} \tag{26}\\
\quad+(\beta+1)\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}, \\
\left(\nabla_{X} u\right)(Y)=-u(Y) \tau(X)-B(X, F Y)-(\beta+1) \theta(Y) u(X), \tag{27}\\
\left(\nabla_{X} v\right)(Y)=v(Y) \tau(X)-g\left(A_{N} X, F Y\right) \tag{28}\\
-\{\alpha \eta(X)+(\beta+1) v(X)\} \theta(Y)
\end{gather*}
$$

Theorem 1. Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold \bar{M} with a semi-symmetric metric connection. If either $\nabla U=0$ or $\nabla V=0$, then $\tau=0$ and \bar{M} is an indefinite Kenmotsu manifold. That is, $\alpha=0$ and $\beta=-1$.

Proof. (1) If $\nabla U=0$, then, taking the scalar product with ζ and V to (24) by turns, it is obtained

$$
\alpha=0, \quad \beta=-1, \quad \tau=0
$$

As $\alpha=0$ and $\beta=-1, \bar{M}$ is an indefinite Kenmotsu manifold. Applying F to (24): $F\left(A_{N} X\right)=0$ and using (19) and (22), it is obtained that

$$
\begin{equation*}
A_{N} X=u\left(A_{N} X\right) U \tag{29}
\end{equation*}
$$

(2) If $\nabla V=0$, then, taking the scalar product with ζ and U to (25) by turns, we have $\beta=-1$ and $\tau=0$. Applying F to (25): $F\left(A_{\xi}^{*} X\right)=0$ and using (19) and (21), one gets

$$
A_{\xi}^{*} X=-\alpha u(X) \zeta+u\left(A_{\xi}^{*} X\right) U
$$

Taking the scalar product with U to the above equation, we have

$$
\begin{equation*}
B(X, U)=0 \tag{30}
\end{equation*}
$$

Replacing X by ζ in (30) and using (21), we have $\alpha=0$. Hence, \bar{M} is an indefinite Kenmotsu manifold.

4. Recurrent, Lie-Recurrent, and Hopf Hypersurfaces

Definition 2. The structure tensor field F of M is said to be recurrent [13] if there exists a 1-form ω on M such that

$$
\left(\nabla_{X} F\right) Y=\omega(X) F Y
$$

A lightlike hypersurface M of an indefinite trans-Sasakian manifold \bar{M} is said to be recurrent if its structure tensor field F is recurrent.

Theorem 2. Let M be a recurrent lightlike hypersurface of an indefinite trans-Sasakian manifold \bar{M} with a semi-symmetric metric connection. Then
(1) $\alpha=0$ and $\beta=-1$ (i.e., \bar{M} is an indefinite Kenmotsu manifold),
(2) F is parallel in terms of the induced connection ∇ on M,
(3) D and $J(\operatorname{tr}(T M))$ are parallel distributions on M, and
(4) M is locally a product manifold $\mathcal{C}_{U} \times M^{\sharp}$, where \mathcal{C}_{u} is a null curve tangent to $J(\operatorname{tr}(T M))$ and M^{\sharp} is a leaf of the distribution D.

Proof. (1) From (26), we have

$$
\begin{align*}
\omega(X) F Y= & u(Y) A_{N} X-B(X, Y) U+\alpha\{g(X, Y) \zeta-\theta(Y) X\} \tag{31}\\
& +(\beta+1)\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}
\end{align*}
$$

Setting $Y=\zeta$ in (31) with (3) and (21), it is obtained that

$$
\alpha\{-X+u(X) U+\theta(X) \zeta\}-(\beta+1) F X=0
$$

Taking $X=\xi$ to this equation and using the fact that $F \xi=-V$, we have

$$
-\alpha \tilde{\xi}+(\beta+1) V=0
$$

Taking the scalar product with N and U to the above equation by turns, we get

$$
\begin{equation*}
\alpha=0, \quad \beta=-1 \tag{32}
\end{equation*}
$$

Therefore, \bar{M} is an indefinite Kenmotsu manifold.
(2) Taking Y by ξ to (31) and using (12), we get $\omega(X) V=0$. It follows that $\omega=0$. Thus, F is parallel with respect to the connection ∇.
(3) Taking the scalar product with V to (31), it is obtained that

$$
B(X, Y)=u(Y) u\left(A_{N} X\right)
$$

Setting $Y=V$ and $Y=F Z_{o}, Z_{o} \in \Gamma\left(D_{o}\right)$ to the above equation by turns with the fact that $u\left(F Z_{o}\right)=0$ as $F Z_{o}=J Z_{o} \in \Gamma\left(D_{o}\right)$, we have

$$
\begin{equation*}
B(X, V)=0, \quad B\left(X, F Z_{0}\right)=0 \tag{33}
\end{equation*}
$$

