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Abstract: For a given pair of s-dimensional real Laurent polynomials (~a(z),~b(z)), which has a certain

type of symmetry and satisfies the dual condition~b(z)
T
~a(z) = 1, an s× s Laurent polynomial matrix

A(z) (together with its inverse A−1(z)) is called a symmetric Laurent polynomial matrix extension
of the dual pair (~a(z),~b(z)) if A(z) has similar symmetry, the inverse A−1(Z) also is a Laurent
polynomial matrix, the first column of A(z) is ~a(z) and the first row of A−1(z) is (~b(z))T . In this
paper, we introduce the Euclidean symmetric division and the symmetric elementary matrices in
the Laurent polynomial ring and reveal their relation. Based on the Euclidean symmetric division
algorithm in the Laurent polynomial ring, we develop a novel and effective algorithm for symmetric
Laurent polynomial matrix extension. We also apply the algorithm in the construction of multi-band
symmetric perfect reconstruction filter banks.

Keywords: symmetric Laurent polynomial matrix extension; perfect reconstruction filter banks;
multi-band filter banks; symmetric elementary matrices; Euclidean symmetric division algorithm

1. Introduction

In this paper, we develop a novel and effective algorithm for symmetric Laurent polynomial
matrix extension (SLPME) and apply it in the construction of the symmetric multi-band perfect
reconstruction filter bank (SPRFB). The paper is a continuative study of [1].

To describe the SLPME problem clearly, we first give some notions and notations. For a given
matrix A, we denote by A(:, j) the j-th column of A and by A(i, :) its i-th row. Let L be the ring of all
Laurent polynomials (LPs) with real coefficients and s ≥ 1 an integer. An LP vector~a(z) ∈ Ls is called
prime if there is~b(z) ∈ Ls such that (~b(z))T~a(z) = 1. In this case, we call~b(z) a dual of~a(z) and call
(~a(z),~b(z)) a dual pair. An invertible LP matrix M(z) ∈ Ls×s is called L-invertible if M−1(z) ∈ Ls×s,
as well. We will denote by Gs the group of all s× s L-invertible matrices. We write an s-dimensional
column vector~a as~a = [a1; a2; · · · ; as], and write its transpose as~aT = [a1, a2, · · · , as]. The symmetry
of LP vectors and matrices is defined as follows:

Definition 1. An LP vector~a(z) = [a1(z); · · · ; as(z)] ∈ Ls is called polar-symmetric (or P+-symmetric),
if aj(z) = as+1−j(1/z), 1 ≤ j ≤ s, and called polar-antisymmetric (or P−-symmetric), if aj(z) =

−as+1−j(1/z). An LP matrix M(z) ∈ Ls×s is called vertically symmetric (or V-symmetric), if each of
its columns is either P+-symmetric or P−-symmetric.
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In the paper, we employ ε for the sign notation: ε = + or −. Thus, an LP vector is said to be
Pε-symmetric if it is either P+-symmetric or P−-symmetric. When the sign is not stressed, we simplify
Pε to P . We now define an SLPME of an LP vector as follows:

Definition 2. Let ~a(z) ∈ Ls be a given P-symmetric prime vector. An LP matrix A(z) ∈ Gs is called
an SLPME of ~a(z) if A(z) is V-symmetric and A(:, 1) = ~a(z). Furthermore, (A(z), A−1(z)) is called an
SLPME of a P-symmetric dual pair (~a(z),~b(z)) if A(z) ∈ Gs is an SLPME of~a(z) and A−1(1, :) =~bT(z).

It is worth pointing out that the construction of a dual pair with or without the symmetry property
is also a key ingredient in LPME and SLPME. This problem has been completely resolved in [2].

The study of the Laurent polynomial matrix extension (LPME) has a long history. In the early
1990s, the two-band LPME arose in the study of the construction of compactly-supported wavelets [3–7].
In the construction of multi-wavelets, the LPME problems arise [8–11].

It has become well known that LPME is the core in the construction of multi-band prefect
reconstruction filter banks (PRFB) and multi-band wavelets [12–16]. If a PRFB is represented by
the polyphase form, then constructing the polyphase matrices of PRFB is essentially identical with
LPME. The general study of multi-band PRFB is referred to [1,17–21]. We mention that the algorithm
proposed in [1] was based on Euclidean division in the ring L. The author revealed the relation
between Euclidean division in L and L-elementary matrices, then developed the algorithm for LPME
using L-elementary matrix factorization.

Unfortunately, the algorithm for LPME cannot be applied for SLPME because it does not preserve
symmetry in the factorization. A special case of SLPME was given in Theorem 4.3 of [22]. However,
the development of effective algorithms for SLPME is still desirable. Recently, Chui, Han and Zhuang
in [17] introduced a bottom-up algorithm to construct SPRFB for a given dual pair of symmetric filters.
Their algorithm consists of a forward (or top-down) phase and a backward (or down-top) phase. In the
top-down phase, the algorithm gradually reduces the filters in the dual pair to the simplest ones,
keeping the symmetry in the process. Thus, an SPRFB is first constructed for the simplest dual pair.
Then, in the down-top phase, the algorithm builds the SLPME for the original dual pair. Their method
does not employ the polyphase forms of filters. Hence, it is not directly linked to SLPME.

In this paper, we develop an SLPME algorithm in the framework of the Laurent polynomial
algebra. We first introduce the Euclidean L-symmetric division algorithm, which keeps the symmetry
of LPs in the division. Then, we introduce the symmetric L-elementary matrices in the Laurent
polynomial ring and reveal the relation between the Euclidean L-symmetric division and the
symmetric L-elementary transformation. Our SLPME algorithm essentially is based on the symmetric
L-elementary transformations on the V-symmetric matrices in the group G.

The paper is organized as follows. In Section 2, we introduce L-symmetric vectors and matrices
and their properties. In Section 3, we first develop the Euclidean symmetric division algorithms in the
Laurent polynomial ring, introduce symmetric L-elementary matrices and reveal the relation between
the Euclidean symmetric division and the symmetric L-elementary transformation. Then, at the end of
the section, we present the Euclidean symmetric division algorithm for SLPME. In Section 4, we apply
our SLPME algorithm in the construction of multi-band SPRFBs. In Section 5, we present several
illustrative examples for the construction of symmetric multi-band SPRFBs and SLPMEs.

2. Symmetries of LP Vectors and Matrices

In this section, we study the symmetric properties of Pε-symmetric vectors and V-symmetric
matrices. For~a(z) = [a1(z); · · · ; as(z)], we write←−a (z) = [as(z); · · · ; a1(z)]. Then,~a(z) isPε-symmetric
if and only if~a(z) = ε←−a (1/z). Define:
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←−
I =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
... · · ·

...
1 0 · · · 0 0

 .

Then,←−a (z) =
←−
I ~a(z),

←−
I T =

←−
I and

←−
I 2 = I. Later, if no confusion arises, we will simplify~a(z)

to~a, M(z) to M, and so on.
We denote by (Pε)s the set of all Pε-symmetric vectors in Ls. Particularly, when s = 1, the vector

~a(z) is reduced to a Laurent polynomial, say, a(z). Thus, a(z) ∈ Pε if and only if a(z) = εa(1/z).

Lemma 1. Let (~a,~b) ∈ Ls × Ls be a symmetric dual pair. Then, they have the same symmetry, i.e., if ~a is
Pε-symmetric, so is~b.

Proof. We have ~aT(z)~b(z) = 1 so that ←−a T(1/z)
←−
b (1/z) = 1. Therefore, if ~a ∈ (Pε)s, by ~aT(z) =

ε←−a T(1/z), we have:

~aT(z)(~b(z)− ε
←−
b (1/z)) =~aT(z)~b(z)− ε2←−a T(1/z)

←−
b (1/z) = 0,

which yields~b(z) = ε
←−
b (1/z), i.e.,~b(z) is Pε-symmetric. The lemma is proven.

Definition 3. A matrix M(z) ∈ Ls×s is called centrally polar symmetric, denoted by C-symmetric, if M(z) =←−
I M(1/z)

←−
I .

All C-symmetric matrices in Ls×s form a semigroup of Ls×s, denoted by Cs; and all L-invertible,
C-symmetric matrices in Cs form a subgroup of Gs, denoted by GCs. By Definition 3, we have
the following:

Proposition 1. A matrix M(z) =
[
mi,j(z)

]s
i,j=1 is C-symmetric if and only if:

mi,j(z) = ms+1−i,s+1−j(1/z), 1 ≤ i ≤ s, 1 ≤ j ≤ s. (1)

Therefore, M(z) ∈ Cs ⇐⇒ MT(z) ∈ Cs and M(z) ∈ GCs ⇐⇒ M−1(z) ∈ GCs.

We say that V(z) is a V ε-symmetric matrix if all columns of V(z) are Pε-symmetric.

Lemma 2. For any s ∈ N, there exists a non-singular V+-symmetric matrix and a non-singular V−-symmetric one.

Proof. We first prove the lemma for the V+-symmetric case by mathematical induction. For s = 1, 2,

the matrices M1(z) = [1] and M2(z) =

[
z 1/z

1/z z

]
are non-singular V+-symmetric matrices because

their determinants are not zero. Assume that the statement is true for each m, 1 ≤ m ≤ k. We prove
that the statement is also true for k + 1, (k > 1). Let Mk−1(z) be a (k − 1)× (k − 1) non-singular
V+-symmetric matrix. Then, so is the following (k + 1)× (k + 1) matrix:

Mk+1(z) =

 z 0 1/z
0 Mk−1(z) 0

1/z 0 z

 .

The proof is completed. For the V−-symmetric case, M1(z) = [z − 1/z] and M2(z) =[
z −1/z
−1/z z

]
are non-singular and V−-symmetric. The remainder of the proof is similar.
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The following proposition describes the role of C-symmetric matrices.

Proposition 2. Any matrix in Cs represents a linear transformation from (Pε)s to (Pε)s. Conversely, any linear
transformation from (Pε)s to (Pε)s is realized by a matrix in Cs.

Proof. We first prove the proposition for the case of (P+)s. If S(z) ∈ Cs, then for any~a(z) ∈ (P+)s,
writing~b(z) = S(z)~a(z), we have:

~b(z) = S(z)~a(z) =
←−
I S(1/z)

←−
I ←−a (1/z) =

←−
I (S(1/z)~a(1/z)) =

←−
b (1/z).

Hence, S(z)~a(z) ∈ (P+)s. On the other hand, if for any ~a(z) ∈ (P+)s, S(z)~a(z) ∈ (P+)s,
then we have:

S(z)~a(z) =
←−
I (S(1/z)~a(1/z)) =

←−
I S(1/z)

←−
I
←−
I ~a(1/z) =

←−
I S(1/z)

←−
I ~a(z),

which yields that the equality:
S(z)A(z) =

←−
I S(1/z)

←−
I A(z) (2)

holds for any V+-symmetric matrix. By Lemma 2, we can choose a non-singular matrix A(z) in (2),
which yields S(z) =

←−
I S(1/z)

←−
I , i.e., S(z) ∈ Cs. The proposition is proven. For the case of (P−)s,

the proof is similar.

Since GCs ⊂ Cs, by Proposition 2, GCs is a group of linear transformations on the set (Pε)s. For the
matrices in GCs, we have the following:

Proposition 3. Assume S(z) ∈ GCs. Then, for any prime vector~a(z) ∈ (Pε)s, the vector S(z)~a(z) ∈ (Pε)s is
also prime.

