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Abstract: The Tsallis entropy given for a positive parameter α can be considered as a generalization
of the classical Shannon entropy. For the latter, corresponding to α = 1, there exist many axiomatic
characterizations. One of them based on the well-known Khinchin-Shannon axioms has been
simplified several times and adapted to Tsallis entropy, where the axiom of (generalized) Shannon
additivity is playing a central role. The main aim of this paper is to discuss this axiom in the context
of Tsallis entropy. We show that it is sufficient for characterizing Tsallis entropy, with the exceptions
of cases α = 1, 2 discussed separately.
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1. Introduction

Some history. In 1988 Tsallis [1] generalized the Boltzmann-Gibbs entropy

S = −kB

n

∑
i=1

pi ln pi,

Describing classical thermodynamical ensembles with microstates of probabilities pi, by
the entropy

Sα = kB
1−∑n

i=1 pα
i

α− 1

For 0 < α 6= 1 in the sense that limα→1 Sα = S. Here kB is the Boltzmann constant (being
a multiplicative constant neglected in the following). Many physicists argue that generalizing the
classical entropy was a breakthrough in thermodynamics since the extension allows better describing
systems out of equilibrium and systems with strong correlations between microstates. There is,
however, also criticism on the application of Tsallis’ concept (compare [2,3]). In information theory
pioneered by Shannon, the Boltzmann-Gibbs entropy is one of the central concepts. We follow the
usual practice to call it Shannon entropy. Also note that Tsallis’ entropy concept coincides up to a
constant with the Havrda-Charvát entropy [4] given in 1967 in an information theoretical context.
Besides information theory, entropies are used in many fields, among them dynamical systems, data
analysis (see e.g. [5]), and fractal geometry [6].

There have been given many axiomatic characterizations of Tsallis’ entropy originating in such
of the classical Shannon entropy (see below). One important axiom called (generalized) Shannon
additivity is extensively discussed and shown to be sufficient in some sense in this paper.

Tsallis entropy. In the following, let4n = {(p1, p2, . . . , pn) ∈ (R+)n, ∑n
i=1 pi = 1} for n ∈ N be

the set of all n-dimensional stochastic vectors and4 =
⋃

n∈N4n be the set of all stochastic vectors,
where N = {1, 2, 3, . . .} and R+ are the sets of natural numbers and of nonnegative real numbers,
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respectively. Given α > 0 with α 6= 1, the Tsallis entropy of a stochastic vector (p1, p2, . . . , pn) of some
dimension n is defined by

H(p1, p2, . . . , pn) =
1−∑n

i=1 pα
i

α− 1
.

In the case α = 1, the value H (p1, . . . , pn) is not defined, but the limit of it as α approaches to 1 is

H(p1, p2, . . . , pn) = −
n

∑
i=1

pi ln pi,

Which provides the classical Shannon entropy. In so far Tsallis entropy can be considered as a
generalization of the Shannon entropy and so it is not surprising that there have been many attempts
to generalize various axiomatic characterizations of the latter to the Tsallis entropy.

Axiomatic characterizations. One line of characterizations mainly followed by Suyari [7] and
discussed in this paper has its origin in the Shannon-Khinchin axioms of Shannon entropy (see [8,9]).
Note that other characterizations of Tsallis entropy are due to dos Santos [10], Abe [11] and Furuichi [12].
For some general discussion of axiomatization of entropies see [13].

A map H : 4 → R+ is the Shannon entropy up to a multiplicative positive constant if it satisfies
the following axioms:

H is continuous on4n for all n ∈ N, (S1)

H
(

1
n

,
1
n

, . . . ,
1
n

)
≥ H(p1, p2, . . . , pn) for all (p1, p2, . . . , pn) ∈ 4n, (S2)

H(p1, p2, . . . , pn, 0) = H(p1, p2, . . . , pn) for all (p1, p2, . . . , pn) ∈ 4, (S3)

H(p1,1, ..., p1,m1 , p2,1, ..., p2,m2 , ..., pn,1, ..., pn,mn) = H(p1, ..., pn) +
n

∑
i=1

pi H
(

pi,1

pi
, ...,

pi,mi

pi

)
for all (p1,1, ..., p1,m1 , p2,1, ..., p2,m2 , ..., pn,1, ..., pn,mn) ∈ 4; n, m1, . . . , mn ∈ N

and pi =
mi

∑
j=1

pi,j; j = 1, ..., mi. (S4)

