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1. Introduction

In recent years, fractional order calculus has been one of the most rapidly developing areas of
mathematical analysis. In fact, a natural phenomenon may depend not only on the time instant but also
on the previous time history, which can be successfully modeled by fractional calculus. Fractional-order
differential equations are naturally related to systems with memory, as fractional derivatives are usually
nonlocal operators. Thus fractional differential equations (FDEs) play an important role because of
their application in various fields of science, such as mathematics, physics, chemistry, optimal control
theory, finance, biology, engineering and so on [1–7].

It is of importance to find efficient methods for solving FDEs. More recently, much attention
has been paid to the solutions of FDEs using various methods, such as the Adomian decomposition
method (2005) [8], the first integral method (2014) [9], the Lie group theory method (2012, 2015) [10,11],
the homotopy analysis method (2016) [12], the inverse differential operational method (2016) [13–15],
the F-expansion method (2017) [16], M-Wright transforms (2017) [17], exponential differential operators
(2017, 2018) [18,19], and so on. In reality, the finding of exact solutions of the FDEs is hard work and
remains a problem.

Recently, investigations have shown that a new method based on the invariant subspace provides
an effective tool to find the exact solution of FDEs. This method was initially proposed by Galaktionov
and Svirshchevskii (1995, 1996, 2007) [20–22]. The invariant subspace method was developed by Later
Gazizov and Kasatkin (2013) [23], Harris and Garra (2013, 2014) [24,25], Sahadevan and Bakkyaraj
(2015) [26], and Ouhadan and El Kinani (2015) [27].

In 2016, R. Sahadevan and P. Prakash [28] showed how the invariant subspace method could
be extended to time fractional partial differential equations (FPDEs) and could construct their
exact solutions.
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∂αu
∂tα = F̂[u], α > 0

where ∂α

∂tα (·) is a fractional time derivative in the Caputo sense, and F̂[u] is a nonlinear differential
operator of order k.

In 2016, S. Choudhary and V. Daftardar-Gejji [29] developed the invariant subspace method for
deriving exact solutions of partial differential equations with fractional space and time derivatives.

(λ0
∂α

∂tα
+ λ1

∂α+1

∂tα+1 + · · ·+ λm
∂α+m

∂tα+m ) f (x, t) = N(x, f ,
∂β f
∂xβ

,
∂β+1 f
∂xβ+1 , · · · ,

∂β+n f
∂xβ+n )

where N[ f ] is the linear/nonlinear differential operator; ∂α+j f
∂tα+j , j = 0, 1, · · · , m and ∂β+i f

∂xβ+i , i = 0, 1, · · · , n
are Caputo time derivatives and Caputo space derivatives, respectively; 0 < α, β ≤ 1 and λi ∈ R.

In 2017, K.V. Zhukovsky [30] used the inverse differential operational method to obtain solutions
for differential equations with mixed derivatives of physical problems.

Motivated by the above results, in this paper, we develop the invariant subspace method for
finding exact solutions to some nonlinear partial differential equations with fractional-order mixed
partial derivatives (including both fractional space derivatives and time derivatives).

(λ0
∂α

∂tα
+ λ1

∂α+1

∂tα+1 + · · ·+ λm
∂α+m1

∂tα+m1
) f (x, t) = N(x, f ,

∂β f
∂xβ

,
∂β+1 f
∂xβ+1 , · · · ,

∂β+m2 f
∂xβ+m2

) + µ
∂α

∂tα
(

∂β f
∂xβ

)

where f = f (x, t), N[ f ] is a linear/nonlinear differential operator; ∂α+j f
∂tα+j , j = 0, 1, · · · , m1, m1 ∈ N and

∂β+i f
∂xβ+i , i = 0, 1, · · · , m2, m2 ∈ N are Caputo time derivatives and Caputo space derivatives, respectively;
∂α

∂tα (
∂β f
∂xβ ) is the Caputo mixed partial derivative of space and time; k1 < α ≤ k1 + 1, k2 < β ≤ k2 + 1,

k1, k2 ∈ N and λi, µ ∈ R.
Using the invariant subspace method, the FPDEs are reduced to the systems of FDEs that can be

solved by familiar analytical methods.
The rest of this paper is organized as follows. In Section 2, the preliminaries and notations are

given. In Section 3, we develop the invariant subspace method for solving fractional space and time
derivative nonlinear partial differential equations with fractional-order mixed derivatives. In Section 4,
illustrative examples are given to explain the applicability of the method. Initial value problems are
considered. Finally in Section 5, we give conclusions.

2. Preliminaries and Notation

In this section, we recall some standard definitions and notation.

Definition 1. (See [7]) The Riemann–Liouville fractional integral of order α and function f is defined as

Iα f (t) =
1

Γ(α)

∫ t

0

f (x)
(t− x)1−α

dx, t > 0

Definition 2. (See [7]) The Caputo fractional derivative of order α and function f is defined as

dα f (t)
dtα

= In−αDn f (t) =

{
1

Γ(n−α)

∫ t
0

f (n)(x)
(t−x)α−n+1 dx, n− 1 < α < n

f (n)(t), α = n, n ∈ N
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The Riemann–Liouville fractional integral and the Caputo fractional derivative satisfy the
following properties [3]:

Iαtβ =
Γ(β + 1)

Γ(β + α + 1)
tβ+α, α > 0, β > −1, t > 0

dαtβ

dtα
=

{
0, dαe = n, β ∈ {0, 1, 2, · · · , n− 1}

Γ(β+1)tβ−α

Γ(β−α+1) , dαe = n, β ∈ N, andβ ≥ n; orβ /∈ N, andβ > n− 1

Iα(
dα f (t)

dtα
) = f (t)−

n−1

∑
k=0

dk f (0)
dtk

tk

k!
, n− 1 < α < n, t > 0

Definition 3. (See [7]) A two-parametric Mittag–Leffler function is defined as

Eα,β(z) =
∞

∑
k=0

zk

Γ(kα + β)
, α, β ∈ C, R(α), R(β) > 0

noting that Eα,1(z) = Eα(z).