Generally, from (6), (9), (13), and (25), we derive

$$
\begin{array}{lc}
g\left(\nabla_{X} \xi, V\right)=-B(X, V), & g\left(\nabla_{X} V, V\right)=0 \\
g\left(\nabla_{X} Z_{0}, V\right)=B\left(X, F Z_{o}\right), & \forall Z_{o} \in \Gamma\left(D_{o}\right)
\end{array}
$$

From these equations and (33), we see that

$$
\nabla_{X} Y \in \Gamma(D), \quad \forall X \in \Gamma(T M), \quad \forall Y \in \Gamma(D)
$$

and hence D is a parallel distribution on M.
On the other hand, setting $Y=U$ in (31) with (32), we have

$$
\begin{equation*}
A_{N} X=B(X, U) U \tag{34}
\end{equation*}
$$

Using $F U=0$ in (34), it is obtained that

$$
F\left(A_{N} X\right)=0
$$

Using this result and (32), Equation (24) is reduced to

$$
\begin{equation*}
\nabla_{X} U=\tau(X) U \tag{35}
\end{equation*}
$$

It follows that

$$
\nabla_{X} U \in \Gamma(J(\operatorname{tr}(T M))), \quad \forall X \in \Gamma(T M)
$$

and hence $J(\operatorname{tr}(T M))$ is parallel on M.
(4) From (16), D and $J(\operatorname{tr}(T M))$ are parallel. By the decomposition theorem [14], M is locally a product manifold $\mathcal{C}_{U} \times M^{\sharp}$, where \mathcal{C}_{U} is a null curve tangent to $J(\operatorname{tr}(T M))$ and M^{\sharp} is a leaf of D.

Definition 3. The structure tensor field F of M is said to be Lie-recurrent [13] if

$$
\left(\mathcal{L}_{X} F\right) Y=\vartheta(X) F Y
$$

for some 1 -form ϑ on M, where \mathcal{L}_{X} denotes the Lie derivative on M with respect to X. That is,

$$
\left(\mathcal{L}_{X} F\right) Y=[X, F Y]-F[X, Y]
$$

F is said to be Lie-parallel if $\mathcal{L}_{X} F=0$. A lightlike hypersurface M of an indefinite trans-Sasakian manifold \bar{M} is said to be Lie-recurrent if its structure tensor field F is Lie-recurrent.

Theorem 3. Let M be a Lie-recurrent lightlike hypersurface of an indefinite trans-Sasakian manifold \bar{M} with a semi-symmetric metric connection. Then, the following statements are satisfied:
(1) F is Lie-parallel,
(2) $\alpha=0$ and \bar{M} is an indefinite β-Kenmotsu manifold,
(3) $\tau=-\beta \theta$ on $T M$, and
(4) $A_{\xi}^{*} U=0$ and $A_{\xi}^{*} V=0$.

Proof. (1) From (11) and $\theta(F Y)=0$, it is obtained that

$$
\vartheta(X) F Y=\left(\nabla_{X} F\right) Y-\nabla_{F Y} X+F \nabla_{Y} X+\theta(Y) F X
$$

(26) implies that

$$
\begin{align*}
\vartheta(X) F Y= & -\nabla_{F Y} X+F \nabla_{Y} X+u(Y) A_{N} X-B(X, Y) U \\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}+(\beta+1) \bar{g}(J X, Y) \zeta-\beta \theta(Y) F X . \tag{36}
\end{align*}
$$

Taking $Y=\xi$ in (36) with (12), we have

$$
\begin{equation*}
-\vartheta(X) V=\nabla_{V} X+F \nabla_{\xi} X+(\beta+1) u(X) \zeta . \tag{37}
\end{equation*}
$$

Taking the scalar product with both V and ζ in (37) by turns, we get

$$
\begin{equation*}
u\left(\nabla_{V} X\right)=0, \quad \theta\left(\nabla_{V} X\right)=-(\beta+1) u(X) \tag{38}
\end{equation*}
$$

Replacing Y by V in (36) and using $\theta(V)=0$, we have

$$
\vartheta(X) \xi=-\nabla_{\xi} X+F \nabla_{V} X-B(X, V) U+\alpha u(X) \zeta
$$

Applying F to the above equation with (19) and (38), it is obtained that

$$
\vartheta(X) V=\nabla_{V} X+F \nabla_{\xi} X+(\beta+1) u(X) \zeta .
$$

Comparing the above equation with (37), we get $\vartheta=0$. Therefore, F is Lie-parallel.
(2) Replacing X by U in (36) and using (14), (17), (19), (22)-(24), and $F U=0$ and $F \zeta=0$, it is obtained that

$$
\begin{align*}
& u(Y) A_{N} U-F\left(A_{N} F Y\right)-A_{N} Y-\tau(F Y) U \tag{39}\\
& +\{\alpha v(Y)+(\beta+1) \eta(Y)\} \zeta-\alpha \theta(Y) U=0
\end{align*}
$$

