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Abstract: The Marchaud fractional derivative can be obtained as a Dirichlet-to-Neumann map via
an extension problem to the upper half space. In this paper we prove interior Schauder regularity
estimates for a degenerate elliptic equation with mixed Dirichlet-Neumann boundary conditions.
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Dirichlet problem for the Marchaud fractional derivative.
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1. Introduction

In the last years there has been a growing interest in the study of fractional elliptic equations
involving the right fractional Marchaud derivative (-@right)“z such as equations of the form

(Zyigne)'v=f inQ, v=0 in [bo), 1)

where without loss of generality Q) := [4,b) C R, witha <band 0 < & < 1.

Fractional diffusion problems of type (1) arise for example in the modelling of neuronal transmission
in Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and
the appearance of tremors [1]. Further motivation comes from various experimental results which showed
anomalous diffusion of fractional type, see for example [2,3] and references therein.

The right fractional Marchaud derivative of a function w : R — R is defined via Fourier
transforms as

—

(@right)“w(g) = (:I:ig)a Z/‘}(g)/ ()

and it can also be expressed by the pointwise formula

e[ oly) ~o(x)
Sk e

where c, is a positive normalization constant. We observe from (3) that the right fractional Marchaud
derivative is a nonlocal operator. Nonlocal operators have the peculiarity of taking memory effects
into account and capturing long-range interactions, i.e., events that happen far away in time or

(@right)lxv(x) = I( 3)

space. Further discussion of the difference between local integro-differential operators and nonlocal
or fractional ones can be found in [4] and references therein. In this context, the nonlocality of the
fractional Marchaud derivative prevents us from applying local PDE techniques to treat nonlinear
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problems for (@right)“- To overcome this difficulty, Bernardis, Reyes, Stinga and Torrea showed in [5]
that the right fractional Marchaud derivative can be determined as an operator that maps a Dirichlet
boundary condition to a Neumann-type condition via an extension problem. Similar extension
properties have been found for the fractional Laplacian by Caffarelli and Silvestre in [6].

To be more precise, consider the function ¢/ : R2 := R x [0,00) — R that solves the boundary
value problem

MUt x) =0 for (t,x) € R2,
lim; o Nald (8, x) = f(x) forx € Q, (4)
U(t,x) =0 forx e R\ Q,

Then we have [5]:
limNaU(f, x) = Ctx(-@right)lxv(x)'

t—0
40&71/21"(06)

'l — «a)
differential operators M, and N, are given respectively by:

where ¢, := is a positive multiplicative constant depending only on a € (0,1). Here the

1—2a
Mald = _(-@right)u + t

Nold := —t17287,. (6)

Ur + Us; ©)

We use the notation (Z,;g,¢) for the derivative from the right at the point x € R, that is:
, @)

for good enough functions v. Observe that (%) equals the negative of the lateral derivative (%)
as usually defined in calculus [5].

This characterization of (@n-ght)“v via the local (degenerate) PDE (5) was used for the first time
in [5] to get maximum principles. To solve (4), Stinga and Torrea noted that (5) can be thought of as
the harmonic extension of v into 2 — 2« extra dimensions (see [5]). From there, they established the
fundamental solution and, using a conjugate equation, a Poisson formula for /. Furthermore, taking
advantage of the general theory of degenerate elliptic equations developed by Fabes, Jerison, Kenig
and Serapioni in 1982-83, they proved comparison principles for I/ (and thus for v).

The aim of this paper is to prove an interior Schauder estimate for the problem (4), involving
any fractional power of the derivative (Z,;g;:)* as an operator that maps a Dirichlet condition to a
Neumann-type condition via an extension problem as in [5].

A significant contribution of the above extension problem is to provide a way of applying classical
analysis methods to partial differential equations containing one-sided Marchaud derivative operators.
By means of such extension techniques, a series of important results, such as comparison principles,
Harnack inequalities, and regularity estimates for solutions to degenerate elliptic equations involving
the fractional Laplacian, have been studied by many authors, for example [6—17]. The same analysis
was done for the one-sided fractional derivative operator in the sense of Marchaud ([5] Theorem 1.1
and Corollary 1.2).

