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1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and polynomials,
Euler numbers and polynomials, Genocchi numbers and polynomials, and tangent numbers and
polynomials. The class of Appell polynomial sequences is one of the important classes of polynomial
sequences. The Appell polynomial sequences arise in numerous problems of applied mathematics,
mathematical physics and several other mathematical branches (see [1–14]). The Appell polynomials
can be defined by considering the following generating function:

A(t)ext = A0(x) + A1(x)
t
1!

+ A2(x)
t2

2!
+ · · ·+ An(x)

tn

n!
+ · · ·

=
∞

∑
n=0

An(x)
tn

n!
, (see [5,7,8]),

(1)

where

A(t) = A0 + A1
t
1!

+ A2
t2

2!
+ · · ·+ An

tn

n!
+ · · · , A0 6= 0.

Alternatively, the sequence An(x) is Appell sequence for (g(t), t) if and only if

1
g(t)

ext =
∞

∑
n=0

An(x)
tn

n!
, (see [5,7,8]),

where

g(t) =
∞

∑
n=0

gn
tn

n!
, g0 6= 0.

Differentiating generating Equation (1) with respect to x and equating coefficients of tn

n! , we have

d
dx

An(x) = nAn−1(x), n = 0, 1, 2, 3, · · · .
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The typical examples of Appell polynomials are the Bernoulli and Euler polynomials (see [1–14]).
It is well known that the Bernoulli polynomials are defined by the generating function to be

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
. (2)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers. The Euler polynomials are given by
the generating function to be

2
et + 1

ext =
∞

∑
n=0

En(x)
tn

n!
. (3)

When x = 0, En = En(0) are called the Euler numbers.
The Bernoulli polynomials B(r)

n (x) of order r are defined by the following generating function(
t

et − 1

)r
ext =

∞

∑
n=0

B(r)
n (x)

tn

n!
, (|t| < 2π). (4)

The Frobenius–Euler polynomials of order r, denoted by H(r)
n (u, x), are defined as(

1− u
et − u

)r
ext =

∞

∑
n=0

H(r)
n (u, x)

tn

n!
. (5)

The values at x = 0 are called Frobenius–Euler numbers of order r; when r = 1, the polynomials
or numbers are called ordinary Frobenius–Euler polynomials or numbers.

In this paper, we study some special polynomials which are related to Euler and Bernoulli
polynomials. In addition, we give some identities for these polynomials. Finally, we investigate the
zeros of these polynomials by using the computer.

2. Cosine–Bernoulli, Sine–Bernoulli, Cosine–Euler and Sine–Euler Polynomials

In this section, we define the cosine–Bernoulli, sine–Bernoulli, cosine–Euler and sine–Euler
polynomials. Now, we consider the Euler polynomials that are given by the generating function to be

2
et + 1

e(x+iy)t =
∞

∑
n=0

En(x + iy)
tn

n!
. (6)

On the other hand, we observe that

e(x+iy)t = exteiyt = ext(cos yt + i sin yt). (7)

From Equations (6) and (7), we have

∞

∑
n=0

En(x + iy)
tn

n!
=

2
et + 1

e(x+iy)t =
2

et + 1
ext(cos yt + i sin yt), (8)

and
∞

∑
n=0

En(x− iy)
tn

n!
=

2
et + 1

e(x−iy)t =
2

et + 1
ext(cos yt− i sin yt). (9)

Thus, by (8) and (9), we can derive

2
et + 1

ext cos yt =
∞

∑
n=0

(
En(x + iy) + En(x− iy)

2

)
tn

n!
, (10)
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and
2

et + 1
ext sin yt =

∞

∑
n=0

(
En(x + iy) + En(x− iy)

2i

)
tn

n!
. (11)

It follows that we define the following cosine–Euler polynomials and sine–Euler polynomials.

Definition 1. The cosine–Euler polynomials E(C)
n (x, y) and sine–Euler polynomials E(S)

n (x, y) are defined by
means of the generating functions

∞

∑
n=0

E(C)
n (x, y)

tn

n!
=

2
et + 1

ext cos yt, (12)

and
∞

∑
n=0

E(S)
n (x, y)

tn

n!
=

2
et + 1

ext sin yt, (13)

respectively.