Axiom (S4) called Shannon additivity is playing a key role in the characterization of the Shannon
entropy and an interesting result given by Suyari [7] says that its generalization

H(p1,1, ..., p1,m1 , p2,1, ..., p2,m2 , ..., pn,1, ..., pn,mn) = H(p1, ..., pn) +
n

∑
i=1

pα
i H
(

pi,1

pi
, ...,

pi,mi

pi

)
for all (p1,1, ..., p1,m1 , p2,1, ..., p2,m2 , ..., pn,1, ..., pn,mn) ∈ 4; n, m1, . . . , mn ∈ N

and pi =
mi

∑
j=1

pi,j; j = 1, ..., mi (GS4)

For α 6= 1 provides the Tsallis entropy for this α.
More precisely, if H : 4 → R+ satisfies (S1), (S2), (S3) and (GS4), then c(α)H is the Tsallis entropy

for some positive constant c(α). The full result of Suyari slightly corrected by Ilić et al. [14] includes
a characterization of the map α→ c(α) under the assumption that H also depends continuously on
α ∈ R+ \ {0}. We do not discuss this characterization, but we note here that the results below also
provide an immediate simplification of the whole result of Suyari and Ilić et al.

Given α, the constant c(α) is determined by any positive value H(p1, p2, . . . , pn) of some stochastic
vector (p1, p2, . . . , pn). If this reference vector is for example given by ( 1

2 , 1
2 ), one easily sees that

c(α) = 21−α−1
(1−α)H( 1

2 , 1
2 )

and c(1) = ln 2
H( 1

2 , 1
2 )

.
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The main result. In this paper, we study the role of generalized Shannon additivity in
characterizing Tsallis entropy, where for α ∈ R+ \ {0} and H : 4 → R we also consider the slightly
relaxed property that

H(p1, ..., pj−1, pj, pj+1, pj+2, . . . , pn) = H(p1, ..., pj−1, pj + pj+1, pj+2, . . . , pn)

+ (pj + pj+1)
αH

(
pj

pj + pj+1
,

pj+1

pj + pj+1

)
for all (p1, p2, . . . , pn ∈ 4); n ∈ N; j = 1, 2, . . . , n− 1. (GS4’)

It turns out that this property basically is enough for characterizing the Tsallis entropy for
α ∈ R+ \ {0, 1, 2} and with a further weak assumption in the cases α = 1, 2. As already mentioned,
the statement (iii) for α = 1 is an immediate consequence of a characterization of Shannon entropy by
Diderrich [15] simplifying an axiomatization given by Faddeev [16] (see below).

Theorem 1. Let H : 4 → R be given with (GS4) or, a bit weaker, with (GS4’), for α ∈ R+ \ {0}. Then the
following holds:

(i) If α 6= 1, 2, then

H(p1, p2, . . . , pn) = H
(

1
2

,
1
2

)
1−∑n

i=1 pα
i

1− 21−α
for all (p1, p2, . . . , pn) ∈ 4. (1)

(ii) If α = 2, then the following statements are equivalent:

(a) It holds

H(p1, p2, . . . , pn) = 2H
(

1
2

,
1
2

)(
1−

n

∑
i=1

p2
i

)
for all (p1, p2, . . . , pn) ∈ 4,

(b) H is bounded on42,
(c) H is continuous on42,
(d) H is symmetric on42,
(e) H does not change the signum on42.

(iii) If α = 1, then the following statements are equivalent:

(a) It holds

H(p1, p2, . . . , pn) = −
H
(

1
2 , 1

2

)
ln 2

(
n

∑
i=1

pi ln2 pi

)
for all (p1, p2, . . . , pn) ∈ 4,

(b) H is bounded on42.

Note that statement (iii) is given here only for reasons of completeness. It follows from a result of
Diderrich [15].

The paper is organized as follows. Section 2 is devoted to the proof of the main result. It will turn
out that most of the substantial work is related to stochastic vectors contained in42 ∪43 and that
the generalized Shannon additivity acts as a bridge to stochastic vectors longer than 2 or 3. Section 3
completes the discussion. In particular, the Tsallis entropy for α = 1, 2 on rational vectors is discussed
and an open problem is formulated.

