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Abstract: In this paper, using an infinite matrix of complex numbers, a modulus function and a
lacunary sequence, we generalize the concept of I-statistical convergence, which is a recently
introduced summability method. The names of our new methods are AI -lacunary statistical
convergence and strongly AI -lacunary convergence with respect to a sequence of modulus functions.
These spaces are denoted by SA

θ (I , F) and NA
θ (I , F) , respectively. We give some inclusion relations

between SA (I , F) , SA
θ (I , F) and NA

θ (I , F). We also investigate Cesáro summability for A
I

and we
obtain some basic results between A

I
-Cesáro summability, strongly A

I
-Cesáro summability and the

spaces mentioned above.

Keywords: lacunary sequence; statistical convergence; ideal convergence; modulus function;
I-statistical convergence
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1. Introduction

As is known, convergence is one of the most important notions in mathematics. Statistical
convergence extends the notion. After giving the definition of statistical convergence, we can easily
show that any convergent sequence is statistically convergent, but not conversely. Let E be a subset

of N, and the set of all natural numbers d(E) := lim
n→∞

1
n

n
∑

j=1
χE(j) is said to be a natural density of E

whenever the limit exists. Here, χE is the characteristic function of E.
In 1935, statistical convergence was given by Zygmund in the first edition of his monograph [1].

It was formally introduced by Fast [2], Fridy [3], Salat [4], Steinhaus [5] and later was reintroduced by
Schoenberg [6]. It has become an active research area in recent years. This concept has applications in
different fields of mathematics such as number theory [7], measure theory [8], trigonometric series [1],
summability theory [9], etc.

Following this very important definition, the concept of lacunary statistical convergence was
defined by Fridy and Orhan [10]. In addition, Fridy and Orhan gave the relationships between the
lacunary statistical convergence and the Cesàro summability. Freedman and Sember [9] established
the connection between the strongly Cesàro summable sequences space |σ1| and the strongly lacunary
summable sequence space Nθ .
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I-convergence has emerged as a generalized form of many types of convergences. This means
that, if we choose different ideals, we will have different convergences. Koystro et al. [11] introduced
this concept in a metric space. Also, Das et al. [12], Koystro et al. [13], Savaş and Das [14] studied ideal
convergence. We will explain this situation with two examples later. Before defining I-convergence,
the definitions of ideal and filter will be needed.

An ideal is a family of sets I ⊆ 2N such that (i) ∅ ∈ I , (ii) A, B ∈ I implies A ∪ B ∈ I , (iii), and,
for each A ∈ I , each B ⊆ A implies B ∈ I . An ideal is called non-trivial if N /∈ I and a non-trivial
ideal is called admissible if {n} ∈ I for each n ∈ N.

A filter is a family of sets F ⊆ 2N such that (i) ∅ /∈ F , (ii) A, B ∈ F implies A ∩ B ∈ F , (iii) For
each A ∈ F , each A ⊆ B implies B ∈ F .

If I is an ideal in N, then the collection

F(I) = {A ⊂ N : N\A ∈ I}

forms a filter in N that is called the filter associated with I .
The notion of a modulus function was introduced by Nakano [15]. We recall that a modulus f is a

function from [0, ∞) to [0, ∞) such that (i) f (x) = 0 if and only if x = 0; (ii) f (x + y) = f (x) + f (y)
for x, y ≥ 0; (iii) f is increasing; and (iv) f is continuous from the right at 0. It follows that f must be
continuous on [0, ∞) . Connor [16], Bilgin [17], Maddox [18], Kolk [19], Pehlivan and Fisher [20] and
Ruckle [21] have used a modulus function to construct sequence spaces. Now, let S be the space of
sequences of modulus functions F = ( fk) such that limx→0+ supk fk (x) = 0. Throughout this paper,
the set of all modulus functions determined by F is denoted by F = ( fk) ∈ S for every k ∈ N.

In this paper, we aim to unify these approaches and use ideals to introduce the notion of
AI -lacunary statistically convergence with respect to a sequence of modulus functions.