Derivatives of the Mittag–Leffler function are given as

E(n)
α,β (z) =

dn

dzn Eα,β(z) =
∞

∑
k=0

(k + n)!zk

k!Γ(αk + αn + β)
, n = 0, 1, 2, · · ·

dγ

dtγ
(tβ−1Eα,β(atα)) = tβ−γ−1Eα,β−γ(atα), α, γ > 0, a ∈ R

dα

dtα
(Eα(atα)) = aEα(atα), α > 0, a ∈ R

The Laplace transform of the αth order Caputo derivative is

T{dα f (t)
dtα

; s} = sα f̃ (s)−
n−1

∑
k=0

sα−k−1 f (k)(0), n− 1 < α < n, n ∈ N, R(s) > 0

where
f̃ (s) = T{ f (t); s} =

∫ ∞
0 e−st f (t)dt, s ∈ R

The Laplace transform of the function tαn+β−1E(n)
α,β (±atα) is as follows [9]:

T{tαn+β−1E(n)
α,β (±atα); s} = n!sα−β

(sα ∓ a)n+1 , R(s) > |a| 1α , n = 0, 1, 2, · · ·

We let In be the n-dimensional linear space over R. It is spanned by n linearly independent
functions ϕ0(x), ϕ1(x), · · · , ϕn−1(x):

In = L{ϕ0(x), ϕ1(x), · · · , ϕn−1(x)} = {
n−1

∑
i=0

ki ϕi(x)|ki ∈ R, i = 0, 1, · · · , n− 1}

We let M be a differential operator; if M[ f ] ∈ In, ∀ f ∈ In, then a finite-dimensional linear space In

is invariant with respect to a differential operator M.

3. Invariant Subspace Method; Fractional Partial Differential Equations with Fractional-Order
Mixed Partial Derivative

The FPDE with fractional-order mixed partial derivative is as follows:
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(λ0
∂α

∂tα
+ λ1

∂α+1

∂tα+1 + · · ·+ λm1

∂α+m1

∂tα+m1
) f = N[ f ] + µ

∂α

∂tα
(

∂β

∂xβ
f ) (1)

where

f = f (x, t), N[ f ] = N(x, f ,
∂β

∂xβ
f ,

∂β+1

∂xβ+1 f , · · · ,
∂β+m2

∂xβ+m2
f )

Here, ∂α+j f
∂tα+j , j = 0, 1, · · · , m1; m1 ∈ N and ∂β+i f

∂xβ+i , i = 0, 1, · · · , m2; m2 ∈ N are Caputo time derivatives

and Caputo space derivatives respectively; ∂α

∂tα (
∂β

∂xβ f ) is the Caputo mixed partial derivative of space
and time; k1 < α ≤ k1 + 1, k2 < β ≤ k2 + 1 , k1, k2 ∈ N and λi, µ ∈ R.

Theorem 1. Suppose In+1 = L{ϕ0(x), ϕ1(x), · · · , ϕn(x)} is a finite-dimensional linear space, and it is
invariant with respect to the operators N[ f ] and ∂β

∂xβ f ; then FPDE (1) has an exact solution as follows:

f (x, t) =
n

∑
i=0

ki(t)ϕi(x) (2)

where {ki(t)} satisfies the following system of FDEs:

m1

∑
j=0

λj
dα+jki(t)

dtα+j − µ
dαψn+1+i(k0(t), k1(t), · · · , kn(t))

dtα
= ψi(k0(t), k1(t), · · · , kn(t)) (3)

Here i = 0, 1, · · · , n, {ψ0, ψ1, · · · , ψn} are the expansion coefficients of N[ f ] with respect to
{ϕ0(x), ϕ1(x), · · · , ϕn(x)}; {ψn+1, ψn+2, · · · , ψ2n+1} are the expansion coefficients of ∂β

∂xβ f with respect
to {ϕ0(x), ϕ1(x), · · · , ϕn(x)} .

Proof. Using Equation (2) and the linearity of Caputo fractional derivatives, we obtain

m1

∑
j=0

λj
∂α+j f (x, t)

∂tα+j =
m1

∑
j=0

λj
∂α+j

∂tα+j (
n

∑
i=0

ki(t)ϕi(x)) =
n

∑
i=0

(
m1

∑
j=0

λj
dα+jki(t)

dtα+j )ϕi(x) (4)

Further, as In+1 is an invariant space under the operator N[ f ] and ∂β

∂xβ f , there exist 2n+ 2 functions
ψ0, ψ1, · · · , ψn; ψn+1, ψn+2, · · · , ψ2n+1 such that

N(
n

∑
i=0

ki(t)ϕi(x)) =
n

∑
i=0

ψi(k0(t), k1(t), · · · , kn(t))ϕi(x) (5)

∂β

∂xβ
f (x, t) =

n

∑
i=0

ψn+1+i(k0(t), k1(t), · · · , kn(t))ϕi(x) (6)

where {ψ0, ψ1, · · · , ψn} are the expansion coefficients of N[ f ] with respect to {ϕ0(x), ϕ1(x), · · · , ϕn(x)};
{ψn+1, ψn+2, · · · , ψ2n+1} are the expansion coefficients of ∂β