Taking the scalar product with ζ into (39) and using (22), it is obtained that $\alpha v(Y)=0$, and hence, $\alpha=0$. That is, \bar{M} is an indefinite β-Kenmotsu manifold.
(3) Taking the scalar product with N to (36) and using (14) 2 , we have

$$
\begin{equation*}
-\bar{g}\left(\nabla_{F Y} X, N\right)+\bar{g}\left(\nabla_{Y} X, U\right)=\beta \theta(Y) v(X) \tag{40}
\end{equation*}
$$

because $\alpha=0$. Replacing X by ξ in (40) and using (9) and (13), we get

$$
\begin{equation*}
B(X, U)=\tau(F X) \tag{41}
\end{equation*}
$$

Taking $X=U$ to (41) and using (23) and $F U=0$, we have

$$
\begin{equation*}
C(U, V)=B(U, U)=0 \tag{42}
\end{equation*}
$$

Taking the scalar product with V in (39) and using (14), (23), (42), and $\alpha=0$, it is obtained that

$$
B(X, U)=-\tau(F X)
$$

Comparing the above equation with (41), it is obtained that $\tau(F X)=0$.
Replacing X by V in (40) and using (25), we have

$$
B(F Y, U)+\beta \theta(Y)=-\tau(Y)
$$

Taking $Y=U$ and $Y=\zeta$ and using $F U=F \zeta=0$, it is obtained that

$$
\begin{equation*}
\tau(U)=0, \quad \tau(\zeta)=-\beta \tag{43}
\end{equation*}
$$

Replacing X by $F Y$ to $\tau(F X)=0$ and using (19) and (43), it is obtained that $\tau(X)=-\beta \theta(X)$. Thus, we have (3).
(4) As $\tau(F X)=0$, from (13) and (41), we have $g\left(A_{\xi}^{*} U, X\right)=0$. The non-degeneracy of $S(T M)$ implies $A_{\xi}^{*} U=0$. Replacing X by ξ to (37) and using (15) and $\tau(F X)=0$, it is obtained that $A_{\xi}^{*} V=0$.

Definition 4. The structure vector field U is said to be principal [13] (with respect to the shape operator A_{ξ}^{*}) if there exists a smooth function κ such that

$$
\begin{equation*}
A_{\xi}^{*} U=\kappa U \tag{44}
\end{equation*}
$$

A lightlike hypersurface M of an indefinite almost contact manifold is called a Hopf lightlike hypersurface if its structure vector field U is principal.

Taking the scalar product with X in (44) and using (13), we get

$$
\begin{equation*}
B(X, U)=\kappa v(X), \quad C(X, V)=\kappa v(X) \tag{45}
\end{equation*}
$$

Theorem 4. Let M be a Hopf-lightlike hypersurface of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. Then, $\alpha=0$.

Proof. Replacing X by ζ in $(45)_{1}$ and using (21), we get $\alpha=0$.

5. Indefinite Generalized Sasakian Space Forms

For the curvature tensors \bar{R}, R, and R^{*} of the semi-symmetric metric connection $\bar{\nabla}$ on \bar{M}, and the induced linear connections ∇ and ∇^{*} on M and $S(T M)$, respectively, two Gauss equations for M and $S(T M)$ follow as

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \\
& +\left\{\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z)\right. \tag{46}\\
& \quad-\tau(Y) B(X, Z)+B(T(X, Y), Z)\} N \\
R(X, Y) P Z= & R^{*}(X, Y) P Z+C(X, P Z) A_{\xi}^{*} Y-C(Y, P Z) A_{\xi}^{*} X \\
+ & \left\{\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)-\tau(X) C(Y, P Z)\right. \tag{47}\\
& +\tau(Y) C(X, P Z)+C(T(X, Y), P Z)\} \xi
\end{align*}
$$

respectively.

Definition 5. An indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ [15] is an indefinite trans-Sasakian manifold ($\bar{M}, J, \zeta, \theta, \bar{g})$ with

$$
\begin{align*}
& \widetilde{R}(X, Y) Z=f_{1}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}\} \\
&+f_{2}\{\bar{g}(\bar{X}, J \bar{Z}) J \bar{Y}-\bar{g}(\bar{Y}, J \bar{Z}) J \bar{X}+2 \bar{g}(\bar{X}, J \bar{Y}) J \bar{Z}\} \\
&+f_{3}\{\theta(\bar{X}) \theta(\bar{Z}) \bar{Y}-\theta(\bar{Y}) \theta(\bar{Z}) \bar{X} \tag{48}\\
&+\bar{g}(\bar{X}, \bar{Z}) \theta(\bar{Y}) \zeta-\bar{g}(\bar{Y}, \bar{Z}) \theta(\bar{X}) \zeta\}
\end{align*}
$$

for some three smooth functions f_{1}, f_{2} and f_{3} on \bar{M}, where \widetilde{R} denote the curvature tensor of the Levi-Civita connection $\widetilde{\nabla}$ on \bar{M}.

