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Abstract: The class of A-stable symmetric one-step Hermite–Obreshkov (HO) methods introduced
by F. Loscalzo in 1968 for dealing with initial value problems is analyzed. Such schemes have the
peculiarity of admitting a multiple knot spline extension collocating the differential equation at the
mesh points. As a new result, it is shown that these maximal order schemes are conjugate symplectic,
which is a benefit when the methods have to be applied to Hamiltonian problems. Furthermore,
a new efficient approach for the computation of the spline extension is introduced, adopting the same
strategy developed for the BS linear multistep methods. The performances of the schemes are tested
in particular on some Hamiltonian benchmarks and compared with those of the Gauss–Runge–Kutta
schemes and Euler–Maclaurin formulas of the same order.

Keywords: initial value problems; one-step methods; Hermite–Obreshkov methods; symplecticity;
B-splines; BS methods

1. Introduction

We are interested in the numerical solution of the Cauchy problem, that is the first order Ordinary
Differential Equation (ODE),

y′(t) = f(y(t)), t ∈ [t0 , t0 + T], (1)

associated with the initial condition:
y(t0) = y0, (2)

where f : IRm → IRm, m ≥ 1, is a CR−1, R ≥ 1, function on its domain and y0 ∈ IRm is assigned.
Note that there is no loss of generality in assuming that the equation is autonomous. In this context,
here, we focus on one-step Hermite–Obreshkov (HO) methods ([1], p. 277). Unlike Runge–Kutta
schemes, a high order of convergence is obtained with HO methods without adding stages. Clearly,
there is a price for this because total derivatives of the f function are involved in the difference equation
defining the method, and thus, a suitable smoothness requirement for f is necessary. Multiderivative
methods have been considered often in the past for the numerical treatment of ODEs, for example
also in the context of boundary value methods [2], and in the last years, there has been a renewed
interest in this topic, also considering its application to the numerical solution of differential algebraic
equations; see, e.g., [3–8]. Here, we consider the numerical solution of Hamiltonian problems which in
canonical form can be written as follows:

y′ = J∇H(y), y(t0) = y0 ∈ IR2`, (3)
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with:

y =

(
q
p

)
, q, p ∈ IR`, J =

(
O I`
−I` O

)
, (4)

where q and p are the generalized coordinates and momenta, H : IR2` → IR is the Hamiltonian function
and I` stands for the identity matrix of dimension `. Note that the flow ϕt : y0 → y(t) associated with
the dynamical system (3) is symplectic; this means that its Jacobian satisfies:

∂ϕt(y)>

∂y
J

∂ϕt(y)
∂y

= J, ∀ y ∈ IR2`. (5)

A one-step numerical method Φh : IR2` → IR2` with stepsize h is symplectic if the discrete flow
yn+1 = Φh(yn), n ≥ 0, satisfies:

∂Φh(y)>

∂y
J

∂Φh(y)
∂y

= J, ∀ y ∈ IR2`. (6)

Recently, the class of Euler–Maclaurin HO methods for the solution of Hamiltonian problems has
been analyzed in [9,10] where, despite the non-existence results of symplectic multiderivative methods
shown in [11], the conjugate symplecticity of the methods was proven. Two numerical methods Φh, Ψh
are conjugate to each other if there exists a global change of coordinate χh, such that:

Φh = χ−1
h ◦Ψh ◦ χh

with χh = y + O(h) uniformly for y varying in a compact set and ◦ denoting a composition
operator [12]. If one method is conjugate to a symplectic method is said to be conjugate symplectic,
this is a less strong requirement than symplecticity, which allows the numerical solution to have the
same long-time behavior of a symplectic method. Observe that the conjugate symplecticity here refers
to a property of the discrete flow of the two numerical methods; this should be not confused with the
group of conjugate symplectic matrices, the set of matrices M ∈ C2` that satisfy MH JM = J, where H
means Hermitian conjugate [13].

In this paper, we consider the symmetric one-step HO methods, which were analyzed in [14,15] in
the context of spline applications. We call them BSHO methods, since they are connected to B-Splines,
as we will show. BSHO methods have a formulation similar to that of the Euler–Maclaurin formulas,
and the order two and four schemes of the two families are the same. As a new result, we prove that
BSHO methods are conjugate symplectic schemes, as is the case for the Euler–Maclaurin methods [9,10],
and so, both families are suited to the context of geometric integration.

BSHO methods are also strictly related to BS methods [16,17], which are a class of linear multistep
methods also based on B-splines suited for addressing boundary value problems formulated as first
order differential problems. Note that also BS methods were firstly studied in [14,15], but at that time,
they were discarded in favor of BSHO methods since; when used as initial value methods, they are
not convergent. In [16,17], the same schemes have been studied as boundary value methods, and they
have been recovered in particular in connection with boundary value problems. As for the BSHO
methods, the discrete solution generated by a BS method can be easily extended to a continuous spline
collocating the differential problem at the mesh points [18]. The idea now is to rely on B-splines with
multiple inner knots in order to derive one-step HO schemes. The inner knot multiplicity is strictly
connected to the number of derivatives of f involved in the difference equations defining the method
and consequently with the order of the method. The efficient approach introduced in [18] dealing with
BS methods for the computation of the collocating spline extension is here extended to BSHO methods,
working with multiple knots. Note that we adopt a reversed point of view with respect to [14,15]
because we assume to have already available the numerical solution generated by the BSHO methods
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and to be interested in an efficient procedure for obtaining the B-spline coefficients of the associated
spline.

The paper is organized as follows. In Section 2, one-step symmetric HO methods are introduced,
focusing in particular on BSHO methods. Section 3 is devoted to proving that BSHO methods are
conjugate symplectic methods. Then, Section 4 first shows how these methods can be revisited in the
spline collocation context. Successively, an efficient procedure is introduced to compute the B-spline
form of the collocating spline extension associated with the numerical solution produced by the
R-th BSHO, and it is shown that its convergence order is equal to that of the numerical solution.
Section 6 presents some numerical results related to Hamiltonian problems, comparing them with
those generated by Euler–Maclaurin and Gauss–Runge–Kutta schemes of the same order.

