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Abstract:



We investigate recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. In these hypersurfaces, we obtain several new results. Moreover, we characterize that the total space (an indefinite generalized Sasakian space form) with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces.
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1. Introduction


A semi-symmetric connection [image: ] on a semi-Riemannian manifold [image: ] was introduced by Friedmann-Schouten [1] in 1924, whose torsion tensor [image: ] satisfies


[image: ]



(1)




where [image: ] is a 1-form associated with a vector field [image: ] by [image: ]. In particular, if it is a metric connection (i.e., [image: ]), then [image: ] is said to be a semi-symmetric metric connection. This notion on a Riemannian manifold was introduced by Yano [2]. He proved that a Riemannian manifold admits a semi-symmetric metric connection whose curvature tensor vanishes if and only if a Riemannian manifold is conformally flat.



In a semi-Riemannian manifold, Duggal and Sharma [3] studied some properties of the Ricci tensor, affine conformal motions, geodesics, and group manifolds admitting a semi-symmetric metric connection. They also showed the geometric results had physical meanings.



In the following, we denote by [image: ], [image: ], and [image: ] the smooth vector fields on [image: ].



Remark 1.

Let [image: ] be the Levi-Civita connection of the semi-Riemannian manifold [image: ] with respect to the metric [image: ]. A linear connection [image: ] on [image: ] is a semi-symmetric metric connection if and only if


[image: ]



(2)









On the other hand, Bejancu and Duggal [4] showed the existence of almost contact metric manifolds and established examples of Sasakian manifolds in semi-Riemannian manifolds. They also classified real hypersurfaces of indefinite complex space forms with parallel structure vector field, and then proved that Sasakian real hypersurfaces of a semi-Euclidean space are either open sets of the pseudo-sphere or of the pseudo-hyperbolic. In trans-Sasakian manifolds, which generalizes Sasakian manifolds and Kenmotsu manifolds, Prasad et al. [5] studied some special types of trans-Sasakian manifolds. De and Sarkar [6] studied the notion of [image: ]-Kenmotsu manifolds. Shukla and Singh [7] extended the study to [image: ]-trans-Sasakian manifolds with indefinite metric. Siddiqi et al. [8] also studied some properties of indefinite trans-Sasakian manifolds, which is closely related to this topic.



The object of study in this paper is recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold [image: ] with a semi-symmetric metric connection [image: ]. We provide several results on such a lightlike hypersurface. In the last section, we characterize that an indefinite generalized Sasakian space form with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces.




2. Lightlike Hypersurfaces


An odd-dimensional pseudo-Riemannian manifold [image: ] is called an indefinite almost contact metric manifold if there exists an indefinite almost contact metric structure [image: ] with a [image: ]-type tensor field J, a vector field [image: ], and a 1-form [image: ] such that


[image: ]



(3)




where [image: ] or [image: ] if [image: ] is spacelike or timelike, respectively.



From (3), we derive


[image: ]











Without loss of generality, we assume that the structure vector field [image: ] is spacelike (i.e., [image: ]) in the entire discussion of this article.



Definition 1.

An indefinite almost contact metric manifold [image: ] is called an indefinite trans-Sasakian manifold [9] if, for the Levi-Civita connection [image: ] with respect to [image: ], there exist two smooth functions α and β such that


[image: ]











Here, [image: ] is called an indefinite trans-Sasakian structure of type [image: ].





Note that Sasakian[image: ], Kenmotsu[image: ] and cosymplectic[image: ] manifolds are important kinds of trans-Sasakian manifolds.



Let [image: ] be a semi-symmetric metric connection on an indefinite trans-Sasakian manifold [image: ]. By using (2), (3) and the fact that [image: ] and [image: ], we see that


[image: ]



(4)







Setting [image: ] in (4), [image: ], and [image: ] imply that


[image: ]



(5)







From the covariant derivative of [image: ] in terms of [image: ] with (1), (3), and (5), we have


[image: ]











Let [image: ] be a hypersurface of [image: ]. Denote by [image: ] and [image: ] the tangent and normal bundles of M, respectively. Then, there exists a screen distribution [image: ] on M [10] such that


[image: ]








where [image: ] denotes the orthogonal direct sum. Throughout this article, we assume that [image: ] is the algebra of smooth functions on M and [image: ] is the [image: ]-module of smooth sections of a vector bundle E over M. Also, we denote the i-th equation of (3) by (3)[image: ]. These notations may be used in several terms throughout this paper.