2. Proof of the Main Result

We start with investigating the relationship of H(p1, p2) and H(p2, p1) for (p1, p2) ∈ 42.
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Lemma 1. Let α ∈ R+ \ {0} and H : 4 → R satisfy (GS4’). Then for all (p1, p2) ∈ 42 it follows

(1− 3 · 2−α)H(p1, p2) + 2−α H(p2, p1) = H
(

1
2

,
1
2

)
(1− pα

1 − pα
2), (2)

in particular for α = 1

H(p1, p2) = H(p2, p1) (3)

and for α = 2

H(p1, p2) + H(p2, p1) = 4H
(

1
2

,
1
2

)
(1− p2

1 − p2
2). (4)

Moreover it holds

H(1) = 0. (5)

Proof. First of all, note that (5) is an immediate consequence of (GS4’) implying

H(1, 0) = H(1) + 1αH(1, 0).

Further, two different applications of (GS4’) to H
(

1
2 , 1

2 , 0
)

provide

H
(

1
2

,
1
2

)
+

(
1
2

)α

H(1, 0) = H
(

1
2

,
1
2

, 0
)
= H(1, 0) + 1α H

(
1
2

,
1
2

)
.

Therefore H(1, 0) = 0, and since one similarly gets H(0, 1) = 0, we can assume in the following
that p1, p2 6= 0.

Applying (GS4’) three times, one obtains

H(p1, p2) + (pα
1 + pα

2)H
(

1
2

,
1
2

)
= H

( p1

2
,

p1

2
,

p2

2
,

p2

2

)
= H

(
p1

2
,

1
2

,
p2

2

)
+ 2−αH(p1, p2) (6)

and in the same way

H
(

p1

2
,

1
2

,
p2

2

)
+ 2−αH(p2, p1) = H

( p1

2
,

p2

2
,

p1

2
,

p2

2

)
= H

(
1
2

,
1
2

)
+ 21−αH(p1, p2). (7)

Transforming (7) to the term H
(

p1
2 , 1

2 , p2
2

)
and then substituting this term in (6), provides

H(p1, p2) + (pα
1 + pα

2)H
(

1
2

,
1
2

)
= H

(
1
2

,
1
2

)
+ 3 · 2−α H(p1, p2)− 2−αH(p2, p1),

which is equal to (2). Statements (3) and (4) follow immediately from Equation (2).

In the case α = 1 condition (GS4’) implies that the order of components of a stochastic vector does
not make a difference for H:

Lemma 2. Let H : 4 → R satisfy (GS4’) for α = 1. Then H is permutation-invariant, meaning that
H(p1, p2 . . . , pn) = H(pπ(1), pπ(2) . . . , pπ(n)) for each (p1, p2, . . . , pn) ∈ 4; n ∈ N and each permutation
π of {1, 2, . . . , n}.
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Proof. It suffices to show that

H(p1, ..., pj−1, pj, pj+1, pj+2, . . . , pn) = H(p1, ..., pj−1, pj+1, pj, pj+2, . . . , pn)

for all (p1, p2, . . . , pn) ∈ 4; n ∈ N; j = 1, 2, . . . , n− 1.

For n < 3 this has been shown in Lemma 1 (see (3)), for n ≥ 3 it follows directly from (GS4’) and
from Lemma 1.

The following lemma provides the substantial part of the proof of Theorem 1.

Lemma 3. For H : 4 → R satisfying (GS4’) with α ∈ R+ \ {0, 1}, the following holds:

(i) If α 6= 2, then

H(p1, p2) = H
(

1
2

,
1
2

)
1− pα

1 − pα
2

1− 21−α
for all (p1, p2) ∈ 42.

(ii) If α = 2, then the following statements are equivalent:

(a) It holds

H(p1, p2) = 2H
(

1
2

,
1
2

)
(1− p2

1 − p2
2) for all (p1, p2) ∈ 42,

(b) H is symmetric on42, meaning that H(p1, p2) = H(p2, p1) for all (p1, p2) ∈ 42,
(c) H is continuous on42,
(d) H is bounded on42,
(e) H is nonnegative or nonpositive on42.

Proof. We first show (i). Let α 6= 2 and (p1, p2) ∈ 42. Changing the role of p1 and p2 in (2), by
Lemma 1 one obtains

(1− 3 · 2−α)H(p2, p1) = 2α

(
2−α H

(
1
2

,
1
2

)
(1− pα

1 − pα
1)− 2−2αH (p1, p2)

)
. (8)

Moreover, one easily sees that (2) transforms to

(1− 3 · 2−α)H(p2, p1) (9)

= 2α

(
(1− 3 · 2−α)H

(
1
2

,
1
2

)
(1− pα

1 − pα
2)− (1− 6 · 2−α + 9 · 2−2α) H(p1, p2)

)
.