Proof. Assume that ~a(z) is a P+-symmetric prime vector. Then, there is a P+-symmetric vector
~b(z), such that ~aT~b = 1. Therefore, we have (S~a)T(ST)−1~b = 1, which indicates that S(z)~a(z) is
a P+-symmetric prime vector. The proof is similar for~a ∈ (P−)s.

In linear algebra, a well-known result is that each invertible matrix can be written as a product of
elementary matrices. To produce the similar factorization of a matrix in GCs, we introduce the
C-symmetric elementary matrices. We first define the L-elementary matrices (that may not be
C-symmetric).

Definition 4. Let I be the s× s identity matrix. An s× s L-elementary matrix is obtained by performing one
of the following L-elementary row operations on I:

(1) Interchanging two rows, e.g., (Ri)↔ (Rj).
(2) Multiplying a row by a non-zero real number c, e.g., cRi → Ri.
(3) Replacing a row by itself plus a multiple q(z) ∈ L of another row, e.g., Ri + q(z)Rj → Ri.

For convenience, we denote by E[i,j], E(i)(c) and E(i,j)(q) for the L-elementary matrices in (1), (2)
and (3), and call them Types 1, 2 and 3, respectively. Since E[i,j] = E[j,i], we agree that i < j in E[i,j]. It is
clear that an L-elementary matrix is L-invertible, and its inverse is of the same type. Indeed, we have
the following:

(E[i,j])−1 = E[i,j], (E(i)
s )−1(c) = E(i)(1/c), (E(i,j)(q))−1 = E(i,j)(−q). (3)

Later, when the type of an L-elementary matrix is not stressed, we simply denote it by E. On the
other hand, if the dimension of an L-elementary matrix needs to be stressed, then we write it as Es,
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E[ij]
s , etc. For developing our SLPME algorithm, we define the C-symmetric elementary matrix based

on Definition 4.

Definition 5. Let s ≥ 2 be an integer. Write q̄(z) = q(1/z). When s = 2m, the matrices:

E[i,j] = E[i,j]E[s+1−j,s+1−i], 1 ≤ i < j ≤ m,

E(i)(c) = E(i)(c)E(s+1−i)(c), 1 ≤ i ≤ m,

E(i,j)(q) = E(i,j)(q)E(s+1−i,s+1−j)(q̄), 1 ≤ i, j ≤ m, i 6= j,

are called C-symmetric elementary matrices of Type 1, 2 or 3,respectively. When s = 2m + 1, the matrices:

E[i,j] = E[i,j]E[s+1−j,s+1−i], 1 ≤ i < j ≤ m,

E(c) = E(m+1)(c) and E(i)(c) = E(i)(c)E(s+1−i)(c), 1 ≤ i ≤ m,

E(i,j)(q) = E(i,j)(q)E(s+1−i,s+1−j)(q̄), 1 ≤ i, j ≤ m + 1, i 6= j,

are called C-symmetric elementary matrices of Type 1, 2 or 3, respectively.

We denote by E s the set of all C-symmetric elementary matrices in GCs and by E s
i the set of all

matrices of type i in E s.
We can verify that the inverses of C-symmetric elementary matrices are given by the following:

(E[i,j])−1 = E[i,j], (E(i))−1(c) = E(i)(1/c), (E(i,j))−1(q) = E(i,j)(−q). (4)

If we do not stress the type of C-symmetric elementary matrix, we will simply denote it by E.
On the other hand, if we need to stress the dimension of an s× s C-symmetric elementary matrix,
we write it as E(i)

s (c), E(i,j)
s (q), and so on.

Example 1. Let q(z) ∈ L and c ∈ R \ {0}. All C-symmetric elementary matrices in E3 are:

E(c) =

1 0 0
0 c 0
0 0 1

 , E(1)(c) =

c 0 0
0 1 0
0 0 c



E(1,2)(q) =

1 q(z) 0
0 1 0
0 q(1/z) 1

 , E(2,1)(q) =

 1 0 0
q(z) 1 q(1/z)

0 0 1

 .

By (4), their inverses are:1 0 0
0 1/c 0
0 0 1

 ,

1/c 0 0
0 1 0
0 0 1/c

 ,

1 −q(z) 0
0 1 0
0 −q(1/z) 1

 ,

 1 0 0
−q(z) 1 −q(1/z)

0 0 1

 .

All C-symmetric elementary matrices in E4 are:

E[1,2] =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , E(1)(c) =


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 c

 , E(2)(c) =


1 0 0 0
0 c 0 0
0 0 c 0
0 0 0 1

 ,
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E(1,2)(q) =


1 q(z) 0 0
0 1 0 0
0 0 1 0
0 0 q(1/z) 1

 , E(2,1)(q) =


1 0 0 0

q(z) 1 0 0
0 0 1 q(1/z)
0 0 0 1

 .

Their inverses are:
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


1/c 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1/c

 ,


1 0 0 0
0 1/c 0 0
0 0 1/c 0
0 0 0 1

 ,


1 −q(z) 0 0
0 1 0 0
0 0 1 0
0 0 −q(1/z) 1

 ,


1 0 0 0
−q(z) 1 0 0

0 0 1 −q(1/z)
0 0 0 1

 .

3. Euclidean Algorithm for SLPME

For simplification, in the paper, we only discuss LPs with real coefficients. Readers will find
that our results can be trivially generalized to the LPs with coefficients in the complex field or other
number fields. First, we recall some notations and notions used in [1]. We denote by Π the ring
of all (real) polynomials and write Πh = Π \ {0}. We also write Lh = L \ {0} and denote by Lm

the group of all nonzero Laurent monomials: Lm = {cz` ∈ L; c 6= 0, ` ∈ Z}. If a ∈ Lh, writing
a(z) = ∑n

k=m akzk, where n ≥ m and aman 6= 0, we define its highest degree as deg+(a) = n, its lowest
degree as deg−(a) = m and its support length as supp(a) = n−m + 1. When a = 0, we agree that
deg+(0) = −∞, deg−(0) = ∞ and supp(0) = 0.

Let the semi-group Πc
h ⊂ Πh be defined by Πc

h = {p ∈ Πh : p(0) 6= 0}. Then, the power mapping
π : Lh → Πc

h,
π(a(z)) = z−deg−(a)a(z), (5)

defines an equivalent relation “v” in Lh, i.e., a v b if and only if π(a) = π(b). For convenience,
we agree that π(0) = 0. It is obvious that π(cz`) = c. In [1], we established the following Euclid’s
division theorem for Laurent polynomials.

Theorem 1 (L-Euclid’s division theorem). Let (a, b) ∈ Lh × Lh. Then, there exists a unique pair
(q, r) ∈ L×L such that:

a = qb + r, (6)

where, if r(z) 6= 0,

supp(r) + deg−(a)− 1 ≤ deg+(r) < supp(b) + deg−(a)− 1. (7)

Furthermore, if supp(a) ≥ supp(b), then:

1 ≤ supp(q) ≤ supp(a)− supp(b) + 1. (8)

Remark 1. In [1], we defined supp(a) = n−m for a(z) 6= 0 and supp a = −∞ for a(z) = 0. In this paper,
the definition of the support length is slightly changed so that it is up to the standard. Therefore, the inequality
in (8) is updated according to the new definition.

In [1], we already developed a Euclidean algorithm for LPME based on Theorem 1. We now
develop a Euclidean algorithm for SLPME. For this purpose, we introduce two lemmas.
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Lemma 3. Let (a, b) ∈ Lh ×Lh and s ∈ Z be an integer satisfying s ≤ deg−(a) and deg+(a)− s + 1 ≥
supp(b). Then, there exists a unique pair (q, r) ∈ Lh ×L such that:

a = qb + r. (9)

where 1 ≤ supp q ≤ deg+(a)− s− supp(b) + 2 and:

supp(r) + s− 1 ≤ deg+(r) < supp(b) + s− 1, if r(z) 6= 0. (10)

Proof. In the case that s = deg− a, we have supp(a) = deg+(a)− s + 1. Hence, the lemma is identical
to Theorem 1. We now assume s < deg−(a). Define ã(z) = a(z) + zs. Then, deg−(ã) = s, deg+(ã) =
deg+(a), and supp(ã) = deg+(a) − s + 1 ≥ supp(b). By Theorem 1, there is a unique pair (q, r̃)
such that:

ã = qb + r̃,

where, if r̃(z) 6= 0,

supp(r̃) + deg−(ã)− 1 ≤ deg+(r̃) < supp(b) + deg−(ã)− 1,

1 ≤ supp(q) ≤ supp(ã)− supp(b) + 1.

Let r(z) = r̃(z)− zs. We have:
a = qb + r.

If r̃(z) = zs, then supp(r) = 0. In this case, it is clear that there exists a unique q ∈ Lh such that (9)
holds. We now consider the case that r̃(z) 6= zs. If r̃(z) = 0, then r(z) = −zs, so that supp(r) = 1 and
deg+(r) = s. In this case, we must have supp(b) ≥ 2. Indeed, if supp(b) = 1, then b(z) = cz`, c 6= 0.
Setting q(z) = 1

cz` a(z) in (9), we get r(z) = 0, which leads to a contradiction with r(z) = −zs. Hence,
we have supp(b) ≥ 2 so that (10) holds. Finally, if r̃ is neither zero nor zs, by r̃(z) = r(z) + zs, we have
deg+(r) = deg+(r̃) and deg−(r) ≥ s so that (10) holds. The proof is completed.

For a real number x, we denote by [x] the integer part of x, denote by dxe the nearest integer of x
that is no less than x and denote by bxc the nearest integer of x that is no greater than x. For instance,
for m ∈ Z, [ 2m+1

2 ] = b 2m+1
2 c = m and d 2m+1

2 e = m + 1.

Lemma 4. Assume a(z) ∈ Pε, b(z) ∈ Lh and supp(a) > supp(b). Define k = d supp(a)−supp(b)
2 e. Then,

there is a pair (q(z), r(z)) ∈ Lh ×L such that:

a(z) = q(z)b(z) + εq(1/z)b(1/z) + r(z), (11)

where r(z) ∈ Pε, 1 ≤ supp(q) ≤ supp(a)− supp(b) + 1− k and supp(r) ≤ supp(a)− 2k ≤ supp(b).

Proof. By a(z) = εa(1/z), we may write a(z) = ∑m
j=−m ajzj, where aj = εa−j and am 6= 0 so that

supp(a) = 2m + 1. Define:

at(z) =
m

∑
j=m−k+1

ajzj +
1
2

m−k

∑
j=k−m

ajzj.

Then, deg+(at) = m and at(z) + εat(1/z) = a(z). Write n = supp(b). By k = d supp(a)−supp(b)
2 e,

we have n = 2m− 2k + 1+ 1
2(1+ (−1)n−1). Applying Lemma 3 to at(z) and b(z) by setting s = k−m,

we obtain a unique pair (q, r̂) ∈ Lh ×L such that:

at(z) = q(z)b(z) + r̂(z),
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where deg+(r̂) < n + (k − m)− 1 = m− k + 1
2(1 + (−1)n−1) and deg−(r̂) ≥ k − m. Since at(z) +

εat(1/z) = a(z), we have:

a(z) = q(z)b(z) + εq(1/z)b(1/z) + r̂(z) + εr̂(1/z).

Writing r(z) = r̂(z)+ εr̂(1/z), we have r(z) ∈ Pε and supp(r) ≤ 2m− 2k+ 1 ≤ supp(b). The proof
is completed.

The proof suggests the following Euclidean P-symmetric division algorithm for computing q(z)
and r(z) in the division of a(z)÷ b(z) described by Lemma 4.