Note that Sasakian $\left(f_{1}=\frac{c+3}{4}, f_{2}=f_{3}=\frac{c-1}{4}\right)$, $\operatorname{Kenmotsu}\left(f_{1}=\frac{c-3}{4}, f_{2}=f_{3}=\frac{c+1}{4}\right)$, and cosymplectic $\left(f_{1}=f_{2}=f_{3}=\frac{c}{4}\right)$ space forms are important kinds of generalized Sasakian space forms, where c is a constant J-sectional curvature of each space form.

By directed calculations from (1) and (2), we see that

$$
\begin{align*}
& \bar{R}(\bar{X}, \bar{Y}) \bar{Z}=\widetilde{R}(\bar{X}, \bar{Y}) \bar{Z}+\bar{g}(\bar{X}, \bar{Z}) \bar{\nabla}_{\bar{Y}} \zeta-\bar{g}(\bar{Y}, \bar{Z}) \bar{\nabla}_{\bar{X}} \zeta \\
& \quad+\left\{\left(\bar{\nabla}_{\bar{X}} \theta\right)(\bar{Z})-\bar{g}(\bar{X}, \bar{Z})\right\} \bar{Y}-\left\{\left(\bar{\nabla}_{\bar{Y}} \theta\right)(\bar{Z})-\bar{g}(\bar{Y}, \bar{Z})\right\} \bar{X} . \tag{49}
\end{align*}
$$

Taking the scalar product with ξ and N in (49) by turns and substituting (46) and (48) to the resulting equations and using (5) and (47), we get

$$
\begin{align*}
& \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z) \\
& +\{\tau(X)-\theta(X)\} B(Y, Z)-\{\tau(Y)-\theta(Y)\} B(X, Z) \tag{50}\\
& +\alpha\{u(Y) g(X, Z)-u(X) g(Y, Z)\} \\
& =f_{2}\{u(Y) \bar{g}(X, J Z)-u(X) \bar{g}(Y, J Z)+2 u(Z) \bar{g}(X, J Y)\},
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z) \\
& -\{\tau(X)+\theta(X)\} C(Y, P Z)+\{\tau(Y)+\theta(Y)\} C(X, P Z) \\
& -\left\{\left(\bar{\nabla}_{X} \theta\right)(P Z)+\beta g(X, P Z)\right\} \eta(Y) \\
& +\left\{\left(\bar{\nabla}_{Y} \theta\right)(P Z)+\beta g(Y, P Z)\right\} \eta(X) \\
& +\alpha\{v(Y) g(X, P Z)-v(X) g(Y, P Z)\} \tag{51}\\
& =f_{1}\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} \\
& +f_{2}\{v(Y) \bar{g}(X, J P Z)-v(X) \bar{g}(Y, J P Z)+2 v(P Z) \bar{g}(X, J Y)\} \\
& +f_{3}\{\theta(X) \eta(Y)-\theta(Y) \eta(X)\} \theta(P Z) .
\end{align*}
$$

Theorem 5. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a semi-symmetric metric connection. Then, $\alpha, \beta, f_{1}, f_{2}$, and f_{3} satisfy that α is a constant on M, $\alpha \beta=0$, and

$$
f_{1}-f_{2}=\alpha^{2}-\beta^{2}, \quad f_{1}-f_{3}=\alpha^{2}-\beta^{2}-\zeta \beta
$$

Proof. From the covariant derivative of $\theta(V)=0$ with respect to X and (6) and (25), it is obtained that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \theta\right)(V)=(\beta+1) u(X) \tag{52}
\end{equation*}
$$

Applying ∇_{X} to (23): $B(Y, U)=C(Y, V)$ and using (21)-(25), we get

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, U)= & \left(\nabla_{X} C\right)(Y, V)-2 \tau(X) C(Y, V) \\
& -\alpha(\beta+1)\{u(Y) v(X)-u(X) v(Y)\} \\
& -\alpha^{2} u(Y) \eta(X)-(\beta+1)^{2} u(X) \eta(Y) \\
& -g\left(A_{\xi}^{*} X, F\left(A_{N} Y\right)\right)-g\left(A_{\xi}^{*} Y, F\left(A_{N} X\right)\right) .
\end{aligned}
$$