2. One-Step Symmetric Hermite–Obreshkov Methods

Let ti, i = 0, . . . , N, be an assigned partition of the integration interval [t0 , t0 + T], and let us
denote by ui an approximation of y(ti). Any one-step symmetric Hermite–Obreshkov (HO) method
can be written as follows, clearly setting u0 := y0,

un+1 = un +
R

∑
j=1

hj
n β

(R)
j

(
u(j)

n − (−1)ju(j)
n+1

)
, n = 0, . . . , N − 1, (7)

where hn := tn+1 − tn and where u(j)
r , for j ≥ 1, denotes the total (j− 1)-th derivative of f with respect

to t computed at ur,

u(j)
r :=

dj−1f
dtj−1 (y(t))|ur , j = 1, . . . , R. (8)

Note that u(j)
r ≈ y(j)(tr), and on the basis of (1), the analytical computation of the j-th derivative

y(j) involves a tensor of order j. For example, y(2)(t) = df
dt (y(t)) = ∂f

∂y (y(t)) f(y(t)) (where ∂f
∂y

becomes the Jacobian m × m matrix of f with respect to y when m > 1). As a consequence, it is
u(2)

r = ∂f
∂y (ur) f(ur). We observe that the definition in (8) implies that only un+1 is unknown in (7),

which in general is a nonlinear vector equation in IRm with respect to it.
For example, the one-step Euler–Maclaurin [1] formulas of order 2s with s ∈ IN, s ≥ 1,

un+1 = un +
hn

2

(
u(1)

n + u(1)
n+1)

)
+

s−1

∑
i=1

h2i
n

b2i
(2i)!

(
u(2i)

n − u(2i)
n+1

)
, n = 0, . . . , N − 1, (9)

(where the b2i denote the Bernoulli numbers, which are reported in Table 2) belong to this class of
methods. These methods will be referred to in the following with the label EMHO (Euler–Maclaurin
Hermite–Obreshkov).

Here, we consider another class of symmetric HO methods that can be obtained by defining as
follows the polynomial P2R,

P2R(x) :=
xR(x− 1)R

(2R)!
(10)

appearing in ([1], Lemma 13.3), the statement of which is reported in Lemma 1.

Lemma 1. Let R be any positive integer and P2R be a polynomial of exact degree 2R. Then, the following
one-step linear difference equation,

2R

∑
j=0

hj
n u(j)

n+1P(2R−j)
2R (0) =

2R

∑
j=0

hj
n u(j)

n P(2R−j)
2R (1)

defines a multiderivative method of order 2R.
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Referring to the methods obtainable by Lemma 1, if in particular the polynomial P2R is defined as
in (10), then we obtain the class of methods in which we are interested here. They can be written as in
(7) with,

β
(R)
j :=

1
j!

R(R− 1) . . . (R− j + 1)
(2R)(2R− 1) . . . (2R− j + 1)

(11)

which are reported in Table 1, for R = 1, . . . , 5. In particular, for R = 1 and R = 2, we obtain the
trapezoidal rule and the Euler–Maclaurin method of order four, respectively.

Table 1. Symmetric one-step B-Spline Hermite–Obreshkov (BSHO) coefficients.

R β
(R)
1 β

(R)
2 β

(R)
3 β

(R)
4 β

(R)
5

1 1
2

2 1
2

1
12

3 1
2

1
10

1
120

4 1
2

3
28

1
84

1
1680

5 1
2

1
9

1
72

1
1008

1
30240

These methods were originally introduced in the spline collocation context, dealing in particular
with splines with multiple knots [14,15], as we will show in Section 4. We call them BSHO
methods since we will show that they can be obtained dealing in particular with the standard
B-spline basis. The stability function of the R-th one-step symmetric BSHO method is the rational
function corresponding to the (R, R)-Padé approximation of the exponential function, as is that of
the same order Runge–Kutta–Gauss method ([19], p. 72). It has been proven that methods with this
stability function are A-stable ([19], Theorem 4.12). For the proof of the statement of the following
corollary, which will be useful in the sequel, we refer to [15],

Corollary 1. Let us assume that f ∈ C2R+1(D), where D := {y ∈ IRm | ∃t ∈ [t0 , t0 + T] such that
‖y− y(t)‖2 ≤ Lb}, with Lb > 0. Then, there exists a positive constant hb such that if max

0≤n≤N−1
hn =: h < hb

and {ui}N
i=0 denotes the related numerical solution produced by the R-th one-step symmetric BSHO method in

(7)–(11), it is:
‖u(j)

i − y(j)
i ‖ = O(h2R) , j = 1, . . . , R, i = 0, . . . , N.

3. Conjugate Symplecticity of the Symmetric One-Step BSHO Methods

Following the lines of the proof given in [10], in this section, we prove that one-step symmetric
BSHO methods are conjugate symplectic schemes. The following lemma, proved in [20], is the starting
point of the proof, and it makes use of the B-series integrator concept. On this concern, referring to [12]
for the details, here, we just recall that a B-series integrator is a numerical method that can be expressed
as a formal B-series, that is it has a power series in the time step in which each term is a sum of
elementary differentials of the vector field and where the number of terms is allowed to be infinite.

Lemma 2. Assume that Problem (1) admits a quadratic first integral Q(y) = yTSy (with S denoting a constant
symmetric matrix) and that it is solved by a B-series integrator Φh(y). Then, the following properties, where all
formulas have to be interpreted in the sense of formal series, are equivalent:

(a) Φh(y) has a modified first integral of the form Q̃(y) = Q(y) + hQ1(y) + h2Q2(y) + ... where each
Qi(·) is a differential functional;

(b) Φh(y) is conjugate to a symplectic B-series integrator.