Algorithm 1 (Euclidean P-symmetric division algorithm). Assume that 2m > n and:

a(z) =
m

∑
j=−m

ajzj ∈ Pε, b(z) =
n−l

∑
j=−l

bjzj ∈ Lh.

1. Compute k = m− bn/2c.
2. Construct aπ(z) = z−k+m

(
∑m

j=m−k+1 ajzj + 1
2 ∑m−k

j=k−m ajzj
)

and bπ(z) = zlb(z).
3. Perform polynomial division aπ = qπbπ + rπ to produce (qπ, rπ) ∈ Π2.
4. Output [q(z), r(z)] = [zk−m+lqπ(z), zk−mrπ(z) + εzm−krπ(1/z)].

For ~a ∈ Ls, we define ‖~a‖0 as the number of nonzero entries in ~a and define supp~a =

∑1≤i≤s supp(ai). The following theorem describes the relation between the Euclidean P-symmetric
division and the C-symmetric elementary transformation on (Pε)s.

Theorem 2. Assume that~a0 ∈ (Pε)s with ‖~a0‖0 > 2. Then, there is a C-symmetric elementary matrix E of
Type 3, such that~a1 = E~a0 ∈ (Pε)s with supp~a1 < supp~a0 and ‖~a1‖0 ≤ ‖~a0‖0.

Proof. Write ~a0 = [a0
1; · · · ; a0

s ]. We first consider the case of s = 2m. Since ‖~a0‖0 > 2, by the
Pε-symmetry of~a0, there are at least two nonzero entries in [a0

1, · · · , a0
m], say supp(a0

j ) ≥ supp(a0
i ) > 0,

where i 6= j and i, j ≤ m. By Theorem 1, there is a pair (q, r) ∈ Lh × L such that a0
j = qa0

i + r

and supp(r) < supp(a0
i ), where r possibly vanishes. Let~a1 = E(j,i)(−q)~a0 ∈ P s. Then, a1

j (z) = r(z),
a1

s+1−j(z) = εr(1/z), and the other entries are unchanged. Hence, supp~a1 < supp~a0 and ‖~a1‖0 ≤ ‖~a0‖0.
We now consider the case of s = 2m + 1, m ≥ 1. If there are at least two nonzero entries in

[a0
1; · · · ; a0

m], the proof is similar to what we have done for s = 2m. Otherwise, ‖~a0‖0 = 3, so that
there is a nonzero entry a0

i , i < m + 1 and a0
m+1 6= 0. If supp(a0

i ) ≥ supp(a0
m+1), applying Theorem 1,

we produce the pair (q, r) such that a0
i = qa0

m+1 + r. Let~a1 = E(i,m+1)(−q)~a0. Then, in~a1(z), a1
i (z) = r(z),

a1
s+1−i(z) = εr(1/z), and the other entries are unchanged. Else, if supp(a0

m+1) > supp(a0
i ), by Lemma 4,

there is q ∈ Lh and r ∈ Pε such that:

a0
m+1(z) = q(z)a0

i (z) + εq(1/z)a0
i (1/z) + r(z),

where supp(r) < supp(a0
m+1). Let~a1 = E(m+1,i)(−q)~a0. Then, a1

m+1(z) = r(z), and the other entries
are unchanged. In both cases, we have~a1 ∈ (Pε)s, supp~a1 < supp~a0 and ‖~a1‖0 ≤ ‖~a0‖0. The proof
is completed.

Definition 6. Let s ≥ 2. A P-symmetric prime vector~a(z) is called the smallest one if it is given as follows:

(1) ~a(z) = c~em+1 ∈ (P+)2m+1, where~em+1 is the (m + 1)-th coordinate basis vector of R2m+1.
(2) ~a(z) ∈ (P−)2m+1 with only two nonzero entries ai(z) = d(z) and a2m+2−i(z) = −d(1/z), 1 ≤ i ≤ m.
(3) ~a(z) ∈ (Pε)2m with only two nonzero entries: ai(z) = d(z) and a2m+1−i(z) = εd(1/z), 1 ≤ i ≤ m.

Particularly, we call~a(z) normalized if c = 1 in (1) and i = 1 in (2) and (3).



Axioms 2017, 6, 9 9 of 29

In Definition 6, because~a(z) is prime, d(z) in (2) and (3) satisfies gcdL(d(z), d(1/z)) = 1. Besides,
we may normalize the smallest P-symmetric prime vector as follows: In (1), if c 6= 1, then E(1/c)~a(z) =
~e2m+1 is normalized. In (2) and (3), if i 6= 1, then E[1,i]~a(z) is the normalized one. Repeating the
C-symmetric elementary transformations in Theorem 2, we may transform a P-symmetric prime
vector to the smallest one.

Corollary 1. Assume that~a0 is a Pε-symmetric prime vector. Then, there are final C-symmetric elementary
matrices {Ej}n

j=1 of Type 3 such that~an = EnEn−1 · · ·E1~a0 is the smallest Pε-symmetric prime vector.

Proof. We first assume that the prime vector~a0 ∈ (P+)2m+1, and it is not the smallest one. Then,
‖~a0‖0 > 2. By Theorem 2, applying the mathematical induction, we can construct final C-symmetric
elementary matrices E1, · · · , Ek ∈ E3 such that ~ak = Ek · · ·E1~a0 has only one nonzero entry in
{ak

1, · · · , ak
m+1}. If ak

m+1(z) 6= 0, then ~ak = c~em+1. Otherwise, there is 1 ≤ i ≤ m such that
ak

i (z) 6= 0. Writing d(z) = ak
i (z), by the P+-symmetry of ~ak(z), we have ak

2m+2−i = d(1/z) and
gcdL(d(z), d(1/z)) = 1. By the extended Euclidean algorithm in [1], we can find a LP pair (g1(z), g2(z))
such that d(z)g1(z) + d(1/z)g2(z) = 1. Let d̃(z) = 1

2(g1(z) + g2(1/z)). Then:

d(z)d̃(z) + d(1/z)d̃(1/z) = 1. (12)

Defining Ek+1 = E(m+1,i)(d̃) and Ek+2 = E(i,m+1)(−d), we have Ek+2Ek+1~ak =~em+1. The proof for
the case of~a0 ∈ (P+)2m+1 is completed.

We now consider the case of ~a0 ∈ (P−)2m+1. Similar to the proof above, we can construct
E1, · · · , Ek ∈ E3 such that~ak = Ek · · ·E1~a0 has only one nonzero entry in {ak

1, · · · , ak
m+1}. If ak

m+1 6= 0,
because ~ak is prime, ak

m+1(z) = cz`. By ~ak ∈ (P−)2m+1, we would have ak
m+1(z) = −ak

m+1(1/z),
which yields c = 0. Therefore, the only nonzero entry in {ak

1, · · · , ak
m+1} cannot be ak

m+1. Assume now
ak

i (z) = d(z), i ≤ m. Then, ak
2m+2−i(z) = −d(1/z) and~ak is smallest. The proof for~ak ∈ (P−)2m+1 is

completed. The proof for the case of s = 2m is similar.

When the vector [d(z); d(1/z)] is prime, we choose d̃(z) in (12) and define:

Dε(z) =

[
d(z) −εd̃(1/z)

εd(1/z) d̃(z)

]
. (13)

Then, Dε(z) is an SLPME of the vector [d(z); εd(1/z)]. The inverse of Dε(z) is:

D−1
ε (z) =

[
d̃(z) εd̃(1/z)

−εd(1/z) d(z)

]
.

In (13), if we set d(z) =
√

2
2 , then Dε(z) is reduced to:

Jε =

[ √
2

2 −ε
√

2
2

ε
√

2
2

√
2

2

]
, (14)

which will be used in the construction of SLPMEs. In the following content, the submatrix of
M, which contains all elements mkj in M with k ∈ {k1, · · · , k`} and j ∈ {j1, · · · , j`}, is denoted by
M([k1, · · · , k`], [j1, · · · , j`]).
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Lemma 5. Let s ≥ 2 and~a(z) ∈ Ls be a normalized smallest P-symmetric prime vector. Let Dε(z) be the
matrix in (13). Assume that v(z) ∈ P+, w+

j (z) ∈ P
+ and w−j ∈ P

− are arbitrary. Write:

Wε
j (z) =

[
−d(z)w+

j (z) εd(z)w−j (z)
−εd(1/z)w+

j (z) d(1/z)w−j (z)

]
, (15)

and:

uj(z) =
√

2
2

(w+
j (z) + w−j (z)). (16)

Then, an SLPME A(z) of~a(z) is constructed as follows.

(i) For~a(z) =~em+1 ∈ (P+)2m+1, we define A(z) as the following:

A(m + 1, :) = [1,−w+
1 (z), · · · ,−w+

m(z), w−m(z), · · · , w−1 (z)],

A ([m + 1− j, m + 1+ j], [m + 2− j, m + 1+ j]) = J+, 1 ≤ j ≤ m,
(17)

and the other entries are zero. Its inverse A−1(z) is the following:

A−1(1, :) = [u1(z), · · · , um(z), 1, um(1/z), · · · , u1(1/z)],

A−1 ([m + 2− j, m + 1+ j], [m + 1− j, m + 1+ j]) = J−, 1 ≤ j ≤ m,
(18)

and the other entries vanish.
(ii) For~a(z) = [d(z); 0; · · · ; 0;−d(1/z)] ∈ (P−)2m+1,

A([1, 2m + 1], [1, 2m + 1]) = D−(z),

A([1, m + 1, 2m + 1], m + 1) = [−d(z)v(z); 1;−d(1/z)v(z)],

A([1, 2m + 1], [j + 1, 2m + 1− j]) = W−j (z), 1 ≤ j ≤ m− 1,

A([m + 1− j, m + 1+ j], [m + 1− j, m + 1+ j]) = J+, 1 ≤ j ≤ m− 1,

(19)

and the other entries vanish. Its inverse A−1(z) is the following:

A−1(m + 1, m + 1) = 1,

A−1([1, 2m + 1], [1, 2m + 1]) = D−1
− (z),

A−1(1, [2 : 2m]) = [u1(z), · · · , um−1(z), v(z),−um−1(1/z), · · · ,−u1(1/z)],

A−1([m + 1− j, m + 1+ j], [m + 1− j, m + 1+ j]) = J−, 1 ≤ j ≤ m− 1, ,

(20)

and the other entries vanish.
(iii) For~a(z) = [d(z); 0; · · · ; 0; εd(1/z)] ∈ (Pε)2m,

A([1, 2m], [1, 2m]) = Dε(z),

A([1, 2m], [j + 1, 2m− j]) = Wε
j (z), 1 ≤ j ≤ m− 1,

A([m + 1− j, m + j], [m + 1− j, m + j]) = Jε, 1 ≤ j ≤ m− 1,

(21)

and the other entries vanish. Its inverse A−1(z) is the following:

A−1([1, 2m], [1, 2m]) = D−1
ε (z),

A−1(1, 2 : 2m− 1) = [u1(z), · · · , um−1(z), εum−1(1/z), · · · , εu1(1/z)],

A−1([m + 1− j, m + j], [m + 1− j, m + j]) = J−1
ε , 1 ≤ j ≤ m− 1,

(22)

and the other entries vanish.
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Proof. Recall that w+
j (z) = w+

j (1/z), w−j (z) = −w−j (1/z), v(z) = v(1/z). By computation, we claim

that A(z) in (i), (ii) or (iii) is V-symmetric and L-invertible, and A−1(z) is given by (18), (20) or (22),
respectively. The proof is completed.