Substituting this equation and (23) into (50) with $Z=U$, we have

$$
\begin{aligned}
& \left(\nabla_{X} C\right)(Y, V)-\left(\nabla_{Y} C\right)(X, V) \\
& -\{\tau(X)+\theta(X)\} C(Y, V)+\{\tau(Y)+\theta(Y)\} C(X, V) \\
& -\alpha(2 \beta+1)\{u(Y) v(X)-u(X) v(Y)\} \\
& -\left\{\alpha^{2}-(\beta+1)^{2}\right\}\{u(Y) \eta(X)-u(X) \eta(Y)\} \\
& =f_{2}\{u(Y) \eta(X)-u(X) \eta(Y)+2 \bar{g}(X, J Y)\}
\end{aligned}
$$

Comparing the above equation with (51) such that $P Z=V$ and using (52), it is obtained that

$$
\begin{aligned}
& \left\{f_{1}-f_{2}-\alpha^{2}+\beta^{2}\right\}\{u(Y) \eta(X)-u(X) \eta(Y)\} \\
& =2 \alpha \beta\{u(Y) v(X)-u(X) v(Y)\}
\end{aligned}
$$

Taking $Y=U, X=\xi$ and $Y=U, X=V$ to the above equation by turns, it is obtained that

$$
\begin{equation*}
f_{1}-f_{2}=\alpha^{2}-\beta^{2}, \quad \alpha \beta=0 . \tag{53}
\end{equation*}
$$

From the covariant derivative of $\theta(\zeta)=1$ with respect to X, (5) implies

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \theta\right)(\zeta)=0 \tag{54}
\end{equation*}
$$

From the covariant derivative of $\eta(Y)=\bar{g}(Y, N)$ with respect to X, (7) implies

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=-g\left(A_{N} X, Y\right)+\tau(X) \eta(Y) . \tag{55}
\end{equation*}
$$

Applying ∇_{Y} to (22) and using (20), (22), (28), and (55), we get

$$
\begin{aligned}
& \left(\nabla_{X} C\right)(Y, \zeta)=-(X \alpha) v(Y)+(X \beta) \eta(Y) \\
& -\alpha\left\{v(Y) \tau(X)-g\left(A_{N} X, F Y\right)-g\left(A_{N} Y, F X\right)\right. \\
& \quad-\alpha \theta(Y) \eta(X)+\theta(X) v(Y)-\theta(Y) v(X)\} \\
& +(\beta+1)\left\{\tau(X) \eta(Y)-g\left(A_{N} X, Y\right)-g\left(A_{N} Y, X\right)\right. \\
& \quad+(\beta+1) \theta(X) \eta(Y)\}
\end{aligned}
$$

Substituting this and (22) into (51) with $P Z=\zeta$ and using (54), we get

$$
\begin{aligned}
& -(X \alpha) v(Y)+(Y \alpha) v(X)+(X \beta) \eta(Y)-(Y \beta) \eta(X) \\
& =\left(f_{1}-f_{3}-\alpha^{2}+\beta^{2}\right)\{\theta(Y) \eta(X)-\theta(X) \eta(Y)\}
\end{aligned}
$$

Taking $Y=\zeta, X=\xi$ and $Y=U, X=V$ to this by turns, it is obtained that

$$
f_{1}-f_{3}=\alpha^{2}-\beta^{2}-\zeta \beta, \quad U \alpha=0
$$

Applying ∇_{Y} to (21) and using (20), (21), and (27), we have

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, \zeta)= & -(X \alpha) u(Y)-(\beta+1) B(X, Y) \\
+ & \alpha\{u(Y) \tau(X)+\theta(Y) u(X)-\theta(X) u(Y) \\
& +B(X, F Y)+B(Y, F X)\}
\end{aligned}
$$

Substituting this equation and (21) into (50) with $Z=\zeta$, it is obtained that

$$
(X \alpha) u(Y)=(Y \alpha) u(X)
$$

Taking $Y=U$, we get $X \alpha=0$. It follows that α is a constant on M.
Definition 6. (a) A screen distribution $S(T M)$ is said to be totally umbilical [10] in M if

$$
C(X, P Y)=\gamma g(X, Y)
$$

for some smooth function γ on a neighborhood \mathcal{U}. In particular, case $S(T M)$ is totally geodesic in M if $\gamma=0$.
(b) A lightlike hypersurface M is said to be screen conformal [11] if

$$
\begin{equation*}
C(X, P Y)=\varphi B(X, Y) \tag{56}
\end{equation*}
$$

for some non-vanishing smooth function φ on a neighborhood \mathcal{U}.
Theorem 6. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a semi-symmetric metric connection. If one of the following five conditions is satisfied,
(1) M is recurrent,
(2) $S(T M)$ is totally umbilical,
(3) M is screen conformal,
(4) $\nabla U=0$, and
(5) $\nabla V=0$,
then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is an indefinite Kenmotsu space form such that

$$
\alpha=0, \quad \beta=-1 ; \quad f_{1}=-1, \quad f_{2}=f_{3}=0
$$

Proof. Applying $\bar{\nabla}_{X}$ to $\theta(U)=0$ and using (6) and (24), it is obtained