Note that E(C)
n (x, 0) = En(x), E(S)

n (x, 0) = 0, (n ≥ 0). The cosine–Euler and sine–Euler
polynomials can be determined explicitly. A few of them are

E(C)
0 (x, y) = 1, E(C)

1 (x, y) = −1
2
+ x,

E(C)
2 (x, y) = −x + x2 − y2,

E(C)
3 (x, y) =

1
4
− 3x2

2
+ x3 +

3y2

2
− 3xy2,

E(C)
4 (x, y) = x− 2x3 + x4 + 6xy2 − 6x2y2 + y4,

and
E(S)

0 (x, y) = 0, E(S)
1 (x, y) = y,

E(S)
2 (x, y) = −y + 2xy,

E(S)
3 (x, y) = −3xy + 3x2y− y3,

E(S)
4 (x, y) = y− 6x2y + 4x3y + 2y3 − 4xy3.

By (10)–(13), we have

E(C)
n (x, y) =

En(x + iy) + En(x− iy)
2

,

E(S)
n (x, y) =

En(x + iy)− En(x− iy)
2i

.

Clearly, we can get the following explicit representations of En(x + iy)

En(x + iy) =
n

∑
k=0

(
n
k

)
(x + iy)n−kEk,

En(x + iy) =
n

∑
k=0

(
n
k

)
(iy)n−kEk(x).

Let

ext cos yt =
∞

∑
k=0

Ck(x, y)
tk

k!
, ext sin yt =

∞

∑
k=0

Sk(x, y)
tk

k!
. (14)
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Then, by Taylor expansions of ext cos yt and ext sin yt, we get

ext cos yt =
∞

∑
k=0

 [ k
2 ]

∑
m=0

(
k

2m

)
(−1)mxk−2my2m

 tk

k!
(15)

and

ext sin yt =
∞

∑
k=0

[ k−1
2 ]

∑
m=0

(
k

2m + 1

)
(−1)mxk−2m−1y2m+1

 tk

k!
, (16)

where [ ] denotes taking the integer part. By (14)–(16), we get

Ck(x, y) =
[ k

2 ]

∑
m=0

(
k

2m

)
(−1)mxk−2my2m,

and

Sk(x, y) =
[ k−1

2 ]

∑
m=0

(
k

2m + 1

)
(−1)mxk−2m−1y2m+1, (k ≥ 0).

The two polynomials can be determined explicitly. A few of them are

C0(x, y) = 1, C1(x, y) = x, C2(x, y) = x2 − y2,

C3(x, y) = x3 − 3xy2, C4(x, y) = x4 − 6x2y2 + y4,

C5(x, y) = x5 − 10x3y2 + 5xy4, C6(x, y) = x6 − 15x4y2 + 15x2y4 − y6,

and
S0(x, y) = 0, S1(x, y) = y, S2(x, y) = 2xy,

S3(x, y) = 3x2y− y3, S4(x, y) = 4x3y− 4xy3,

S5(x, y) = 5x4y− 10x2y3 + y5, S6(x, y) = 6x5y− 20x3y3 + 6xy5.

Now, we observe that

2
et + 1

ext cos yt =

(
∞

∑
l=0

El
tl

l!

)(
∞

∑
m=0

Cm(x, y)
tm

m!

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
ElCn−l(x, y)

)
tn

n!
.

(17)

Therefore, we obtain the following theorem:

Theorem 1. For n ≥ 0, we have

E(C)
n (x, y) =

n

∑
l=0

(
n
l

)
ElCn−l(x, y)

and

E(S)
n (x, y) =

n

∑
l=0

(
n
l

)
ElSn−l(x, y).
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From (12), we have

2ext cos yt =

(
∞

∑
l=0

E(C)
l (x, y)

tl

l!

) (
et + 1

)
=

∞

∑
n=0

(
n

∑
l=0

(
n
l

)
E(C)

l (x, y) + E(C)
n (x, y)

)
tn

n!
.

(18)

By (14) and (18), we get

Cn(x, y) =
1
2

(
n

∑
l=0

(
n
l

)
E(C)

l (x, y) + E(C)
n (x, y)

)
. (19)

Therefore, we obtain the following theorem:

Theorem 2. For n ≥ 0, we have

Cn(x, y) =
1
2

(
n

∑
l=0

(
n
l

)
E(C)

l (x, y) + E(C)
n (x, y)

)
,

and

Sn(x, y) =
1
2

(
n

∑
l=0

(
n
l

)
E(S)

l (x, y) + E(S)
n (x, y)

)
.

From (12), we note that

∞

∑
n=0

E(C)
n (1− x, y)

tn

n!
=

2
et + 1

e(1−x)t cos yt

=
2

e−t + 1
e−xt cos (−yt)

=

(
∞

∑
l=0

(−1)lEl
tl

l!