∂xβ f with respect to {ϕ0(x), ϕ1(x), · · · , ϕn(x)}.
In view of Equations (2), (5) and (6),

N[ f (x, t)] + µ ∂α

∂tα (
∂β

∂xβ f (x, t))

=
n
∑

i=0
ψi(k0(t), k1(t), · · · , kn(t))ϕi(x) + µ ∂α

∂tα (
n
∑

i=0
ψn+1+i(k0(t), k1(t), · · · , kn(t))ϕi(x))

=
n
∑

i=0
ψi(k0(t), k1(t), · · · , kn(t))ϕi(x) + µ(

n
∑

i=0

dαψn+1+i(k0(t),k1(t),··· ,kn(t))
dtα ϕi(x))

=
n
∑

i=0
(ψi(k0(t), k1(t), · · · , kn(t))ϕi(x) + µ

dαψn+1+i(k0(t),k1(t),··· ,kn(t))
dtα ϕi(x)))

(7)
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Equations (4) and (7) are substituted in Equation (1) to obtain

n
∑

i=0
(

m1
∑

j=0
λj

dα+jki(t)
dtα+j − ψi(k0(t), k1(t), · · · , kn(t))− µ

dαψn+1+i(k0(t),k1(t),··· ,kn(t))
dtα )ϕi(x)

= 0
(8)

Using Equation (8) and the fact that ϕ0(x), ϕ1(x), · · · , ϕn(x) are linearly independent, we have
the system of FDEs that follows:

m1

∑
j=0

λj
dα+jki(t)

dtα+j − µ
dαψn+1+i(k0(t), k1(t), · · · , kn(t))

dtα
= ψi(k0(t), k1(t), · · · , kn(t)) (9)

where i = 0, 1, · · · , n.

If FPDE (1) satisfies the conditions of Theorem 1, then FPDE (1) has a particular solution given by
Equation (2).

We consider the following FPDE:

(λ1
∂α

∂tα + λ2
∂2α

∂t2α + · · ·+ λm1
∂m1α

∂tm1α ) f = N[ f ] + µ ∂α

∂tα (
∂β

∂xβ f )

= N[x, f , ∂β

∂xβ f , ∂2β

∂x2β f , · · · , ∂m2β

∂xm2β f ] + µ ∂α

∂tα (
∂β

∂xβ f )
(10)

where f = f (x, t), N[ f ] is a linear/nonlinear differential operator; ∂jα f
∂tjα , j = 1, 2, · · · , m1; m1 ∈ N and

∂iβ f
∂xiβ , i = 1, 2, · · · , m2; m2 ∈ N are Caputo time derivatives and Caputo space derivatives, respectively;
k1 < α ≤ k1 + 1, k2 < β ≤ k2 + 1 , k1, k2 ∈ N and λi, µ ∈ R.

Theorem 2. Suppose In = L{ϕ1(x), ϕ2(x), · · · , ϕn(x)} is a finite-dimensional linear space, and it is invariant
with respect to the operator N[ f ] and ∂β

∂xβ f ; then FPDE (10) has an exact solution as follows:

f (x, t) =
n

∑
i=1

ki(t)ϕi(x) (11)

where {ki(t)} satisfy the following system of FDEs:

m1

∑
j=1

λj
djαki(t)

dtjα − µ
dαψn+i(k1(t), k2(t), · · · , kn(t))

dtα
= ψi(k1(t), k2(t), · · · , kn(t)) (12)

Here, i = 1, 2, · · · , n, {ψ1, ψ2, · · · , ψn} are the expansion coefficients of N[ f ] with respect to
{ϕ1(x), ϕ2(x), · · · , ϕn(x)}; {ψn+1, ψn+2, · · · , ψ2n} are the expansion coefficients of ∂β

∂xβ f with respect to
{ϕ1(x), ϕ2(x), · · · , ϕn(x)}.

Proof. Using Equation (11) and the linearity of Caputo fractional derivatives, we obtain

m1

∑
j=1

λj
∂jα f (x, t)

∂tjα =
m1

∑
j=1

λj
∂jα

∂tjα (
n

∑
i=1

ki(t)ϕi(x)) =
n

∑
i=1

(
m1

∑
j=1

λj
djαki(t)

dtjα )ϕi(x) (13)

Further, as In is an invariant space under the operator N[ f ] and ∂β

∂xβ f , there exist 2n functions
ψ1, ψ2, · · · , ψn; ψn+1, ψn+2, · · · , ψ2n such that

N(
n

∑
i=1

ki(t)ϕi(x)) =
n

∑
i=1

ψi(k1(t), k2(t), · · · , kn(t))ϕi(x) (14)
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∂β

∂xβ
f (x, t) =

n

∑
i=1

ψn+i(k1(t), k2(t), · · · , kn(t))ϕi(x) (15)

where {ψ1, ψ2, · · · , ψn} are the expansion coefficients of N[ f ] with respect to {ϕ1(x), ϕ2(x), · · · , ϕn(x)};
{ψn+1, ψn+2, · · · , ψ2n} are the expansion coefficients of ∂β

∂xβ f with respect to {ϕ1(x), ϕ2(x), · · · , ϕn(x)}.
In view of Equations (11), (14) and (15),

N[ f (x, t)] + µ ∂α

∂tα (
∂β

∂xβ f (x, t))

=
n
∑

i=1
(ψi(k1(t), k2(t), · · · , kn(t))ϕi(x) + µ

dαψn+i(k1(t),k2(t),··· ,kn(t))
dtα ϕi(x))

(16)

Equations (13) and (16) are substituted into Equation (10), to obtain

n
∑

i=1
(

m1
∑

j=1
λj

djαki(t)
dtjα − ψi(k1(t), k2(t), · · · , kn(t))− µ

dαψn+i(k1(t),k2(t),··· ,kn(t))
dtα )ϕi(x)

= 0
(17)

Using Equation (17) and the fact that ϕ1(x), ϕ2(x), · · · , ϕn(x) are linearly independent, we have
the system of FDEs as follows:

m1

∑
j=1

λj
djαki(t)

dtjα − µ
dαψn+i(k1(t), k2(t), · · · , kn(t))

dtα
= ψi(k1(t), k2(t), · · · , kn(t)) (18)

here i = 0, 1, · · · , n.