2. Definitions and Notations

First, we recall some of the basic concepts that will be used in this paper.
Let A = (aki) be an infinite matrix of complex numbers. We write Ax = (Ak (x)),

if Ak (x) =
∞
∑

i=1
akixk converges for each k.

Definition 1. A number sequence x = (xk) is said to be statistically convergent to the number L if for every
ε > 0,

lim
n→∞

1
n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write st− lim xk = L. As we said before, statistical convergence is a natural generalization of
ordinary convergence i.e., if lim xk = L, then st− lim xk = L (Fast, [2] ).

By a lacunary sequence, we mean an increasing integer sequence θ = {kr} such that k0 = 0 and
hr = kr − kr−1 → ∞ as r → ∞. Throughout this paper, the intervals determined by θ will be denoted
by Ir = (kr−1, kr].

Definition 2. A sequence x = (xk) is said to be lacunary statistically convergent to the number L if, for every
ε > 0,

lim
r→∞

1
hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

In this case, we write Sθ − lim xk = L or xk → L(Sθ) (Fridy and Orhan, [10] ).
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Definition 3. The sequence space Nθ is defined by

Nθ =

{
(xk) : lim

r→∞

1
hr

∑
k∈Ir

|xk − L| = 0

}

(Fridy and Orhan, [10] ).

Definition 4. Let I ⊂ 2N be a proper admissible ideal in N. The sequence (xn) of elements of R is said to be
I-convergent to L ∈ R if, for each ε > 0, the set

A (ε) = {n ∈ N : |xn − L| ≥ ε} ∈ I

(Kostyrko et al. [11] ).

Example 1. Define the set of all finite subsets of N by I f . Then, I f is a non-trivial admissible ideal and
I f -convergence coincides with the usual convergence.

Example 2. Define the set Id by Id = {A ⊂ N : d(A) = 0} . Then, Id is an admissible ideal and
Id-convergence gives the statistical convergence.

Following the line of Savas et al. [22], some authors obtained more general results about
statistical convergence by using A matrix and they called this new method AI -statistical convergence
(see, e.g., [17,23]).

Definition 5. Let A = (aki) be an infinite matrix of complex numbers and ( fk) be a sequence of modulus
functions in S. A sequence x = (xk) is said to be AI -statistically convergent to L ∈ X with respect to a sequence
of modulus functions, for each ε > 0, for every x ∈ X and δ > 0,{

n ∈ N :
1
n
|{k ≤ n : fk (|Ak (x)− L|) ≥ ε}| ≥ δ

}
∈ I .

In this case, we write xk → L
(
SA (I , F)

)
(Yamancıet al. [23] ).

3. Inclusions between SA (I , F) , SA
θ (I , F) and N A

θ (I , F) Spaces

We now consider our main results. We begin with the following definitions.

Definition 6. Let A = (aki) be an infinite matrix of complex numbers, θ = {kr} be a lacunary sequence and
F = ( fk) be a sequence of modulus functions in S. A sequence x = (xk) is said to be AI -lacunary statistically
convergent to L ∈ X with respect to a sequence of modulus functions, for each ε > 0, for each x ∈ X and δ > 0,{

r ∈ N :
1
hr
| {k ∈ Ir : fk (|Ak (x)− L|) ≥ ε} | ≥ δ

}
∈ I .

Definition 7. Let A = (aki) be an infinite matrix of complex numbers, θ = {kr} be a lacunary sequence and
F = ( fk) be a sequence of modulus functions in S. A sequence x = (xk) is said to be strongly AI -lacunary
convergent to L ∈ X with respect to a sequence of modulus functions, if, for each ε > 0, for each x ∈ X,{

r ∈ N :
1
hr

∑
k∈Ir

fk (|Ak (x)− L|) ≥ ε

}
∈ I .

We shall denote by SA
θ (I , F), NA

θ (I , F) the collections of all AI -lacunary statistically convergent
and strongly AI -lacunary convergent sequences, respectively.
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Theorem 1. Let A = (aki) be an infinite matrix of complex numbers and ( fk) be a sequence of modulus
functions in S.

(
SA

θ (I , F)
)
∩m (X) is a closed subset of m (X) if X is a Banach space where m(X) is the space

of all bounded sequences of X.