)(
∞

∑
m=0

(−1)mCm,(x, y)
tm

m!

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
ElCn−l(x, y)

)
(−1)n

n!
tn.

(20)

Therefore, we obtain the following theorem:

Theorem 3. For n ≥ 0, we have

E(C)
n (1− x, y) = (−1)n

n

∑
l=0

(
n
l

)
ElCn−l(x, y)

= (−1)nE(C)
n (x, y),

and
E(S)

n (1− x, y) = (−1)n+1E(S)
n (x, y)

= (−1)n+1
n

∑
l=0

(
n
l

)
ElSn−l(x, y).
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Now, we observe that

∞

∑
n=0

E(C)
n (x + 1, y)

tn

n!
=

2
et + 1

e(x+1)t cos yt

=
2

et + 1
ext(et − 1 + 1) cos yt

= 2ext cos yt− 2
et + 1

ext cos yt

=
∞

∑
n=0

(
2Cn(x, y)− E(C)

n (x, y)
) tn

n!
.

(21)

By comparing the coefficients on the both sides, we get

E(C)
n (x + 1, q) + E(C)

n (x, y) = 2Cn(x, y), (n ≥ 0). (22)

Therefore, we obtain the following theorem:

Theorem 4. For n ≥ 0, we have

E(C)
n (x + 1, y) + E(C)

n (x, y) = 2Cn(x, y),

and
E(S)

n (x + 1, y) + E(S)
n (x, y) = 2Sn(x, y).

From (14) and (15), we have

∞

∑
k=0

Ck(0, y)
tk

k!
=

∞

∑
m=0

(−1)my2m t2m

(2m)!
. (23)

Therefore, by Theorem 4 and (23), we obtain the following corollary:

Corollary 1. For n ≥ 0, we have

E(C)
2n (1, y) + E(C)

2n (0, y) = 2(−1)ny2n,

and
E(S)

2n+1(1, y) + E(S)
2n+1(0, y) = 2(−1)ny2n+1.

By (12), we get

∞

∑
n=0

E(C)
n (x + r, y)

tn

n!
=

(
2ext

et + 1
cos yt

)
ert

=

(
∞

∑
l=0

E(C)
l (x, y)

tl

l!

)(
∞

∑
k=0

rk tk

k!

)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
E(C)

k (x, y)rn−k

)
tn

n!
.

(24)

Therefore, by comparing the coefficients on the both sides, we obtain the following theorem:

Theorem 5. For n ≥ 0, r ∈ N, we have
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E(C)
n (x + r, y) =

n

∑
k=0

(
n
k

)
E(C)

k (x, y)rn−k,

and

E(S)
n (x + r, y) =

n

∑
k=0

(
n
k

)
E(S)

k (x, y)rn−k.

Taking r = 1 in Theorem 5, we obtain the following corollary:

Corollary 2. For n ≥ 0, we have

2Cn(x, y) = E(C)
n (x, y) +

n

∑
k=0

(
n
k

)
E(C)

k (x, y),

and

2Sn(x, y) = E(S)
n (x, y) +

n

∑
k=0

(
n
k

)
E(S)

k (x, y).

From Corollary 2, we note that

E(C)
n (0, y) +

n

∑
k=0

(
n
k

)
E(C)

k (0, y) =

{
0, if n = 2m + 1,

2(−1)my2m, if n = 2m,
(25)

and

E(S)
n (0, y) +

n

∑
k=0

(
n
k

)
E(S)

k (0, y) =

{
2(−1)my2m+1, if n = 2m + 1,

0, if n = 2m.
(26)

By (12), we get
∞

∑
n=1

∂

∂x
E(C)

n (x, y)
tn

n!
=

∂

∂x

(
2

et + 1
ext cos yt

)
=

2
et + 1

text cos yt

=
∞

∑
n=1

(
nE(C)

n−1(x, y)
) tn

n!
.

(27)

Comparing the coefficients on the both sides of (27), we have

∂

∂x
E(C)

n (x, y) = nE(C)
n−1(x, y).

Similarly, for n ≥ 1, we have

∂

∂x
E(S)

n (x, y) = nE(S)
n−1(x, y),

∂

∂y
E(C)

n (x, y) = −nE(S)
n−1(x, y),

∂

∂y
E(S)

n (x, y) = nE(C)
n−1(x, y).
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Now, we consider the Bernoulli polynomials that are given by the generating function to be

t
et − 1

e(x+iy)t =
∞

∑
n=0

Bn(x + iy)
tn

n!
.