In view of these results, we immediately observe that interior regularity and boundary regularity
for the degenerate elliptic equation with mixed boundary conditions involving the one-sided Marchaud
derivative is missing in the literature. Indeed, from the pioneering work of [5,7,18] on the analogue
extension problem for nonlocal operators that map Dirichlet to Neumann, one can reduce a nonlocal
problem involving fractional derivatives to a local one by keeping their qualitative properties.
Using this technique, one can study interior and boundary regularity. Hence the raison d’étre for
this work.
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In order to underline what makes the difference between the extension problems introduced by
Bernardis, Reyes, Stinga and Torrea [5], and the one introduced by Bucur and Ferrari [18], we point
out that the extension problem established in [18] is based on a time-dependent initial condition,
which leads to a heat conduction problem. Indeed, considering the function ¢ : R — R of one variable,
formally representing the time variable, their approach relies on constructing a parabolic local operator
by adding an extra variable, say the space variable, on the positive half-line, and working on the
following problem in the half-plane [0, o) x R:

{ aU =AU (x) € (0,0) xR, @
UuO,t) =) tekR

The problem (8) is not the usual Cauchy problem for the heat operator, but a heat conduction problem.
In view of the type of problem we are interested in here, we choose to deal with the
Bernardis—Reyes-Stinga—Torrea extension problem [5]. Our main result, which will be proved in
Section 3 below, is as follows. We note that this result can be proved only using extension techniques.

Theorem 1. Let a € (0,1) and let U € L*(RS) N HY(t*; BS) be a weak solution to

MyU=0 in By,
limg o Na U(L,-) = f on By,
U=0 onR\ Q.

() Forl < p < oo if f e LP(By,w)andy € (0,min(1,a)) is such that 0 < « —’y—% < 1, then

1 ——
Uec® 5 (Bf,w). Moreover,

1U e < € (1 Mgy + 1 f Nerie )

where C is a positive constant depending only on «, vy, and p.
)  Iff € L°(By) and y € (0,min(1,x)), then U € C* (E) Moreover,

w57y < € (Wl + 15l )
where C is a positive constant depending only on « and y.

The paper is organised as follows. In Section 2, we give some notations and definitions of
function spaces and their associated norms which will be needed in this work. We also provide some
preliminary results and finally state our main result. In Section 3, we prove an intermediate result
and provide the proof of the regularity estimate up to the boundary for the degenerate Equation (4)
with the Neumann boundary condition stated in Theorem 1. Finally we end with the conclusion in
Section 4.

2. Notations and Preliminary Results

In this section we introduce some notations, definitions, and preliminary results used throughout
the paper.

Here and in the following, we consider « € (0,1), RZ := Ry xR = {z = (t,x) : t > 0} and
Q) C R abounded Lipschitz domain. For an open set (), an integer k > 1, and a real number A € (0,1],
the Holder spaces C**(Q) are defined as the subspaces of C¥(Q) consisting of functions whose k-th
order derivatives are uniformly Holder continuous with exponent A in Q).
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Furthermore, we introduce the following notation for intervals, boxes, and balls:

By(xg) :={x e R:|x—xo| <1},
B} (x0) := [0,7) X Br(xo), ©)
Br(zp) :={z=(t,x) e RxR:|z—zy| <1},

We consider the function space

X
E,}‘::{q):R—ﬂR : ol = Rllip(x‘)lhmdx<oo}.

For Q C R an open set, we say v : Q — R is in C%7(Q), i.e., Holder continuous with exponent
y€(0,1),if

[ollcor ey = sup =
We recall the following definition of Sobolev spaces.
Definition 1 (Sobolev spaces). For any real number w, the xth Sobolev space on R is defined to be
H*(R) := {u € S'(R) : 1 € L}, (R), ||ul[e < oo},

where the Sobolev norm || - || ga is defined by

[ (/Rﬁ(A)F (1+1AP)° dA)l/z.

For a general domain X C R, the ath Sobolev space on X is defined to be
H} (X) := {u € D'(X) : up € H*(R) forall p € D(X)}.
Leta € Rand a € (0,1) be two arbitrary parameters. We define the functional space
Ccla .= {f: R—R : foranyx>a, fe AC([a,x])and f'(-)(x —)™" € Ll((a,x))} . (10)
We denote here by AC(I) the space of absolutely continuous functions on I.

Definition 2 (Caputo derivative). The Caputo derivative of v € Ca™ with initial point a € R at the point

x > ais given by . .
o R / _ —u
Dio(x) = prp—gy [, VW)= 9) "y (1)

Definition 3. The right Marchaud derivative of a well defined function v is given by

(Frgn)o() = Jim s [~ SO ay, (12)

with Cy a positive normalisation constant.