Proof. Suppose that (xn) ⊂
(
SA

θ (I , F)
)
∩ m (X) is a convergent sequence and it converges to

x ∈ m (X). We need to show that x ∈
(
SA

θ (I , F)
)
∩m (X). Assume that xn → Ln

(
SA

θ (I , F)
)
, ∀n ∈ N.

Take a sequence {εr}n∈N of strictly decreasing positive numbers converging to zero. We can find an
r ∈ N such that

∥∥x− xj
∥∥

∞ < εr
4 for all j ≥ r. Choose 0 < δ < 1

5 .
Now,

A =

{
r ∈ N :

1
hr

∣∣∣{k ∈ Ir : fk (|Ak (xn)− Ln|) ≥
εr

4

}∣∣∣ < δ

}
∈ F (I)

and

B =

{
r ∈ N :

1
hr

∣∣∣{k ∈ Ir : fk

(
|Ak

(
xn+1

)
− Ln+1|

)
≥ εr

4

}∣∣∣ < δ

}
∈ F (I) .

Since A ∩ B ∈ F (I) and ∅ /∈ F (I), we can choose r ∈ A ∩ B. Then,

1
hr

∣∣∣{k ∈ Ir : fk (|Ak (xn)− Ln|) ≥
εr

4
∨ fk

(
|Ak

(
xn+1

)
− Ln+1|

)
≥ εr

4

}∣∣∣ ≤ 2δ < 1.

Since hr → ∞ and A ∩ B ∈ F (I) is infinite, we can actually choose the above r so that
hr > 5. Hence, there must exist a k ∈ Ir for which we have simultaneously,

∣∣xn
k − Ln

∣∣ < εr
4 and∣∣∣xn+1

k − Ln+1

∣∣∣ < εr
4 .

Then, it follows that

|Ln − Ln+1| ≤
∣∣Ln − xn

k

∣∣+ ∣∣∣xn
k − xn+1

k

∣∣∣+ ∣∣∣xn+1
k − Ln+1

∣∣∣
≤

∣∣xn
k − Ln

∣∣+ ∣∣∣xn+1
k − Ln+1

∣∣∣+ ‖x− xn‖∞ +
∥∥x− xn+1

∥∥
∞

≤ εr
4 + εr

4 + εr
4 + εr

4 = εr.

This implies that {Ln}n∈N is a Cauchy sequence in X. Since X is a Banach space, we can write
Ln → L ∈ X as n → ∞. We shall prove that xk → L

(
SA

θ (I , F)
)
. Choose ε > 0 and r ∈ N such that

εr <
ε
4 , ‖x− xn‖∞ < ε

4 . Now, since

1
hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}|

≤ 1
hr
|{k ∈ Ir : fk (|Ak (x− xn) |) + fk (|Ak(xn)− Ln|) + fk (|Ln − L|) ≥ ε}|

≤ 1
hr

∣∣{k ∈ Ir : fk (|Ak(xn)− Ln|) ≥ ε
2
}∣∣ .

It follows that {
r ∈ N : 1

hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}| ≥ δ

}
⊂
{

r ∈ N : 1
hr

∣∣{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε
2
}∣∣ ≥ δ

}
for given δ > 0. This shows that xk → L

(
SA

θ (I , F)
)

and this completes the proof of the theorem.

Theorem 2. Let A = (aki) be an infinite matrix of complex numbers, θ = {kr} be a lacunary sequence and
( fk) be a sequence of modulus functions in S. Then, we have
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(i) If xk → L
(

NA
θ (I , F)

)
, then xk → L

(
SA

θ (I , F)
)

and NA
θ (I , F) ⊂ SA

θ (I , F) is proper for every ideal I ;
(ii) If x ∈ m (X), the space of all bounded sequences of X and xk → L

(
SA

θ (I , F)
)

, then xk →
L
(

NA
θ (I , F)

)
;

(iii) SA
θ (I , F) ∩m (X) = NA

θ (I , F) ∩m (X) .

Proof. (i) Let ε > 0 and xk → L
(

NA
θ (I , F)

)
. Then, we can write

∑
k∈Ir

fk (|Ak(x)− L|) ≥ ∑
k∈Ir

fk(|Ak(x)−L|)≥ε

fk (|Ak(x)− L|)

≥ ε |{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}| .