Axioms 2018, 7, 58 5 of 18

We observe that Lemma 2 is used in [21] to prove the conjugate symplecticity of symmetric linear
multistep methods. With similar arguments, we prove the following theorem.

Theorem 1. The map u1 = Φh(u0) associated with the one-step method (7)–(11) admits a B-series expansion
and satisfies Property (a) of Lemma 2.

Proof. By defining the two characteristic polynomials of the trapezoidal rule:

ρ(z) := z− 1, σ(z) :=
1
2
(z + 1)

and the shift operator E(un) := un+1 , the R-th method described in (7) reads,

ρ(E)un =
dR/2e

∑
k=1

2β
(R)
2k−1h2k−1σ(E)u(2k−1)

n −
bR/2c

∑
k=1

β
(R)
2k h2kρ(E)u(2k)

n . (12)

We now consider a function v(t), a stepsize h and the shift operator Eh(v(t)) := v(t + h), and
we look for a continuous function v(t) that satisfies (12) in the sense of formal series (a series where
the number of terms is allowed to be infinite), using the relation Eh = ∑∞

j=0
hj

j! Dj where D is the
derivative operator,

ρ(ehD)v(t) =
dR/2e

∑
k=1

2β
(R)
2k−1h2k−1σ(ehD)v(2k−1)(t)−

bR/2c

∑
k=1

β
(R)
2k h2kρ(ehD)v(2k)(t).

By multiplying both side of the previous equation by Dρ(ehD)−1, we obtain:

Dv(t) =
dR/2e−1

∑
k=0

2β
(R)
2k+1h2k+1Dρ(ehD)−1σ(ehD)D2kf(v(t))−

bR/2c

∑
k=1

β
(R)
2k h2kD2kf(v(t)) , (13)

that is,

Dv(t) = hDρ(ehD)−1σ(ehD)
dR/2e−1

∑
k=0

2β
(R)
2k+1h2kD2kf(v(t))−

bR/2c

∑
k=1

β
(R)
2k h2kD2kf(v(t)). (14)

Now, since Bernoulli numbers define the Taylor expansion of the function z/(ez − 1)
and b0 = 1, b1 = −1/2 and bj = 0 for the other odd j, we have:

zσ(ez)

ρ(ez)
=

1
2

z(ez + 1)
ez − 1

=
z

ez − 1
+

z
2
= 1 +

∞

∑
j=1

b2j

(2j)!
z2j.

Thus, we can write that:

v̇(t) =

((
1 +

∞

∑
j=1

b2j

(2j)!
h2jD2j

)(dR/2e−1

∑
k=0

2β
(R)
2k+1h2kD2k

)
−
bR/2c

∑
k=1

β
(R)
2k h2kD2k

)
f(v(t)).

With some algebra, we arrive at the following relation,

v̇(t) = f(v(t)) +
∞

∑
j=R

δjh2jD2jf(v(t)) , (15)
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with:

δj :=
dR/2e−1

∑
k=0

b2(j−k)

(2(j− k))!
2β

(R)
2k+1 , j ≥ R.

Observe that δj = 0 for j = 1, . . . , R− 1, since the method is of order 2R (see [12], Theorem 3.1,
page 340). Therefore, we derive the modified initial value differential equation associated with the
numerical scheme by coupling (15) with the initial condition v(t0) = y0. Thus, the one-step symmetric
BSHO methods are B-series integrators. The proof of Lemma 2 Property (a) follows exactly the same
steps of the analogous proof in Theorem 1 of [10] and in [12] (Theorem 4.10, page 591).

In Table 2, we report the coefficients δR for R ≤ 5 and the corresponding Bernoulli numbers.
We can observe that the truncation error in the modified initial value problem is smaller than the one
of the EMHO methods of the same order, which is equal to bi/i! (see [10]). The conjugate symplecticity
property of a numerical scheme makes it suitable for the solution of Hamiltonian problems, since a
conjugate symplectic method has the same long-time behavior of a symplectic one. A well-known pair
of conjugate symplectic methods is composed by the trapezoidal and midpoint rules. Observe that
the trapezoidal rule belongs to both the classes BSHO and EMHO of multiderivative methods, and its
characteristic polynomial plays an important role in the proof of their conjugate symplecticity.

Table 2. Coefficients of the modified differential equations and Bernoulli numbers.

R 1 2 3 4 5

δR
b2
2!

b4
4!

3
10

b6
6!

1
21

b8
8!

1
210

b10
10!

b2R
1
6 − 1

30
1

42 − 1
30

5
66

4. The Spline Extension

A (vector) Hermite polynomial of degree 2R + 1 interpolating both un and un+1 respectively
at tn and tn+1 together with assigned derivatives u(k)

n , u(k)
n+1, k = 1, . . . , R, can be computed using

the Newton interpolation formulas with multiple nodes. On the other hand, in his Ph.D. thesis [15],
Loscalzo proved that a polynomial of degree 2R verifying the same conditions exists if and only if (7)
is fulfilled with the β coefficients defined as in (11). Note that, since the polynomial of degree
2R + 1 fulfilling these conditions is always unique and its principal coefficient is given by the
generalized divided difference u[tn, . . . , tn, tn+1, . . . , tn+1] of order 2R + 1 associated with the given
R-order Hermite data, the n-th condition in (7) holds iff this coefficient vanishes. If all the conditions
in (7) are fulfilled, it is possible to define a piecewise polynomial, the restriction to [tn, tn+1] of which
coincides with this polynomial, and it is clearly a CR spline of degree 2R with breakpoints at the
mesh points. Now, when the definition given in (8) is used together with the assumption u0 = y0, the
conditions in (7) become a multiderivative one-step scheme for the numerical solution of (1). Thus,
the numerical solution un, n = 0, . . . , N it produces and the associated derivative values defined as in
(8) can be associated with the above-mentioned 2R degree spline extension. Such a spline collocates
the differential equation at the mesh points with multiplicity R, that is it verifies the given differential

equation and also the equations y(j)(t) = d(j−1)(f◦y)
dtj−1 (t), j = 2, . . . , R at the mesh points. This piecewise

representation of the spline is that adopted in [15]. Here, we are interested in deriving its more compact
B-spline representation. Besides being more compact, this also allows us to clarify the connection
between BSHO and BS methods previously introduced in [16–18]. For this aim, let us introduce some
necessary notation. Let S2R, be the space of CR 2R-degree splines with breakpoints at ti, i = 0, . . . , N,
where t0 < · · · < tN = t0 + T. Since we relate to the B-spline basis, we need to introduce the associated
extended knot vector:

T := {τ−2R, . . . , τ−1, τ0, . . . , τ(N−1)R, τ(N−1)R+1, τ(N−1)R+2 . . . , τ(N+1)R+1} , (16)
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where:

τ−2R = · · · = τ0 = t0,

τ(n−1)R+1 = · · · = τnR = tn, n = 1, . . . , N − 1,

τ(N−1)R+1 = · · · = τ(N+1)R+1 = tN ,

which means that all the inner breakpoints have multiplicity R in T and both t0 and tN have multiplicity
2R + 1. The associated B-spline basis is denoted as Bi, i = −2R, . . . , (N − 1)R and the dimension of
S2R as D, with D := (N + 1)R + 1.

The mentioned result proven by Loscalzo is equivalent to saying that, if the β coefficients are
defined as in (11), any CR spline of degree 2R with breakpoints at the mesh points fulfills the relation
in (7), where u(j)

n denotes the j-th spline derivative at tn. In turn, this is equivalent to saying that
such a relation holds for any element of the B-spline basis of S2R. Thus, setting α := (−1 ; 1)T ∈ IR2

and β(i) := (β
(R)
i ; −(−1)iβ

(R)
i ) ∈ IR2, i = 1, . . . , R, considering the local support of the B-spline basis,

we have that (α; β(1); ...; β(R)), where the punctuation mark “;” means vertical catenation (to make a
column-vector), can be also characterized as the unique solution of the following linear system,

G(n) (α; β(1); . . . ; β(R)) = e2R+2, (17)

where e2R+2 = (0; . . . ; 0; 1) ∈ IR2R+2 and:

G(n) :=

[
A(n)T

1 −hn A(n)T
2 −h2

n A(n)T
3 . . . −hR

n A(n)T
R+1

(0, 0) (1, 1) (0, 0) . . . (0, 0)

]
, (18)

with A(n)
1 , A(n)

2 , . . . A(n)
R+1 defined as,

A(n)
j+1 :=

 B(j)
(n−2)R(tn), . . . , B(j)

nR(tn)

B(j)
(n−2)R(tn+1), . . . , B(j)

nR(tn+1)


2×(2R+1)

(19)

where B(j)
i denotes the j-th derivative of Bi. Note that the last equation in (17), 2β

(R)
1 = 1, is just a

normalization condition.
In order to prove the non-singularity of the matrix G(n), we need to introduce the following

definition,

Definition 1. Given a non-decreasing set of abscissas Θ := {θi}M
i=0, we say that a function g1 agrees with

another function g2 at Θ if g(j)
1 (θi) = g(j)

2 (θi), j = 0, . . . , mi − 1, i = 0, . . . , M, where mi denotes the
multiplicity of θi in Θ.

Then, we can formulate the following proposition,

Proposition 1. The (2R + 2)× (2R + 2) matrix G(n) defined in (18) and associated with the B-spline basis of
S2R is nonsingular.

Proof. Observe that the restriction to In = [tn , tn+1] of the splines in S2R generates Π2R since there
are no inner knots in In. Then, restricting to In, Π2R can be also generated by the B-splines of S2R
not vanishing in In, that is from B(n−2)R, . . . , BnR. Since the polynomial in Π2R agreeing with a given
function in:

Θ = {
R+1︷ ︸︸ ︷

tn, . . . , tn,

R︷ ︸︸ ︷
tn+1, . . . , tn+1},
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is unique, it follows that also the corresponding (2R + 1)× (2R + 1) matrix collocating the spline
basis active in In is nonsingular. Such a matrix is the principal submatrix of G(n)T of order 2R + 1.
Thus now, considering that the restriction to In of any function in S2R is a polynomial of degree
2R, we prove by reductio ad absurdum that the last row of G(n) cannot be a linear combination of
the other rows. In fact, in the opposite case, there would exist a polynomial P of degree 2R such
that P(tn) = P(tn+1) = 0, P′(tn) = P′(tn+1) = −1, and P(j)(tn) = P(j)(tn+1) = 0, j = 2, . . . , R.
Considering the specific interpolation conditions, this P does not fulfill the n-th condition in (7). This is
absurd, since Loscalzo [15] has proven that such a condition is equivalent to requiring degree reduction
for the unique polynomial of degree less than or equal to 2R + 1, fulfilling R + 1 Hermite conditions at
both tn and tn+1.

Note that this different form for defining the coefficient of the R-th BSHO scheme is analogous
to that adopted in [17] for defining a BS method on a general partition. However, in this case, the
coefficients of the scheme do not depend on the mesh distribution, so there is no need to determine them
solving the above linear system. On the other hand, having proven that the matrix G(n) is nonsingular
will be useful in the following for determining the B-spline form of the associated spline extension.