We also have

∞

∑
n=0

Bn(x + iy)
tn

n!
=

t
et − 1

e(x+iy)t =
t

et − 1
ext(cos yt + i sin yt), (28)

and
∞

∑
n=0

Bn(x− iy)
tn

n!
=

t
et − 1

e(x−iy)t =
t

et − 1
ext(cos yt− i sin yt). (29)

Thus, by (28) and (29), we can derive

t
et − 1

ext cos yt =
∞

∑
n=0

(
Bn(x + iy) + Bn(x− iy)

2

)
tn

n!
, (30)

and
t

et − 1
ext sin yt =

∞

∑
n=0

(
Bn(x + iy) + Bn(x− iy)

2i

)
tn

n!
. (31)

It follows that we define the following cosine–Bernoulli and sine–Bernoulli polynomials.

Definition 2. The cosine–Bernoulli polynomials B(C)
n (x, y) and sine–Bernoulli polynomials B(S)

n (x, y) are
defined by means of the generating functions

∞

∑
n=0

B(C)
n (x, y)

tn

n!
=

t
et − 1

ext cos yt, (32)

and
∞

∑
n=0

B(S)
n (x, y)

tn

n!
=

t
et − 1

ext sin yt, (33)

respectively.

By (30), (31), (32), and (33), we have

B(C)
n (x, y) =

Bn(x + iy) + Bn(x− iy)
2

,

B(S)
n (x, y) =

Bn(x + iy)− Bn(x− iy)
2i

.

Note that B(C)
n (x, 0) = Bn(x) are the Bernoulli polynomials. The cosine–Bernoulli and

sine–Bernoulli polynomials can be determined explicitly. A few of them are

B(C)
0 (x, y) = 1, B(C)

1 (x, y) = −1
2
+ x,

B(C)
2 (x, y) =

1
6
− x + x2 − y2,

B(C)
3 (x, y) =

x
2
− 3x2

2
+ x3 +

3y2

2
− 3xy2,

B(C)
4 (x, y) = − 1

30
+ x2 − 2x3 + x4 − y2 + 6xy2 − 6x2y2 + y4,
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and
B(S)

0 (x, y) = 0, B(S)
1 (x, y) = y, B(S)

2 (x, y) = −y + 2xy,

B(S)
3 (x, y) =

y
2
− 3xy + 3x2y− y3,

B(S)
4 (x, y) = 2xy− 6x2y + 4x3y + 2y3 − 4xy3.

From (32), we have

∞

∑
n=0

B(C)
n (x, y)

tn

n!
=

t
et − 1

ext cos yt,

=

(
∞

∑
l=0

Bn
tl

l!

)(
∞

∑
m=0

Cm(x, y)
tm

m!

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
BlCn−l(x, y)

)
tn

n!
.

(34)

Comparing the coefficients on the both sides of (34), we obtain the following theorem:

Theorem 6. For n ≥ 0, we have

B(C)
n (x, y) =

n

∑
l=0

(
n
l

)
BlCn−l(x, y),

and

B(S)
n (x, y) =

n

∑
l=0

(
n
l

)
BlSn−l(x, y).

By replacing x by 1− x in (32), we get

∞

∑
n=0

B(C)
n (1− x, y)

tn

n!
=

t
et − 1

e(1−x)t cos yt

=
t

1− e−t e−xt cos yt

=
∞

∑
n=0

(−1)nBn(x, y)
tn

n!
.

(35)

Therefore, we obtain the following theorem:

Theorem 7. For n ≥ 0, we have

B(C)
n (1− x, y) = (−1)nB(C)

n (x, y),

and
B(S)

n (1− x, y) = (−1)n+1B(S)
n (x, y).
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Now, we observe that

∞

∑
n=0

B(C)
n (x + 1, q)

tn

n!
=

t
et − 1

e(x+1)t cos yt

= text cos yt +
t

et − 1
ext cos yt

=
∞

∑
n=1

nCn−1(x, y)
tn

n!
+

∞

∑
n=0

B(C)
n (x, y)

tn

n!

=
∞

∑
n=0

(
nCn−1(x, y) + B(C)

n (x, y)
) tn

n!
.

(36)

Thus, by (36), we get

B(C)
n (x + 1, y) = nCn−1(x, y) + B(C)

n (x, y), (n ≥ 1). (37)

Therefore, by (37), we obtain the following theorem:

Theorem 8. For n ≥ 1, we have

B(C)
n (x + 1, y)− B(C)

n (x, y) = nCn−1(x, y),

and
B(S)

n (x + 1, y)− B(S)
n (x, y) = nSn−1(x, y).