(8) and (9) provide

(1− 22−α)H
(

1
2

,
1
2

)
(1− pα

1 − pα
2) = (1− 3 · 21−α + 23−2α) H(p1, p2).

Since 1− 3 · 21−α + 23−2α = (1− 22−α)(1− 21−α), it follows

H(p1, p2) =
1− pα

1 − pα
2

1− 21−α
H
(

1
2

,
1
2

)
.

In order to show (ii), let α = 2 and define maps f : [ 1
2 , 1]→ [ 1

2 , 1] and D : [ 1
2 , 1]→ [0, ∞[ by

f (p) = max
{

1− p
p

, 1− 1− p
p

}
and

D(p) = |H(p, 1− p)− H(1− p, p)|
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for p ∈ [ 1
2 , 1].

By (4) in Lemma 1, (a) is equivalent both to (b) and to D(p) = 0 for all p ∈ [ 1
2 , 1]. (c) implies (d)

by compactness of42 and validity of the implications (a)⇒ (c) and (a)⇒ (e) is obvious.
From

H(p, 1− p) + p2H
(

1− p
p

, 1− 1− p
p

)
= H(1− p, 2p− 1, 1− p)

= H(1− p, p) + p2H
(

1− 1− p
p

,
1− p

p

)

for p ∈
[

1
2 , 1
]

one obtains

D(p) = p2D( f (p)) (10)

and by induction

D(p) =

(
n

∏
k=1

f ◦k(p)

)2

D( f ◦n(p)) (11)

with f ◦n(p) =

n times︷ ︸︸ ︷
f ( f (. . . ( f ( p)) . . .)).

For p ∈
] 2

3 , 1
[

it holds f (p) = 2− 1
p , hence f maps the interval

] 2
3 , 1
[

onto the interval
]

1
2 , 1
[
.

Since p− f (p) = (p−1)2

p > 0 for all p ∈
] 2

3 , 1
[
, the following holds:

For each q ∈
]

2
3

, 1
[

there exists some k ∈ N with f ◦k(q) ∈
]

1
2

,
2
3

[
. (12)

Moreover, applying (10) to p = 1
2 yields 0 = D( 1

2 ) =
D(1)

4 , hence

D(1) = 0. (13)

Assuming (d), by use of (11), (12) and (13) one obtains D(p) = 0 for all p ∈
[

1
2 , 1
]
, hence (a). If (e)

is valid, then by (4) in Lemma 1

D(r) ≤
∣∣∣∣4H

(
1
2

,
1
2

)∣∣∣∣ (1− r2 − (1− r)2) ≤
∣∣∣∣4H

(
1
2

,
1
2

)∣∣∣∣
for all r ∈ [ 1

2 , 1], providing (d). By the already shown, (a), (b), (c), (d), (e) are equivalent .

Now we are able to complete the proof of Theorem 1. Assuming (GS4’), we first show (1) for
α 6= 1, 2, and for H bounded and α = 2. This provides statement (i) and, together with Lemma 3 (ii),
statement (ii) of Theorem 1.

Statement (1) is valid for all (p1, p2, . . . , pn) ∈ 41 ∪42 by Lemma 3. In order to prove it for n > 2,
we use induction. Assuming validity of (1) for all (p1, p2, . . . , pn) ∈ 4 with n = k, where k ∈ N \ {1},
let (p1, p2, . . . , pk, pk+1) ∈ 4. Choose some j ∈ {1, 2, . . . , k} with pj + pj+1 > 0. Then by (GS4’) and
Lemma 3 we have
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H(p1, . . . , pj−1, pj, pj+1, pj+2, . . . , pk+1)

= H(p1, . . . , pj−1, pj + pj+1, pj+2, . . . , pk+1) + (pj + pj+1)
α H

(
pj

pj + pj+1
,

pj+1

pj + pj+1

)

= H
(

1
2

,
1
2

) 1−∑
j−1
i=1 pα

i − (pj + pj+1)
α −∑k+1

i=j+2 pα
i

1− 21−α

+ H
(

1
2

,
1
2

)
(pj + pj+1)

α

1− 21−α

(
1−

(
pj

pj + pj+1

)α

−
(

pj+1

pj + pj+1

)α)

= H
(

1
2

,
1
2

)
1−∑k+1

i=1 pα
i

1− 21−α
.