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \theta\right)(U)=\alpha \eta(X)+(\beta+1) v(X) . \tag{57}
\end{equation*}
$$

(a) Theorem 2 implies that $\alpha=0$ and $\beta=-1$. By directed calculation from (35), it is obtained that

$$
\begin{equation*}
R(X, Y) U=2 d \tau(X, Y) U \tag{58}
\end{equation*}
$$

On the other hand, since $\alpha=0$ and $\beta=-1$, we have $\bar{\nabla}_{X} \zeta=0$ by (5) and $f_{1}+1=f_{2}=f_{3}$ by Theorem 5. Comparing the tangential components of the right and left terms of (49) and using (46) and (48), it is obtained that

$$
\begin{aligned}
R(X, Y) Z= & B(Y, Z) A_{N} X-B(X, Z) A_{N} Y \\
& +\left(\bar{\nabla}_{X} \theta\right)(Z) Y-\left(\bar{\nabla}_{Y} \theta\right)(Z) X \\
& +\left(f_{1}+1\right)\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{\bar{g}(X, J Z) F Y-\bar{g}(Y, J Z) F X+2 \bar{g}(X, J Y) F Z\} \\
& +f_{3}\{\theta(X) \theta(Z) Y-\theta(Y) \theta(Z) X \\
& +\bar{g}(X, Z) \theta(Y) \zeta-\bar{g}(Y, Z) \theta(X) \zeta\} .
\end{aligned}
$$

Setting $Z=U$ in the above equation and using (57) and (58), we get

$$
\begin{aligned}
2 d \tau(X, Y) U= & B(Y, U) A_{N} X-B(X, U) A_{N} Y \\
& +\left(f_{1}+1\right)\{v(Y) X-v(X) Y\} \\
& +f_{2}\{\eta(X) F Y-\eta(Y) F X\} \\
& +f_{3}\{v(X) \theta(Y)-v(Y) \theta(X)\} \zeta .
\end{aligned}
$$

Taking the scalar product with N to the above equation and using (14) $)_{2}$, we get

$$
2 f_{2}\{v(Y) u(X)-v(X) u(Y)\} .
$$

It follows that $f_{2}=0$. Thus, $f_{1}+1=f_{2}=f_{3}=0$.
(b) Since $S(T M)$ is totally umbilical, (22) is reduced to

$$
\gamma \theta(X)=-\alpha v(X)+(\beta+1) \eta(X) .
$$

Taking $X=\zeta, X=V$, and $X=\xi$ to this equation by turns, we get $\gamma=0, \alpha=0$, and $\beta=-1$, respectively. As $\gamma=0, S(T M)$ is totally geodesic in M. As $\alpha=0$ and $\beta=-1, \bar{M}$ is an indefinite Kenmotsu manifold and $f_{1}+1=f_{2}=f_{3}$ by Theorem 5 .

Taking $P Z=V$ in (51) and using (52) and the result: $C=0$, we have

$$
f_{2}\{u(Y) \eta(X)-u(X) \eta(Y)+2 \bar{g}(X, J Y)\}=0 .
$$

Taking $X=\xi$ and $Y=U$, we get $f_{2}=0$. Thus, $f_{1}=-1$ and $f_{2}=f_{3}=0$, and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is an indefinite Kenmotsu space form with $c=-1$.
(c) Taking $P Y=\zeta$ in (56) and using (21) and (22), we get

$$
\alpha v(X)-(\beta+1) \eta(X)=\alpha \varphi u(X) .
$$

Taking $X=V$ and $X=\xi$ by turns, we have $\alpha=0$ and $\beta=-1$, respectively. Thus, \bar{M} is an indefinite Kenmotsu manifold and we get $f_{1}+1=f_{2}=f_{3}$.

Applying ∇_{X} to $C(Y, P Z)=\varphi B(Y, P Z)$, we have

$$
\left(\nabla_{X} C\right)(Y, P Z)=(X \varphi) B(Y, P Z)+\varphi\left(\nabla_{X} B\right)(Y, P Z) .
$$

Substituting this equation into (51) and using (50), we have

$$
\begin{aligned}
& \{X \varphi-2 \varphi \tau(X)\} B(Y, P Z)-\{Y \varphi-2 \varphi \tau(Y)\} B(X, P Z) \\
& -\left\{\left(\bar{\nabla}_{X} \theta\right)(P Z)-g(X, P Z)\right\} \eta(Y)+\left\{\left(\bar{\nabla}_{Y} \theta\right)(P Z)-g(Y, P Z)\right\} \eta(X) \\
& =f_{1}\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} \\
& +f_{2}\{[v(Y)-\varphi u(Y)] \bar{g}(X, J P Z)-[v(X)-\varphi u(X)] \bar{g}(Y, J P Z) \\
& +2[v(P Z)-\varphi u(P Z)] \bar{g}(X, J Y)\}+f_{3}\{\theta(X) \eta(Y)-\theta(Y) \eta(X)\} \theta(P Z) .
\end{aligned}
$$