Now, we define the new type polynomials that are given by the generating functions to be

2
et + 1

cos yt =
∞

∑
n=0

E(C)
n (y)

tn

n!
, (38)

and
2

et + 1
sin yt =

∞

∑
n=0

E(S)
n (y)

tn

n!
, (39)

respectively.
Note that E(C)

n (0) = En, E(S)
n (0) = 0, E(C)

n (0, y) = E(C)
n (y), E(S)

n (0, y) = E(S)
n (y), (n ≥ 0). The new

type polynomials can be determined explicitly. A few of them are

E(C)
0 (y) = 1, E(C)

1 (x, y) = −1
2

, E(C)
2 (x, y) = −y2, E(C)

3 (y) =
1
4
+

3y2

2
,

E(C)
4 (y) = y4, E(C)

5 (y) = −1
2
− 5y2

2
− 5y4

2
, E(C)

6 (y) = −y6,

and
E(S)

0 (x, y) = 0, E(S)
1 (x, y) = y, E(S)

2 (x, y) = −y, E(S)
3 (x, y) = −y3,

E(S)
4 (x, y) = y + 2y3 E(S)

5 (x, y) = y5, E(S)
6 (x, y) = −3y− 5y3 − 3y5.

From (38) and (39), we derive the following equations:

2
et + 1

cos yt =
∞

∑
k=0

 [ k
2 ]

∑
m=0

(
k

2m

)
(−1)mEk−2my2m

 tk

k!
(40)
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and
2

et + 1
sin yt =

∞

∑
k=0

[ k−1
2 ]

∑
m=0

(
k

2m + 1

)
(−1)mEk−2m−1y2m+1

 tk

k!
. (41)

By (38)–(41), we get

E(C)
n (y) =

[ n
2 ]

∑
m=0

(
n

2m

)
(−1)my2mEn−2m, (42)

and

E(S)
n (y) =

[ n−1
2 ]

∑
m=0

(
n

2m + 1

)
(−1)my2m+1En−2m−1, (k ≥ 0). (43)

From (12), (13), (38) and (39), we derive the following theorem:

Theorem 9. For n ≥ 0, we have

E(C)
n (x, y) =

n

∑
k=0

(
n
k

)
xn−kE(C)

k (y),

and

E(S)
n (x, y) =

n

∑
k=0

(
n
k

)
xn−kE(S)

k (y).

Now, we define the new type polynomials that are given by the generating functions to be

t
et − 1

cos yt =
∞

∑
n=0

B(C)
n (y)

tn

n!
, (44)

and
t

et − 1
sin yt =

∞

∑
n=0

B(S)
n (y)

tn

n!
, (45)

respectively.
Note that B(C)

n (0) = Bn, B(S)
n (0) = 0, B(C)

n (0, y) = B(C)
n (y), B(S)

n (0, y) = B(S)
n (y), (n ≥ 0). The new

type polynomials can be determined explicitly. A few of them are

B(C)
0 (x, y) = 1, B(C)

1 (x, y) = −1
2

, B(C)
2 (x, y) =

1
6
− y2,

B(C)
3 (x, y) =

3y2

2
, B(C)

4 (x, y) = − 1
30
− y2 + y4, B(C)

5 (x, y) =
5y4

2
,

and
B(S)

0 (x, y) = 0, B(S)
1 (x, y) = y, B(S)

2 (x, y) = −y,

B(S)
3 (x, y) =

y
2
− y3, B(S)

4 (x, y) = 2y3, B(S)
5 (x, y) = −y

6
− 5y3

3
+ y5.

From (44) and (45), we derive the following equations:

t
et − 1

cos yt =
∞

∑
k=0

 [ k
2 ]

∑
m=0

(
k

2m

)
(−1)mBk−2my2m

 tk

k!
(46)

and
t

et − 1
sin yt =

∞

∑
k=0

[ k−1
2 ]

∑
m=0

(
k

2m + 1

)
(−1)mBk−2m−1y2m+1

 tk

k!
. (47)
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By (44)–(47), we get

B(C)
n (y) =

[ n
2 ]

∑
m=0

(
n

2m

)
(−1)my2mBn−2m, (48)

and

B(S)
n (y) =

[ n−1
2 ]

∑
m=0

(
n

2m + 1

)
(−1)my2m+1Bn−2m−1, (k ≥ 0). (49)

From (32), (33), (44) and (45), we derive the following theorem:

Theorem 10. For n ≥ 0, we have

B(C)
n (x, y) =

n

∑
k=0

(
n
k

)
xn−kB(C)

k (y),

and

B(S)
n (x, y) =

n

∑
k=0

(
n
k

)
xn−kB(S)

k (y).