Remark 1. Notice that the one-sided nonlocal derivative in the sense of Marchaud can also be obtained by
extending the Caputo derivative. Indeed, by making an integration by parts of Equation (11), we obtain an
equivalent definition [19,20] as follows:
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D*o(x) = C(w) [ Zzg/y)_x;(j? dy,

forall x < 0, so that v(x) = v(0), where C(a) is a constant depending on w. Indeed, for sufficiently regular
functions v, we have:

D*o(x) = /Ox v'(y) dy = /Ox < d (v(y) —v(x)) i (v(y) —v(x))) J

(x —y)" dy  (x—y)* (x —y)t+e
o) o0 e o) [ (o) o)
o x& i—m (x—y)“ « /O (x_y)1+tx d (13)
— "U(X) — M(O) _ ’0/(}/) &1_1)]?)1{(3( _ y)l—zx — A v((xy)_;;gfx) dy

_ 71’(")3;0(0) ta /0 ' ZJ(SCX)_:_V;&VD‘) dy.

Hence, we take the convention that v(x) = v(0) for any x < 0. With this extension, one has that,
forany x >0,

o [ D P A0 o) =00

e () oy YT T

So one can write (13) as

D*v(x) = C(a) /x ox) —oly) dy

—oo (x—y)tte

This type of formula also relates the Caputo derivative to the so-called Marchaud derivative [20,21].
Therefore the results obtained in this paper could also be applied for the extended Caputo derivative.

Note that the integral in (12) is absolutely convergent for functions in the Schwartz class S.
Furthermore one should notice that the nonlocal operators (Zg,;)* and (Zyign:)* depend on the
values of v on the whole half line (x, c0).

We recall that the inverse of the right fractional Marchaud derivative (%ight) ~%is defined as

- v
(Frg) 00 = [, 2B dy = Tu o )
where the Riesz potential (see [7,21]) is defined as
Ty = Cylx —y|* 1 fora <1, (15)
with the constant C, = 1T'(1 — &) sin Z2.
From [5], we have that for u € S, (Zjgns)*u € Sa, Where
Sy = {f e C®(R) : (1+ |x|™*)f*(x) € L®°(R), for each k > O}.
The topology in S, is given by the family of seminorms [fl; := sup,. g ’(l + |x [ F0) (x) |,
for k > 0. Let S, be the dual space of Sy; then (Zg,¢)* defines a continuous operator from Sy into &'

2.1. Weighted Spaces

Weighted spaces of smooth functions play an important role in the context of partial differential
equations (PDEs). They are widely used, for instance, to treat PDEs with degenerate coefficients or
domains with a nonsmooth geometry (see e.g., [22-25]), as is the case here. For evolution equations,
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power weights in time play an important role in order to obtain results for rough initial data (see [26,27]).
This subsection dedicated to weighted spaces is motivated by the appearance of the Muckenhoupt
weight w := 172 which appears in (5) and (6). For general literature on weighted function spaces we
refer to [23-25,28-31] and references therein.

In a general framework, a function w : R — [0, 00), for an integer d > 1, is called a weight if w
is locally integrable and the zero set {x : w(x) = 0} has Lebesgue measure zero. For p € [1, o] we
denote by A, the Muckenhoupt class of weights. In the case p € (1,00), we say that w € A, if

() )
su W | w(x)dx — [ w(x) P 1ldx < oo,
Bcubespin R4 |B ‘ B |B I B

In the case p = 1, we say that w : R — [0,00) belongs to A; if there exists some constant C
such that

|13| [ o) dy < Calx)

for all x € B and all balls B C R?. In the case p = oo, we define A, = Ui<p<eo Ap. Note that,
for functions with support contained in (—oo,0) or (0, c0), the class of weights is denoted by A; or A,
respectively. We refer to [27,30,32] for the general properties of these classes.

Example 1. Problem (4) is a weighted—singular or degenerate, depending on the value of « € (0,1)—elliptic
equation on R2. with mixed boundary conditions. The weight w := t'~2% belongs to the Muckenhoupt class
AF, i.e., there exists a constant C such that for any B C R%,

<|18|/B|t|12“dt dx) <|18|/B|t|2“1dt dx) <C.

For this reason, when working with one-sided weights, we can assume without loss of generality that
Q :=[a,b) = R (see e.g., [30] for more details).