So (1) holds for all (p1, p2, . . . , pn) ∈ 4 with n = k + 1.
In order to see (iii), recall a result of Diderrich [15] stating that H : 4 → R is a multiple of the

Shannon entropy if H is bounded and permutation-invariant on42 and satisfies

H(p1, p2, p3, . . . , pn) = H(p1 + p2, p3 . . . , pn) + (p1 + p2) H
(

p1

p1 + p2
,

p2

p1 + p2

)
for all (p1, p2, . . . , pn) ∈ 4; n ∈ N \ {1} with p1 + p2 > 0,

which is weaker than (GS4’) with α = 1. Since under (GS4’) H is permutation-invariant by Lemma 2,
Diderrichs axiom are satisfied, and we are done.

3. Further Discussion

Our discussion suggests that the case α = 2 is more complicated than the general one. In order
to get some further insights, particularly in the case α = 2, let us consider only rational stochastic
vectors. So in the following let 4Q =

⋃
n∈N4

Q
n with 4Q

n = 4n ∩Qn for n ∈ N and Q being the
rationals. The following proposition states that for α 6= 1 the ‘rational’ generalized Shannon additivity
principally provides the Tsallis entropy on the rationals, which particularly provides a proof of the
implication (c)⇒ (a) in Theorem 1 (ii).

Proposition 1. Let H : 4Q → R be given with (S4) for4Q instead of4 and α ∈ R+ \ {0, 1}. Then it holds

H(p1, p2, . . . , pn) = H
(

1
2

,
1
2

)
1−∑n

i=1 pα
i

1− 21−α
for all (p1, p2, . . . , pn) ∈ 4Q. (14)

Proof. For the vectors
(

1
m , . . . , 1

m

)
,
(

1
n , . . . , 1

n

)
∈ 4 with m, n ∈ N, we get from axiom (S4)

H
(

1
m

, ...,
1
m

)
+ m

(
1
m

)α

H
(

1
n

, ...,
1
n

)
= H

(
1

mn
, ...,

1
mn

)
= H

(
1
n

, ...,
1
n

)
+ n

(
1
n

)α

H
(

1
m

, ...,
1
m

)
,

implying

H
(

1
m

, ...,
1
m

)
= H

(
1
n

, ...,
1
n

)
·

1−
(

1
m

)α−1

1−
(

1
n

)α−1 . (15)
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Now consider any rational vector (p1, p2, . . . , pn) ∈ 4Q with p1 = a1
b , p2 = a2

b , ..., pn = an
b for

b, a1, . . . , an ∈ N satisfying
n
∑

i=1
ai = b. With (S4) we get

H(p1, ..., pn) +
n

∑
i=1

pα
i · H

(
1

ai · n
, ...,

1
ai · n

)
= H

(
1

b · n , ...,
1

b · n

)
= H

(
1
n

, ...,
1
n

)
+ n ·

(
1
n

)α

· H
(

1
b

, ...,
1
b

)
.

Using (15), we obtain

H(p1, . . . , pn) = H
(

1
n

, . . . ,
1
n

)
·

1 + n ·
(

1
n

)α

·
1−

(
1
b

)α−1

1−
(

1
n

)α−1 −
n

∑
i=1

pα
i

1−
(

1
ai ·n

)α−1

1−
(

1
n

)α−1



= H
(

1
n

, . . . ,
1
n

)
·

1−
n
∑

i=1
pα

i

1−
(

1
n

)α−1 = H
(

1
2

,
1
2

)
·

1−
n
∑

i=1
pα

i

1− 21−α
.

Let us finally compare (ii) and (iii) in Theorem 1 and ask for the role of (c), (d) and (e) of (ii) in
(iii). Symmetry is already given by Lemma 2 when only (S4) is satisfied, (S4) and nonnegativity are not
sufficient for characterizing Shannon entropy, as shown in [17]. By our knowledge, there is no proof
that (S4) and continuity are enough, but (S4) and analyticity is working. Showing the latter, in [18] an
argumentation reducing everything to the rationals as above has been used.

We want to resume with the open problem whether the further assumptions for α = 2 in Theorem 1
are necessary.

Problem 1. Is (1) in Theorem 1 also valid for α = 2?

Author Contributions: Sonja Jäckle provided most of the results and material with exception of the proof of
Lemma 3 (ii). On the base of the material, Karsten Keller wrote the paper.
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