Thus, let us now see how the B-spline coefficients of the spline in S2R associated with the
numerical solution generated by the R-th BSHO can be efficiently obtained, considering that the
following conditions have to be imposed,

s2R(tn) = un,
n = 0, . . . , N.

s(j)
2R(tn) = u(j)

n , j = 1, . . . , R.
(20)

Now, we are interested in deriving the B-spline coefficients ci, i = −2R, . . . , (N − 1)R, of s2R,

s2R(t) =
(N−1)R

∑
i=−2R

ci Bi(t), t ∈ [t0, t0 + T]. (21)

Relying on the representation in (21), all the conditions in (20) can be re-written in the following
compact matrix form,

(A⊗ Im) c = (u0; . . . ; uN ; u(1)
0 ; . . . ; u(1)

N ; . . . ; u(R)
0 ; . . . ; u(R)

N ), (22)

where c = (c−2R; . . . ; c(N−1)R) ∈ IRmD, with cj ∈ IRm, Im is the identity matrix of size m×m, D is the
dimension of the spline space previously introduced and where:

A := (A1; A2; . . . ; AR+1) ,

with each A` being a (R + 1)-banded matrix of size (N + 1)× D (see Figure 1) with entries defined
as follows:

(A`)i,j := B(`−1)
j (ti). (23)

The following theorem related to the rectangular linear system in (22) ensures that the collocating
spline s2R is well defined.

Theorem 2. The rectangular linear system in (22) has always a unique solution, if the entries of the vector on
its right-hand side satisfy the conditions in (7) with the β coefficients given in (11).

Proof. The proof is analogous to that in [18] (Theorem 1), and it is omitted.

We now move to introduce the strategy adopted for an efficient computation of the B-spline
coefficients of s2R.
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Figure 1. Sparsity structure of the matrix A with N = 8, R = 1 (left) and with N = 8, R = 2 (right).

4.1. Efficient Spline Computation

Concerning the computation of the spline coefficient vectors:

ci, i = −(2R), . . . , (N − 1)R,

the unique solution of (22) can be computed with several different strategies, which can have very
different computational costs and can produce results with different accuracy when implemented
in finite arithmetic. Here, we follow the local strategy used in [18]. Taking into account the banded
structure of Ai, i = 1, . . . , R + 1, we can verify that (22) implies the following relations,

A(i)
1

−hi A(i)
2

...

−hR
i A(i)

R+1

⊗ Im c(i) = w(i)(u) (24)

where u = (u0; . . . ; uN), c(i) := (c(i−3)R; . . . ; c(i−1)R) ∈ IRm (2R+1), i = 1, . . . , N and:

w(i)(u) := (ui−1; ui;−hiu
(1)
i−1;−hiu

(1)
i ; . . . ;−hR

i u(R)
i−1;−hR

i u(R)
i ).

As a consequence, we can also write that,

(G(i)T ⊗ Im) ĉ(i) = w(i)(u) (25)

where ĉ(i) := (c(i); 0) ∈ IRm (2R+2).

Now, for all integers r < 2R + 2, we can define other R + 1 auxiliary vectors α̂
(R)
i,r , β̂

(R)
l,i,r ,

l = 1, . . . , R ∈ IR2, defined as the solution of the following linear system,

G(i) (α̂
(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r) = er, (26)

where er is the r-th unit vector in IR2R+2 (that is the auxiliary vectors define the r-th column of the
inverse of G(i)). Then, we can write,

((α̂
(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r)

T ⊗ Im) (G(i)T ⊗ Im) ĉ(i) = (eT
r ⊗ Im) ĉ(i) = c(i−3)R+r−1.

From this formula, considering (25), we can conclude that:

c(i−3)R+r−1 = ((α̂
(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r)

T ⊗ Im)w(i)(u) (27)
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Thus, solving all the systems (26) for i = 1, . . . , N, r = r1(i), . . . , r2(i), with:

r1(i) :=

{
1 if i = 1,
R + 1 if 1 < i ≤ N,

r2(i) :=

{
2R if 1 ≤ i < N,
2R + 1 if i = N,

all the spline coefficients are obtained. Note that, with this approach, we solve D auxiliary systems,
the size of which does not depend on N, using only N different coefficient matrices. Furthermore, only
the information at ti−1 and ti is necessary to compute c(i−3)R+r−1. Thus, the spline can be dynamically
computed at the same time the numerical solution is advanced at a new time value. This is clearly of
interest for a dynamical adaptation of the stepsize.

In the following subsection, relying on its B-spline representation, we prove that the convergence
order of s2R to y is equal to that of the numerical solution. This result was already available in [15] (see
Theorem 4.2 in the reference), but proven with different longer arguments.

4.2. Spline Convergence

Let us assume the following quasi-uniformity requirement for the mesh,

Ml ≤
hi

hi+1
≤ Mu, i = 0, . . . , N − 1, (28)

where Ml and Mu are positive constants not depending on h, with Ml ≤ 1 and Mu ≥ 1. Note that this
requirement is a standard assumption in the refinement strategies of numerical methods for ODEs.
We first prove the following result, that will be useful in the sequel.

Proposition 2. If y ∈ S2R and so in particular if y is a polynomial of degree at most 2R, then:

yn+1 − yn −
R

∑
j=1

hj
n β

(R)
j

(
y(j)

n − (−1)jy(j)
n+1

)
= 0, n = 0, . . . , N − 1,

where yn := y(tn), y(j)
n := djy

djt
(tn), j = 1, . . . , R, n = 0, . . . , N, and the spline extension s2R coincides

with y.

Proof. The result follows by considering that the divided difference vanishes and, as a consequence,
the local truncation error of the methods is null.

Then, we can prove the following theorem (where for notational simplicity, we restrict to m = 1),
the statement of which is analogous to that on the convergence of the spline extension associated with
BS methods [18]. In the proof of the theorem, we relate to the quasi-interpolation approach for function
approximation, the peculiarity of which consists of being a local approach. For example, in the spline
context considered here, this means that only a local subset of a given discrete dataset is required to
compute a B-spline coefficient of the approximant; refer to [22] for the details.