Next, for a strongly measurable function f and a number p € [1, ), we define the weighted L?
norm by

1/p
sy = ([, 170 P ax)

and we define the weighted L7 space to be the following Banach space:

LP(R?,w) := {f strongly measurable : £l Lp(ra ) < o0}
Definition 4 (see [8]). Givena € (0,1), 4 =1—2a € (—1,1), and an open set B C R2, we denote
L2(t"; B) := {u ‘R2 - R, /Bt”|u|2dt dx < +oo},

endowed with the norm D
U 2,y == </B tH|U 2 dt dx) .

We also denote
HY(#; B) := {u € L2t B) : VU € Lz(t”;B)},

with the induced norm ”
HZ’{HHl(t}l;B) = </B tH (|L{\2 + |VL{|2) dt dx> .
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Using the variable (¢, x) € R?, the space H*(R) coincides with the trace on 9R? of

loc

HY(t"; B) := {u €L} (R3): /RZ tH (u2 + |VU|2) dt dx < +oo}.
=
In other words [8,9], for any given function 4 € H(t*;B) N C (@), we have v := U| IR2 S
H*(R), and there exists a constant C = C(«) > 0 such that
[0 [y < C LU g gy -
So by a density argument, every U € H'(t*;B) N C (@) has a well defined trace v € H*(R).
Conversely, any v € H*(R) is the trace (restriction to t = 0) of a function/ € H'(t*;B) NC (@)

Definition 5. We say that a function U € H'(t"; B) is a weak solution of (4) if

/B VUL, )V (t, x)dt dx — ¢t /Qf(x)Tr(‘I’)(x) dx =0, (16)

where f is as in (1), Te(Y) denotes the trace ‘P| (0} xR’ and ¥ € H'(t";B)NC (@) is an arbitrary test function.

2.2. The Extension Problem

In the next statement we recall the results obtained from [5] which show that the fractional
derivatives on the line are Dirichlet-to-Neumann operators for an extension degenerate PDE problem
in R x (0, 0), where the data f have been taken in the more general setting: more precisely a weighted
LP(w) space, where w satisfies the one-sided version A; (see [30]) of the familiar A, condition

of Muckenhoupt.
Fix 0 < a < 1. Given a semigroup {T} };>0 acting on real functions, the generalized Poisson integral
of f is given by
P = g [ eI ) e, (17)
44T (a) Jo ’ slta’ ’

see ([5] (1.9)) for more details.
By considering the semigroup of translations Tsf (x) = f(x +s),s > 0, we find

PEF(x) = fx PAx) = [ f(s)PE(x =) ds

where
t21x etz /4x

Pi(x) == WX(_OO'O)(X). (18)

Since the kernel P is increasing and integrable in (—co, 0), it is well known that the function
Pef(x) = sup fl« P(x) = /R [F(DIPF(x — 1) dt,
>

is pointwise controlled by the usual Hardy-Littlewood maximal operator. However, since the support
of P} is (—0,0), a sharper control can be obtained by using the one-sided Hardy-Littlewood maximal
operator. This control and the behavior of P in weighted LP-spaces will be used in the results of this
paper. We revise briefly recall the two fundamental theorems from [5].

Theorem 2 ([5]). Consider the semigroup of translations T;f (x) = f(x +t), t > 0, initially acting on
functions f € S. Let PFf, 0 < a < 1, be as in (17). Then:
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1. For1 < p < oo, P isabounded linear operator from LP (R) into itself and || P} f||1p(r) < || fllr (m)-
2. When f € S, the Fourier transform of P! f is given by

21l-a R

T (D i F @), cer,

where ||, (z) is the modified Bessel function of the third kind or Macdonald’s function, which is defined for
arbitrary v and z € C, see ([33] Chapter 5). In particular,

Pif(E)

1/2 =~

f(©)-

3. The maximal operator P{ defined by P§ f(x) = sup,., | P f(x)| is bounded from LP (R, w) into itself,
forw € Af,1 < p < oo, and from L}(R, w) into weak-L* (R, w), for w € Af.

4. Let f € LP(w), forw € A}, 1 < p < oo. The function U(x,t) = Pf f(x) is a classical solution to the
extension problem (4).