We remember that the classical Stirling numbers of the first kind S1(n, k) and S2(n, k) are defined
by the relations (see [12])

(x)n =
n

∑
k=0

S1(n, k)xk and xn =
n

∑
k=0

S2(n, k)(x)k, (50)

respectively. Here, (x)n = x(x− 1) · · · (x− n + 1) denotes the falling factorial polynomial of order n.
The numbers S2(n, m) also admit a representation in terms of a generating function

(et − 1)m = m!
∞

∑
n=m

S2(n, m)
tn

n!
. (51)

By (12), (51) and by using Cauchy product, we get

∞

∑
n=0

E(C)
n (x, y)

tn

n!
=

(
2

et + 1

)
(1− (1− e−t))−x cos yt

=

(
2

et + 1

)
cos yt

∞

∑
l=0

(
x + l − 1

l

)
(1− e−t)l

=
∞

∑
l=0

< x >l
(et − 1)l

l!

(
2

et + 1

)
e−lt cos yt

=
∞

∑
l=0

< x >l

∞

∑
n=0

S2(n, l)
tn

n!

∞

∑
n=0

E(C)
n (−l, y)

tn

n!

=
∞

∑
n=0

(
∞

∑
l=0

n

∑
i=l

(
n
i

)
S2(i, l)E(C)

n−i(−l, y) < x >l

)
tn

n!
,

(52)

where < x >l= x(x + 1) · · · (x + l − 1)(l ≥ 1) with < x >0= 1.
By comparing the coefficients on both sides of (52), we have the following theorem:
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Theorem 11. For n ∈ Z+, we have

E(C)
n (x, y) =

∞

∑
l=0

n

∑
i=l

(
n
i

)
S2(i, l)E(C)

n−i(−l, y) < x >l ,

E(S)
n (x, y) =

∞

∑
l=0

n

∑
i=l

(
n
i

)
S2(i, l)E(S)

n−i(−l, y) < x >l .

By (12), (38), (50), (51) and by using Cauchy product, we have

∞

∑
n=0

E(C)
n (x, y)

tn

n!
=

(
2

et + 1

)
((et − 1) + 1)x cos(yt)

=
2

et + 1
cos(yt)

∞

∑
l=0

(
x
l

)
(et − 1)l

=
∞

∑
l=0

(x)l
(et − 1)l

l!

(
2

et + 1
cos(yt)

)
=

∞

∑
l=0

(x)l

∞

∑
n=0

S2(n, l)
tn

n!

∞

∑
n=0

E(C)
n (y)

tn

n!

=
∞

∑
n=0

(
∞

∑
l=0

n

∑
i=l

(
n
i

)
(x)lS2(i, l)E(C)

n−i(y)

)
tn

n!
.

(53)

By comparing the coefficients on both sides of (53), we have the following theorem:

Theorem 12. For n ∈ Z+, we have

E(C)
n (x, y) =

∞

∑
l=0

n

∑
i=l

(
n
i

)
(x)lS2(i, l)E(C)

n−i(y),

E(S)
n (x, y) =

∞

∑
l=0

n

∑
i=l

(
n
i

)
(x)lS2(i, l)E(S)

n−i(y).

By (4), (12), (38), (50), (51) and by using Cauchy product, we have

∞

∑
n=0

E(C)
n (x, y)

tn

n!

=

(
2

et + 1

)
ext cos(yt)

=
(et − 1)r

r!
r!
tr

(
t

et − 1

)r
ext

∞

∑
n=0

E(C)
n (y)

tn

n!

=
(et − 1)r

r!

(
∞

∑
n=0

B(r)
n (x)

tn

n!

)(
∞

∑
n=0

E(C)
n (y)

tn

n!

)
r!
tr

=
∞

∑
n=0

(
n

∑
l=0

(n
l )

(l+r
r )

S2(l + r, r)
n−l

∑
i=0

(
n− l

i

)
B(r)

i (x)E(C)
n−l−i(y)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem:
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Theorem 13. For n ∈ Z+ and r ∈ N, we have

E(C)
n (x, y) =

n

∑
l=0

(n
l )

(l+r
r )

S2(l + r, r)
n−l

∑
i=0

(
n− l

i

)
E(C)

n−l−i(y)B
(r)
i (x),

E(S)
n (x, y) =

n

∑
l=0

(n
l )

(l+r
r )

S2(l + r, r)
n−l

∑
i=0

(
n− l

i

)
E(S)

n−l−i(y)B
(r)
i (x).

