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Abstract: We make a detailed study of norm retrieval. We give several classification theorems for
norm retrieval and give a large number of examples to go with the theory. One consequence is a new
result about Parseval frames: If a Parseval frame is divided into two subsets with spans W1, W2 and
W1 ∩W2 = {0}, then W1 ⊥W2.
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1. Introduction

Signal reconstruction is an important problem in engineering and has a wide variety of
applications. Recovering signals when there is partial loss of information is a significant challenge.
Partial loss of phase information occurs in application areas such as speech recognition [1–3], and optics
applications such as X-ray crystallography [4–6], and there is a need to do phase retrieval efficiently.
The concept of phase retrieval for Hilbert space frames was introduced in 2006 by Balan, Casazza,
and Edidin [7], and since then it has become an active area of research in signal processing and
harmonic analysis.

Phase retrieval has been defined for vectors as well as for projections and in general deals with
recovering the phase of a signal given its intensity measurements from a redundant linear system.
Phase retrieval by projections, where the signal is projected onto some lower dimensional subspaces
and has to be recovered from the norms of the projections of the vectors onto the subspaces, appears in
real life problems such as crystal twinning [8]. We refer the reader to [9] for a detailed study of phase
retrieval by projections.

Another related problem is that of phaseless reconstruction, where the unknown signal is
reconstructed from the intensity measurements. Recently, the two terms phase retrieval and phaseless
reconstruction were used interchangeably. However, it is not clear from their respective Definitions
how these two are equivalent. Recently, in [10] the authors proved the equivalence of phase retrieval
and phaseless reconstruction in real as well as in complex case. Due to this equivalence, in this paper,
we restrict ourselves to proving results regarding phase retrieval. Further, a weaker notion of phase
retrieval and phaseless reconstruction was introduced in [11].

In this work, we consider the notion of norm retrieval which was recently introduced by
Bahmanpour et al. in [12], and is the problem of retrieving the norm of a vector given the absolute
value of its intensity measurements. Norm retrieval arises naturally from phase retrieval when one
utilizes both a collection of subspaces and their orthogonal complements. Here we study norm retrieval
and certain classifications of it. We use projections to do norm retrieval and to extend certain results
from [13] for frames. We provide a complete classification of subspaces of RN which do norm retrieval.
Various examples for phase and norm retrieval by projections are given. Further, a classification of
norm retrieval using Naimark’s theorem is also obtained.
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We organize the rest of the paper as follows. In Section 2, we include basic Definitions and results
of phase retrieval. Section 3 introduces the norm retrieval and properties. Section 4 provides the
relationship between phase and norm retrieval and related results. Detailed classifications of vectors
and subspaces which do norm retrieval are provided in Section 5.

2. Preliminaries

We denote by HN a N dimensional real or complex Hilbert space, and we write RN or CN when it
is necessary to differentiate between the two explicitly. Below, we give the Definition of a frame in HN .

Definition 1. A family of vectors Φ = {φi}M
i=1 in HN is a frame if there are constants 0 < A ≤ B < ∞ so

that for all x ∈ HN ,

A‖x‖2 ≤
n

∑
i=1
|〈x, φi〉|2 ≤ B‖x‖2. (1)

The following Definitions and terms are useful in the sequel.

• The constants A and B are called the lower and upper frame bounds of the frame, respectively.
• If A = B, the frame is called an A-tight frame (or a tight frame). In particular, if A = B = 1,

the frame is called a Parseval frame.
• Φ is an equal norm frame if ‖φi‖ = ‖φj‖ for all i, j and is called a unit norm frame if ‖φi‖ = 1

for all i = 1, 2, · · · , n.
• If, only the right hand side inequality holds in (1), the frame is called a B-Bessel family with

Bessel bound B.

Note that in a finite dimensional setting, a frame is a spanning set of vectors in the Hilbert space.
We refer to [14] for an introduction to Hilbert space frame theory and applications.