Pf(g) = e~

Theorem 3 (Extension problem). Let f € LV (w), w € A;{, 1 < p < oc. Then the function

tZIX

U(x,t) =

= " P/ () AT
4“1"(04)/0 € Tef(x) Tra’ xER, t>0,

is a classical solution to the extension problem

{—(Qn'ght)u +1 —tsz Ur+Uy =0, inR x (0,00),

lim;_,o+ U(x,t) = f(x), a.e. and in LP (w).
a—1/2
Moreover, for c, := ém > 0, we have

—Ca lirgl+ t 7 22Uy (x,t) = (Dyignt)" f(x)  in the distributional sense.
t—
Remark 2. This parallel result regarding the extension problem in the case of the Marchaud fractional time
derivative has been derived as well in [18,20].

3. Regularity Estimate up to the Boundary for the Degenerate Equation with the Neumann
Boundary Condition

In this section, we prove the interior regularity estimate up to the boundary for the degenerate
equation with the Neumann boundary condition associated to problem (4). Namely we provide the
proof of Theorem 1. But before we get into that, it is necessary to explain the main ideas in the proof of
interior regularity provided by Theorem 1. The proof of Theorem 1 is inspired by [5,7,8,34]. The method
for this proof differs substantially from interior regularity methods for second-order equations, but is
similar to the proof for the fractional Laplacian. Recall that for second-order equations, one first
shows that D?u is bounded, and then the estimate for equations with bounded measurable coefficients
implies a C>7 estimate for ¢ € (0, min(1,«)). This is also true for the boundary regularity for solutions
to fully nonlinear equations [35].

We shall start by the regularity property of the problem (1). We show in Proposition 1 that the
solution of the problem (1) is of class C*“. To the best of the authors’ knowledge, the proofs available
in the literature are those dealing with the case of the fractional Laplacian (see for instance [7,36]
(Proposition 2.1.9)). With this result in hand, and by making an appropriate change of variables,
we will use this result and estimate to prove our main theorem.
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We start by recalling the following lemma from [37], which gives a Liouville-type theorem for (1)
in the case f = 0.

Lemma 1. Let u € C(R) be a function satisfying (Zyigns)"u = 0in Ry, u = 0in R, and |u(x)| <
C(1+ |x|7) for some v < a. Then u(x) = kx*.

The proof of this lemma relies on similar reasoning as the proof of ([37] (Theorem 2.2.3)) for the
Caputo density function.

In the case where we have a non-vanishing right hand side (f # 0) as in (1), we state the following
Liouville-type theorem for the one-sided Marchaud derivative.

Proposition 1. Leta € (0,1) and letu € LL N L

loc

(Bq) be the solution to

(@right)au =f in B
(@) Forl<p<oo,if feLP(Bj,w)andr € (0,1) and v € (0,min(1,«)) is such that 0 < y — % <1,

1
thenu € C7 " » (By, w) and there exists a constant C := C(w, v, 7y, p) > 0 such that

190 a3 g,y S € (lleoo s + 1 1o,0) - (19)

(b) Iff € L(By)andr € (0,1) and v € (0,min(1,a)), then u € C%7(By) and there exists a constant
C :=C(a,r,7v) > 0 such that
lullcon s,y < € (Itllzsga,) + 1 s ) - 20)

Proof. We will show that u has the corresponding regularity in a neighbourhood of the origin. We split
the proof into two parts, as follows.

Proof of (a): f € LP(By1, w). Let 7 € CP(R) be a smooth cutoff function such that 7 = 1 on By,
n=00onR \ Bj,and 0 < # < 1onR. Consider the Riesz potential as defined in (15). Then the function

v(x) ::/RI,X(x,y)(iyf)(y)dy, forall x eR,

satisfies
(Drignt)"v(x) = n(x)f(x) forallx € Ry. 1)

We first estimate the LP norm of v for a < 1. Since the kernel (Z,;q),;) " is positive and 77 > 0
is a smooth function with compact support in B,, we write v = (Zyjgn) *(1f) = (@right)l_"‘ o
(Drignt) ~1(51f). We note that, by using a similar argument as for the Poisson equation for the fractional
Laplacian, we find that (Z;;g) ~1(5f) is an element of C1** with norm depending only on || f| co,,-
Since # f is compactly supported, we get

[0llcormy < Canllnfllceswr) + Cllollr@wr) < Co,pr | fllr (B wr)-
Fora < 1and y € (0,min(a,1)) and x,y € B,, we have
v(x) —o(y) = /R (Za(x,2) = Za(y, 2)) (nf)(2)dz
_ o la—1 a1
= Cua [ (l=2 = ly=21"") (0f) (2) =
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Next we consider the following inequalities [38], valid for v € (0, min(1,«)) and m € R with
m 4+ > 0 and for every x,y,z € B;:

(e =27~y —=™)| < 2y

_ = (m+7) _ = (m+7)
o x —z| + |y —z| )

(22)
Form =1—a,and for 1 < p < oo, we can write

o) = 0(9)| < [y o el (B =2 Ty =) ) 2
< Canlr =y ¥ [ =yl e =20 ),
ly — 7|

X = 2] > 1. Using the fact that the support of 7 is always contained in the ball of radius 2
centred at x € B,, we have that

since

fo(x) —o(w)| < C(La ) x—=y|” [ 1x =y ) (w)ldy,

T -1 pla—1—9)+1 p o\
<=y 7 ([ k- w|(nf) )l dy

<clmmlx—y"7 ([ (xlz)wl(ﬂf)(y)l”dy); ( frow— i )

\yl”

<C(aq)|x—y|"? (/ w|f(y |pdy) (/w e )”pl

p=1
pla—l-y)+. P
< 20(0,8,7)x = 51" Uflsy ( f, w77 101 dy) ,

up to relabelling of the positive constant C(«, ) that depends on « and 7. Replacing w(y) by its value
ly|'~2* and using the polar coordinates y = rx, r > 0, we get that

1 1 1 ( —1)
-1 d — p71(2a+p(a 1 'Y))d d < P S
[t Ty [ o) < ot Isi]
< C(p,7,a).

Then,

_1
[o(x) —o()| < C(p, v, @) |x = y[" 7 | fll o (By)

Hence, we conclude that

kel b5 < CallfllLr (B, w)- (23)
for every v € (0, min(1,a)).

Next, by change of variables, the function ¢ := u — v satisfies (Zg1;)*¢ = 0 in B, by (21)
Then, thanks to the derivative estimate, for every v’ € (0,r)

18005, 20) < CorllENirpy ) < Copr (Il oo, ) + N0l (s,

The difference function { = u — v is smooth in B; and is bounded. From this observation
together with (23), we have that

Il -, = 16+ ©llcnar) < Cor (Ilirgs + 1 usisy )
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for every v € (0,min(1,&)) with 0 < v — % < 1, as required.

Proof of (b): f € L®(B1). The proof in this case is similar to the previous one. We consider as above a
smooth cutoff function 7 € C2°(R) such thaty =1on B,, 7 =00on R\ By, and 0 < <1 on R. Then
we consider the Riesz potential as defined in (15), so that we can estimate the L* norm of v for a < 1.
Since the kernel 7, is positive and # > 0 is a smooth function with compact support in B,, we get

[vllcormy < Caylnfllzem) + Cllvllom) < Capll fllze(s)

Next, by using the inequality stated in (22), we get that for ¢ € (0,min(a,1)) and x,y € By,
[0(x) =o(w)| < Cuglx—ul" [ Ix =y T f(v)ldy

X =y flisioy [ = y* " 7dy
2

|l ay 12 =yl

< sz,ﬁy

< Capy

Hence, we conclude that
lvllcon(s,) < CallfllL=(B,) (24)

for every v € (0,min(1,«)).
Next, by change of variables, the function § := u — v satisfies (Zjg)*¢ = 0 in B, by (21).
Therefore, thanks to ([7] (Corollary 1.13)), we have the derivative estimate for every ' € (0,7):

[Vl peopy < Copllwllreo(py) < Cop (lullreo(p,) + 10l (8,))-

The difference function ¢ = u — v is smooth in By and is bounded. From this, together with (24),
we conclude that

lullcor s, = o +2llcors,) < o (Itllisis + 1f sy )

for every v € (0, min(1,a)). O

Now we are in a position to state and prove our main result on the interior Schauder estimate for
the solution function ¢/ on the set ;.

Proof of the Main Result: Theorem 1

Proof. Again, we present the two parts of the proof separately.
Proof of (a): f € LP(R, w). We choose a cut-off function 7 € CP(B,) such that 7 = 1 on B, and
0 <7 <1onR. Let v be the unique solution to the equation

(-@right)o65 =f in R,
— 1
where f := 11 f. Making use of the previous result Proposition 1, we know that s € C* 7" # (R, w) and

5 <
ey < (i )

where C > 0 is a constant that depends only on «, 7, and p.
The next step is to consider the Bernardis—Reyes-Stinga—Torrea extension U of 7, i.e., the function

U(t,) = PX(t,-) D,
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which satisfies the equations

MlX H(t, x) - O 11‘1 R%r,
limy o No U(t, X) = (Dyignt)*0(x) = f(x) onR.