Remark: Theorems 1 and 2 in [27] are special cases of our results for µ = 0.

4. Illustrative Examples

In this section, we give several examples to illustrate Theorems 1 and 2.

Example 1. The fractional diffusion equation is as follows:

∂α f
∂tα

= C
∂β f
∂xβ

+ µ
∂α

∂tα
(

∂β

∂xβ
f ) (19)

where C = constant.

Diffusion is a process in which molecules move around until they are evenly spread out in the
area. For α > 1, the phenomenon is referred to as super-diffusion, and for α = 1, it is called normal
diffusion, whereas α < 1 describes subdiffusion.

We consider two cases of Equation (19): case 1: α ∈ (0, 1], β ∈ (1, 2]; case 2: α ∈ (1, 2], β ∈ (1, 2].
Case 1: α ∈ (0, 1], β ∈ (1, 2].

The subspace I2 = L{1, xβ} is invariant under N[ f ] = C ∂β f
∂xβ and ∂β

∂xβ f as

N[k0 + k1xβ] = Ck1Γ(β + 1) ∈ I2

∂β(k0 + k1xβ)

∂xβ
= k1Γ(β + 1) ∈ I2

It follows from Theorem 1 applied to Equation (19) that Equation (19) has the exact solution
that follows:

f (x, t) = k0(t) + k1(t)xβ (20)
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where k0(t) and k1(t) satisfy the system of FDEs as follows:

dαk0(t)
dtα

− dαk1(t)
dtα

µCΓ(β + 1) = k1(t)CΓ(β + 1) (21)

dαk1(t)
dtα

= 0 (22)

Solving the above FDE (22), we obtain

k1(t) = b (23)

Substituting Equation (23) into Equation (21), we obtain

dαk0(t)
dtα

= bCΓ(β + 1) (24)

Then

k0(t) = a +
bCΓ(β + 1)

Γ(α + 1)
tα (25)

Substituting Equations (23) and (25) into Equation (19), we obtain Equation (19) with the solution
as follows:

f (x, t) = a +
bCΓ(β + 1)

Γ(α + 1)
tα + bxβ (26)

where a and b are arbitrary constants.

It is clearly verified that the subspace I3 = L{1, xβ, x2β} is invariant under N[ f ] = C ∂β f
∂xβ and

∂β

∂xβ f as

N[k0 + k1xβ + k2x2β] = Ck1Γ(β + 1) + Ck2
Γ(2β + 1)
Γ(β + 1)

xβ ∈ I3

∂β(k0 + k1xβ + k2x2β)

∂xβ
= k1Γ(β + 1) + k2

Γ(2β + 1)
Γ(β + 1)

xβ ∈ I3

We let Equation (19) have the exact solution that follows:

f (x, t) = k0(t) + k1(t)xβ + k2(t)x2β (27)

where k0(t), k1(t) and k2(t) satisfy the system of FDEs as follows:

dαk0(t)
dtα

− µ
dαk1(t)

dtα
Γ(β + 1) = CΓ(β + 1)k1(t) (28)

dαk1(t)
dtα

− µ
dαk2(t)

dtα

Γ(2β + 1)
Γ(β + 1)

=
CΓ(2β + 1)

Γ(β + 1)
k2(t) (29)

dαk2(t)
dtα

= 0 (30)

Equation (30) implies that k2(t) = a2. Thus Equation (29) takes the form

dαk1(t)
dtα

=
a2CΓ(2β + 1)

Γ(β + 1)



Axioms 2018, 7, 10 8 of 18

which has the following solution:

k1(t) = a1 +
a2CΓ(2β + 1)

Γ(β + 1)
tα

Similarly, Equation (28) yields

k0(t) = a0 +
a1CΓ(β + 1)2 + a2µCΓ(2β + 1)

Γ(α + 1)Γ(β + 1)
tα +

a2C2Γ(2β + 1)
Γ(2α + 1)

t2α

Thus, Equation (19) has the following solution:

f (x, t) = (a0 +
a1CΓ(β+1)2+a2µCΓ(2β+1)

Γ(α+1)Γ(β+1) tα + a2C2Γ(2β+1)
Γ(2α+1) t2α)

+(a1 +
a2CΓ(2β+1)

Γ(β+1) tα)xβ + a2x2β
(31)

where a0, a1 and a2 are arbitrary constants.
It can be easily verified that I2 = L{1, Eβ(xβ)} is also an invariant subspace with respect to

N[ f ] = C ∂β f
∂xβ and ∂β

∂xβ f , as

N[k0 + k1Eβ(xβ)] = C
∂β

∂xβ
(k0 + k1Eβ(xβ)) = Ck1Eβ(xβ) ∈ I2

∂β(k0 + k1Eβ(xβ))

∂xβ
= k1Eβ(xβ) ∈ I2

We consider the exact solution of the form

f (x, t) = k0(t) + k1(t)Eβ(xβ)

where k0(t) and k1(t) satisfy the following system of FDEs:

dαk0(t)
dtα

= 0 (32)