Replacing Y by ξ in the above equation, it is obtained that

$$
\begin{aligned}
& \{\xi \varphi-2 \varphi \tau(\xi)\} B(X, P Z)+\left(\bar{\nabla}_{X} \theta\right)(P Z) \\
& -g(X, P Z)-\left(\bar{\nabla}_{\tilde{\xi}} \theta\right)(P Z) \eta(X) \\
& =f_{1} g(X, P Z)+f_{2}\{v(X)-\varphi u(X)\} u(P Z) \\
& +2 f_{2}\{v(P Z)-\varphi u(P Z)\} u(X)-f_{3} \theta(X) \theta(P Z) .
\end{aligned}
$$

Taking $X=V, P Z=U$ and then $X=U, P Z=V$ to the above equation by turns and using (52), (57), and the fact that $f_{1}+1=f_{2}$, we have

$$
\begin{aligned}
& \{\xi \varphi-2 \varphi \tau(\xi)\} B(V, U)=2 f_{2}, \\
& \{\xi \varphi-2 \varphi \tau(\xi)\} B(U, V)=3 f_{2}
\end{aligned}
$$

respectively. From the last two equations, it is obtained that $f_{2}=0$. Therefore, $f_{1}=-1$ and $f_{2}=f_{3}=0$. Consequently, we see that $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is an indefinite Kenmotsu space form such that $c=-1$.
(d) Theorem 1 implies $\tau=0, \alpha=0, \beta=-1$, and (29). Thus, $f_{1}+1=f_{2}=f_{3}$ by Theorem 5 .

Taking the scalar product with U in (29), it is obtained that

$$
C(X, U)=0
$$

Applying ∇_{X} to $C(Y, U)=0$ and using $\nabla_{X} U=0$, we have

$$
\left(\nabla_{X} C\right)(Y, U)=0 .
$$

Substituting the last two equations into (51) with $P Z=U$ and using (57) and the fact that $f_{1}+1=f_{2}$, we have

$$
2 f_{2}\{v(Y) \eta(X)-v(X) \eta(Y)\}=0 .
$$

Taking $X=V$ and $Y=\xi$, we get $f_{2}=0$. Thus $f_{1}+1=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is an indefinite Kenmotsu space form such that $c=-1$.
(e) Theorem 1 implies $\tau=0, \alpha=0, \beta=-1$ and (30). Thus $f_{1}+1=f_{2}=f_{3}$ by Theorem 5 .

From (23) and (30), we get

$$
C(X, V)=0 .
$$

Applying ∇_{X} to $C(Y, V)=0$ and using the fact that $\nabla_{X} V=0$, we have

$$
\left(\nabla_{X} C\right)(Y, V)=0 .
$$

Substituting these into (51) with $P Z=V$ and using (52), we get

$$
f_{2}\{u(Y) \eta(X)-u(X) \eta(Y)+2 \bar{g}(X, J Y)\}=0 .
$$

Taking $U=U$ and $X=\xi$, we have $f_{2}=0$. Thus, $f_{1}+1=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is an indefinite Kenmotsu space form with $c=-1$.

Theorem 7. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a semi-symmetric non-metric connection. If M is a Lie-recurrent or Hopf lightlike hypersurface, then \bar{M} is an indefinite β-Kenmotsu space form with

$$
f_{1}=-\beta^{2}, \quad f_{2}=0, \quad f_{3}=\zeta \beta
$$

Proof. (a) Theorem 3 implies $\alpha=0$ and

$$
\begin{equation*}
B(X, U)=0 . \tag{59}
\end{equation*}
$$

Applying ∇_{X} to $B(Y, U)=0$ and using (21) and (24), we have

$$
\left(\nabla_{X} B\right)(Y, U)=-B\left(Y, F\left(A_{N} X\right)\right)
$$

Setting $Z=U$ in the last two equations into (50), we have

$$
\begin{aligned}
& B\left(X, F\left(A_{N} Y\right)\right)-B\left(Y, F\left(A_{N} X\right)\right) \\
& =f_{2}\{u(Y) \eta(X)-u(X) \eta(Y)+2 \bar{g}(X, J Y)\} .
\end{aligned}
$$

Taking $X=\xi$ and $Y=U$ to the above equation and using (12) and (59), it is obtained that $f_{2}=0$. Therefore, Theorem 5 implies

$$
f_{1}=-\beta^{2}, \quad f_{2}=0, \quad f_{3}=\zeta \beta .
$$

(b) Applying ∇_{Y} to (45) ${ }_{1}$ and using (21), (24), and (28), it is obtained that