Thus, for given δ > 0,

1
hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}| ≥ δ =⇒ 1

hr
∑

k∈Ir

fk (|Ak(x)− L|) ≥ εδ,

i.e., {
r ∈ N :

1
hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}| ≥ δ

}
⊆
{

r ∈ N :
1
hr

∑
k∈Ir

fk (|Ak(x)− L|) ≥ εδ

}
.

Since xk → L
(

NA
θ (I , F)

)
, the set on the right-hand side belongs to I and so it follows that

xk → L
(
SA

θ (I , F)
)
.

To show that
(
SA

θ (I , F)
)
 
(

NA
θ (I , F)

)
, take a fixed K ∈ I . Define x = (xk) by

(xk) =


ku, for kr−1 < k ≤ kr−1 +

[√
hr
]

, r = 1, 2, 3..., r /∈ K,
ku, for kr−1 < k ≤ kr−1 +

[√
hr
]

, r = 1, 2, 3..., r ∈ K,
θ, otherwise,

where u ∈ X is a fixed element with ‖u‖ = 1 and θ is the null element of X. Then, x /∈ m (X) and for
every 0 < ε < 1 since

1
hr
|{k ∈ Ir : fk (|Ak(x)− 0|) ≥ ε}| =

[√
hr
]

√
hr
→ 0.

As r → ∞ and r /∈ K, for every δ > 0,{
r ∈ N :

1
hr
| {k ∈ Ir : fk (|Ak(x)− 0|) ≥ ε} | ≥ δ

}
⊂ M ∪ {1, 2, ..., m}

for some m ∈ N. Since I is admissible, it follows that xk → θ
(
SA

θ (I , F)
)
. Obviously,

1
hr

∑
k∈Ir

fk (|Ak(x)− θ|)→ ∞,

i.e., xk 9 θ
(

NA
θ (I , F)

)
. Note that, if K ∈ I is finite, then xk 9 θ

(
SA

θ

)
. This example shows that

AI -lacunary statistical convergence is more general than lacunary statistical convergence.
(ii) Suppose that x ∈ l∞ and xk → L

(
SA

θ (I , F)
)
. Then, we can assume that

fk (|Ak(x)− L|) ≤ M

for each x ∈ X and all k.
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Given ε > 0, we get

1
hr

∑
k∈Ir

fk (|Ak(x)− L|) =
1
hr

∑
k∈Ir

fk(|Akx−L|)≥ε

fk (|Ak(x)− L|)

+
1
hr

∑
k∈Ir

fk(|Akx−L|)<ε

fk (|Ak(x)− L|)

≤ M
hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}|+ ε.

Note that

A (ε) =

{
r ∈ N :

1
hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}| ≥ ε

M

}
∈ I .

If n ∈ (A (ε))c , then
1
hr

∑
k∈Ir

fk|Ak(x)− L| < 2ε.

Hence, {
r ∈ N :

1
hr

∑
k∈Ir

fk|Ak(x)− L| ≥ 2ε

}
⊂ A (ε)

and thus belongs to I . This shows that xk → L
(

NA
θ (I , F)

)
.

(iii) This is an immediate consequence of (i) and (ii).

Theorem 3. Let A = (aki) be an infinite matrix of complex numbers and ( fk) be a sequence of modulus
functions in S. If θ = {kr} is a lacunary sequence with lim infr qr > 1, then

xk → L
(

SA (I , F)
)
⇒ xk → L

(
SA

θ (I , F)
)

.

Proof. Suppose first that lim infr qr > 1, then there exists δ > 0 such that qr ≥ 1 + δ for sufficiently
large r, which implies that

hr

kr
≥ δ

1 + δ
.

If xk → L
(
SA

θ (I , F)
)
, then for every ε > 0, for each x ∈ X and for sufficiently large r, we have

1
kr
|{k ≤ kr : fk (|Ak(x)− L|) ≥ ε}| ≥ 1

kr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}|

≥ δ

1 + δ

1
hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}| .