(1− µC)dαk1(t)
dtα

= Ck1(t) (33)

Clearly, k0(t) = a. Solving Equation (33) with the Laplace transform method, we obtain
the following:

If µC 6= 1,

k1(t) = bEα(
C

1− µC
tα)

Thus Equation (19) has the exact solution that follows:

f (x, t) = a + bEα(
C

1− µC
tα)Eβ(xβ) (34)

where a and b are arbitrary constants.
We find that Equations (26), (31) and (34) are distinct particular solutions of Equation (19)

under distinct invariant subspaces. Subspace In+1 = L{1, xβ, x2β, · · · , xnβ}, n ∈ N is invariant under

N[ f ] = C ∂β f
∂xβ and ∂β

∂xβ f , as

N[k0 + k1xβ + · · ·+ knxnβ] = Ck1Γ(β + 1) + Ck2Γ(2β+1)
Γ(β+1) xβ + · · ·+ CknΓ(nβ+1)

Γ((n−1)β+1) x(n−1)β

∈ In+1
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Thus we obtain infinitely many invariant subspaces for Equation (19), which in turn yield infinitely
many particular solutions.

Case 2: α ∈ (1, 2], β ∈ (1, 2].

Clearly, subspace I3 = L{1, xβ, x2β} is an invariant subspace under N[ f ] = C ∂β f
∂xβ and ∂β

∂xβ f , as

N[k0 + k1xβ + k2x2β] = Ck1Γ(β + 1) + Ck2
Γ(2β + 1)
Γ(β + 1)

xβ ∈ I3

∂β(k0 + k1xβ + k2x2β)

∂xβ
= k1Γ(β + 1) + k2

Γ(2β + 1)
Γ(β + 1)

xβ ∈ I3

We look for the exact solution that follows:

f (x, t) = k0(t) + k1(t)xβ + k2(t)x2β

where k0(t), k1(t) and k2(t) are unknown functions to be determined; k0(t), k1(t) and k2(t) satisfy the
system of FDEs as follows:

dαk0(t)
dtα

− µ
dαk1(t)

dtα
Γ(β + 1) = CΓ(β + 1)k1(t) (35)

dαk1(t)
dtα

− µ
dαk2(t)

dtα

Γ(2β + 1)
Γ(β + 1)

=
CΓ(2β + 1)

Γ(β + 1)
k2(t) (36)

dαk2(t)
dtα

= 0 (37)

Solving Equations (35)–(37), we obtain

k2(t) = d1 + d2t

k1(t) = b1 + b2t +
Cd1Γ(2β + 1)

Γ(β + 1)Γ(α + 1)
tα +

Cd2Γ(2β + 1)
Γ(β + 1)Γ(α + 2)

tα+1

k0(t) = a1 + a2t + Cb1Γ(β+1)+µCd2Γ(2β+1)
Γ(α+1) tα + Cb2Γ(β+1)+µCd2Γ(2β+1)

Γ(α+2) tα+1 + C2d1Γ(2β+1)
Γ(2α+1) t2α

+ C2d2Γ(2β+1)
Γ(2α+2) t2α+1

Then, we obatin the exact solution of Equation (19) as

f (x, t) = (a1 + a2t + Cb1Γ(β+1)+µCd2Γ(2β+1)
Γ(α+1) tα + Cb2Γ(β+1)+µCd2Γ(2β+1)

Γ(α+2) tα+1 + C2d1Γ(2β+1)
Γ(2α+1) t2α

+ C2d2Γ(2β+1)
Γ(2α+2) t2α+1) + (b1 + b2t + Cd1Γ(2β+1)

Γ(β+1)Γ(α+1) tα + Cd2Γ(2β+1)
Γ(β+1)Γ(α+2) tα+1)xβ + (d1 + d2t)x2β

where a1, a2, b1, b2, d1 and d2 are arbitrary constants.
When α and β are other numbers, we can similarly obtain the exact solution of Equation (19).
Next, we find the closed-form solutions of FPDEs satisfying initial conditions using the invariant

subspace method.

Example 2. We have the following FPDE with the initial condition as follows:

∂α f
∂tα

= (
∂β f
∂xβ

)2 − f (
∂β f
∂xβ

) + µ
∂α

∂tα
(

∂β

∂xβ
f ), α, β ∈ (0, 1] (38)

f (x, 0) = 3 +
5
2

Eβ(xβ) (39)
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The subspace I2 = L{1, Eβ(xβ)} is invariant under N[ f ] = ( ∂β f
∂xβ )

2 − f ( ∂β f
∂xβ ) and ∂β

∂xβ f , as

N[k0 + k1Eβ(xβ)] = (k1Eβ(xβ))2 − (k0 + k1Eβ(xβ))k1Eβ(xβ) = −k0k1Eβ(xβ) ∈ I2

∂β(k0 + k1Eβ(xβ))

∂xβ
= k1Eβ(xβ) ∈ I2

We consider the exact solution that follows:

f (x, t) = k0(t) + k1(t)Eβ(xβ) (40)

where k0(t) and k1(t) are unknown functions to be determined.
By substituting Equation (40) into Equation (38) and equating coefficients of different powers of x,

we obtain the following system of FDEs:

dαk0(t)
dtα

= 0 (41)

(1− µ)
dαk1(t)

dtα
= −k0(t)k1(t) (42)

We obtain k0(t) = a, and Equation (42) takes the following form:
If µ 6= 1,

dαk1(t)
dtα

=
a

µ− 1
k1(t)

Then using the Laplace transform technique, we obtain

sα k̃1(s)− sα−1k1(0) =
a

µ− 1
k̃1(s)

k̃1(s) =
sα−1

sα − a
µ−1

k1(0)