By (5), (12), (38), (50), (51) and by using the Cauchy product, we get

∞

∑
n=0

E(C)
n (x, y)

tn

n!
=

(
2

et + 1

)
ext cos(yt)

=
(et − u)r

(1− u)r

(
1− u
et − u

)r
ext
(

2
et + 1

)
cos(yt)

=
∞

∑
n=0

H(r)
n (u, x)

tn

n!

r

∑
i=0

(
r
i

)
eit(−u)r−i 1

(1− u)r

(
2

et + 1

)
cos(yt)

=
1

(1− u)r

r

∑
i=0

(
r
i

)
(−u)r−i

∞

∑
n=0

H(r)
n (u, x)

tn

n!

∞

∑
n=0

E(C)
n (i, y)

tn

n!

=
∞

∑
n=0

(
1

(1− u)r

r

∑
i=0

(
r
i

)
(−u)r−i

n

∑
l=0

(
n
l

)
H(r)

l (u, x)E(C)
n−l(i, y)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem:

Theorem 14. For n ∈ Z+ and r ∈ N, we have

E(C)
n (x, y) =

1
(1− u)r

r

∑
i=0

n

∑
l=0

(
r
i

)(
n
l

)
(−u)r−iH(r)

l (u, x)E(C)
n−l(i, y),

E(S)
n (x, y) =

1
(1− u)r

r

∑
i=0

n

∑
l=0

(
r
i

)(
n
l

)
(−u)r−iH(r)

l (u, x)E(S)
n−l(i, y).

By Theorems 12–14, we have the following corollary.

Corollary 3. For n ∈ Z+ and r ∈ N, we have

∞

∑
l=0

n

∑
i=l

(
n
i

)
(x)lS2(i, l)E(C)

n−i(y)

=
1

(1− u)r

r

∑
i=0

n

∑
l=0

(
r
i

)(
n
l

)
(−u)r−iH(r)

l (u, x)E(C)
n−l(i, y)

=
n

∑
l=0

(n
l )

(l+r
r )

S2(l + r, r)
n−l

∑
i=0

(
n− l

i

)
E(C)

n−l−i(y)B
(r)
i (x).

3. Distribution of Zeros of the Cosine–Euler and Sine–Euler Polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical
prediction and to discover a new interesting pattern of the zeros of the cosine–Euler and sine–Euler
polynomials. Using a computer, a realistic study for the cosine–Euler polynomials E(C)

n (x, y) and
sine–Euler polynomials E(S)

n (x, y) is very interesting. It is the aim of this paper to observe an interesting
phenomenon of “scattering” of the zeros of the the cosine–Euler polynomials E(C)

n (x, y) and sine–Euler
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polynomials E(S)
n (x, y) in a complex plane. We investigate the beautiful zeros of the cosine–Euler

and sine–Euler polynomials by using a computer. We plot the zeros of the cosine–Euler polynomials
E(C)

n (x, y) (Figure 1).
In Figure 1 (top-left), we choose n = 30 and y = −3. In Figure 1 (top-right), we choose n = 30

and y = 0. In Figure 1 (bottom-left), we choose n = 30 and y = 1/2. In Figure 1 (bottom-right),
we choose n = 30 and y = 3.

We plot the zeros of the sine–Euler polynomials E(S)
n (x, y) (Figure 2).
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Figure 1. Zeros of E(C)
n (x, y).

In Figure 2 (top-left), we choose n = 30 and x = −3. In Figure 2 (top-right), we choose n = 30
and x = −1. In Figure 2 (bottom-left), we choose n = 30 and x = 1. In Figure 2 (bottom-right),
we choose n = 30 and x = 3.

We observe that E(C)
n (x, a), x ∈ C has Re(x) = 1

2 reflection symmetry in addition to the usual
Im(x) = 0 reflection symmetry analytic complex functions, where a ∈ R( Figures 1 and 2).

Since
∞

∑
n=0

E(C)
n (1− x,−y)

(−1)ntn

n!
=

2
e−t + 1

e(1−x)(−t) cos yt

=
2

et + 1
ext cos yt =

∞

∑
n=0

E(C)
n (x, y)

tn

n!
,

we obtain

E(C)
n (x, y) = (−1)nE(C)

n (1− x,−y), E(C)
n (x, y) = (−1)nE(C)

n (1− x, y),

E(S)
n (x, y) = (−1)nE(S)

n (1− x,−y), E(S)
n (x, y) = (−1)n+1E(S)

n (1− x, y).