By a change of variables, we have

U(t,x) = (PE(t,) +3) (x) = [ 3(x— ) Ha(y)dy, (25)

where
Cl,ae_l/(4(_y))
(_y)l+uc

Then, if we set z; = (#,x1),22 = (t2,x2) € @, we have the estimate

Hu(y) = P (Ly) = X(—c0,0) (¥)- (26)

) W) < fon =Ty el b ),
< Clzy— 2T p(HUHLva +HfHL,,Rw)>-

By direct computation from (25), and using Theorem 2, we have:

12| 1y r2 ) < 1Pl () < HfHL,, Riw)’
Therefore,
s ey <€ (v * [ ) @)

for a positive constant C > 0 depending only on «, p and 1.
Next we put i = U — U, so that U satisfies

Maa:0~ lnB;/
limg o Na U(t,-) = (1—75)f =0 onB,.

Considering the even reflection Z of U in the variable t, as described in ([37] (Lemma 4.1)),
we have that
My Z =0in Bs.
From the definition (7) of (%ight) , and using ([5] (Corollary 1.13)) or ([39] (Corollary 1.5)), we have
that for x € By and t € (—1,1) fixed,

|(Drign)Z(,2)| < C 1 Z(t,) Ny - (28)

Next, from the fact that

(Prignt)Z = Zu + L7

£

and from the inequality (28), we obtain

Ztt + ﬁZ&

£

<CI Z lwr(Byuw) -

Therefore
[(112Z:) | < CIt 1l Z oy
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Hence
’Ztt‘ <C| Z|lrr(Byw) -

For any point (t,x) € B, we have, by (28), that
|(Zrign)Z(t,)| + | Zet(6,)| < C 11 Z 1o 5y,

which implies that
~ 1
ZeClTh (B w).

~ 1
Thus, we have that i € C'~7" 7 (B, ,w) such that

2y <C(I1U gy + 17 e )

? (B} w)
< C (U sz oy + 1 Niriay)

We finally obtain

u . <Ccl|u _ u __
Y P (L T

< C (1 llrisg )+ 1 £ Nioiayi)

since U = U — U. This ends the proof of the first case.
Proof of (b): f € L*(R). The proof here is similar to the first case above. By considering the
same cut-off function y € CZ°(B,) withn = 1on By and 0 < 7 < 1 on R, we let T be the unique solution

to the equation
(-@righl‘)p65 = f in R,

where f := 11 f. Making use of the previous result Proposition 1, we have that 7 € C*~7(R) and

[ollcerz) < € (Ilvlle<R> - Hme<R>> ’

where C > 0 is a constant that depends only on « and 7.
The next step is to consider the Bernardis-Reyes-Stinga-Torrea extension i of 7, i.e.,

U(t,) = PX(t,-) xD,
which satisfies the equation

M,x H - 07 _ 11‘1 R%r,
limy o No U(t, X) = (Dyignt)*0(x) = f(x) onR.

Proceeding as in the previous case, it follows that

sy < € (1 + [ o) )

for a positive constant C > 0 depending only on « and .
Next we put U = U — U, so that U satisfies

Maa:() lnB;_/
lim; o Ny U(t,-)=(1—75)f =0 onB,.
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We finally obtain

1t ey < € (10 lagam) + 1 Dewm) ) < € (1 iy + 11 F i)
which ends the proof. O

4. Conclusions

Regularity theorems are an important result in the theory of PDEs, and their fractional
counterparts also play a significance role in the study of problems involving nonlocal behaviour.
As already observed in various papers [6,8,9,34,40-42] in the theory of fractional nonlocal PDEs, it is
possible to find the qualitative behaviour of a solution. In this paper we have shown that the degenerate
elliptic equation with mixed boundary conditions for a problem with fractional Marchaud derivative
admits an interior regularity estimate. The current work fits in with some results obtained in the case of
fractional Laplacians with Caffareli-Silvestre extensions. We stress that the types of regularity results
proved herein form only a small subset of many possible versions of regularity theorems which can
only be obtained using extension techniques.
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