Let Φ = {φi}M
i=1 be a frame in HN . The analysis operator associated with Φ is defined as the

operator T : HN → `M
2 to be

Tx =
M

∑
i=1
〈x, φi〉 ei = {〈x, φi〉}M

i=1, for all x ∈ HN .

Here, {ei}M
i=1 is understood to be the natural orthonormal basis for `M

2 . The adjoint T∗ of the
analysis operator T is called the synthesis operator of the frame Φ. It can be shown that T∗(ei) = φi.

The frame operator for the frame Φ is defined as S : T∗T : HN → HN . That is,

Sx = T∗T(x) =
M

∑
i=1
〈x, φi〉 φi for all x ∈ HN .

Note that the frame operator S is a positive, self-adjoint and invertible operator satisfying the
operator inequality AI ≤ S ≤ BI, where A and B are the frame bounds and I denotes the identity on
HN . Frame operators play an important role since they are used to reconstruct the vectors in the space.
To be precise, any x ∈ HN can be written as

x = SS−1x = S−1Sx =
M

∑
i=1

〈
S−1x, φi

〉
φi =

M

∑
i=1

〈
x, S−1φi

〉
φi. (2)

The analysis operator of a Parseval frame is an isometry and the frame operator is the identity
operator. Thus, if {φi}M

i=1 is a Parseval frame, it follows from Equation (2) that

x =
M

∑
i=1
〈x, φi〉 φi, x ∈ HN .
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We concentrate on norm retrieval and its classifications in this paper. We now see the basic
Definitions of phase retrieval formally, starting with phase retrieval by projections. Throughout the
paper, the term projection is used to describe orthogonal projection (orthogonal idempotent operator)
onto subspaces.

Definition 2. Let {Wi}M
i=1 be a collection of subspaces in HN and let {Pi}M

i=1 be the projections onto each
of these subspaces. We say that {Wi}M

i=1 (or {Pi}M
i=1) yields phase retrieval if for all x, y ∈ HN satisfying

‖Pix‖ = ‖Piy‖ for all i = 1, 2, · · · , M then x = cy for some scalar c such that |c| = 1

Phase retrieval by vectors is a particular case of the above.

Definition 3. Let Φ = {φi}M
i=1 ∈ HN be such that for x, y ∈ HN

|〈x, φi〉| = |〈y, φi〉|, for all i ∈ [M]

Φ yields phase retrieval with respect to an orthonormal basis {ei}N
i=1 if there is a |c| = 1 such that xi = cyi,

for all i = 1, 2, · · · , N, where xi = 〈x, ei〉.

Orthonormal bases fail to do phase retrieval, since in any given orthonormal basis,
the corresponding coefficients of a vector are unique. One of the fundamental properties to identify
the minimum number of vectors required to do phase retrieval is the complement property.

Definition 4 ([7]). A frame Φ = {φi}M
i=1 in HN satisfies the complement property if for all subsets

I ⊂ {1, 2, · · · , M}, either {φi}i∈I or {φi}i∈Ic spans the whole space HN .

It is proved in [7] that phase retrieval is equivalent to the complement property in RN . Further,
it is proven that a generic family of (2N − 1)-vectors in RN does phase retrieval, however no set of
(2N − 2)-vectors can. Here, generic refers to an open dense set in the set of (2N − 1)-element frames
in HN . Full spark is another important notion of vectors in frame theory. A formal Definition is
given below:

Definition 5. Given a family of vectors Φ = {φi}M
i=1 in HN , the spark of Φ is defined as the cardinality

of the smallest linearly dependent subset of Φ. When spark(Φ) = N + 1, every subset of size N is linearly
independent, and in that case, Φ is said to be full spark.

Note from the Definitions that full spark frames with M ≥ 2N − 1 have the complement property
and hence do phase retrieval. Moreover, if M = 2N − 1 then the complement property clearly implies
full spark.

Next result, known as Naimark’s theorem, characterizes Parseval frames in a finite dimensional
Hilbert space. This theorem facilitates a way to construct Parseval frames, and crucially it is the only
way to obtain Parseval frames. Later, we use this to obtain a classification of frames which do norm
retrieval. The notation [M] = {1, 2, · · · , M} is used throughout the paper.