Hence, we have the following theorem:
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Theorem 15. If n ≡ 1 (mod 2), then

E(C)
n (1/2, y) = 0, B(C)

n (1/2, y) = 0, for n ∈ N.

If n ≡ 0 (mod 2), then
E(S)

n (1/2, y) = 0, B(S)
n (1/2, y) = 0, for n ∈ N.

Our numerical results for numbers of real and complex zeros of the cosine–Euler polynomials
E(C)

n (x, y) = 0 are displayed (Table 1).
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Figure 2. Zeros of E(S)
n (x, y).

Table 1. Numbers of real and complex zeros of E(C)
n (x, y).

Degree n
y = −3 y = 2

Real Zeros Complex Zeros Real Zeros Complex Zeros

1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 4 0 4 0
5 5 0 5 0
6 6 0 6 0
7 7 0 7 0
8 8 0 8 0
9 9 0 9 0
10 10 0 10 0

Our numerical results for numbers of real and complex zeros of the sine–Euler polynomials
E(S)

n (x, y) = 0 are displayed (Table 2).
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Stacks of zeros of the cosine–Euler polynomials E(C)
n (x, y) for 1 ≤ n ≤ 40 from a 3D structure are

presented (Figure 3).
In Figure 3 (left), we choose y = −3. In Figure 3 (right), we choose y = 1/2. The plot of real zeros

of the cosine–Euler polynomials E(C)
n (x, y) for 1 ≤ n ≤ 40 structure are presented (Figure 4).

In Figure 4 (left), we choose y = −3. In Figure 4 (right), we choose y = 1/2. Stacks of zeros of the
sine–Euler polynomials E(S)

n (x, y) for 1 ≤ n ≤ 40 from a 3D structure are presented (Figure 5).

Table 2. Numbers of real and complex zeros of E(S)
n (x, y).

Degree n
x = −3 x = 1

Real Zeros Complex Zeros Real Zeros Complex Zeros

1 1 0 1 0
2 1 0 1 0
3 3 0 3 0
4 3 0 3 0
5 5 0 5 0
6 5 0 1 4
7 7 0 7 0
8 7 0 1 6
9 9 0 9 0
10 9 0 1 8

Figure 3. Stacks of zeros of E(C)
n (x, y), 1 ≤ n ≤ 40.

Figure 4. Real zeros of E(C)
n (x, y).
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Figure 5. Stacks of zeros of E(S)
n (x, y), 1 ≤ n ≤ 40.

In Figure 5 (left), we choose x = −3. In Figure 3 (right), we choose x = 1. The plot of real zeros of
the sine–Euler polynomials E(S)

n (x, y) for 1 ≤ n ≤ 40 structure are presented (Figure 6).

Figure 6. Real zeros of E(S)
n (x, y).

In Figure 6 (left), we choose x = −3. In Figure 6 (right), we choose x = 1.
We observe a remarkable regular structure of the complex roots of the cosine–Euler polynomials

E(C)
n (x, y). We also hope to verify a remarkable regular structure of the complex roots of the

cosine–Euler polynomials E(C)
n (x, y). Next, we calculated an approximate solution satisfying

E(C)
n (x, y) = 0, x ∈ R. The results are given in Table 3.

Table 3. Approximate solutions of E(C)
n (x,−3) = 0, x ∈ R.

Degree n x

1 0.50000
2 −2.5414, 3.5414
3 −4.7678, 0.50000, 5.7678
4 −6.8305, −0.82832, 1.8283, 7.8305
5 −8.8303, −1.8336, 0.50000, 2.8336, 9.8303
6 −10.799, −2.7017, −0.40666, 1.4067, 3.7017, 11.799
7 −12.751, −3.4960, −1.1389, 0.50000, 2.1389, 4.4960, 13.751

Next, we calculated an approximate solution satisfying E(S)
n (x, y) = 0, y ∈ R. The results are

given in Table 4.
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Table 4. Approximate solutionsof E(S)
n (−3, y) = 0, y ∈ R.

Degree n y

1 0.00000
2 0.00000
3 −6.0000, 0, 6.0000
4 −3.3912, 0, 3.3912
5 −10.687, −2.4038, 0, 2.4038, 10.687
6 −5.9045, −1.8630, 0, 1.8630, 5.9045
7 −15.241, −4.1727, −1.5184, 0, 1.5184, 4.1727, 15.241
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