The SLPME of the smallestP-symmetric prime vector is not unique because w+
j (z), w−j (z), and v(z)

can be arbitrary. Besides, each Jε can be replaced by Dε(z) in (13), where d(z) and d̃(z) can also be
freely chosen.

We show the SLPMEs of some smallest P-symmetric prime vectors in the following example.

Example 2. (i) An SLPME of~a(z) = [0; 0; 1; 0; 0] is given by:

A(z) =


0

√
2

2 0 0 −
√

2
2

0 0
√

2
2 −

√
2

2 0
1 −w+

1 (z) −w+
2 (z) w−2 (z) w−1 (z)

0 0
√

2
2

√
2

2 0

0
√

2
2 0 0

√
2

2

 ,

whose inverse is:

A−1(z) =


u1(z) u2(z) 1 u2(

1
z ) u1(

1
z )√

2
2 0 0 0

√
2

2

0
√

2
2 0

√
2

2 0

0 −
√

2
2 0

√
2

2 0

−
√

2
2 0 0 0

√
2

2

 .

(ii) An SLPME of~a(z) = [d(z); 0; 0; 0;−d(1
z )] is given by:

A(z) =


d(z) −d(z)w+(z) −d(z)v(z) −d(z)w−(z) d̃(1

z )

0
√

2
2 0

√
2

2 0
0 0 1 0 0

0 −
√

2
2 0

√
2

2 0
−d(1

z ) d(1
z )w

+(z) −d(1
z )v(z) d(1

z )w
−(z) d̃(z)

 ,

whose inverse is:

A−1(z) =


d̃(z) u(z) v(z) −u(1

z ) −d̃(1
z )

0
√

2
2 0 −

√
2

2 0
0 0 1 0 0

0
√

2
2 0

√
2

2 0
d(1

z ) 0 0 0 d(z)

 .

(iii) An SLPME of~a(z) = [d(z); 0; 0; 0; 0; εd(1
z )] is:

A(z) =



d(z) −d(z)w+
1 (z) −d(z)w+

2 (z) −εd(1
z )w

−
2 (z) −εd(1

z )w
−
2 (z) −εd̃(1

z )

0
√

2
2 0 0 −ε

√
2

2 0

0 0
√

2
2 −ε

√
2

2 0 0

0 0 ε
√

2
2

√
2

2 0 0

0 ε
√

2
2 0 0

√
2

2 0
εd(1

z ) −εd(1
z )w

+
1 (z) −εd(1

z )w
+
2 (z) d(1

z )w
−
2 (z) d(1

z )w
−
1 (z) d̃(z)


,
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whose inverse is:

A−1(z) =



d̃(z) u1(z) u2(z) εu2(
1
z ) εu1(

1
z ) εd̃(1

z )

0
√

2
2 0 0 ε

√
2

2 0

0 0
√

2
2 ε

√
2

2 0 0

0 0 −ε
√

2
2

√
2

2 0 0

0 −ε
√

2
2 0 0

√
2

2 0
−εd(1

z ) 0 0 0 0 d(z)


.

We now give the main theorem for SLPME.

Theorem 3 (Euclidean symmetric division algorithm for SLPME). Let~a(z) ∈ Ls be a P-symmetric prime
vector. Then, the following Euclidean symmetric division algorithm realizes its SLPME:

1. Apply Euclidean symmetric division to construct the C-symmetric elementary matrices E1, · · · , En such
that~an = En · · ·E1~a is a normalized smallest P-symmetric prime vector.

2. Apply Lemma 5 to construct an SLPME An(z) of~an and its inverse (An)−1(z) by choosing v(z), w+
j (z)

and w−j (z) at random, say v = w+
j = w−j = 0.

3. Construct the SLPME for~a by:

A(z) = E−1
1 · · ·E

−1
n An(z),

A−1(z) = A−1
n (z)En · · ·E1.

Then, A(z) is an SLPME of~a.

If a dual pair (~a,~b) is given, then Step (2) is replaced by the following to compute An(z).

2.a Compute~bn(z) = (E−1
n )T · · · (E−1

1 )T~b(z).
2.b If~a ∈ (P+)2m+1, set:

w+
j (z) =

√
2

2
(bn

j (z) + bn
j (1/z)), 1 ≤ j ≤ m,

w−j (z) =

√
2

2
(bn

j (z)− bn
j (1/z)), 1 ≤ j ≤ m.

If~a in (P−)2m+1 or in (Pε)2m, set:

w+
j (z) =

√
2

2
(bn

j+1(z) + bn
j+1(1/z)), 1 ≤ j ≤ m− 1,

w−j (z) =

√
2

2
(bn

j+1(z)− bn
j+1(1/z)), 1 ≤ j ≤ m− 1,

and also set v(z) = bn
m+1(z) if~a ∈ (P−)2m+1.

2.c Construct the SLPME An(z) as in Lemma 5 using v(z), w+
j (z) and w−j (z).

Then, [A(z), A−1(z)] is an SLPME of the dual pair (~a,~b).

Proof. By the construction of An(z), its first column An(:, 1) is the smallest P-symmetric prime vector.
Since A(z) = E−1

1 · · ·E−1
n An(z), we have A(:, 1) =~a and A(z) is V-symmetric and L-invertible, whose

inverse can be computed by A−1(z) = A−1
n En · · ·E1. Hence, A(z) is an SLPME of~a. Assume now the

dual pair (~a,~b) is given. By the computation in Step (2.a) and Step (2.b), we claim that A−1
n (1, :) = (~bn)T.

Since A−1 = A−1
n En · · ·E1, A−1(1, :) = ~bT. Hence, [A(z), A−1(z)] is an SPLME of the pair (~a,~b).

The proof is completed.



Axioms 2017, 6, 9 13 of 29

4. Application in the Construction of Symmetric Multi-Band Perfect Reconstruction Filter Banks

In this section, we use the results in the previous section to construct symmetric M-band perfect
reconstruction filter banks (SPRFBs). We adopt the standard notions and notations of digital signals,
filters, the M-downsampling operator and the M-upsampling operator in signal processing (see [6,7]).
In this paper, we restrict our study to real digital signals and simply call them signals.

Mathematically, a signal x is defined as a bi-infinite real sequence, whose n-th term is denoted
by x(n) or xn. A finite signal is a sequence that has only finite nonzero terms. All signals form
a linear space, denoted by l. A filter H : l → l, Hx = y, can be represented as a signal
H = (...H(−1), H(0), H(1), H(2), ...) ∈ l that makes y = H ∗ x well defined, where ∗ denotes the
convolution operator:

y(n) = ∑
k

H(k)x(n− k). (23)

A finite filter H is called a finite impulse response (FIR). Otherwise, it is called an infinite impulse
response (IIR). In this paper, we only study FIR. The z-transform of a signal x is the Laurent series
x(z) = ∑j∈Z x(j)zj, where z = eiθ, θ ∈ R, resides on the unit circle of the complex plane C. Hence,
z̄ = z−1. Similarly, the z-transform of an FIR H is the Laurent polynomial:

H(z) = ∑
j∈Z

H(j)zj.

We define the support length of an FIR as the support length of its z-transform: supp(H) =

supp(H(z)). By the convolution theorem, if y = H ∗ x, then y(z) = H(z)x(z).
PRFBs have been widely used in many areas such as signal and image processing, data mining,

feature extraction and compressive sensing [12–16]. The readers can find an introduction to PRFB from
many references on signal processing and wavelets, say [6,7]. A PRFB consists of two sub-filter banks:
an analysis filter bank, which decomposes a signal into different bands, and a synthesis filter bank,
which composes a signal from its different band components. Assume that an analysis filter bank
consists of the band-pass filter set {H0, H1, · · · , HM−1} and a synthesis one consists of the band-pass
filter set {B0, B1, · · · , BM−1}, where H0 and B0 are low-pass filters. They form an M-band PRFB if and
only if the following condition holds:

M−1

∑
j=0

Bj(↑M)(↓M)Hj = I, (24)

where ↓ M is the M-downsampling operator, ↑ M is the M-upsampling operator, I is the identity
operator and Bj denotes the conjugate filter of Bj. Here, the conjugate of a real filter a =

(· · · , a−1, a0, a1, · · · ) is ā = (· · · , a1, a0, a−1, · · · ). Therefore, the z-transform of Bj is Bj(z) = Bj(z−1).
The polyphase form of a signal is defined as follows:

Definition 7. Let x(z) be the z-transform of a signal x and M ≥ 2 an integer. The Laurent series:

x[M,k](z) = ∑
j

x(Mj + k)zj, k ∈ Z, (25)

is called the k-th M-phase of x, and the vector of Laurent series [x[M,0](z); · · · ; x[M,M−1](z)] is called
an M-polyphase of x.

Since a filter can be identical with a signal, we define its polyphase in the same way. For instance,
let F(z) be the z-transform of an FIR filter F. We call:

F[M,k](z) = ∑
j

F(Mj + k)zj.
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the k-th M-phase of F and call the LP vector ~F(z) = [F[M,0](z); · · · ; F[M,M−1](z)] the M-polyphase
of F. We will abbreviate F[M,k](z) to F[k](z) if the band number M is not stressed. It is clear that
F(z) = ∑M−1

k=0 zkF[M,k](zM). Since, for any filter F,

F[k+sM](z) = z−sF[k](z), s ∈ Z, (26)

the M-polyphase of F can be generalized to [F[M,s](z); · · · ; F[M,s+M−1](z)] with s ∈ Z. Then, in general,

F(z) =
M−1+s

∑
k=s

zkF[M,k](zM).

For a filter bank {H0, · · · , HM−1}, we define its M-polyphase matrix as:

H(z) =


H[0]

0 (z) H[0]
1 (z) · · · H[0]

M−1(z)
H[1]

0 (z) H[1]
1 (z) · · · H[1]

M−1(z)
...

... · · ·
...

H[M−1]
0 (z) H[M−1]

1 (z) · · · H[M−1]
M−1 (z)

 .

The characterization identity (24) for PRFB now can be written as the following:

B∗(z)H(z) =
1
M

I, (27)

where B∗(z) is the Hermitian adjoint matrix of B(z) and I is the identity matrix.
A pair of low-pass filters (H0, B0) is called a conjugate pair if their M-polyphase forms satisfy:

M−1

∑
k=0

H[k]
0 (z)B[k]

0 (z) =
1
M

. (28)

We write ~H0(z) = [H[0]
0 (z); · · · ; H[M−1]

0 (z)] and~B0(z) = [B[0]
0 (z); · · · ; B[M−1]

0 (z)]. Then, the vector
form of (28) is:

(~B0(z))∗~H0(z) =
1
M

. (29)

Recall that, in the previous section, we call (~a(z),~b(z)) ∈ L2 a dual pair, if~bT~a = 1. Therefore,

(~H0(z),~B0(z)) in (29) is a conjugate pair if and only if (M~H0(z),~B0(z)) is a dual pair.
The PRFB construction problem is the following: Assume that a conjugate pair of low-pass

filters (H0, B0) is given. Find the filter sets {H1, · · · , HM−1} and {B1, · · · , BM−1} such that the pair
of filter banks {H0, H1, · · · , HM−1} and {B0, B1, · · · , BM−1} forms an M-band PRFB. The problem
can be presented in the polyphase form: Let (~H0(z),~B0(z)) be the M-polyphase of (H0, B0). Then,

(~a,~b) = (M~H0(z),~B0(z)) is an LP dual pair. The PRFB construction problem becomes to find an LPME
[A(z), A−1(z)] of (~a,~b) such that A(:, 1) =~a(z) and A−1(1, :) = (~b(z))T. Once the pair [A(z), A−1(z)]
is constructed, then the polyphase matrices for the PRFB are H(z) = 1

M A(z) and B(z) = (A−1(z))∗.
Hence, the PRFB construction problem essentially is identical to the LPME one, which we have studied
thoroughly in [1].