Theorem 1 (Naimark’s Theorem). [15] A frame {φi}M
i=1 is a Parseval frame for RN if and only if RN ⊂ `M

2
with orthonormal basis {ei}M

i=1 so that the orthogonal projection P onto RN satisfies: Pei = φi for every i ∈ [M].

3. Beginnings of Norm Retrieval

In this section, we provide the Definition of norm retrieval along with certain related results,
and pertinent examples.
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Definition 6. Let {Wi}M
i=1 be a collection of subspaces in HN and let {Pi}M

i=1 be the orthogonal projections
onto each of these subspaces. We say that {Wi}M

i=1 (or {Pi}M
i=1) yields norm retrieval if for all x, y ∈ HN

satisfying ‖Pix‖ = ‖Piy‖ for all i = 1, 2, · · · , M then ‖x‖ = ‖y‖.
In particular, a set of vectors {φi}M

i=1 in HN does norm retrieval, if for x, y ∈ HN satisfying
|〈x, φi〉| = |〈y, φi〉| for all i = 1, 2, · · · , M then ‖x‖ = ‖y‖.

Remark 1. It is immediate that a family of vectors doing phase retrieval does norm retrieval.

An obvious choice of vectors which do norm retrieval are orthonormal bases. For, let {ei}N
i=1 be

an orthonormal basis in HN . Now, for x ∈ HN , |〈x, φi〉| = |〈x, ei〉| = |xi| . Thus

N

∑
i=1
|〈x, φi〉|2 =

N

∑
i=1
|xi|2 = ‖x‖2.

The following theorem provides a sufficient condition under which the subspaces spanned by the
canonical basis vectors do norm retrieval.

Theorem 2. Let {ei}N
i=1 be an orthonormal basis in HN . Let {Wj}k

j=1 be subspaces of HN where each

Wj = span{ei}i∈Ij , Ij ⊆ [N]. If there exists m such that for all j, |{j : ei ∈ Wj}| = m, then {Wj}k
j=1

does norm retrieval.

Proof. Let Pj be orthogonal projections onto Wj, for all j. Now, by assumption, we have

k

∑
j=1
‖Pjx‖2 =

k

∑
j=1

∑
i∈Ij

|〈x, ei〉|2 = m
N

∑
j=1

∣∣〈x, ej
〉∣∣2 = m‖x‖2.

It is easy to see that tight frames do norm retrieval.

Theorem 3. Tight frames do norm retrieval.

Proof. et {φi}M
i=1 in HN be an A-tight frame. Now, if

|〈x, φi〉| = 〈y, φi〉|, for all i = 1, 2, · · · , M,

then

A‖x‖2 = ∑M
i=1 |〈x, φi〉|2 = ∑M

i=1 |〈y, φi〉|2 = A‖y‖2.

Observe that if {φi}M
i=1 ∈ HN does norm retrieval so does {φi}M

i=1 ∪ {ψj}K
j=1 for any ψj ∈ HN .

This is generalized in the following proposition.

Proposition 1. If {Pi}M
i=1 does norm retrieval, then so does {Pi}M

i=1 ∪ {Qi}K
i=1 for any projections Qi.

In particular, if a frame Φ = {φi}M
i=1 contains an orthonormal basis, then it does norm retrieval. Moreover,

in this case, {φ⊥i }M
i=1 does norm retrieval.

Proof. Let {ei}N
i=1 be an orthonormal basis for HN and let Pi be the projections onto φi

⊥, for each i.
Given x ∈ HN , we have

∑N
i=1 ‖Pix‖2 = ∑N

i=1 ∑j 6=i
∣∣〈x, ej

〉∣∣2 = (N − 1)∑N
i=1
∣∣〈x, ej

〉∣∣2 = (N − 1)‖x‖2.
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The above proposition does not hold if the number of hyperplanes is strictly less than N. This is
proved in the next theorem.

Theorem 4. If {φi}N
i=1 is an orthonormal basis for RN then {Wi}i∈I where Wi = φ⊥i cannot do norm retrieval

for I ⊆ [N − 1].