Using the inverse Laplace transform, we obtain

k1(t) = k1(0)Eα(
a

µ− 1
tα)

which leads to the exact solution of Equation (38) that follows:

f (x, t) = a + bEα(
a

µ− 1
tα)Eβ(xβ)

where a and b are arbitrary constants.
Thus the exact solution of Equation (38) along with the initial condition of Equation (39) is

f (x, t) = 3 +
5
2

Eα(
3

µ− 1
tα)Eβ(xβ)

Example 3. The fractional wave equation is used as an example to model the propagation of diffusive waves in
viscoelastic solids. We considered the fractional wave equation with a constant absorption term as follows:

∂2α f
∂t2α

=
∂β

∂xβ
( f

∂β f
∂xβ

)− 1 + µ
∂α

∂tα
(

∂β

∂xβ
f ), α, β ∈ (0, 1] (43)

f (x, 0) = e +
xβ

Γ(β + 1)
, ft(x, 0) = 1− xβ (44)
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Clearly, the subspace I2 = L{1, xβ} is invariant under N[ f ] = ∂β

∂xβ ( f ∂β f
∂xβ )− 1 and ∂β

∂xβ f , as

N[k0 + k1xβ] =
∂β

∂xβ
((k0 + k1xβ)k1Γ(β + 1))− 1 = k2

1Γ2(β + 1)− 1 ∈ I2

∂β(k0 + k1xβ)

∂xβ
= k1Γ(β + 1) ∈ I2

By an application of Theorem 2, we know that Equation (43) has the exact solution as follows:

f (x, t) = k0(t) + k1(t)xβ

where k0(t) and k1(t) satisfy the system of FDEs as follows:

d2αk0(t)
dt2α

− µ
dαk1(t)

dtα
Γ(β + 1) = k2

1(t)Γ
2(β + 1)− 1 (45)

d2αk1(t)
dt2α

= 0 (46)

Solving Equations (45) and (46) we obtain the following:
Case 1: when 0 < α ≤ 1

2 :
k1(t) = b1

k0(t) = a1 +
b2

1Γ2(β + 1)− 1
Γ(2α + 1)

t2α

Thus Equation (43) has the exact solution that follows:

f (x, t) = (a1 +
b2

1Γ2(β + 1)− 1
Γ(2α + 1)

t2α) + b1xβ

where a1 and b1 are arbitrary constants.
By the initial conditions of Equation (44), we obtain a1 = e and b1 = 1

Γ(β+1) .
Hence the exact solution of Equations (40) and (41) is

f (x, t) = e +
xβ

Γ(β + 1)

Case 2: when 1
2 < α ≤ 1:

k1(t) = b1 + b2t

k0(t) = a1 + a2t + µb2
Γ(β + 1)
Γ(α + 2)

tα+1 +
b2

1Γ2(β + 1)− 1
Γ(2α + 1)

t2α +
2b1b2Γ2(β + 1)

Γ(2α + 2)
t2α+1 +

2b2
2Γ2(β + 1)

Γ(2α + 3)
t2α+2

Thus Equation (43) has the exact solution that follows:

f (x, t) = (a1 + a2t + µb2
Γ(β+1)
Γ(α+2) tα+1 +

b2
1Γ2(β+1)−1

Γ(2α+1) t2α + 2b1b2Γ2(β+1)
Γ(2α+2) t2α+1 +

2b2
2Γ2(β+1)
Γ(2α+3) t2α+2)

+ (b1 + b2t)xβ

where a1, a2, b1 and b2 are arbitrary constants.
Substituting the initial conditions of Equation (44), we obtain a1 = e, a2 = 1, b1 = 1

Γ(β+1) and
b2 = −1.

Thus the exact solution of Equations (43) and (44) is

f (x, t) = (e + t− µ
Γ(β + 1)
Γ(α + 2)

tα+1 − 2Γ(β + 1)
Γ(2α + 2)

t2α+1 +
2Γ2(β + 1)
Γ(2α + 3)

t2α+2) + (
1

Γ(β + 1)
− t)xβ



Axioms 2018, 7, 10 12 of 18

We consider the following fractional generalization of the wave equation with a constant
absorption term:

∂α+1 f
∂tα+1 =

∂β

∂xβ
( f

∂β f
∂xβ

)− 1 + µ
∂α

∂tα
(

∂β

∂xβ
f ), α, β ∈ (0, 1] (47)

We know that the subspace I2 = L{1, xβ} is invariant from the above. In view of Theorem 1,
Equation (47) has the exact solution that follows:

f (x, t) = k0(t) + k1(t)xβ

where k0(t) and k1(t) satisfy the system of FDEs as follows:

dα+1k0(t)
dtα+1 − µ

dαk1(t)
dtα

Γ(β + 1) = k2
1(t)Γ

2(β + 1)− 1 (48)

dα+1k1(t)
dtα+1 = 0 (49)

Solving the system of FDEs (48) and (49), we obtain

k1(t) = b1 + b2t

k0(t) = a1 + a2t +
b2

1Γ2(β + 1)− 1
Γ(α + 2)

tα+1 +
µb2Γ(β + 1)

2
t2 +

2b1b2Γ2(β + 1)
Γ(α + 3)

tα+2 +
2b2

2Γ2(β + 1)
Γ(α + 4)

tα+3

Therefore Equation (47) has the exact solution that follows:

f (x, t) = (a1 + a2t + b2
1Γ2(β+1)−1

Γ(α+2) tα+1 + µb2Γ(β+1)
2 t2 + 2b1b2Γ2(β+1)

Γ(α+3) tα+2 +
2b2

2Γ2(β+1)
Γ(α+4) tα+3)

+ (b1 + b2t)xβ

where a1, a2, b1 and b2 are arbitrary constants.