Then, for any δ > 0, we get{
r ∈ N : 1

hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}| ≥ δ

}
⊆
{

r ∈ N : 1
kr
|{k ≤ kr : fk (|Ak(x)− L|) ≥ ε}| ≥ δα

(α+1)

}
∈ I .

This completes the proof.

For the next result, we assume that the lacunary sequence θ satisfies the condition that, for any set
C ∈ F (I), ∪ {n : kr−1 < n ≤ kr, r ∈ C} ∈ F (I).
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Theorem 4. Let A = (aki) be an infinite matrix of complex numbers and ( fk) be a sequence of modulus
functions in S. If θ = {kr} is a lacunary sequence with lim supr qr < ∞, then

xk → L
(

SA
θ (I , F)

)
implies xk → L

(
SA (I , F)

)
.

Proof. If lim supr qr < ∞, then, without any loss of generality, we can assume that there exists a
0 < M < ∞ such that qr < M for all r ≥ 1. Suppose that xk → L

(
SA

θ (I , F)
)
, and for ε, δ, δ1 > 0 define

the sets

C =

{
r ∈ N :

1
hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}| < δ

}
and

T =

{
n ∈ N :

1
n
|{k ≤ n : fk (|Ak(x)− L|) ≥ ε}| < δ1

}
.

It is obvious from our assumption that C ∈ F (I), the filter associated with the ideal I .
Further observe that

Kj =
1
hj

∣∣{k ∈ Ij : fk (|Ak(x)− L|) ≥ ε
}∣∣ < δ

for all j ∈ C. Let n ∈ N be such that kr−1 < n ≤ kr for some r ∈ C. Now,

1
n
|{k ≤ n : fk|Ak (x)− L| ≥ ε}| ≤ 1

kr−1
|{k ≤ kr : fk (|Ak(x)− L|) ≥ ε}|

=
1

kr−1
{|{k ∈ I1 : fk (|Ak(x)− L|) ≥ ε}|}

+
1

kr−1
{|{k ∈ I2 : fk (|Akx− L|) ≥ ε}|}

+... +
1

kr−1
{|{k ∈ Ir : fk|Ak(x)− L| ≥ ε}|}

=
k1

kr−1

1
h1
|{k ∈ I1 : fk|Ak(x)− L| ≥ ε}|

+
k2 − k1

kr−1

1
h2
|{k ∈ I2 : fk (|Ak(x)− L|) ≥ ε}|

+... +
kr − kr−1

kr−1

1
hr
|{k ∈ Ir : fk (|Ak(x)− L|) ≥ ε}|

=
k1

kr−1
K1 +

k2 − k1

kr−1
K2 + ... +

kr − kr−1

kr−1
Kr

≤
{

supj∈C Kj

} kr

kr−1
< Mδ.

Choosing δ1 =
δ

M
and in view of the fact that ∪ {n : kr−1 < n ≤ kr, r ∈ C} ⊂ T where C ∈ F (I) ,

it follows from our assumption on θ that the set T also belongs to F (I) and this completes the proof
of the theorem.

Combining Theorems 3 and 4, we get the following theorem.
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Theorem 5. Let A = (aki) be an infinite matrix of complex numbers and ( fk) be a sequence of modulus
functions in S. If θ = {kr} is a lacunary sequence with 1 < lim infr qr ≤ lim supr qr < ∞, then

xk → L
(

SA
θ (I , F)

)
= xk → L

(
SA

θ (I , F)
)

.

4. Cesàro Summability for AI

Definition 8. Let A = (aki) be an infinite matrix of complex numbers and ( fk) be a sequence of modulus
functions in S. A sequence x = (xk) is said to be AI -Cesàro summable to L if, for each ε > 0 and for each
x ∈ X, {

n ∈ N :

∣∣∣∣∣ 1n n

∑
k=1

fk (Ak (x)− L)

∣∣∣∣∣ ≥ ε

}
∈ I .

In this case, we write xk → L
(
(σ1)

A
θ (I , F)

)
.

Definition 9. Let A = (aki) be an infinite matrix of complex numbers and ( fk) be a sequence of modulus
functions in S. A sequence x = (xk) is said to be strongly AI -Cesàro summable to L if, for each ε > 0 and for
each x ∈ X, {

n ∈ N :
1
n

n

∑
k=1

fk (|Ak (x)− L|) ≥ ε

}
∈ I .

