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Abstract: In the present paper we consider one of the basic theorems of probability theory on real
numbers. We prove that it is equivalent with the supremum axiom of real numbers.
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1. Introduction

It is a well-known fact that the set Q of rational numbers is not complete—hence, such important
constants as

√
2 or π do not exist in Q. Because the way in which the set R is constructed of real

numbers from Q is quite complicated, it is usually defined axiomatically. The completeness of R can be
formulated in different ways, e.g., as a complete metric space, or as a complete lattice. In [1], a review
of some completeness axioms for R is presented. In this paper, the set R will be characterized by a
property which is very important in the probability theory, which may prove useful from the point
of view of applications, as well as didactics. In the paper we shall characterize the set R from the
perspective of the probability theory, namely in the Kolmogorov formulations—an event is a set on
certain σ-algebra S of subsets of a space Ω, and the probability is a σ-additive mapping P : S −→ [0, 1] .
In terms of measurement, the mapping is a real function ξ : Ω −→ R , and it is an interesting point,
especially in terms of didactics, that the complete information about ξ is obtained from the distribution
function F of ξ, which is a real function, F : R −→ [0, 1] , with some particular properties.

The paper is organized as follows: In Section 2 we will formulate two different axioms—the
supremum axiom (S) and the distribution function axiom (D); and in Section 3 we will prove that the
axioms are equivalent.

2. Materials and Methods

In this section we formulate the important properties of the distribution function. In the literature
there are two well-established but different definitions of the distribution function F : R −→ [0, 1]
of a random variable ξ : Ω −→ R . The first is given by the formula F(x) = P({ω ∈ Ω : ξ(ω) < x }),
and the second by the formula F(x) = P({ω ∈ Ω : ξ(ω) ≤ x}). In this paper we shall use the second
approach, which is more convenient for working with the supremum axiom. Evidently, the first one
could be used in the infimum way. The distribution function F : R −→ [0, 1] can be characterized
without any reference to the general probability space [2,3] and by applying only a few properties of F,
as shown in the following definition.

Definition 1. A function F : R −→ [0, 1] is called a distribution if it satisfies the following properties:
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1. F is non-decreasing
2. F is right continuous in any point x0 ∈ R,
3. lim

x⇀−∞
F(x) = 0,

4. lim
x⇀∞

F(x) = 1.

In the probability theory, the following theorem presents a translation method between the
elementary approach and the abstract theory. To any distribution function F : R −→ [0, 1] there exists
a probability measure λ : B −→ [0, 1] defined on the family B of Borel subsets of R, such that:

λ( (α, β]) = F(β)− F(α)

for any α, β ∈ R, α < β.
In our elementary approach, instead of B we will work only with the family R for all unions

of intervals I ⊂ R (bounded as well as unbounded). According to the measure extension theorem,
any additive and continuous mapping λ : R −→ [0, 1] can be extended fromR to B, sinceR is an
algebra and B is the σ-algebra generated byR.

Axiom (S). Any increasing bounded sequence of real numbers has the supremum—the least
upper bound of the sequence.

In our distribution axiom, instead of σ-additivity, we shall use the notion of additivity and the
notion of continuity.

A mapping λ : R⋃[0, 1] is additive, if for sets A, B ∈ R such that A
⋂

B = ∅, it holds:

λ(A −→ B) = λ(A) + λ(B).

A mapping λ : R −→ [0, 1] is continuous if, for any An ∈ R, such that An ⊂ An+1

(n = 1, 2, . . .) and
∞⋃

n=1
An ∈ R, it holds:

λ

(
∞⋃

n=1

An

)
= lim

n→∞
λ(An).

Axiom (D). To any distribution function F : R −→ [0, 1] there exists an additive and continuous
mapping λ : R −→ [0, 1] , such that:

λ( (α, β]) = F(β)− F(α)

for any (α, β] ⊂ R.

3. Results

There are many known proofs of the axiom (D), e.g., referring to the completeness of R by (S).
Now we shall prove the opposite implication.

Theorem 1. Axiom (D) implies Axiom (S).

Proof of Theorem 1. Let {an}n be a sequence, such that 0 < a1 < a2 < · · · < an < an+1 ≤ 1. Our goal
is to construct a distribution function y = F(x) and an increasing sequence bn, such that F(bn) = an

for every n. Consider the points B0, B1, C1 in the coordinate system, where B0 = (0, 0), B1 = (b1, 0),
and C1 =

(
b1, 1

2

)
(see Figure 1).
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Figure 2. The area of the triangle, defined by points 𝐵0, 𝑋1, 𝑋2. 

The constructed point is 𝐹(𝑏1) = 𝑎1.  Consider the points  𝐵1, 𝐶1,  𝐵2, 𝐶2  where 𝐵2 =

(𝑏2, 0), 𝐶2 = =  (𝑏2,
3

4
 ) ; the area of the trapezoid defined by these points is 𝑎2 − 𝑎1 (see Figure 3). 
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1
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4
)

1
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(𝑏2 − 𝑏1) =  𝑎2 − 𝑎1.  