Proof. Without loss of generality consider the collection {Wi}N−1
i=1 (for N > 2). Now, let x = ∑N

i=1 φi

and y =
√

N−1
N−2 ∑N−1

i=1 φi so that ‖Pjx‖2 = ∑i 6=j |〈x, φi〉|2 = N − 1 and ‖Pjy‖2 = N−1
N−2 ∑N−1

i=1
i 6=j
|〈x, φi〉|2.

Thus, ‖Pjx‖2 = ‖Pjy‖2. However ‖x‖2 = N and ‖y‖2 = (N−1)2

N−2 which proves the theorem.

Now, we strengthen the above result by not requiring the vectors to be orthogonal. To prove this,
we need the following lemma.

Lemma 1. If {φi}N
i=1 are independent vectors in RN , then ∀c > 0 there is a vector φ ∈ RN satisfying:

|〈φ, φi〉| = c 6= 0, for all i ∈ [N].

Proof. We do this by induction on N with the case N = 2 obvious. So assume this holds for N − 1.
Given {φi}N

i=1, we can find a φ ∈ span {φi}N−1
i=1 and satisfying

|〈φ, φi〉| = c 6= 0, for all i = 1, 2, · · · , N − 1.

Choose ψ ⊥ span {φi}N−1
i=1 and note that linear independence of the φi implies

|〈ψ, φN〉| 6= 0.

Consider φ + λψ. For i = 1, 2, · · · , N − 1,

|〈φ + λψ, φi〉| = |〈φ, φi〉+ λ〈ψ, φi〉|
= |〈ψ, φi〉|
= c

Also,
〈φ + λψ, φN〉 = 〈φ, φN〉+ λ〈ψ, φN〉.

As λ varies from −∞ to +∞, the right hand side varies from −∞ to +∞ and for some λ, we have

|〈φ, φN〉+ λ〈ψ, φN〉| = c.

Proposition 2. If {φi}N−1
i=1 ∈ RN are independent and unit norm and {Wi} = {φ⊥i }, for all i ∈ [N − 1],

then {Wi}N−1
i=1 cannot do norm retrieval.

Proof. Let Pi be the projection onto Wi and choose

x ∈
N−1⋂
i=1

Wi, with ‖x‖ = 1.

By the assumption, pick any c > 0, there is a vector φ ∈ span {φi}N−1
i=1 and |〈φ, φi〉| = c 6= 0,

for all i ∈ [N− 1]. In particular, we may scale φ and c simultaneously such that ‖φ‖ = 1 and it follows
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that 0 < c < 1. Let y = λx + µφ, where λ2 + (1− c2)µ2 = 1. Note that x ⊥ φi for all i implies that
φ ⊥ x, and so ‖y‖2 = λ2 + µ2 6= 1.

Now, for all i = 1, 2, · · · , N − 1,

‖Piy‖2 = ‖y‖2 − |〈y, φi〉|2

= λ2 + µ2 − µ2c2

= λ2 + (1− c2)µ2

= 1

= ‖x‖2

= ‖Pix‖2.

But ‖x‖2 = 1 while ‖y‖2 6= 1, and so norm retrieval fails.

However, in the following theorem, we show that three proper subspaces of codimension one can
do norm retrieval in RN .

Theorem 5. In RN three proper subspaces of codimension one can do norm retrieval.

Proof. Let {ei}N
i=1 be an orthonormal basis for RN . Let

φ1 = e1 φ2 = e2 φ3 = (e1 − e2)/
√

2

We claim {φ⊥i }3
i=1 does norm retrieval. Let Pi be the orthogonal projection onto φ⊥i .