Theorem 3. Let us assume that the assumptions on f done in Corollary 1 hold and that (28) holds.
Then, the spline extension s2R approximates the solution y of (1) with an error of order O(h2R) where
h := max

i=0,...,N−1
hi.

Proof. Let s2R denote the spline belonging to S2R obtained by quasi-interpolating y with one of the
rules introduced in Formula (5.1) in [22] by point evaluation functionals. From [22] (Theorem 5.2),
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under the quasi-uniformity assumption on the mesh distribution, we can derive that such a spline
approximates y with maximal approximation order also with respect to all the derivatives, that is,

‖s(j)
2R − y(j)‖∞ ≤ K ‖y(2R+1)‖∞h2R+1−j , j = 0, . . . , R, (29)

where K is a constant depending only on R, Ml and Mu.
On the other hand, by using the triangular inequality, we can state that:

‖s2R − y‖∞ ≤ ‖s2R − s2R‖∞ + ‖s2R − y‖∞ , (30)

Thus, we need to consider the first term on the right-hand side of this inequality. On this concern,
because of the partition of unity property of the B-splines, we can write:

‖s2R − s2R‖∞ = ‖
(N+1)R+1

∑
i=−2R

(ci − ci) Bi(·) ‖∞ ≤ ‖c− c‖∞,

where c := (c−2R; . . . ; c(N+1)R+1) and c := (c−2R; . . . ; c(N+1)R+1).
Now, for any function g ∈ C2R[t0 , t0 + T], we can define the following linear functionals,

λi,r(g) := w(i)T(g)(α̂(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r),

where:

w(i)(g) := (g(ti−1); g(ti);−hig′(ti−1);−hig′(ti); . . . ;−hR
i g(R)(ti−1);−hR

i g(R)(ti))

and the vector (α̂
(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r) has been defined in the previous section. Considering from

Proposition 2 that s2R, as well as any other spline belonging to S2R can be written as follows,

s2R(·) =
N

∑
i=1

r2(i)

∑
r=r1(i)

λi,r(s2R)B−2R−1+i+r−r1(i)(·) ,

from (29), we can deduce that:

c =
(

λ1,r1(1)(s2R); . . . ; λN,r2(N)(s2R)
)
=
(

λ1,r1(1)(y); . . . ; λN,r2(N)(y)
)
+ O(h2R+1).

Now, the vector (α̂(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r) is defined in (26) as the r-th column of the inverse of the

matrix G(i). On the other hand, the entries of such nonsingular matrix do not depend on h, but
because of the locality of the B-spline basis and of the R-th multiplicity of the inner knots, only on the
ratios hj/hj+1, j = i− 1, i, which are uniformly bounded from below and from above because of (28).

Thus, there exists a constant C depending on Ml , Mu and R such that ‖
(

G(i)
)−1
‖ ≤ C, which implies

that the same is true for any one of the mentioned coefficient vectors. From the latter, we deduce that
for all indices, we find:

|ci − ci| ≤ K‖w(i)(u)−w(i)(y)‖+ O(h2R+1).

On the other hand, taking into account the result reported in Corollary 1 besides (29), we can
easily derive that ‖w(i)(u)−w(i)(y)‖ = O(h2R), which then implies that ‖c− c‖∞ = O(h2R).

5. Approximation of the Derivatives

The computation of the derivative u(j)
n , j ≥ 2, from the corresponding un is quite expensive, and

thus, usually, methods not requiring derivative values are preferred. Therefore, as well as for any other
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multiderivative method, it is of interest to associate with BSHO methods an efficient way to compute
the derivative values at the mesh points. We are exploiting a number of possibilities, such as:

• using generic symbolic tools, if the function f is known in closed form;
• using a tool of automatic differentiation, like ADiGator, a MATLAB Automatic Differentiation

Tool [23];
• using the Infinity Computer Arithmetic, if the function f is known as a black box [6,7,10];
• approximating it with, for example, finite differences.

As shown in the remainder of this section, when approximate derivatives are used, we obtain
a different numerical solution, since the numerical scheme for its identification changes. In this case,
the final formulation of the scheme is that of a standard linear multistep method, being still derived
from (7) with coefficients in (11), but by replacing derivatives of order higher than one with their
approximations. In this section, we just show the relation of these methods with a class of Boundary
Value Methods (BVMs), the Extended Trapezoidal Rules (ETRs), linear multistep methods used with
boundary conditions [24]. Similar relations have been found in [25] with HO and the equivalent class
of the super-implicit methods, which require the knowledge of functions not only at past, but also at
future time steps. The ETRs can be derived from BSHO when the derivatives are approximated by
finite differences. Let us consider the order four method with R = 2. In this case, the first derivative of
f could be approximated using central differences:

f′i ≈
fi+1 − fi−1

2hi

the numerical scheme (7), denoting u(1)
i =: fi and u(2)

i =: f′i, is:

ui+1 = ui +
h
2
(fi+1 + fi)−

h2

12
(
f′i+1 − f′i

)
,

after the approximation becomes:

ui+1 = ui +
h
2
(fi+1 + fi)−

h
24

(fi+2 − fi − fi+1 + fi−1) ,

rearranging, we recover the ETR of order four:

ui+1 = ui +
h

24
(−fi+2 + 13fi+1 + 13fi − fi−1) .

With similar arguments for the method of order six, R = 3, by approximating the derivatives with
the order four finite differences:

f′i ≈
1
h

(
1
12

fi+3 +
2
3

fi+2 −
2
3

fi +
1

12
fi−1

)
,

and:

u(3)
i =: f′′i ≈

1
h2

(
− 1

12
fi+2 +

4
3

fi+1 −
5
2

fi +
4
3

fi−1 −
1
12

fi−2

)
,

and rearranging, we obtain the sixth order ETR method:

ui+1 = ui +
h

1440
(11fi+3 − 93fi+2 + 802fi+1 + 802fi − 93fi−1 + 11fi−2) .