The symmetric PRFB (SPRFB) plays an important role in signal processing because it has the
linear phase. An FIR a is said to be cε-symmetric (with respect to the symmetric center c/2, c ∈ Z,)
if aj = εac−j. It is clear that if c is even, then supp(a) is odd, else if c is odd, then supp(a) is even.
In applications, we usually shift a given cε-symmetric filter to the center zero if supp(a) is odd or to
one if supp a is even. We abbreviate cε-symmetric to symmetric if the symmetric center c and type
(characterized by ε) are not stressed. For convenience, we will call the z-transform of a the cε-symmetric
if a is so. It is easy to verify that a 0ε-symmetric LP is Pε-symmetric, a 1ε-symmetric F(z) satisfies
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F(z) = εzF(z−1) and a (−1)ε-symmetric F(z) satisfies F(z) = ε/zF(z−1). We will denote by Pε
+ and

Pε
− the sets of all 1ε-symmetric and (−1)ε-symmetric LPs, respectively. It is clear that, if F(z) ∈ Pε,

so is F(z). If F(z) ∈ Pε
+, then F(z) ∈ Pε

−.
Assume that a conjugate pair of symmetric low-pass filters (H0, B0) is given. An SPRFB construction

problem is to find two symmetric filter sets {H1, · · · , HM−1} and {B1, · · · , BM−1} such that the pair of
symmetric filter banks {H0, H1, · · · , HM−1} and {B0, B1, · · · , BM−1} forms an M-band SPRFB. Because
the filters in a conjugate dual pair (H0, B0) have the same symmetric type and center (see Lemma 1
or [17]), without loss of generality, we will assume that the given conjugate pair is 0ε-symmetric (if
supp(H0) is odd) or 1ε-symmetric (if supp(H0) is even). Although the construction of PRFB has been
well studied, the development of the algorithms for SPRFB is relatively new. The authors of [17]
introduced a bottom-up algorithm to construct SPRFB for a given symmetric conjugate pair, without
using SLPME. Our purpose in this section is to develop a novel algorithm based on the symmetric
Euclidean SLPME algorithm introduced in the previous section. We want to put the algorithm in
the framework of the matrix algebra on the Laurent polynomial ring to make it more constructive.
The PRFB algorithm in [1] does not work for the construction of SPRFB. The new development
is required.

To develop the SPRFB algorithm based on M-polyphase representation, we need to characterize
the M-polyphase of a symmetric filter. By computation, we can verify that the k-th M-phase of
a symmetric filter satisfies the following:

(1) If F is 0ε-symmetric, then:
F[k](z) = εF[−k](z−1). (30)

(2) If F is 1ε-symmetric, then:
F[k](z) = εF[−k+1](z−1). (31)

(3) If F is Mε-symmetric, then:
F[k](z) = εzF[−k](z−1). (32)

(4) If F is (1−M)ε-symmetric, then:

F[k](z) = εz−1F[−k+1](z−1). (33)

We call a vector in L2m+1 Pε
z -symmetric if it satisfies (32) and call a vector in L2m Pε

z̄ -symmetric if
it satisfies (33). We denote by (Pε

z )
2m+1 and (Pε

z̄ )
2m the sets of all Pε

z -symmetric vectors in L2m+1 and
Pε

z̄ -symmetric vectors in L2m, respectively. By computation, we have the following:

Proposition 4. Let E be a (2m + 1)× (2m + 1) C-symmetric elementary matrix and~a ∈ (Pε
z )

2m+1. Then,
E~a ∈ (Pε

z )
2m+1. Let E be a (2m)× (2m) C-symmetric elementary matrix and~a ∈ (Pε

z̄ )
2m. Then, E~a ∈ (Pε

z̄ )
2m.

We now characterize the M-polyphase of a symmetric filter F as follows:

Lemma 6. Let M ≥ 2, m =
[

M
2

]
, and~F(z) = [F[m−M+1](z); · · · ; F[m](z)] be the M-polyphase of a filter F.

1. If M is odd and F is 0ε-symmetric, or M is even and F is 1ε-symmetric, then~F(z) is Pε-symmetric.
2. Assume M = 2m. If F is 0ε-symmetric, then (30) holds for 0 ≤ k ≤ m− 1 and:

F[m](z) = εz−1F[m](z−1), (34)

else if F is (2m)ε-symmetric, then (32) holds for 0 ≤ k ≤ m− 1 and:

F[m](z) = εF[m](z−1). (35)
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3. Assume M = 2m + 1. If F is 1ε-symmetric, then (31) holds for 0 ≤ k ≤ m− 1 and:

F[−m](z) = εzF[−m](z−1), (36)

else if F is (−2m)ε-symmetric, then (32) holds for 0 ≤ k ≤ m− 1 and:

F[−m](z) = εF[−m](z−1), (37)

Proof. We obtain Part 1 directly from (30) and (31). To prove Parts 2 and 3, according to (30)–(33),
we only need to verify (34)–(37).

If M = 2m and F is 0ε-symmetric, by (26) and (30), F[m](z) = z−1F[−m](z) = εz−1F[m](z−1), which
yields (34); and if F is (2m)ε-symmetric, then F[m](z) = z−1F[−m](z) = εz−1zF[m](z−1) = εF[m](z−1),
which yields (35).

If M = 2m+1 and F is 1ε-symmetric, then F[−m](z) = zF[m+1](z) = εzF[−m](z−1), which yields (36);
and if F is (1−M)ε-symmetric, then F[−m](z) = zF[m+1](z) = εzz−1F[−m](z−1) = εF[−m](z−1), which
yields (37). The lemma is proven.

We call a vector in L2m Pε
e -symmetric if it satisfies (30) for 0 ≤ k ≤ m− 1 and (34) and call it

(Pε
e )
∗-symmetric if it satisfies (32) for 0 ≤ k ≤ m− 1 and (35). Similarly, we call a vector in L2m+1

Pε
o -symmetric, if it satisfies (31) for 0 ≤ k ≤ m− 1 and (36), and call it (Pε

o )
∗-symmetric if it satisfies

(33) for 0 ≤ k ≤ m− 1 and (37). We denote by (Pε
e )

2m,((Pε
e )
∗)2m, (Pε

o )
2m+1 and ((Pε

o )
∗)2m+1, the sets of

all Pε
e -symmetric, (Pε

e )
∗-symmetric, Pε

o -symmetric and (Pε
o )
∗-symmetric vectors, respectively. All of

these symmetric vectors (other than P-symmetric) will be called P̃-symmetric ones.

Example 3. The vector~e1 ∈ R2m+1 is (P+
o )∗-symmetric, but not Pε

o -symmetric; and the vector~e2m ∈ R2m is
(P+

e )∗-symmetric, but not Pε
e -symmetric.

By Part 1 of Lemma 6, we have the following SPRFB construction algorithm:

Theorem 4. Let (H0, B0) be a conjugate pair of symmetric filters and (~H0(z),~B0(z)) the M-polyphase of
the pair. Assume that M is odd and H0 is 0ε-symmetric, or M is even and H0 is 1ε-symmetric. Write
~a(z) = M~H0(z) and~b(z) = ~B0(z). Let [A(z), A−1(z)] be an SLPME of the dual pair (~a(z),~b(z)) computed
by the Euclidean division algorithm in Theorem 3. Write H(z) = 1

M A(z) and B(z) = (A−1)∗(z). Then,
[H(z), B(z)] is the M-polyphase form of the M-band SPRFB, in which H0 is a filter in the analysis filter bank
and B0 is in the synthesis bank.

Proof. By~B∗0(z)~H0(z) = 1
M , we have:

(~b(z))T~a(z) = M(~B0(z))T~H0(z) = M(~B0)
∗(z)~H0(z) = 1.

Hence, (~a(z),~b(z)) is a symmetric LP dual pair. By Theorem 3, H(:, 1) = 1
M A(:, 1) = ~H0(z),

B(:, 1) = (A−1)∗(1, :) = (~b)T(z) = B0(z) and B∗(z)H(z) = 1
M . The theorem is proven.

Lemma 6 shows that, when the odevityof the band number M mismatches the odevity of the
support length of the conjugate pair (H0, B0), then their M-polyphase forms are not P-symmetric.
Thus, we cannot apply Theorem 3 to solve the SPRFB constriction problem for (H0, B0). To employ
the results we already obtained in the previous section, we establish a relation between P- symmetry
and P̃-symmetry.
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Definition 8. The (2m + 1)× 2m matrix:

Se(z) =

 0
√

2z
2

I2m−1 0

0
√

2
2


is called the symmetrizer for the vectors in (Pε

e )
2m. The (2m + 2)× (2m + 1) matrix:

So(z) =


√

2
2 0
0 I2m√

2
2z 0


is called the symmetrizer for the vectors in (Pε

o )
2m+1.

Recall z = eiθ . It is easy to verify that the left inverse of Se(z) is:[
0 I2m−1 0√

2
2z 0

√
2

2

]
= S∗e (z)

and the left inverse of So(z) is: [√
2

2 0
√

2z
2

0 I2m 0

]
= S∗o (z).

Lemma 7. We have the following.

(a) If ~F(z) ∈ (Pε
e )

2m, then Se(z)~F(z) ∈ (Pε)2m+1. Conversely, if~a(z) ∈ (Pε)2m+1, then S∗e (z)~a(z) ∈
(Pε

e )
2m.

(b) If ~F(z) ∈ (Pε
o )

2m+1, then So(z)~F(z) ∈ (Pε)2m+2. Conversely, if~a(z) ∈ (Pε)2m+2, then S∗o (z)~a(z) ∈
(Pε

o )
2m+1.

(c) If ~F(z) ∈ ((Pε
e )
∗)2m, then Se(z)~F(z) ∈ (Pε

z )
2m+1. Conversely, if~a(z) ∈ (Pε

z )
2m+1, then S∗e (z)~a(z) ∈

((Pε
e )
∗)2m.

(d) If~F(z) ∈ ((Pε
o )
∗)2m+1, then So(z)~F(z) ∈ (Pε

z̄ )
2m+2. Conversely, if~a(z) ∈ (Pε

z̄ )
2m+2, then S∗o (z)~a(z) ∈

((Pε
o )
∗)2m+1.

Proof. Let~F(z) ∈ (Pε
e )

2m. Writing~a(z) = [a1(z); · · · ; a2m+1(z)] = Se(z)~F(z) and applying (30) and (34),
we have:

a1(z) =

√
2

2
zF[m](z) =

√
2

2
εF[m](z−1),

aj(z) = εa2m+2−j(z−1), 2 ≤ j ≤ m + 1,

a2m+1(z) =

√
2

2
F[m](z),

which show that~a is Pε-symmetric. On the other hand, if~a(z) = [a1(z); · · · ; a2m+1(z)] is Pε-symmetric,
writing ~u(z) = S∗e (z)~a(z), for j = 1, · · · , 2m− 1, we have uj(z) = aj+1(z), so that uj(z) = εu2m−j(z).
We also have:

u2m(z) =
√

2
2z

a1(z) +
√

2
2

a2m+1(z).