In this case, we write xk → L
(
|σ1|Aθ (I , F)

)
.

Theorem 6. Let θ be a lacunary sequence. If lim infr qr > 1, then

xk → L
(
|σ1|Aθ (I , F)

)
⇒ xk → L

(
NA

θ (I , F)
)

.

Proof. If lim infr qr > 1, then there exists δ > 0 such that qr ≥ 1 + δ for all r ≥ 1. Since hr = kr − kr−1,

we have
kr

hr
≤ 1 + δ

δ
and

kr−1

hr
≤ 1

δ
. Let ε > 0 and define the set

S =

{
kr ∈ N :

1
kr

kr

∑
k=1

fk (|Ak (x)− L|) < ε

}
.

We can easily say that S ∈ F (I), which is a filter of the ideal I ,

1
hr

∑
k∈Ir

fk (|Ak (x)− L|) = 1
hr

kr
∑

k=1
fk (|Ak (x)− L|)− 1

hr

kr−1

∑
k=1

fk (|Ak (x)− L|)

= kr
hr

1
kr

kr
∑

k=1
fk (|Ak (x)− L|)− kr−1

hr
1

kr−1

kr−1

∑
k=1

fk (|Ak (x)− L|)

≤
(

1 + δ

δ

)
ε− 1

δ
ε′

for each kr ∈ S. Choose η =

(
1 + δ

δ

)
ε− 1

δ
ε′. Therefore,

{
r ∈ N :

1
hr

∑
k∈Ir

fk (|Ak (x)− L|) < η

}
∈ F (I),

and it completes the proof.
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Theorem 7. Let A = (aki) be an infinite matrix of complex numbers and ( fk) be a sequence of modulus
functions in S. If (xk) ∈ m (X) and xk → L

(
SA

θ (I , F)
)
, then xk → L

(
(σ1)

A
θ (I , F)

)
.

Proof. Suppose that (xk) ∈ m (X) and xk → L
(
SA

θ (I , F)
)
. Then, we can assume that

fk (|Akx− L|) ≤ M

for all k ∈ N. In addition, for each ε > 0, we can write∣∣∣∣ 1n n
∑

k=1
fk (Ak (x)− L)

∣∣∣∣ ≤ 1
n

n
∑

k=1
fk (|Ak (x)− L|)

≤ 1
n

n
∑

k=1
fk(|Ak(x)−L|)≥ ε

2

fk (|Ak (x)− L|)

+
1
n

n
∑

k=1
fk(|Ak(x)−L|)< ε

2

fk (|Ak (x)− L|)

≤ M
1
n
|{k ≤ n : fk (|Ak (x)− L|) ≥ ε}|+ ε.

Consequently, if δ > ε > 0, δ and ε are independent, and, putting δ1 = δ− ε > 0, we have{
n ∈ N :

∣∣∣∣∣ 1n n
∑

k,l=1
fk (Ak (x)− L)

∣∣∣∣∣ ≥ δ

}

⊆
{

n ∈ N : 1
n |{k ≤ n : fk (|Ak (x)− L|) ≥ ε}| ≥ δ1

M

}
∈ I .

This shows that xk → L
(
(σ1)

A
θ (I , F)

)
.

Theorem 8. Let θ be a lacunary sequence. If lim supr qr < ∞, then

xk → L
(

NA
θ (I , F)

)
⇒ xk → L

(
|σ1|Aθ (I , F)

)
.

Proof. If lim supr qr < ∞, then there exists M > 0 such that qr < M for all r ≥ 1. Let xk →
L
(

NA
θ (I , F)

)
and define the sets T and R such that

T =

{
r ∈ N :

1
hr

∑
k∈Ir

fk (|Ak (x)− L|) < ε1

}

and

R =

{
n ∈ N :

1
n

n

∑
k=1

fk (|Ak (x)− L|) < ε2

}
.