For a null section [image: ] on a coordinate neighborhood [image: ], there exists a unique null transversal vector field N of a unique transversal vector bundle [image: ] in [image: ] [10] satisfying


[image: ]











Then, we have the decomposition of the tangent bundle [image: ] of [image: ] as follows:


[image: ]











Let [image: ] be the projection morphism. Then, we have the local Gauss–Weingarten formulas of M and [image: ] as follows:


[image: ]



(6)






[image: ]



(7)






[image: ]



(8)






[image: ]



(9)




respectively, where [image: ] is the induced linear connection on [image: ], [image: ] is the local second fundamental form on [image: ], [image: ] is the shape operator on [image: ], and [image: ] is a 1-form on [image: ]. Then, it is well known that ∇ is a semi-symmetric non-metric connection and


[image: ]



(10)






[image: ]



(11)




B is symmetric on [image: ], where T is the torsion tensor with respect to the induced connection ∇ on M and [image: ] is a 1-form on [image: ].



[image: ] implies that B is independent of the choice of the screen distribution [image: ], and we have


[image: ]



(12)







Moreover, two local second fundamental forms B and C for [image: ] and [image: ] give the relations with their shape operators, respectively, as follows:


[image: ]



(13)






[image: ]



(14)







From (13), [image: ] is a [image: ]-valued real self-adjoint operator and satisfies


[image: ]



(15)








3. Semi-Symmetric Metric Connections


Let M be a lightlike hypersurface of an indefinite almost contact metric manifold [image: ], and denote by [image: ] and [image: ] sub-bundles of [image: ], of rank 1 [11], respectively. Now we assume that the structure vector field [image: ] is tangent to M. Cǎlin [12] proved that if [image: ], then[image: ]. Then, there exist two non-degenerate almost complex distributions [image: ] and [image: ] with respect to J such that


[image: ]











From these two distributions, we have a decomposition of [image: ] as follows:


[image: ]



(16)







Consider two null vector fields U and V and their 1-forms u and v such that


[image: ]



(17)







Denote by [image: ] the projection morphism of [image: ] on D. [image: ] is expressed as [image: ]. Then, it is obtained


[image: ]



(18)




where F is the structure tensor field of type (1, 1) globally defined on M by [image: ].



Applying J to (18) with (17) and (18), we have


[image: ]



(19)







Here, the vector field U is called the structure vector field of M.



Replacing Y by [image: ] in (6) with (5) and (18), one gets


[image: ]



(20)






[image: ]



(21)







From the covariant derivative of [image: ] in terms of X with (5), (7), and (14), it is obtained that


[image: ]



(22)







Applying [image: ] to (17) and (18) and using (4), (6), and (7), we get


[image: ]



(23)






[image: ]



(24)






[image: ]



(25)






[image: ]



(26)






[image: ]



(27)






[image: ]



(28)







Theorem 1.

Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold [image: ] with a semi-symmetric metric connection. If either [image: ] or [image: ], then [image: ] and [image: ] is an indefinite Kenmotsu manifold. That is, [image: ] and [image: ].





Proof. 

(1) If [image: ], then, taking the scalar product with [image: ] and V to (24) by turns, it is obtained


[image: ]











As [image: ] and [image: ], [image: ] is an indefinite Kenmotsu manifold. Applying F to (24): [image: ] and using (19) and (22), it is obtained that


[image: ]



(29)







(2) If [image: ], then, taking the scalar product with [image: ] and U to (25) by turns, we have [image: ] and [image: ]. Applying F to (25): [image: ] and using (19) and (21), one gets


[image: ]











Taking the scalar product with U to the above equation, we have


[image: ]



(30)







Replacing X by [image: ] in (30) and using (21), we have [image: ]. Hence, [image: ] is an indefinite Kenmotsu manifold. ☐






4. Recurrent, Lie-Recurrent, and Hopf Hypersurfaces


Definition 2.

The structure tensor field F of M is said to be recurrent [13] if there exists a 1-form ϖ on M such that


[image: ]











A lightlike hypersurface M of an indefinite trans-Sasakian manifold [image: ] is said to be recurrent if its structure tensor field F is recurrent.





Theorem 2.