By a1(z) = εa2m+1(z−1) and the identify above, we have:

u2m(z) = ε(

√
2

2
z−1a2m+1(z−1) +

√
2

2
a1(z−1)) = εz−1u2m(z−1).
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Hence, ~u(z) ∈ (Pε
e )

2m. The proof for Part (a) is completed. By the similar computation and
applying (31) and (36), (32) and (35), (33) and (37), respectively, we can prove Parts (b), (c) and (d) of
the lemma.

Similar to Definition 6, we define the smallest P̃-symmetric prime vector in the sets (Pε
e )

2m

and (Pε
o )

2m+1.

Definition 9. The smallest P̃-symmetric prime vector is defined as follows:

(1) The vector ã(z) = S∗e (cem+1) is called the smallest P+
e -symmetric prime vector in (P+

e )2m.
(2) Let~a ∈ (P−)2m+1 be the smallest P-symmetric prime vector in (2) of Definition 6 with i 6= 1. Then,

ã(z) = S∗e~a is called the smallest P−e -symmetric prime vector in (P−e )2m.
(3) Let~a ∈ (Pε)2m+2 be the smallest P-symmetric prime vector in (3) of Definition 6 with i 6= 1. Then,

ã(z) = S∗o~a is called the smallest Pε
o -symmetric prime vector in (Pε

o )
2m+1.

By Definition 9, we immediately have the following:

Proposition 5. The smallest P̃-symmetric prime vector has the following form:

(1) The smallest Pε
e -symmetric prime vector in (Pε

e )
2m has the form~a = [~ah; 0], where~ah(z) is the smallest

Pε-symmetric prime vector in P2m−1. Therefore, if ã in the smallest Pε
e -symmetric prime vector, then Se ã

is the smallest Pε-symmetric prime vector.
(2) The smallest Pε

o -symmetric prime vector in (Pε
o )

2m+1 has the form~a = [0;~at], where~at(z) is the smallest
Pε-symmetric prime vector in P2m. Therefore, if ã in the smallest Pε

o -symmetric prime vector, then So ã is
the smallest Pε-symmetric prime vector.

Example 4. Assume d(z) ∈ L satisfies gcdL(d(z), d(z−1)) = 1. The smallest (P+
e )-symmetric prime

vector in (P+
e )4 has the form [0; c; 0; 0]. The smallest (P−e )-symmetric prime vector in (P−e )4 has the form

[d(z); 0;−d(z−1); 0]. The smallest (Pε
o )-symmetric prime vector in (Pε

o )
5 has the form [0; d(z); 0; 0; εd(z−1)]

or [0; 0; d(z); εd(z−1); 0].

At the next step, we define C̃-symmetric elementary matrices for transforming a P̃-symmetric
prime vector to the smallest one. By Lemma 7, we immediately have the following:

Lemma 8. For any E ∈ E2m+1,~a ∈ (Pε
e )

2m and~b ∈ ((Pε
e )
∗)2m, we have S∗e ESe~a ∈ (Pε

e )
2m and S∗e ESe~b ∈

((Pε
e )
∗)2m. For any E ∈ E2m+2, ~a ∈ (Pε

o )
2m+1 and~b ∈ ((Pε

o )
∗)2m+1, we have S∗o ESo~a ∈ (Pε

o )
2m+1 and

S∗o ESo~b ∈ ((Pε
o )
∗)2m+1.

We also have the following:

Lemma 9. Let E be an s× s C-symmetric elementary matrix of Type 3.

(1) If s = 2m + 2, then (S∗o (z)E(z)So(z))−1 = S∗o (z)E−1(z)So(z).
(2) If s = 2m + 1, then (S∗e (z)E(z)Se(z))−1 = S∗e (z)E−1(z)Se(z).

Proof. In the case of s = 2m + 2, we have S∗o So = I2m+1 and:

SoS∗o =

 1/2 0 z/2
0 I2m 0

1/(2z) 0 1/2

 = I2m+2 + Q,

where

Q =

−1/2 0 z/2
0 02m 0

1/(2z) 0 −1/2





Axioms 2017, 6, 9 19 of 29

satisfies S∗o Q = 0 and Qso = 0. Therefore,

(S∗o E−1So)(S∗o ESo) = S∗o E−1(I2m+2 + Q)ESo = I2m+1 + S∗o E−1QESo.

If E = E(i,j)(q) ∈ E2m+2
3 , i, j 6= 1, then E−1QE = Q, which yields S∗o E−1QESo = S∗o QSo = 0.

If E = E(1,j)(q), then E−1Q = Q; else if E = E(j,1)(q), then QE = Q. By S∗o Q = 0 and Qso = 0, in both
cases, we have S∗o E−1QESo = 0. The lemma is proven for odd M. The proof for even M is similar.

By Lemmas 8 and 9, we define the C̃-symmetric elementary matrices as follows.

Definition 10. The matrix:

Ẽ(i,j)(q) =

{
S∗o E(i,j)(q)So, E(i,j)(q) ∈ E2m+2

3 ,

S∗e E(i,j)(q)Se, E(i,j)(q) ∈ E2m+1
3 ,

(38)

is called a C̃-symmetric elementary matrix. We denote by Ẽ s the set of all s× s C̃-symmetric elementary matrices.

As before, when the indices of Ẽ(i,j)(q) are not stressed, we simply write it as Ẽ. If we need to
stress the dimension of an s× s C̃-symmetric elementary matrix, we write it as Ẽs(i, j)(q).

Proposition 6. Ẽ(j,i)(q) = [Ẽ(i,j)(q̄)]∗ and [Ẽ(i,j)(q)]−1 = Ẽ(i,j)(−q).

Proof. The first identity is derived from:

[E(j,i)(q̄)]∗ = (E(i,j)(q̄))T = (E(i,j)(q))T = E(j,i)(q).

The second one is derived from [E(i,j)(q)]−1 = E(i,j)(−q) and Lemma 9.

To derive the explicit expressions of C̃-symmetric elementary matrices, we write:

~qc(z) =

√
2

2
(q(z) + zq(z−1))~em, ~em ∈ R2m−1,

~qj
o(z) =

√
2

2
(q(z)~ej + z−1q(z−1)~e2m+1−j), ~ej,~e2m+1−j ∈ R2m,

~qj
e(z) =

√
2

2
(zq(z)~ej + q(z−1)~e2m−j), ~ej,~e2m−j ∈ R2m−1.

When 1 ≤ j < i ≤ m, by (38) and:

E(i+1,j+1)
2m+2 (q) =

1 0 0

0 E(i,j)
2m (q) 0

0 0 1

 ,

we have:

Ẽ(i+1,j+1)
2m+1 (q) =

[
1 0

0 E(i,j)
2m (q)

]
, 1 ≤ j < i ≤ m.

Similar computation yields:

Ẽ(j+1,1)
2m+1 (q) =

[
1 0
~qj

o I2m

]
, 1 ≤ j ≤ m− 1.

For even-dimensional cases, we have:
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Ẽ(i+1,j+1)
2m (q) =

[
E(i,j)

2m−1 0
0 1

]
, 1 ≤ j < i ≤ m,

Ẽ(m+1,1)
2m (q) =

[
I2m−1 ~qc

0 1

]
,

Ẽ(j+1,1)
2m (q) =

[
I2m−1 ~qj

e
0 1

]
, 1 ≤ j ≤ m− 1.

Example 5. All elements of Ẽ4 are derived from E(i,j)(q) ∈ E5
3 , where 1 ≤ i, j ≤ 3 and i 6= j. By Corollary 6,

we only need to present Ẽ(i,j)
4 (q) for (i, j) = (2, 1), (3, 1), and (3, 2). By the formulas above, we obtain:

Ẽ(2,1)
4 (q) =


1 0 0

√
2

2 zq(z)
0 1 0 0

0 0 1
√

2
2 q(z−1)

0 0 0 1

 , Ẽ(3,1)
4 (q) =


1 0 0 0
0 1 0 q̂(z)
0 0 1 0
0 0 0 1


where q̂(z) =

√
2

2 (q(z) + zq(z−1)), and:

Ẽ(3,2)
4 (q) =


1 0 0 0

q(z) 1 q(z−1) 0
0 0 1 0
0 0 0 1

 .

All elements of Ẽ5 are derived from E(i,j)(q) ∈ E6
3 . Similarly, we only need to present Ẽ(i,j)

6 (q) for
(i, j) = (2, 1), (3, 1) and (3, 2). By the formulas above,

Ẽ(2,1)
5 (q) =


1 0 0 0 0√

2
2 q(z) 1 0 0 0

0 0 1 0 0
0 0 0 1 0√

2
2 z−1q(z−1) 0 0 0 1

 , Ẽ(3,1)
5 (q) =


1 0 0 0 0
0 1 0 0 0√

2
2 q(z) 0 1 0 0√

2
2 z−1q(z−1) 0 0 1 0

0 0 0 0 1

 .

Ẽ(3,2)
5 (q) =


1 0 0 0 0
0 1 0 0 0
0 q(z) 1 0 0
0 0 0 1 q(z−1)

0 0 0 0 1

 .

We now generalize Lemma 4 to the sets (Pε
e )

2m and (Pε
o )

2m+1.

Lemma 10. Assume that a(z) ∈ Pε, b(z) ∈ Pε
−, c(z) ∈ Pε

+ and d(z) ∈ Lh.

(1) If supp(a) > supp(b), then there is p(z) ∈ P+
+ and a1(z) ∈ Pε with supp(a1) < supp(b) such

that a(z) = b(z)p(z) + a1(z). If supp(a) < supp(b), then there is q(z) ∈ P+
− and b1(z) ∈ Pε

− with
supp(b1) < supp(a) such that b(z) = q(z)a(z) + b1(z).

(2) If supp(a) > supp(c), then there is q(z) ∈ P+
− and a1(z) ∈ Pε with supp(a1) < supp(b) such

that a(z) = c(z)q(z) + a1(z). If supp(a) < supp(c), then there is p(z) ∈ P+
+ and c1(z) ∈ Pε

+ with
supp(c1) < supp(a) such that c(z) = p(z)a(z) + c1(z).
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(3) If supp(b) > supp(d), there is a q(z) ∈ Lh and b1(z) ∈ Pε
− with supp(b1) ≤ supp(d) such that:

b(z) = q(z)d(z) + ε/zq(1/z)d(1/z) + b1(z).

(4) If supp(c) > supp(d), there is a p(z) ∈ Lh and c1(z) ∈ Pε
+ with supp(c1) ≤ supp(d) such that:

c(z) = p(z)d(z) + εzp(1/z)d(1/z) + c1(z).

Proof. We first prove (1). If supp(a) > supp(b), applying Lemma 4 to a(z) and b(z), we have q(z) ∈ Lh
and a1(z) ∈ Pε with supp(a1) ≤ supp(b) such that:

a(z) = q(z)b(z) + εq(1/z)b(1/z) + a1(z).

Since b(z) ∈ Pε
−, b(z) = ε/zb(1/z), so that:

q(z)b(z) + εq(1/z)b(1/z) = (q(z) + zq(1/z))b(z),

where p(z) = q(z) + zq(1/z) ∈ P+
+ , which leads to a(z) = b(z)p(z) + a1(z). Because supp(b) is even

and supp(a1) is odd, supp(a1) ≤ supp(b)⇒ supp(a1) < supp(b).
If supp(a) < supp(b), writing supp(a) = 2n + 1 and supp(b) = 2m, we have m− n ≥ 1. Similar

to the proof of Lemma 4, we write b(z) = ∑m−1
j=−m bjzj, where bj = εb−j−1 and b−m 6= 0. Define:

bt(z) =
m−1

∑
j=n

bjzj +
1
2

n−1

∑
j=−n

bjzj.