Example 4. The Korteweg–de Vries (KdV) equation describes the evolution in time of long, unidirectional,
nonlinear shallow water waves. We considered the fractional KdV equation that follows:

∂α f
∂tα

=
∂β f
∂xβ

(
∂β

∂xβ
(

∂β

∂xβ
(

f 2

2
))) + µ

∂α

∂tα
(

∂β

∂xβ
f ), α, β ∈ (0, 1] (50)

I3 = L{1, xβ, x2β} is an invariant subspace under N[ f ] = ∂β f
∂xβ (

∂β

∂xβ (
∂β

∂xβ (
f 2

2 ))) and ∂β

∂xβ f , as

N[k0 + k1xβ + k2x2β] = k1k2Γ(3β + 1) +
k2

2Γ(4β + 1)
2Γ(β + 1)

xβ ∈ I3

∂β(k0 + k1xβ + k2x2β)

∂xβ
= k1Γ(β + 1) +

k2Γ(2β + 1)
Γ(β + 1)

xβ ∈ I3

We consider an exact solution that follows:

f (x, t) = k0(t) + k1(t)xβ + k2(t)x2β

where k0(t), k1(t) and k2(t) are unknown functions to be determined. It follows from Theorem 1
applied to Equation (47) that k0(t), k1(t) and k2(t) satisfy the FDEs as follows:

dαk0(t)
dtα

− µ
dαk1(t)

dtα
Γ(β + 1) = Γ(3β + 1)k1(t)k2(t) (51)
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dαk1(t)
dtα

− µ
dαk2(t)

dtα

Γ(2β + 1)
Γ(β + 1)

=
Γ(4β + 1)
2Γ(β + 1)

k2
2(t) (52)

dαk2(t)
dtα

= 0 (53)

Solving Equation (53), we obtain k2(t) = c.
Hence Equation (52) has the form

dαk1(t)
dtα

=
c2Γ(4β + 1)
2Γ(β + 1)

We obtain

k1(t) = b +
c2Γ(4β + 1)

2Γ(β + 1)Γ(α + 1)
tα

Similarly, we obtain

k0(t) = a +
2bcΓ(3β + 1) + µc2Γ(4β + 1)

2Γ(α + 1)
tα +

c3Γ(4β + 1)Γ(3β + 1)
2Γ(β + 1)Γ(2α + 1)

t2α

Thus the exact solution of Equation (50) is

f (x, t) = (a + 2bcΓ(3β+1)+µc2Γ(4β+1)
2Γ(α+1) tα + c3Γ(4β+1)Γ(3β+1)

2Γ(β+1)Γ(2α+1) t2α) + (b + c2Γ(4β+1)
2Γ(β+1)Γ(α+1) tα)xβ

+ cx2β

where a, b and c are arbitrary constants.

Example 5. The fractional version of the nonlinear heat equation is as follows:

∂α f
∂tα

=
∂β f
∂xβ

( f
∂β

∂xβ
) + µ

∂α

∂tα
(

∂β

∂xβ
f ), α, β ∈ (0, 1] (54)

Clearly, the subspace I2 = L{1, xβ} is invariant under N[ f ] = ∂β f
∂xβ ( f ∂β

∂xβ ) and ∂β

∂xβ f , as

N[k0 + k1xβ] =
∂β

∂xβ
((k0 + k1xβ)k1Γ(β + 1)) = k2

1Γ2(β + 1) ∈ I2

∂β(k0 + k1xβ)

∂xβ
= k1Γ(β + 1) ∈ I2

It follows from Theorem 1 that we consider the exact solution of Equation (54) as follows:

f (x, t) = k0(t) + k1(t)xβ

such that
dαk0(t)

dtα
− µ

dαk1(t)
dtα

Γ(β + 1) = k2
1(t)Γ

2(β + 1) (55)

dαk1(t)
dtα

= 0 (56)

Solving Equations (55) and (56), we obtain

k1(t) = b

k0(t) = a +
b2Γ2(β + 1)

Γ(α + 1)
tα
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We obtain an exact solution as follows:

f (x, t) = (a +
b2Γ2(β + 1)

Γ(α + 1)
tα) + bxβ

where a and b are arbitrary constants.
Next, we consider the integer-order differential equations in [30]. We can obtain some new

different solutions using the invariant subspace method.

Example 6. The modified hyperbolic heat conduction equation with the mixed derivative term is as follows ([30]):

∂2 f
∂t2 =

∂2 f
∂x2 + κ2 f − ε

∂2

∂t∂x
f (57)

f (x, 0) = g(x), f (x, ∞) < ∞ (58)

where ε, κ = const.

Clearly, the subspace I2 = L{1, x} is an invariant subspace under N[ f ] = ∂2 f
∂x2 + κ2 f and ∂

∂x f , as

N[k0 + k1x] = κ2k0 + κ2k1x ∈ I2

∂(k0 + k1x)
∂x

= k1 ∈ I2

We let the exact solution be as follows:

f (x, t) = k0(t) + k1(t)x

where k0(t), k1(t) are unknown functions to be determined, and k0(t) and k1(t) satisfy the system of
differential equations as follows:

d2k0(t)
dt2 + ε

dk1(t)
dt

= κ2k0(t) (59)

d2k1(t)
dt2 = κ2k1(t) (60)