Let M be a recurrent lightlike hypersurface of an indefinite trans-Sasakian manifold [image: ] with a semi-symmetric metric connection. Then

	(1) 

	
[image: ] and [image: ] (i.e., [image: ] is an indefinite Kenmotsu manifold),




	(2) 

	
F is parallel in terms of the induced connection ∇ on M,




	(3) 

	
D and [image: ] are parallel distributions on M, and




	(4) 

	
M is locally a product manifold [image: ], where [image: ] is a null curve tangent to [image: ] and [image: ] is a leaf of the distribution D.











Proof. 

(1) From (26), we have


[image: ]



(31)







Setting [image: ] in (31) with (3) and (21), it is obtained that


[image: ]











Taking [image: ] to this equation and using the fact that [image: ], we have


[image: ]











Taking the scalar product with N and U to the above equation by turns, we get


[image: ]



(32)







Therefore, [image: ] is an indefinite Kenmotsu manifold.



(2) Taking Y by [image: ] to (31) and using (12), we get [image: ]. It follows that [image: ]. Thus, F is parallel with respect to the connection ∇.



(3) Taking the scalar product with V to (31), it is obtained that


[image: ]











Setting [image: ] and [image: ],[image: ] to the above equation by turns with the fact that [image: ] as [image: ], we have


[image: ]



(33)







Generally, from (6), (9), (13), and (25), we derive


[image: ]











From these equations and (33), we see that


[image: ]








and hence D is a parallel distribution on M.



On the other hand, setting [image: ] in (31) with (32), we have


[image: ]



(34)







Using [image: ] in (34), it is obtained that


[image: ]











Using this result and (32), Equation (24) is reduced to


[image: ]



(35)







It follows that


[image: ]








and hence [image: ] is parallel on M.



(4) From (16), D and [image: ] are parallel. By the decomposition theorem [14], M is locally a product manifold [image: ], where [image: ] is a null curve tangent to [image: ] and [image: ] is a leaf of D. ☐





Definition 3.

The structure tensor field F of M is said to be Lie-recurrent [13] if


[image: ]








for some 1-form ϑ on M, where [image: ] denotes the Lie derivative on M with respect to X. That is,


[image: ]











F is said to be Lie-parallel if [image: ]. A lightlike hypersurface M of an indefinite trans-Sasakian manifold [image: ] is said to be Lie-recurrent if its structure tensor field F is Lie-recurrent.





Theorem 3.

Let M be a Lie-recurrent lightlike hypersurface of an indefinite trans-Sasakian manifold [image: ] with a semi-symmetric metric connection. Then, the following statements are satisfied:

	(1) 

	
F is Lie-parallel,




	(2) 

	
[image: ] and [image: ] is an indefinite β-Kenmotsu manifold,




	(3) 

	
[image: ] on [image: ], and




	(4) 

	
[image: ] and [image: ].











Proof. 

(1) From (11) and [image: ], it is obtained that


[image: ]











(26) implies that


[image: ]



(36)







Taking [image: ] in (36) with (12), we have


[image: ]



(37)







Taking the scalar product with both V and [image: ] in (37) by turns, we get


[image: ]



(38)







Replacing Y by V in (36) and using [image: ], we have


[image: ]











Applying F to the above equation with (19) and (38), it is obtained that


[image: ]











Comparing the above equation with (37), we get [image: ]. Therefore, F is Lie-parallel.



(2) Replacing X by U in (36) and using (14), (17), (19), (22)–(24), and [image: ] and [image: ], it is obtained that


[image: ]



(39)







Taking the scalar product with [image: ] into (39) and using (22), it is obtained that [image: ], and hence, [image: ]. That is, [image: ] is an indefinite [image: ]-Kenmotsu manifold.



(3) Taking the scalar product with N to (36) and using (14)[image: ], we have


[image: ]



(40)




because [image: ]. Replacing X by [image: ] in (40) and using (9) and (13), we get


[image: ]



(41)







Taking [image: ] to (41) and using (23) and [image: ], we have


[image: ]



(42)







Taking the scalar product with V in (39) and using (14), (23), (42), and [image: ], it is obtained that


[image: ]











Comparing the above equation with (41), it is obtained that [image: ].



Replacing X by V in (40) and using (25), we have


[image: ]











Taking [image: ] and [image: ] and using [image: ], it is obtained that


[image: ]



(43)







Replacing X by [image: ] to [image: ] and using (19) and (43), it is obtained that [image: ]. Thus, we have (3).