Then, deg+(bt) = m− 1 and bt(z) + ε/zbt(1/z) = b(z). Applying Lemma 3 to bt(z) and a(z),
we obtain a unique pair (q, r̂) ∈ Lh ×L such that:

bt(z) = q(z)a(z) + r̂(z),

where deg+(r̂) < n and deg−(r̂) ≥ −n. Since bt(z) + ε/zbt(1/z) = b(z), we have:

b(z) = q(z)a(z) + ε/zq(1/z)a(1/z) + r̂(z) + ε/zr̂(1/z).

Writing b1(z) = r̂(z) + ε/zr̂(1/z) and p(z) = q(z) + 1/zq(1/z), we have:

b(z) = p(z)a(z) + b1(z),

where supp(b1) ≤ 2n < supp(a) and b1(z) ∈ Pε
−. The proof for (1) is completed. The proof of (2) is

similar to that for (1), and the proofs for (3) and (4) are similar to that for Lemma 4.

The algorithms that perform the divisions in Lemma 10 are similar to Algorithm 1. We present
the algorithm that performs the divisions in Parts (1) and (2) of Lemma 10 in the following:

Algorithm 2 (Euclidean P̃-symmetric division algorithm I). Input:

a(z) =
n

∑
j=−n

ajzj ∈ Pε

and:

b(z) =

∑m−1
j=−m bjzj, b(z) ∈ Pε

−,

∑m
j=−m+1 bjzj, b(z) ∈ Pε

+.
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1. If n ≥ m, apply Algorithm 1 to (a(z), b(z)) to produce (q(z), r(z)) and output [p(z), a1(z)], where

a1(z) = r(z) and p(z) =

{
q(z) + zq(1/z), b(z) ∈ Pε

−,

q(z) + 1/zq(1/z), b(z) ∈ Pε
+.

2. Else, if n < m, set ah(z) = zna(z) and:

bh(z) =

zn
(

∑m−1
j=n bjzj + 1

2 ∑n−1
j=−n bjzj

)
, b(z) ∈ Pε

−,

zn−1
(

∑m
j=n+1 bjzj + 1

2 ∑n
j=−n+1 bjzj

)
, b(z) ∈ Pε

+.

Apply the Euclidean division algorithm bh = qhah + rh in the polynomial ring to obtain (qh, rh) ∈ Π2 and
output [p(z), b1(z)], where:

p(z) =

{
qh(z) + zqh(1/z), b(z) ∈ Pε

−,

zqh(z) + qh(1/z), b(z) ∈ Pε
+,

and:

b1(z) =

{
z−nrh(z) + εzn−1rh(z), b(z) ∈ Pε

−,

z1−nrh(z) + εznrh(1/z), b(z) ∈ Pε
+.

The algorithm that performs the divisions in Parts (3) and (4) of Lemma 10 is the following:

Algorithm 3 (Euclidean P̃-symmetric division algorithm II). Assume 2m > n, d(z) = ∑n−`
j=−` djzj, and:

b(z) =

∑m−1
j=−m bjzj, b(z) ∈ Pε

−,

∑m
j=−m+1 bjzj, b(z) ∈ Pε

+.

1. Compute k = m− bn/2c.
2. Construct:

bh(z) =

z−k+m
(

∑m−1
j=m−k bjzj + 1

2 ∑m−k−1
j=k−m bjzj

)
, b(z) ∈ Pε

−,

z−k+m−1
(

∑m
j=m−k+1 bjzj + 1

2 ∑m−k
j=k−m+1 bjzj

)
, b(z) ∈ Pε

+.

3. Apply the Euclidean division algorithm bh = qhdh + rh to obtain (qh, rh) ∈ Π2.
4. Output:

[q(z), b1(z)] =

{
[zk−m+`qh(z), zk−mrh(z) + εzm−k−1rh(1/z))], b(z) ∈ Pε

−,

[zk−m+1+`qh(z), zk−m+1rh(z) + εzm−krh(1/z)], b(z) ∈ Pε
+.

Similar to Theorem 2, we have the following:

Theorem 5. Assume~a0 ∈ (Pε
e )

2m or (∈ (Pε
o )

2m+1) with ‖~a0‖0 > 2. Then, there is a C̃-symmetric elementary
matrix Ẽ such that~a1 = Ẽ~a0 ∈ (Pε

e )
2m or (∈ (Pε

o )
2m+1) with supp~a1 < supp~a0 and ‖~a1‖0 ≤ ‖~a0‖0.

Proof. We first consider~a0 = [a0
1; · · · ; a0

2m] ∈ (Pε
e )

2m with ‖~a0‖0 > 2. Recall that~at = [a0
1; · · · ; a0

2m−1] is
Pε-symmetric. If |~at| > 2, by Theorem 2, we obtain the conclusion. Assume ‖~at(z)‖0 = 2. Then, a0

2m 6= 0.
Without loss of generality, we may assume a0

1(z) 6= 0 so that a0
2m−1(z) = εa0

1(1/z) 6= 0. If supp(a0
1) ≥

supp(a0
2m), by Theorem 1, there is a pair (q, r) ∈ L × L such that a0

1(z) = q1(z)a0
2m(z) + r(z) with

supp(r) < supp(a0
1). Therefore,

a0
2m−1(z) = εa0

1(z
−1) = εq1(z−1)a0

2m(z
−1) + εr1(z−1) = zq1(z−1)a0

2m(z) + εr1(z−1).
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Set~a1 = Ẽ2,1(−q)~a0, where q(z) =
√

2z−1q1(z). Then, a1
1 = r(z), a1

2m−1 = εr(1/z), and other terms
are unchanged. Hence, supp~a1 < supp~a0 and ‖~a1‖0 ≤ ‖~a0‖0. If supp(a0

2m) > supp(a0
1), applying

the division in (3) of Lemma 10, we obtain the conclusion. The proof for~a0 ∈ (Pε
e )

2m is completed.
The proof for~a0 ∈ (Pε

o )
2m+1 is similar.

Corollary 2. Assume that the prime vector ~a0 ∈ (Pε
e )

2m(or in (Pε
o )

2m+1) is not the smallest one. Then,
there are final C̃-symmetric elementary matrices such that~an = ẼnẼn−1 · · · Ẽ1~a0 is the smallest Pε

e -symmetric
(or Pε

o -symmetric) prime vector.

Proof. The proof is almost identical with that for Corollary 1. Assume~a0 ∈ (P+
e )2m. First, we find final

C̃-elementary matrix, say Ẽ1, · · · , Ẽk, such that~a = Ẽk · · · Ẽ1~a0 ∈ (P+
e )2m with ‖~a‖0 ≤ 2. If ‖~a‖0 = 1,

the only possible nonzero term is either am or a2m. By gcdL(~a) = 1, the nonzero term must have the
form of cz`. we must have~a = c~em. However, a2m is P+

− -symmetric; if a2m = cz`, it must be zero.
Therefore, we have~a = c~em; if ‖~a‖0 = 2, but a2m 6= 0. Therefore, we must have am 6= 0. Applying
the division scheme in (1) of Lemma 10, we find Ẽk+1, · · · , Ẽn such that~an = Ẽn · · · Ẽk+1~a has only
one nonzero term. As we proved before, we have~an = c~em. If ‖~a‖0 = 2 and a2m = 0, then there is
1 ≤ j ≤ m− 1 such that aj(z) = d(z) and a2m−j(z) = d(1/z) and gcdL(d(z), d(1/z)) = 1. Similar to the
proof of Corollary 1, we can find Ẽk+1 and Ẽk+2 such that Ẽk+2Ẽk+1~a =~em. The proof for~a0 ∈ (P+e)2m

is completed. For the cases that~a0 ∈ (P−e )2m and in (Pε
o )

2m+1, the proofs are similar.

For convenience, an LPME [A(z), A−1(z)] of a P̃-symmetric dual pair (~a,~b) will be called
an SLPME, if [ 1

M A(z), A−1(z)] represents the polyphase form of an SPRFB.

Lemma 11. Let~a be the smallest Pε
e -symmetric prime vector in (Pε

e )
2m and~b be its dual so that (~b(z))T~a(z) =

1. Write~ah(z) = ~a(1 : 2m− 1) and~bh(z) = ~b(1 : 2m− 1). Let Ah(z) be an SLPME of~ah(z) such that
Ah(:, 1) =~ah and (Ah)−1(1, :) = (~bh(z))T. Then:

A(z) =

[
Ah(z) −b2m(z)~ah(z)

0 1

]
(39)

is the SLPME of~a and:

A−1(z) =

[
(Ah(z))−1 b2m(z)~e1

2m−1
0 1

]
, (40)

in which A−1(1, :) = (~b(z))T.
Similarly, let ~a be the smallest Pε

o -symmetric prime vector in (Pε
o )

2m+1 and ~b be its dual so that
(~b(z))T~a(z) = 1. Write~at(z) = ~a(2 : 2m + 1) and ~bt(z) = ~b(2 : 2m + 1). Let At(z) be an SLPME of
~at(z) such that At(:, 1) =~at and (At)−1(1, :) = (~bt(z))T. Then:

A(z) =

[
0 1

At(z) −b1(z)~at(z)

]
(41)

is the SLPME of~a and:

A−1(z) =

[
b1(z)~e1

2m (At(z))−1

1 0

]
, (42)

in which A−1(1, :) = (~b(z))T.

Proof. We consider~a ∈ (Pε
e )

2m. Since~a is the smallest prime vector, we have a2m(z) = 0, and~at is
the smallest Pε-symmetric prime vector in (Pε)2m−1. We find the SLPME [Ah(z), (Ah)−1(z) for (~at,~bt)

by Lemma 4. Because any column of Ah(z), say Ah(:, j), is Pε-symmetric, all columns of A(z) except
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the last one are Pε
e -symmetric. Recall that~b is in (Pε

e )
2m. Hence, b2m(z) = εz−1b2m(z−1). Therefore,

the last column of A(z), A(:, 2m), is (P+
e )∗-symmetric. Thus, A(z) is an SLPME of~a. By computation,[

(Ah(z))−1 b2m(z)~e1
2m−1

0 1

] [
Ah(z) −b2m(z)~ah(z)

0 1

]
= I.

Hence, (40) gives A−1(z), whose first row is (~b(z))T. It is also easy to verify that the last column
of A(z) is (P+

e )∗-symmetric, and others are Pε
e -symmetric. The proof for~a ∈ (Pε

e )
2m is completed.

The proof for~a ∈ (Pε
o )

2m+1 is similar.

Combining the results above, we develop the algorithm for the construction of the SPRFB of
a given P̃-symmetric conjugate pair of filters.

Theorem 6. Let (H0, B0) be a given 0ε-symmetric (1ε-symmetric) conjugate pair of filters and the LP
vector pair (~H0(z),~B0(z)) be the (2m)-polyphase ((2m + 1)-polyphase) form of (H0, B0). Then, an SPRFB
[{H0, · · · , H2m}, {B0, · · · , B2m}] of (H0, B0) can be constructed as follows:

(1) [Normalizing the dual pair] Set~a(z) = M~H0(z) and~b(z) = ~B0(z), where M = 2m (or 2m + 1).
(2) [Reducing~a to the smallest prime one] Use the Euclidean P̃-symmetric division algorithm to construct

the C̃-symmetric elementary matrices Ẽ1, · · · , Ẽn such that~an = Ẽn · · · Ẽ1~a is the smallest P̃-symmetric
prime vector.