Solving Equation (60), we obtain

k1(t) = b1e−κt + b2eκt

Hence Equation (59) has the form

d2k0(t)
dt2 − κ2k0(t) = b1εκe−κt + b2εκeκt

We obtain

k0(t) = a1e−κt + a2eκt − a1ε

2
te−κt − a2ε

2
teκt

Then, we obtain the exact solution of Equation (57) as

f (x, t) = a1e−κt + a2eκt − a1ε

2
te−κt − a2ε

2
teκt + (b1e−κt + b2eκt)x (61)

where a1, a2, b1 and b2 are arbitrary constants.
Substituting the conditions of Equation (58) into Equation (61), we obtain a2 = b2 = 0 and

a1 + b1x = g(x).
When g(x) has linear dependence on x, Equations (57) and (58) have the partial solution
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f (x, t) = a1e−κt − a1ε

2
te−κt + b1xe−κt

where a1 + b1x = g(x).
When g(x) is not linearly dependent on x, Equations (57) and (58) do not have the form of the

solution given by Equation (61).

The subspace In+1 = L{1, x, x2, · · · , xn}, n ∈ N is invariant under N[ f ] = ∂2 f
∂x2 + κ2 f and ∂

∂x f , as

N[k0 + k1x + · · ·+ knxn]

= (κ2k0 + 2k2) + · · ·+ (κ2kn−2 + n(n− 1)kn)xn−2 + κ2kn−1xn−1 + κ2knxn

∈ In+1

∂(k0 + k1x + · · ·+ knxn)

∂x
= k1 + k2x + · · ·+ kn−1xn−1 ∈ In+1

Thus we obtain infinitely many invariant subspaces for Equation (57), which in turn yield infinitely
many solutions. If g(x) is a polynomial, we can obtain an exact solution of Equations (57) and (58).

Example 7. The Fokker–Planck equation is the following ([30]):

∂2 f
∂t2 = α

∂2 f
∂x2 + βx

∂ f
∂x
− ε

∂2

∂t∂x
f (62)

where α, β, κ = const.

Clearly, the subspace I2 = L{1, x} is an invariant subspace under N[ f ] = α
∂2 f
∂x2 + βx ∂ f

∂x and ∂
∂x f , as

N[k0 + k1x] = βk1x ∈ I2

∂(k0 + k1x)
∂x

= k1 ∈ I2

We suppose the exact solution that follows:

f (x, t) = k0(t) + k1(t)x

where k0(t) and k1(t) are unknown functions to be determined; k0(t) and k1(t) satisfy the system of
differential equations as follows:

d2k1(t)
dt2 = βk1(t) (63)

d2k0(t)
dt2 = −ε

dk1(t)
dt

(64)

Case 1: when β > 0:

k1(t) = b1e−
√

βt + b2e
√

βt

k0(t) = a1 + a2t +
εb1√

β
e−
√

βt − εb2√
β

e
√

βt

Thus Equation (62) has the exact solution that follows:

f (x, t) = (a1 + a2t +
εb1√

β
e−
√

βt − εb2√
β

e
√

βt) + (b1e−
√

βt + b2e
√

βt)x

where a1, a2, b1 and b2 are arbitrary constants.
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Case 2: when β = 0:
k1(t) = b1 + b2t

k0(t) = −
εb2

2
t2 + a1 + a2t

Thus Equation (62) has the exact solution that follows:

f (x, t) = (− εb2

2
t2 + a1 + a2t) + (b1 + b2t)x

where a1, a2, b1 and b2 are arbitrary constants.
Case 3: when β < 0:

k1(t) = b1 cos
√
−βt + b2 sin

√
−βt

k0(t) = a1 + a2t− εb1√
−β

sin
√
−βt +

εb2√
−β

cos
√
−βt

Thus Equation (62) has the exact solution that follows:

f (x, t) = (a1 + a2t− εb1√
−β

sin
√
−βt +

εb2√
−β

cos
√
−βt) + (b1 cos

√
−βt + b2 sin

√
−βt)x

where a1, a2, b1 and b2 are arbitrary constants.

The subspace In+1 = L{1, x, x2, · · · , xn}, n ∈ N is invariant under N[ f ] = α
∂2 f
∂x2 + βx ∂ f

∂x and ∂
∂x f ,

as
N[k0 + k1x + · · ·+ knxn]

= αk2 + (αk3 + βk1)x + · · ·+ (βkn−1(n− 1))xn−1 + βknnxn

∈ In+1

∂(k0 + k1x + · · ·+ knxn)

∂x
= k1 + k2x + · · ·+ kn−1xn−1 ∈ In+1

Thus we obtain infinitely many invariant subspaces for Equation (62), which in turn yield infinitely
many solutions.

5. Conclusions

The present article develops the invariant subspace method for solving certain fractional space and
time derivative nonlinear partial differential equations with fractional-order mixed partial derivatives.
Using the invariant subspace method, FPDEs are reduced to systems of FDEs; then they are solved by
known analytic methods. In general, FPDEs admit more than one invariant subspace, each of which
that has the exact solution. In fact, FPDEs admit infinitely many invariant subspaces. The invariant
subspace method is used to derive closed-form solutions of fractional space and time derivative
nonlinear partial differential equations with fractional-order mixed partial derivatives along with
certain kinds of initial conditions. Thus, the invariant subspace method represents an effective and
powerful tool for exact solutions of a wide class of linear/nonlinear FPDEs.

The bases of invariant subspaces usually are orthogonal polynomials, Mittag–Leffler functions,
trigonometric functions, and so on. What kinds of spaces are the invariant subspaces of one FPDE?
At present we can only try one by one. Although we have found some invariant subspaces of the
equations examples above, are there any more invariant subspaces of the equations? We hope to find a
simple discriminant method for finding the correct invariant subspaces for FPDEs.
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