Let x = (a1, · · · , aN). We then have that

||P1x||2 = a2
2 +

N

∑
k=3

a2
k , ||P2x||2 = a2

1 +
N

∑
k=3

a2
k

||P3x||2 =

(
a1 + a2√

2

)2
+

N

∑
k=3

a2
k =

a2
1 + 2a1a2 + a2

2
2

+
N

∑
k=3

a2
k

Case 1: If a1 = 0 or a2 = 0, we know that ||x||2 = ||P1x||2 or ||x||2 = ||P2x||2 respectively.
Case 2: Assume both a1 6= 0 and a2 6= 0. We then know both of the equalities below:

− (a1 + a2)
2

2
· 1

a2
2
||P1x||2 + ||P3x||2 = c

N

∑
k=3

a2
k

− (a1 + a2)
2

2
· 1

a2
1
||P2x||2 + ||P3x||2 = d

N

∑
k=3

a2
k

where

c = − (a1 + a2)
2

2a2
2

+ 1 and d = − (a1 + a2)
2

2a2
1

+ 1

If either c or d is nonzero, then the proof is complete as in that case, we can express ||x||2 as
a linear combination of ||P1x||2, ||P2x||2, and ||P3x||2.

Now, suppose that c = d = 0. If c = 0, then (a1 + a2)
2 = 2a2

2 and if d = 0, then (a1 + a2)
2 = 2a2

1.
This implies that

2(a1 + a2)
2 = 2a2

1 + 2a2
2

which holds only if either a1 or a2 or both is zero which contradicts our assumption.
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It follows that in R3, two 2-dimensional subspaces cannot do norm retrieval but three
2-dimensional subspaces can do norm retrieval.

Proposition 3. For every K ≤ N, there exist subspaces {Wi}K+1
i=1 of HN which do norm retrieval and

{W⊥i }
K+1
i=1 span a K dimensional space.

Proof. Choose an orthonormal basis of HN , say {ei}N
i=1. Let W1 = span{ei}N−K

i=1 and Wi =

span{W1, eN−K+i−1} for all 2 ≤ i ≤ K + 1. If x = ∑N
j=1 ajej, then ‖P1x‖2 = ∑N−K

j=1 |aj|2 and ‖Pix‖2 =

∑N−K
j=1 |aj|2 + |aN−K+i−1|2 for 2 ≤ i ≤ K + 1. Therefore ‖x‖2 = ∑K+1

i=2 ‖Pix‖2 − (K − 1)‖P1x‖2. Since

W⊥i ⊆W⊥1 for all i, it’s clear that {W⊥i }
K+1
i=1 is spanned by {ei}N

i=M−K+1, which has dimension K.

The following proposition shows a relationship between subspaces doing norm retrieval and the
sum of the dimensions of the subspaces. The importance of this proposition is that we are looking for
conditions on subspaces to do norm retrieval. To do so, the dimension of the subspaces is one of the
tools we have.

Proposition 4. If {Wi}M
i=1 in RN does norm retrieval then ∑M

i=1 dim Wi ≥ N. Moreover, if ∑M
i=1 ki = LN

and ki > N then there exist {Wi}M
i=1 doing norm retrieval where dim Wi = ki for each 1 ≤ i ≤ M.

Proof. If ∑M
i=1 dim Wi < N then we may pick non-zero x ⊥Wi for each i so that ‖Pix‖ = 0 for all i and

therefore {Wi}M
i=1 fails norm retrieval.

For the moreover part, let {gi}N
i=1 be an orthonormal basis. We represent this basis L-times as

a multiset:
{φi}LN

i=1 =: {g1, · · · , gN , g1, · · · , gN , · · · , g1, · · · , gN},

and index it as: {ei}LN
i=1. We may pick a partition of [LN] in the following manner:

I1 = {1, 2, · · · , k1}, I2 = {k1 + 1, · · · , k1 + k2}, I3 = {k1 + k2 + 1, · · · , k1 + k2 + k3}, · · · .

Now define Wi = span {ej}j∈Ii with projection Pi. Then if x = ∑N
j=1 ajej then

M

∑
i=1
‖Pix‖2 =

M

∑
i=1

∑
j∈Ii

|aj|2 = L
N

∑
j=1
|aj|2 = L‖x‖2.

Hence the result.

As we have seen, the above proposition may fail if ∑M
i=1 ki 6= LN.