Hence, 

𝑏2 = 𝑏1 + 
8

5
(𝑎2 − 𝑎1).  

Figure 1. Points B0, B1, C1 in the coordinate system.

Denote the area of the triangle, defined by these points by a1. Clearly, b1 = 4a1. Let x be a point
in the interval [0, b1 ). Then, F(x) is the area of the triangle, defined by points B0, X1 = (x, 0) and
X2 =

(
x, x

8a1

)
(see Figure 2).

F(x) =
x, x

8a1

2
=

x2

16a1
,

F(b1) = F(4a1) = a1.

.
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(
1

2
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)

1

2
(𝑏2 − 𝑏1) =  𝑎2 − 𝑎1.  

Hence, 

𝑏2 = 𝑏1 + 
8

5
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Figure 2. The area of the triangle, defined by points B0, X1, X2.

The constructed point is F(b1) = a1. Consider the points B1, C1, B2, C2 where B2 =

(b2, 0), C2 = =
(
b2, 3

4
)
; the area of the trapezoid defined by these points is a2 − a1 (see Figure 3).(

1
2
+

3
4

)
1
2
(b2 − b1) = a2 − a1.

Hence,

b2 = b1 +
8
5
(a2 − a1).
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Figure 3. The area of the trapezoid defined by points B1, C1, B2, C2.

Let x ∈ [b1, b2]. Let F(x) be the area of the trapezoid defined by B0, C1, X1 = (x, 0), X2 =(
x, 1

2 + x −b1
4(b2−b1)

)
(see Figure 4).

F(x) = a1 +

(
1
2
+

x− b1

4(b2 − b1)
+

1
2

)
1
2
(x − b1)

F(b2) = a1 + (a2 − a1) = a2.
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Figure 4. The area of the trapezoid defined by points B0, C1, X1, X2.

By induction, assume F(bn) = an. Consider the points Cn =
(

bn, 1− 1
2n

)
, Cn+1 =(

bn+1, 1− 1
2n+1

)
, Bn = (bn, 0) and Bn+1 = (bn+1, 0). These four points define the area an+1 − an

of the trapezoid (see Figure 5).(
1− 1

2n + 1− 1
2n+1

)
1
2
(bn+1 − bn) = an+1 − an

bn+1 =
2n+2

2n+2 − 3
(an+1 − an) + bn.
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Figure 5. The area of the trapezoid defined by points Cn, Cn+1, Bn, Bn+1.

Let x ∈ [bn, bn+1], F(x) be the area of the trapezoid, defined by Bn, Cn, X1 = (x, 0), X2 =(
x, x −bn

(bn+1−bn)2n+1

)
(see Figure 6).

F(x) = an +

(
1− 1

2n +
(x − bn)

(bn+1 − bn)2n+1

)
(x − bn)

F(bn+1 ) = an + an+1 − an = an+1.
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Figure 6. The area of the trapezoid defined by points Bn, Cn, X1, X2.

Define function F by using the following properties:

• For all x ≤ 0, put F(x) = 0.
• If there exists a natural number n and x ∈ [bn, bn+1], then

F(x) = an +

(
1− 1

2n +
(x − bn)

(bn+1 − bn)2n+1

)
(x − bn),

• if x ≥ bn for all natural numbers n, then F(x) = 1.
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It can easily be proved that F is a distribution function. Assume that there exists a probability
measure λ : R −→ [0, 1] , such that λ(α, β]) = F(β)− F(α), and in particular, λ( (bn−1, bn]) = an −
an−1. Compute:

λ( (−∞, bn]) = λ((−∞, 0)) + λ( (0, b1]) + λ( (b1, b2]) + · · · + λ( (bn−1, bn])

= 0 + (a1 − 0) + (a2 − a1) + · · · + (an) = an.

Consider:

A =
∞⋃

n=1
(−∞, bn).

Then,
λ(A) = lim

n→∞
λ( (−∞, bn]) = lim

n→∞
an = sup

n∈N
an.

Thus, we have found that any increasing sequence {an}n from the interval [0, 1] has
the supremum.

Now, let {an}n be an arbitrary bounded increasing sequence from (0, k]. For any natural n, take
cn = an

k . Then cn∈ (0, 1], and there exists the supremum of {cn}n. Hence, there exists the supremum
of {an}n, and:

sup
n∈N

an = k sup
n∈N

cn.

Finally, consider (an)n as an arbitrary increasing bounded sequence. Take dn = an − a1. This
means that dn is non-decreasing, non-negative, and bounded. Therefore, there also exists the supremum
of dn. Hence, there exists the supremum of an and

supan = a1 + supdn.

�

4. Conclusions

This paper focused on the axiom (D), one of the fundamental axioms in the probability theory.
We showed that the axiom (D) is equivalent to the supremum axiom (S) of real numbers. The axiom
(D) is crucial for many other important theorems in probability and statistics, such as the laws of large
numbers, the central limit theorem, or statistical estimations.
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