This relation allows us to derive a continuous extension of the ETR schemes using the continuous
extension of the BSHO method, just substituting the derivatives by the corresponding approximations.
Naturally, a change of the stepsize will now change the coefficients of the linear multistep schemes.
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Observe that BVMs have been efficiently used for the solution of boundary value problems in [26],
and the BS methods are also in this class [16].

It has been proven in [21] that symmetric linear multistep methods are conjugate symplectic
schemes. Naturally, in the context of linear multistep methods used with only initial conditions,
this property refers only to the trapezoidal method, but when we solve boundary value problems,
the correct use of a linear multistep formula is with boundary conditions; this makes the corresponding
formulas stable, with a region of stability equal to the left half plane of C (see [24]). The conjugate
symplecticity of the methods is the reason for their good behavior shown in [27,28] when used in block
form and with a sufficiently large block for the solution of conservative problems.

Remark 1. We recall that, even when approximated derivatives are used, the numerical solution admits a CR

2R-degree spline extension verifying all the conditions in (22), where all the u(j)
n , j ≥ 2 appearing on the

right-hand side have to be replaced with the adopted approximations. The exact solution of the rectangular
system in (22) is still possible, since (7) with coefficients in (11) is still verified by the numerical solution
un, n = 0, . . . , N, by its derivatives u(1)

n = f(un), n = 0, . . . , N and by the approximations of the higher order
derivatives. The only difference in this case is that the continuous spline extension collocates at the breakpoints
of just the given first order differential equation.

6. Numerical Examples

The numerical examples reported here have two main purposes: the first is to show the good
behavior of BSHO methods for Hamiltonian problems, showing both the linear growth of the error for
long time computation and the conservation of the Hamiltonian. To this end, we compare the methods
with the symplectic Gauss–Runge–Kutta methods and with the conjugate symplectic EMHO methods.
On the other hand, we are interested in showing the convergence properties of the spline continuous
extensions. Observe that the availability of a continuous extension of the same order of the method is
an important property. In fact for high order methods, especially for superconvergent methods like the
Gauss ones, it is very difficult to find a good continuous extension. The natural continuous extension
of these methods does not keep the same order of accuracy, without adding extra stages [29]. Observe
also that a good continuous extension is an important tool, for example for the event location.

We report results of our experiments for BSHO methods of order six and eight. We recall that the
order two BSHO method corresponds to the well-known trapezoidal rule, the property of conjugate
symplecticity of which is well known (see for example [12]) and the continuous extension by the
B-spline of which has been already developed in [18]. The order four BSHO belongs also to the EMHO
class, and it has been analyzed in detail in [10].

6.1. Kepler Problem

The first example is the classical Kepler problem, which describes the motion of two bodies
subject to Newton’s law of gravitation. This problem is a completely integrable Hamiltonian nonlinear
dynamical system with two degrees of freedom (see, for details, [30]). The Hamiltonian function:

H(q1, q2, p1, p2) =
1
2
(p2

1 + p2
2)−

1√
q2

1 + q2
2

,

describes the motion of the body that is not located in the origin of the coordinate systems. This motion
is an ellipse in the q1-q2 plane, the eccentricity e of which is set using as starting values:

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e
1− e

,

and with period µ := 2π. The first integrals of this problem are: the total energy H,
the angular momentum:
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M(q1, q2, p1, p2) := q1 p2 − q2 p1.

and the Lenz vector A := (A1, A2, A3)
>, the components of which are:

A1(q, p) := p2M(q, p)− q1

||q||2
, A2(q, p) := −p1M(q, p)− q2

||q||2
, A3(q, p) := 0.

Only three of the four first integrals are independent, so, for example, A1 can be neglected.
As in [10], we set e = 0.6 and h = µ/200, and we integrate the problem over 103 periods.

Setting y := (q1, q2, p1, p2), the error ‖yj − y0‖1 in the solution is computed at specific times fixed
equal to multiples of the period, that is at tj = 2π j, with j = 1, 2, . . . ; the errors in the invariants have
been computed at the mesh points tn = πn, n = 1, 3, 5 . . .. Figure 2 reports the obtained results for
the sixth and eighth order BSHO (dotted line, BSHO6, BSHO8), the sixth order EMHO (solid lines,
EMHO6) and the sixth and eighth order Gauss–Runge–Kutta (GRK) (dashed lines, GRK6, GRK8)
methods. In the top-left picture, the absolute error of the numerical solution is shown; the top-right
picture shows the error in the Hamiltonian function; the error in the angular momentum is drawn in
the bottom-left picture, while the bottom-right picture concerns the error in the second component of
the Lenz vector. As expected from a symplectic or a conjugate symplectic integrator, we can see a linear
drift in the error ‖yj − y0‖1 as the time increases (top left plot). As well as for the other considered
methods, we can see that BSHO methods guarantee a near conservation of the Hamiltonian function,
of the second component of the Lenz vector and of the angular momentum (other pictures). This latter
quadratic invariant is precisely conserved (up to machine precision) by GRK methods due to their
symplecticity property. We observe also that, as expected, the error for the BSHO6 method is 3

10 of the
error of the EMHO6 method.

To check the convergence behavior of the continuous extensions, we integrated the problem over
10 periods starting with stepsize h = µ/N, N = 100. We computed a reference solution using the order
eight method with a halved stepsize, and we computed the maximum absolute error on the doubled
grid. The results are reported in Table 3 for the solution and the first derivative and clearly show that
the continuous extension respects the theoretical order of convergence.
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Figure 2. Kepler problem: results for the sixth (BSHO6, red dotted line) and eighth (BSHO8, purple
dotted line) order BSHO methods, sixth order Euler–Maclaurin method (EMHO6, blue solid line)
and sixth (Gauss–Runge–Kutta (GRK6), yellow dashed line) and eighth (GRK8-green dashed line)
order Gauss methods. (Top-left) Absolute error of the numerical solution; (top-right) error in the
Hamiltonian function; (bottom-left) error in the angular momentum; (bottom-right) error in the
second component of the Lenz vector.
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Table 3. Kepler problem: maximum absolute error of the numerical solution and its derivative
computed for 10 periods.