4. Phase Retrieval and Norm Retrieval

In this section, we provide results relating phase retrieval and norm retrieval. The following
theorem of Edidin [16] is significant in phase retrieval as it gives a necessary and sufficient condition
for subspaces to do phase retrieval.

Theorem 6 ([16]). A family of projections {Pi}M
i=1 in RN does phase retrieval if and only if for every

0 6= x ∈ RN , the vectors {Pix}M
i=1 span the space.

Corollary 1. If {Wi}M
i=1 in HN does phase retrieval, then {W⊥i }M

i=1 spans the space.

Proof. If {Wi}⊥ does not span, then there exists 0 6= x ∈ ⋂Wi. So Pix = x for all i ∈ [M], and so {Pix}
does not span. Thus, by Theorem 6, {Wi} does not do phase retrieval.
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Corollary 2. Let {Wi}M
i=1 be a collection of subspaces of RN with Pi denoting the projection onto Wi for each

1 ≤ i ≤ M. If {Wi}M
i=1 does phase retrieval in RN then for every I ⊂ [M] with |I| ≤ N − 2, the collection

{W⊥i }i∈Ic spans RN .

Proof. If not, pick non-zero x ⊥ W⊥i for all i ∈ Ic. This implies x ∈ ⋂i∈Ic Wi and therefore {Pix}M
i=1

contains at most N − 1 distinct vectors and can not span RN . This contradicts the Theorem 6.

The following example shows that it is possible for subspaces to do norm retrieval even if
{W⊥i } do not span the space which we see as one of main differences between phase retrieval and
norm retrieval.

Example 1. Let {ei}3
i=1 be a orthonormal basis for R3, then let

W1 = span{e1, e2} W1
⊥ = span{e3}

W2 = span{e2, e3} W2
⊥ = span{e1}

W3 = span{e2} W3
⊥ = span{e1, e3}

Then, {Wi}3
i=1 does norm retrieval since ‖x‖2 = ‖P1x‖2 + ‖P2x‖2 − ‖P3x‖2. But {Wi}⊥, i = 1, 2, 3

do not span R3.
Note that if W1 = HN , then {W1} itself does norm retrieval while W⊥1 = {0}.

Any collection of subspaces which does phase retrieval yields norm retrieval, which follows from
the Definitions. However, the converse need not hold true always. For instance, any orthonormal basis
does norm retrieval in RN . But it has too few vectors to do phase retrieval as it requires at least 2N − 1
vectors to do phase retrieval in RN .

Given subspaces {Wi}M
i=1 of HN which yield phase retrieval, it is not necessarily true that {W⊥i }M

i=1
do phase retrieval. The following result proves that norm retrieval is the condition needed to pass
phase retrieval to orthogonal complements. Though the result is already proved in [12], we include it
here for completeness.

Lemma 2. Suppose subspaces {Wi}M
i=1, with respective projections {Pi}M

i=1, does phase retrieval.
Then {W⊥i }M

i=1 does phase retrieval if and only if {W⊥i }M
i=1 does norm retrieval.

Proof. Assume that ‖(I − Pi)x‖ = ‖(I − Pi)y‖ for all i ∈ [M] and {(I − Pi)}M
i=1 does norm retrieval

i.e., ‖x‖ = ‖y‖. Then

‖(I − Pi)x‖2 = ‖x‖2 − ‖Pix‖2 = ‖y‖2 − ‖Piy‖2 = ‖(I − Pi)y‖2.

Since ‖x‖ = ‖y‖, we have
‖Pix‖ = ‖Piy‖ for all i ∈ [M].

Since {Pi}M
i=1 does phase retrieval, it follows that x = cy for some |c| = 1.

The other direction of the theorem is clear.