Let
Aj =

1
hj

∑
k∈Ij

fk (|Ak (x)− L|) < ε1
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for all j ∈ T. It is obvious that T ∈ F (I). Choose n as being any integer with kr−1 < n < kr, where
r ∈ T,

1
n

n
∑

k=1
fk (|Ak (x)− L|) ≤ 1

kr−1

kr
∑

k=1
fk (|Ak (x)− L|)

= 1
kr−1

(
∑

k∈I1

fk (|Ak (x)− L|) + ∑
k∈I2

fk (|Ak (x)− L|)

+... + ∑
k∈Ir

fk (|Ak (x)− L|)
)

= k1
kr−1

(
1
h1

∑
k∈I1

fk (|Ak (x)− L|)
)
+ k2−k1

kr−1

(
1
h2

∑
k∈I2

fk (|Ak (x)− L|)
)

+... + kr−kr−1
kr−1

(
1
hr

∑
k∈Ir

fk (|Ak (x)− L|)
)

= k1
kr−1

A1 +
k2−k1
kr−1

A2 + ... + kr−kr−1
kr−1

Ar

≤
(

supj∈T Aj

)
k1

kr−1

< ε1M.

Choose ε2 = ε1
M and in view of the fact that ∪ {n : kr−1 < n < kr, r ∈ T} ⊂ R, where T ∈ F (I),

ıt follows from our assumption on θ that the set R also belongs to F (I) and this completes the proof
of the theorem.

Theorem 9. If xk → L
(
|σ1|Aθ (I , F)

)
, then xk → L

(
SA (I , F)

)
.

Proof. Let xk → L
(
|σ1|Aθ (I , F)

)
and ε > 0 is given. Then,

n
∑

k=1
fk (|Ak (x)− L|) ≥

n
∑

k=1
fk(|Ak x−L|)≥ε

fk (|Ak (x)− L|)

≥ ε |{k ≤ n : fk (|Ak (x)− L|) ≥ ε}|

and so
1
εn

n

∑
k=1

fk (|Ak (x)− L|) ≥ 1
n
|{k ≤ n : fk (|Ak (x)− L|) ≥ ε}| .

Thus, for a given δ > 0,{
n ∈ N :

1
n
|{k ≤ n : fk (|Ak (x)− L|) ≥ ε}| ≥ δ

}

⊆
{

n ∈ N :
1
n

n
∑

k=1
fk (|Ak (x)− L|) ≥ εδ

}
∈ I .

Therefore, xk → L
(
SA (I , F)

)
.
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Theorem 10. Let (xk) ∈ m (X). If xk → L
(
SA (I , F)

)
. Then, xk → L

(
|σ1|Aθ (I , F)

)
.

Proof. Suppose that (xk) is bounded and xk → L
(
SA (I , F)

)
. Then, there is an M such that

fk (|Ak (x)− L|) ≤ M for all k. Given ε > 0, we have

1
n

n
∑

k=1
fk (|Ak (x)− L|) =

1
n

n
∑

k=1
fk(|Ak(x)−L|)≥ε

fk (|Ak (x)− L|)

+
1
n

n
∑

k=1
fk(|Ak(x)−L|)<ε

fk (|Ak (x)− L|)

≤ 1
n

M |{k ≤ n : fk (|Ak (x)− L|) ≥ ε}|

+
1
n

ε |{k ≤ n : fk (|Ak (x)− L|) < ε}|

≤ M
n
|{k ≤ n : fk (|Ak (x)− L|) ≥ ε}|+ ε.

Then, for any δ > 0,{
n ∈ N :

1
n

n
∑

k=1
fk (|Ak (x)− L|) ≥ δ

}

⊆
{

n ∈ N :
1
n
|{k ≤ n : fk (|Ak (x)− L|) ≥ ε}| ≥ δ

M

}
∈ I .

Therefore, xk → L
(
|σ1|Aθ (I , F)

)
.

5. Conclusions

I-statistical convergence gained a different perspective after identification of the AI -statistical
convergence with an infinite matrix of complex numbers. Some authors have studied this new method
with different sequences. Our results in this paper were developed with lacunary sequences. By also
using a modulus function, we obtain more interesting and general results. These definitions can be
adapted to many different concepts such as random variables in order to have different results.
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