(3) [Computing the dual of~an(z)] Set~bn = (Ẽ−1
n )T · · · (Ẽ−1

1 )T~b.
(4) [Constructing SLPME for the smallest dual pair] Apply (39)–(42) to construct the SLPME

[An(z), (An)−1(z)] for the dual pair (~an,~bn).
(5) [Computing the polyphase matrices of SPRFB] Set:

A(z) = (Ẽ1)
−1 · · · (Ẽn)

−1An(z),

A−1(z) = (An)−1(z)Ẽn · · · Ẽ1,

and H(z) = 1
M A(z), B(z) = (A−1(z))∗. Then, [H(z), B(z)] is the M-polyphase form of the SPRFB

for (H0, B0).

Proof. The proof is similar to that for Theorem 3. We skip its details here.

5. Illustrative Examples

In this section, we present several examples for demonstrating the SLPME algorithm and SPRFB
algorithms we developed in the paper.

Example 6 (Construction of three-band SPRFB). Let H0 and B0 be two given low-pass symmetric filters
with the z-transforms:

H0(z) =
(

z−1 + 1+ z
3

)2

and:
B0(z) =

1
27

(z−1 + 1+ z)2(−4z + 11− 4z−1)

We want to construct the three-band SPRFB [{H0, H1, H2}, {B0, B1, B2}], which satisfies:

2

∑
j=0

Bj(↑ 3)(↓ 3)Hj = I.
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Their three-band polyphase forms of H0 and B0 are the following:

~H0(z) = [H[−1]
0 (z), H[0]

0 (z), H[1]
0 (z)] =

1
9
[2+ z, 3, 2+ z−1] ∈ (P+)3,

~B0(z) = [B[−1]
0 (z), B[0]

0 (z), B[1]
0 (z)] =

1
9

[
2+ z,

−4z + 17− 4z−1

3
, 2+ z−1

]
∈ (P+)3,

(1) Normalizing~a(z). We set~a = 1
3
~H0(z) = 1

3 [2+ z, 3, 2+ 1/z] and~b = ~B0(z), so that~bT~a = 1.
(2) Reducing~a to the smallest P-symmetric prime vector, we employ:

E(z) =

1 − 2+z
3 0

0 1 0
0 − 2+1/z

3 1


E−1(z) =

1 2+z
3 0

0 1 0
0 2+1/z

3 1


 ,

which yields~a1(z) = E(z)~a(z) = [0; 1; 0].
(3) Computing~b1(z) to make the dual pair (~a1(z),~b1(z)), we have:

~b1(z) = (E−1)T~b(z) =

 1 0 0
2+1/z

3 1 2+z
3

0 0 1




1+2z
9z

−4z+17−4z−1

27
2+z

9

 =

 1+2z
9z
1

2+z
9

 .

(4) Constructing SLPME for the smallest dual pair (~a1,~b1), set u(z) = b1
1(z) =

1+2z
9z . We have w+(z) =

√
2

2 (u(z) + u(1/z)) = (1+4z+z2)

9
√

2z
, w−(z) =

√
2

2 (u(z)− u(1/z)) = (1−z2)

9
√

2z
. Hence,

A1(z) =


0

√
2

2 −
√

2
2

1 − (1+4z+z2)

9
√

2z
(1−z2)

9
√

2z

0
√

2
2

√
2

2

 A−1
1 (z) =


1+2z

9z 1 2+z
9√

2
2 0

√
2

2

−
√

2
2 0

√
2

2

 .

(5) Computing the SLPME for (~a,~b):

A(z) = E−1(z)A1(z) =


2+z

3 − 2−18z+6z2+z3

27
√

2z
2−26z−2z2−z3

27
√

2z

1 − (1+4z+z2)

9
√

2z
(1−z2)

9
√

2z
2z+1

3z − 2z3−18z2+6z+1
27
√

2z2 − 2z3−26z2−2z−1
27
√

2z2



A−1(z) = A−1
1 (z)E(z) =


2+1/z

9
−4+17z−4z2

27z
2+z

9
1√
2

− 1+4z+z2

3
√

2z
1√
2

− 1√
2

−1+z2

3
√

2z
1√
2

 .

(6) Converting to SPRFB of (H0, B0), the three-band polyphase matrices for the SPRFB of (H0, B0) are
H(z) = 1

3 A(z) and B(z) = (A−1(z))∗. Therefore, the z-transforms for filters in the three-band PRFB
[{H0, H1, H2}, {B0, B1, B2}] are:

H0(z) =
1
9

(
z−1 + 1+ z

)2
,

H1(z) = −
(z− 1)2

27
√

2z5
(1+ 4z + 10z2 + 22z3 + 16z4 + 22z5 + 10z6 + 4z7 + z8),

H2(z) =
(1− z)3

27
√

2z5
(1+ 5z + 15z2 + 33z3 + 33z4 + 15z5 + 5z6 + z7),
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and:

B0(z) =
1
27

(z−1 + 1+ z)2(−4z + 11− 4z−1),

B1(z) =
1√
2
(− 1

3z3 +
1
z
− 4

3
+ z− z3

3
)

B2(z) =
1√
2
(− 1

3z3−
1
z
+z− z3

3
).

Remark 2. This example is the same as Example 1 in [17]. However, the results here are different from those
in [17]. Our filters H1 and H2 have longer supports than those in [17]. If we want to shorten the support of the
filters, we should carefully select Dε(z) in (13) and use it to replace Jε in the A1(z), as mentioned in Section 3.

Example 7 (Construction of an SLPME of a dual pair in (P+
e )4 ). Because a construction of SPRFB

essentially is identical with an SLPME of a given dual pair, we now give the illustrative examples for SLPME
only. We construct an SLPME for the following P+

e -symmetric dual pair (~a,~b) in (P+
e )4:

~a =
1
16

[
−1

z
+ 8+ z;−2

z
+ 12− 2z;

1
z
+ 8− z; 4+

4
z

]
~b =

1
16

[
−2

z
+ 6;−1

z
+ 10− z; 2z + 6; 4+ 4z

]
,

which satisfies~bT~a = 0.

(1) Reducing~a to the smallest Pe-symmetric prime vector. The Euclidean P̃-symmetric division algorithm
yields the following C̃-symmetric elementary matrices:

Ẽ1 =


1 0 0 0
0 1 0 z+1

2
0 0 1 0
0 0 0 1

 Ẽ2 =


1 0 0 − 1

4(7+ z)
0 1 0 0
0 0 1 − 1

4(1+ 7z)
0 0 0 1



Ẽ3 =


1 1

2z 0 0
0 1 0 0
0 z

2 1 0
0 0 0 1

 Ẽ4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 − 1+z

4z 0 1

 ,

such that~a4 = Ẽ4 · · · Ẽ1~a = [0; 1; 0; 0].
(2) Computing~b4(z) = (Ẽ−1

4 )T · · · (Ẽ−1
1 )T~b(z), we have:

~b4 =

[
3z + 1

8z
; 1;

3+ z
8

;
(1+ z)3

4z

]
.

(3) Constructing SLPME for the smallest dual pair (~a4,~b4), the vector u(z) = b1(z) == 1
8(3 + 1/z) produces:

w+(z) =
√

2
16

(1/z + 6+ z) w−(z) =
√

2
16

(1/z− z).

Hence,

A4(z) =


0

√
2

2 −
√

2
2 0

1 −w+(z) w−(z) − (1+z)3

4z

0
√

2
2

√
2

2 0
0 0 0 1

 , A−1
4 (z) =


3z+1

8z 1 3+z
8

(1+z)3

4z√
2

2 0
√

2
2 0

−
√

2
2 0,

√
2

2 0
0 0 0 1

 .
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(4) Computing the SLPME for (~a,~b): A(z) = Ẽ−1
1 · · · Ẽ

−1
4 A4(z) and A−1(z) = A−1

4 (z)Ẽ4 · · · Ẽ1:

A(z) =



−1+8z+z2

16z
1−2z+80z2−14z3−z4

128
√

2z2 − 1−8z+126z2+8z3+z4

128
√

2z2
1−5z+90z2−10z3−11z4−z5

64z2

−1+6z−z2

8z
1−34z2+z4

64
√

2z2
(z2−1)(1−6z+z2)

64
√

2z2
(1+z)(1−4z−26z2−4z3+z4)

32z2

1+8z−z2

16z
−1−14z+80z2−2z3+z4

128
√

2z2
1+8z+126z2−8z3+z4

128
√

2z2
−1−11z−10z2+90z3−5z4+z5

64z2

1+z
4z

(z+1)(1+6z+z2)

32
√

2z2
(z−1)(z+1)2

32
√

2z2 − (z−1)2(1+6z+z2)
16z2


and:

A−1(z) =


3z+1

8z
−1+10z−z2

16z
3z+1

8z
1+z
4z√

2
2

1+z2

2
√

2z

√
2

2
(1+z)(1−8z+z2)

4
√

2z

−
√

2
2

−1+z2

2
√

2z

√
2

2
−1+5z−5z2+z3

4
√

2z
0 − 1+z

4z 0 −−1+6z−z2

8z

 .

Example 8 (Construction of SLPME of a dual pair in (P−o )3). In this example, we construct an SLPME for
the following P−o -symmetric dual pair (~a,~b) in (P−o )3:

~a = [4− 1/z2 − 4/z + z; 2− z;−2+ 1/z],

~b = [
2+ 9z− 9z2 − 2z3

6z
;

4+ 21z− 7z2 − 13z3 − 2z4

6z2 ;
2+ 13z + 7z2 − 21z3 − 4z4

6z2 ].

(1) Reducing~a to the smallest Pe-symmetric prime vector, the Euclidean P̃-symmetric division algorithm
yields the following C̃-symmetric elementary matrices:

Ẽ1 =

1 1+ 2/z 1/z + 2
0 1 0
0 0 1

 Ẽ2 =

 1 0 0
2+ z 1 0
1+ 2z 0 1


such that~a2 = Ẽ2Ẽ1~a = [0; 2− z;−2+ 1/z].

(2) Computing~b2(z) = (Ẽ−1
2 )T(Ẽ−1

1 )T~b(z), we have:

~b2 = [1− z, 1/3+ 1/(6z);−1/3− z/6] .

(3) Constructing SLPME for the smallest dual pair (~a2,~b2):

A2(z) =

 0 0 1
2− z 2+z

6 (z− 1)(z− 2)
−2+ z−1 2z+1

6z (z−1 − 2)(z− 1)

 , A−1
2 (z) =

1− z 2z+1
6z − 2+z

6
0 2− z−1 2− z
1 0 0

 .

(4) Computing the SLPME for (~a,~b): A(z) = Ẽ−1
1 Ẽ−1

2 A2(z) and A−1(z) = A−1
2 (z)Ẽ2Ẽ1:

A(z) =

4− 1/z2 − 4/z + z −(1+ 8z + 8z2 + z3)/(6z2) 1+ 1/z2 + 8/z + 8z + z2

2− z (2+ z)/6 −4+ 2z− z2

−2+ 1/z 1
6(2+ 1/z) 2− 1/z− 4z


and:

A−1(z) =

 2+9z−9z2−2z3

6z
4+21z−7z2−13z3−2z4

6z2
2+13z+7z2−21z3−4z4

6z2

5− 2/z + 5z− 2z2 17− 4/z2 + 7/z + z− 2z2 17− 2/z2 + 1/z + 7z− 4z2

1 (2+ z)/z 2+ 1/z

 .
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The following abbreviations are used in this manuscript:

LPME Laurent polynomial matrix extension
SLPME Symmetric Laurent polynomial matrix extension
PRFB Perfect reconstruction filter bank
SPRFB Symmetric perfect reconstruction filter bank
LP Laurent polynomial
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