Next is an example of a family of subspaces {Wi}M
i=1 which does phase retrieval but complements

fail phase retrieval and hence fail norm retrieval [9].
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Example 2. Let {φn}3
n=1 and {ψn}3

n=1 be orthonormal bases for R3 such that {φn}3
n=1 ∪ {ψn}3

n=1 is full
spark. Consider the subspaces

W1 = span({φ1, φ3}) W1
⊥ = span({φ2})

W2 = span({φ2, φ3}) W2
⊥ = span({φ1})

W3 = span({φ3}) W3
⊥ = span({φ1, φ2})

W4 = span({ψ1}) W4
⊥ = span({ψ2, ψ3})

W5 = span({ψ2}) W5
⊥ = span({ψ1, ψ3})

Then {Wn}5
n=1 allow phase retrieval for R3 while the orthogonal complements {W⊥n }5

n=1 do not.

Corollary 3. If {φi}M
i=1 does phase retrieval and contains an orthonormal basis, then {φ⊥i }M

i=1 does
phase retrieval.

Proof. If {φi}i∈I is an orthonormal basis, then {φ⊥i }i∈I does norm retrieval. Hence so does the larger
set {φ⊥i }M

i=1. Since {φi}M
i=1 does phase retrieval, and {φ⊥i }M

i=1 does norm retrieval, we can conclude
the latter does phase retrieval as well which follows from Lemma 2.

The next result gives us a sufficient condition for the subspaces to do norm retrieval. It is enough
to check if the identity is in the linear span of the projections in order for the subspaces to do norm
retrieval. A similar result in the case of phase retrieval is proved in [17].

Proposition 5 ([12]). Let {Wi}M
i=1 be subspaces of RN with corresponding projections {Pi}M

i=1. If there exist
ai ∈ R such that ∑M

i=1 aiPi = I, then {Pi}M
i=1 does norm retrieval.

Proof. Given x ∈ RN , then

‖x‖2 = 〈x, x〉 =
〈 M

∑
i=1

aiPix, x
〉
=

M

∑
i=1

ai〈Pix, x〉

=
M

∑
i=1

ai〈Pix, Pix〉 =
M

∑
i=1

ai‖Pix‖2.

Since for each i the coefficients ai and ‖Pix‖ are known, the collection {Pi}M
i=1 does norm retrieval.

A counter example for the converse of the above proposition is given in [12] where the authors
construct a collection of projections, Pi, which do phase retrieval but I 6∈ span Pi. Here, we provide
another example for the same. We give a set of five vectors in R3 which does phase retrieval;
however the identity operator is not in the span of these vectors. We need the following theorem that
provides a necessary and sufficient condition for a frame to be not scalable in R3. Recall that a frame
{φi}M

i=1 ∈ RN is said to be scalable if there exists scalars ci ≥ 0, i = 1, 2, · · · , M such that {ciφi}M
i=1 is a

Parseval frame [18]. Later in the next section, we prove that scalable frames always do norm retrieval.

Theorem 7. [18] A frame φ in R3 − {0} for R3 is not scalabale iff all frame vectors of φ are contained in
an interior of an elliptical conical surface with vertex 0 and intersecting the corners of a rotated unit cube.

Example 3. A frame {φi}5
i=1 in R3 which does phase retrieval but

5

∑
i=1

aiφi 6= I, for any ai ∈ R.
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Choose five full spark vectors in the cone referred in the previous Theorem 7. These vectors do phase retrieval
and hence norm retrieval in R3. Now, given ai ∈ R, ∑5

i=1 aiφi = ∑5
i=1 |ai|(εiφi) for εi = ±1. But, εiφi is still

inside the cone for each i. Therefore ∑5
i=1 |ai|(εiφi) 6= I.

The next proposition gives a sufficient condition for the complements to do norm retrieval when
the subspaces do.

Proposition 6. If {Wi}M
i=1 are subspaces of RN with corresponding projections {Pi}M

i=1 such that
∑M

i=1 aiPi = I and ∑M
i=1 ai 6= 1. Then {I − Pi}M

i=1 does norm retrieval.

Proof. Observe the following

M

∑
i=1

ai(I − Pi) =

(
M

∑
i=1

ai

)
I −

M

∑
i=1

aiP =

(
M

∑
i=1

ai

)
I − I =

(
M

∑
i=1

ai − 1

)
I.