Order N erry Rate erry Rate

4 100 2.69 · 10−1 1.33 · 100

4 200 1.69 · 10−2 3.99 8.50 · 10−2 3.96
4 400 1.06 · 10−3 4.00 5.30 · 10−3 4.00
4 800 6.60 · 10−5 4.00 3.31 · 10−4 4.00
6 100 1.95 · 10−3 9.74 · 10−3

6 200 2.96 · 10−5 6.03 1.48 · 10−4 6.03
6 400 4.60 · 10−7 6.00 2.30 · 10−6 6.00
6 800 7.19 · 10−9 6.00 3.60 · 10−8 6.00
8 100 1.56 · 10−5 7.82 · 10−5

8 200 5.75 · 10−8 8.08 2.88 · 10−7 8.08
8 400 2.17 · 10−10 8.05 1.08 · 10−9 8.05
8 800 7.62 · 10−12 4.87 3.70 · 10−11 4.44

6.2. Non-Linear Pendulum Problem

As a second example, we consider the dynamics of a pendulum under the influence of gravity.
This dynamics is usually described in terms of the angle q that the pendulum forms with its stable
rest position:

q̈ + sin q = 0, (31)

where p = q̇ is the angular velocity. The Hamiltonian function associated with (31) is:

H(q, p) =
1
2

p2 − cos q. (32)

An initial condition (q0, p0) such that |H(q0, p0)| < 1 gives rise to a periodic solution
y(t) = (q(t), p(t))> corresponding to oscillations of the pendulum around the straight-down stationary
position. In particular, starting at y0 = (q0, 0)>, the period of oscillation may be expressed in terms of
the complete elliptical integral of the first kind as:

µ(q0) =
∫ 1

0

dz√
(1− z2)(1− sin2(q0/2)z2)

.

For the experiments, we choose q0 = π/2; thus, the period µ is equal to 7.416298709205487. We use
the sixth and eighth order BSHO and GRK methods and the sixth order EMHO method with stepsize
h = µ/20 to integrate the problem over 2 · 104 periods. Setting y = (q, p), again, the errors ‖yj − y0‖ in
the solution are evaluated at times that are multiples of the period µ, that is for tj = µj, with j = 1, 2, . . . ;
the energy error H(yn) − H(y0) has been computed at the mesh points tn = 11hn, n = 1, 2, . . ..
Figure 3 reports the obtained results. In the left plot, we can see that, for all the considered methods,
the error in the solution grows linearly as time increases. A near conservation of the energy function is
observable in both pictures on the right. The amplitudes of the bounded oscillations are similar for
both methods, confirming the good long-time behavior properties of BSHO methods for the problem at
hand. To check the convergence behavior of the continuous extensions, we integrated the problem over
10 periods starting with stepsize h = µ/N, N = 10. We computed a reference solution using the order
eight method with a halved stepsize, and we compute the maximum absolute error on the doubled
grid. The results are reported in Table 4 for the solution and the first derivative and clearly show,
also for this example, that the continuous extension respects the theoretical order of convergence.
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Figure 3. Nonlinear pendulum problem: results for the Hermite–Obreshkov method of order six and
eight (BSHO6, red, and BSHO8, purple dotted lines), for the sixth order Euler–Maclaurin (EMHO6,
blue solid line) and Gauss methods (GRK6, yellow, and GRK8, green dashed lines) applied to
the pendulum problem. (Left) plot: absolute error of the numerical solution; (upper-right) and
(bottom-right) plots: error in the Hamiltonian function for the sixth order and eighth order integrators,
respectively.

Table 4. Nonlinear pendulum problem: Maximum absolute error of the numerical solution and its
derivative computed for 10 periods.

Order N erry Rate erry Rate

4 10 1.26 · 10−2 1.28 · 10−2

4 20 9.02 · 10−4 3.81 1.10 · 10−3 3.53
4 40 5.73 · 10−5 3.97 6.60 · 10−5 4.06
4 80 3.58 · 10−6 4.00 4.52 · 10−6 3.86
6 10 2.65 · 10−4 2.82 · 10−4

6 20 1.36 · 10−6 7.59 5.77 · 10−6 5.61
6 40 2.07 · 10−8 6.04 1.15 · 10−8 5.65
6 80 3.21 · 10−10 6.01 1.81 · 10−9 5.98
8 10 2.56 · 10−5 2.61 · 10−5

8 20 1.53 · 10−8 10.7 8.50 · 10−8 8.26
8 40 6.14 · 10−11 7.96 4.02 · 10−10 7.72
8 80 3.01 · 10−13 7.67 1.56 · 10−12 8.01

7. Conclusions

In this paper, we have analyzed the BSHO schemes, a class of symmetric one-step multi-derivative
methods firstly introduced in [14,15] for the numerical solution of the Cauchy problem. As a new result,
we have proven that these are conjugate symplectic schemes, thus suited to the context of geometric
integration. Moreover, an efficient approach for the computation of the B-spline form of the spline
extending the numerical solution produced by any BSHO method has been presented. The spline
associated with the R-th BSHO method collocates the differential equation at the mesh points with
multiplicity R and approximates the solution of the considered differential problem with the same
accuracy O(h2R) characterizing the numerical solution. The relation between BSHO schemes and
symmetric linear multistep methods when the derivatives are approximated by finite differences has
also been pointed out.

Future related work will consist in studying the possibility of associating with the BSHO schemes
a dual quasi-interpolation approach, as already done dealing with the BS linear multistep methods
in [16,18,31].
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