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, U) & =(X \kappa) v(Y)-B\left(Y, F\left(A_{N} X\right)\right) \\
& -\kappa\left\{(\beta+1) \theta(Y) v(X)+g\left(A_{N} X, F Y\right)\right\},
\end{aligned}
$$

because $\alpha=0$. Substituting this equation and (45) $)_{1}$ into (50), we have

$$
\begin{aligned}
& (X \kappa) v(Y)-(Y \kappa) v(X)+B\left(X, F\left(A_{N} Y\right)\right)-B\left(Y, F\left(A_{N} X\right)\right) \\
& +\kappa\{\beta[\theta(X) v(Y)-\theta(Y) v(X)]+\tau(X) v(Y)-\tau(Y) v(X) \\
& \left.+g\left(A_{N} Y, F X\right)-g\left(A_{N} X, F Y\right)\right\} \\
& =f_{2}\{u(Y) \eta(X)-u(X) \eta(Y)+2 \bar{g}(X, J Y)\} .
\end{aligned}
$$

Taking $Y=U$ and $X=\xi$ to the above equation and using (3), (18), (12), (14) $)_{1,2}$, and (45) $)_{1,2}$, we get $f_{2}=0$. Thus, by Theorem 5 we have

$$
f_{1}=-\beta^{2}, \quad f_{2}=0, \quad f_{3}=\zeta \beta
$$

This completes the proof of the theorem.

6. Conclusions

In the submanifold theory, some properties of a base space (a submanifold) is investigated from the total space. In our case, we characterize that the total space (an indefinite generalized Sasakian space form) with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces, such as recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. The structure of a
lightlike hypersurface in a semi-Riemannian manifold is not same as the one of a lightlike submanifold (half lightlike submanifolds, generic lightlike, and several CR-type lightlike, etc.) in a semi-Riemannian manifold. Our paper helps in solving more general cases in semi-Riemannian manifolds with a semi-symmetric metric connection.

Author Contributions: D.H.J. gave the idea to investigate various hypersurfaces of an indefinite tran-Sasakian manifold with a semi-symmetric metric connection. J.W.L. improve D.H.J.'s idea to characterize the total space as well as J.W.L. checked and polished the draft.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Friedmann, A.; Schouten, J.A. Uber die geometrie der halbsymmetrischen ubertragung. Math. Z. 1924, 21, 211-223. [CrossRef]
2. Yano, K. On semi-symmetric metric connection. Rev. Roum. Math. Pures Appl. 1970, 15, 1579-1586
3. Duggal, K.L.; Sharma, R. Semi-symmetric metric connection in a semi-Riemannian manifold. Indian J. Pure Appl. Math. 1986, 17, 1276-1283.
4. Begancu, A.; Duggal, K.L. Real hypersurfaces of indefinite Kahler manifolds. Int. J. Math. Math. Sci. 1993, 16,545-556. [CrossRef]
5. Prasad, R.; Tripathi, M.M.; Shukla, S.S. On Some special type of transSasakian manifolds. Riv. Mater. Univ. Parma 2009, 8, 1-17.
6. De, U.C.; Sarkar, A. On ϵ-Kenmotsu manifolds. Hadron. J. 2009, 32, 231-242.
7. Shukla, S.S.; Singh, D.D. On (ϵ)-Trans-Sasakian manifolds. Int. J. Math. Anal. 2010, 49, 2401-2414.
8. Siddiqi, M.D.; Haseeb, A.; Ahmad, M. A Note On Generalized Ricci-Recurrent (ϵ, δ)-Trans-Sasakian Manifolds. Palestine J. Math. 2015, 4, 156-163.
9. Oubina, J.A. New classes of almost contact metric structures. Publ. Math. Debr. 1985, 32, 187-193.
10. Duggal, K.L.; Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications; Kluwer Acad. Publishers: Dordrecht, The Netherlands, 1996.
11. Jin, D.H. Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. Pure Appl. Math. 2010, 41, 569-581. [CrossRef]
12. Cǎlin, C. Contributions to Geometry of CR-Submanifold. Ph.D. Thesis, University of Iasi, Iasi, Romania, 1998.
13. Jin, D.H. Special lightlike hypersurfaces of indefinite Kaehler manifolds. Filomat 2016, 30, 1919-1930. [CrossRef]
14. De Rham, G. Sur la réductibilité d'un espace de Riemannian. Comment. Math. Helv. 1952, 26, 328-344. [CrossRef]
15. Alegre, P.; Blair, D.E.; Carriazo, A. Generalized Sasakian space form. Israel J. Math. 2004, 141, 157-183. [CrossRef]