(4) As [image: ], from (13) and (41), we have [image: ]. The non-degeneracy of [image: ] implies [image: ]. Replacing X by [image: ] to (37) and using (15) and [image: ], it is obtained that [image: ]. ☐





Definition 4.

The structure vector field U is said to be principal [13] (with respect to the shape operator [image: ]) if there exists a smooth function κ such that


[image: ]



(44)







A lightlike hypersurface M of an indefinite almost contact manifold is called a Hopf lightlike hypersurface if its structure vector field U is principal.





Taking the scalar product with X in (44) and using (13), we get


[image: ]



(45)







Theorem 4.

Let M be a Hopf-lightlike hypersurface of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. Then, [image: ].





Proof. 

Replacing X by [image: ] in (45)[image: ] and using (21), we get [image: ]. ☐






5. Indefinite Generalized Sasakian Space Forms


For the curvature tensors [image: ], and [image: ] of the semi-symmetric metric connection [image: ] on [image: ], and the induced linear connections ∇ and [image: ] on M and [image: ], respectively, two Gauss equations for M and [image: ] follow as


[image: ]



(46)






[image: ]



(47)




respectively.



Definition 5.

An indefinite generalized Sasakian space form [image: ] [15] is an indefinite trans-Sasakian manifold [image: ] with


[image: ]



(48)




for some three smooth functions [image: ] and [image: ] on [image: ], where [image: ] denote the curvature tensor of the Levi-Civita connection [image: ] on [image: ].





Note that Sasakian[image: ], Kenmotsu[image: ], and cosymplectic[image: ] space forms are important kinds of generalized Sasakian space forms, where c is a constant J-sectional curvature of each space form.



By directed calculations from (1) and (2), we see that


[image: ]



(49)







Taking the scalar product with [image: ] and N in (49) by turns and substituting (46) and (48) to the resulting equations and using (5) and (47), we get


[image: ]



(50)






[image: ]



(51)







Theorem 5.

Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form [image: ] with a semi-symmetric metric connection. Then, [image: ], and [image: ] satisfy that α is a constant on M, [image: ], and


[image: ]













Proof. 

From the covariant derivative of [image: ] with respect to X and (6) and (25), it is obtained that


[image: ]



(52)







Applying [image: ] to (23): [image: ] and using (21)–(25), we get


[image: ]











Substituting this equation and (23) into (50) with [image: ], we have


[image: ]











Comparing the above equation with (51) such that [image: ] and using (52), it is obtained that


[image: ]











Taking [image: ], [image: ] and [image: ] to the above equation by turns, it is obtained that


[image: ]



(53)







From the covariant derivative of [image: ] with respect to X, (5) implies


[image: ]



(54)







From the covariant derivative of [image: ] with respect to X, (7) implies


[image: ]



(55)







Applying [image: ] to (22) and using (20), (22), (28), and (55), we get


[image: ]











Substituting this and (22) into (51) with [image: ] and using (54), we get


[image: ]











Taking [image: ] and [image: ] to this by turns, it is obtained that


[image: ]











Applying [image: ] to (21) and using (20), (21), and (27), we have


[image: ]











Substituting this equation and (21) into (50) with [image: ], it is obtained that


[image: ]











Taking [image: ], we get [image: ]. It follows that [image: ] is a constant on M. ☐





Definition 6.

(a) A screen distribution [image: ] is said to be totally umbilical [10] in M if


[image: ]








for some smooth function γ on a neighborhood [image: ]. In particular, case [image: ] is totally geodesic in M if [image: ].



(b) A lightlike hypersurface M is said to be screen conformal [11] if


[image: ]



(56)




for some non-vanishing smooth function φ on a neighborhood [image: ].





Theorem 6.

Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form [image: ] with a semi-symmetric metric connection. If one of the following five conditions is satisfied,

	(1) 

	
M is recurrent,




	(2) 

	
[image: ] is totally umbilical,




	(3) 

	
M is screen conformal,




	(4) 

	
[image: ], and




	(5) 

	
[image: ],






then [image: ] is an indefinite Kenmotsu space form such that


[image: ]













Proof. 

Applying [image: ] to [image: ] and using (6) and (24), it is obtained


[image: ]



(57)







(a) Theorem 2 implies that [image: ] and [image: ]. By directed calculation from (35), it is obtained that


[image: ]



(58)







On the other hand, since [image: ] and [image: ], we have [image: ] by (5) and [image: ] by Theorem 5. Comparing the tangential components of the right and left terms of (49) and using (46) and (48), it is obtained that


[image: ]











Setting [image: ] in the above equation and using (57) and (58), we get


[image: ]











Taking the scalar product with N to the above equation and using (14)[image: ], we get


[image: ]











It follows that [image: ]. Thus, [image: ].



(b) Since [image: ] is totally umbilical, (22) is reduced to


[image: ]











Taking [image: ], [image: ], and [image: ] to this equation by turns, we get [image: ], and [image: ], respectively. As [image: ], [image: ] is totally geodesic in M. As [image: ] and [image: ], [image: ] is an indefinite Kenmotsu manifold and [image: ] by Theorem 5.



Taking [image: ] in (51) and using (52) and the result: [image: ], we have


[image: ]











Taking [image: ] and [image: ], we get [image: ]. Thus, [image: ] and [image: ], and [image: ] is an indefinite Kenmotsu space form with [image: ].



(c) Taking [image: ] in (56) and using (21) and (22), we get


[image: ]











Taking [image: ] and [image: ] by turns, we have [image: ] and [image: ], respectively. Thus, [image: ] is an indefinite Kenmotsu manifold and we get [image: ].



Applying [image: ] to [image: ], we have


[image: ]











Substituting this equation into (51) and using (50), we have


[image: ]











Replacing Y by [image: ] in the above equation, it is obtained that


[image: ]











Taking [image: ] and then [image: ] to the above equation by turns and using (52), (57), and the fact that [image: ], we have


[image: ]








respectively. From the last two equations, it is obtained that [image: ]. Therefore, [image: ] and [image: ]. Consequently, we see that [image: ] is an indefinite Kenmotsu space form such that [image: ].



(d) Theorem 1 implies [image: ], and (29). Thus, [image: ] by Theorem 5.



Taking the scalar product with U in (29), it is obtained that


[image: ]











Applying [image: ] to [image: ] and using [image: ], we have


[image: ]











Substituting the last two equations into (51) with [image: ] and using (57) and the fact that [image: ], we have


[image: ]











Taking [image: ] and [image: ], we get [image: ]. Thus [image: ] and [image: ] is an indefinite Kenmotsu space form such that [image: ].



(e) Theorem 1 implies [image: ] and (30). Thus [image: ] by Theorem 5.



From (23) and (30), we get


[image: ]











Applying [image: ] to [image: ] and using the fact that [image: ], we have


[image: ]











Substituting these into (51) with [image: ] and using (52), we get


[image: ]











Taking [image: ] and [image: ], we have [image: ]. Thus, [image: ] and [image: ] is an indefinite Kenmotsu space form with [image: ]. ☐





Theorem 7.

Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form [image: ] with a semi-symmetric non-metric connection. If M is a Lie-recurrent or Hopf lightlike hypersurface, then [image: ] is an indefinite β-Kenmotsu space form with


[image: ]













Proof. 

(a) Theorem 3 implies [image: ] and


[image: ]



(59)







Applying [image: ] to [image: ] and using (21) and (24), we have


[image: ]











Setting [image: ] in the last two equations into (50), we have


[image: ]











Taking [image: ] and [image: ] to the above equation and using (12) and (59), it is obtained that [image: ].



Therefore, Theorem 5 implies


[image: ]











(b) Applying [image: ] to (45)[image: ] and using (21), (24), and (28), it is obtained that


[image: ]








because [image: ]. Substituting this equation and (45)[image: ] into (50), we have


[image: ]











Taking [image: ] and [image: ] to the above equation and using (3), (18), (12), (14)[image: ], and (45)[image: ], we get [image: ]. Thus, by Theorem 5 we have


[image: ]











This completes the proof of the theorem. ☐






6. Conclusions


In the submanifold theory, some properties of a base space (a submanifold) is investigated from the total space. In our case, we characterize that the total space (an indefinite generalized Sasakian space form) with a semi-symmetric metric connection is an indefinite Kenmotsu space form under various lightlike hypersurfaces, such as recurrent, Lie-recurrent, and Hopf lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a semi-symmetric metric connection. The structure of a lightlike hypersurface in a semi-Riemannian manifold is not same as the one of a lightlike submanifold (half lightlike submanifolds, generic lightlike, and several CR-type lightlike, etc.) in a semi-Riemannian manifold. Our paper helps in solving more general cases in semi-Riemannian manifolds with a semi-symmetric metric connection.
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