Let α = ∑M
i=1 ai− 1 then a short calculation shows ∑M

i=1
ai
α (I− Pi) = I. By the previous proposition

this shows {I − Pi}M
i=1 does norm retrieval.

It is possible that ∑ aiPi = I = ∑ biPi with ∑ ai = 1 but ∑ bi 6= 1, as we will see in the
following example.

Example 4. Let {ei}3
i=1 be an orthonormal basis for R3. Now let

W1 = span{e1} W1
⊥ = span{e2, e3}

W2 = span{e2} W2
⊥ = span{e1, e3}

W3 = span{e3} W3
⊥ = span{e1, e2}

W4 = span{e1, e2} W4
⊥ = span{e3}

W5 = span{e1, e3} W5
⊥ = span{e2}

Both {Wi} and {W⊥i } do norm retrieval. Let Pi denote the projections on to Wi, then
∑5

i=1 aiPi = P1 + P2 + P3 + 0 · P4 + 0 · P5 = I and ∑5
i=1 biPi = −P1 + 0 · P2 + 0 · P3 + P4 + P5 = I. However,

∑5
i=1 ai = 3 6= 1 = ∑5

i=1 bi.

5. Classification of Norm Retrieval

In this section, we give classifications of norm retrieval by projections. The following theorem
in [13] uses the span of the frame elements to classify norm retrievable frames in RN .

Theorem 8. ([13]) A frame {φk}M
k=1 ⊂ RN does norm retrieval if and only if for any partition {Ij}2

j=1 of [M],

span {φk}⊥k∈I1
⊥ span {φk}⊥k∈I2

.

Next, we prove one of the main results of this paper. This is an extension of the previous Theorem 8
and it fully classifies the subspaces of RN which do norm retrieval.

Theorem 9. Let {Pi}M
i=1 be projections onto subspaces {Wi}M

i=1 of RN . Then the following are equivalent:

1. {Pi}M
i=1 does norm retrieval,

2. Given any orthonormal bases {φij}
Ii
j=1 of Wi and any subcollection S ⊆ {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ Ii} then

span {φij}⊥(i,j)∈S ⊥ span {φij}⊥(i,j)∈Sc ,

3. For any orthonormal basis {φij}
Ii
j=1 of Wi, then the collection of vectors {φij}(i,j) do norm retrieval.
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Proof. (1)⇒ (2): Suppose x ∈ span {φij}⊥(i,j)∈S, and y ∈ span {φij}⊥(i,j)∈Sc and let I = [M] then,

‖Pi(x + y)‖2 =
Ii

∑
j=1
|〈x + y, φij〉|2

=
Ii

∑
j=1
|〈x, φi〉|21(i,j)∈S +

Ii

∑
j=1
|〈y, φi〉|21(i,j)∈Sc

=
Ii

∑
j=1
|〈x− y, φij〉|2

= ‖Pi(x− y)‖2

Since {Pi}M
i=1 does norm retrieval, we have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 = ‖x− y‖2 = ‖x‖2 + ‖y‖2− 2〈x, y〉,

and so 〈x, y〉 = 0.

(2)⇒ (1): Assume that ‖Pix‖ = ‖Piy‖ for all 1 ≤ i ≤ M. Then, by ([9]) we can find an orthonormal
basis (φij)

Ki
j=1 for Wi such that ∣∣〈φij, x〉

∣∣ = ∣∣〈φij, y〉
∣∣ .

Denote S =
{
(i, j) : 〈φij, x〉 = 〈φij, y〉

}
and Sc =

{
(i, j) : 〈φij, x〉 = −〈φij, y〉

}
. Now we can see that

(x− y)⊥span
{

φij : (i, j) ∈ S
}

and also
(x + y)⊥span

{
φij : (i, j) ∈ Sc} .

By (2), we must have that 〈x + y, x− y〉 = 0, which implies that x and y have the same norm.
The third equivalence is immediate from the result in Theorem (8).

Corollary 4. If Φ = {φi}M
i=1 does norm retrieval then Φ′ = {ciφi}M

i=1, ci 6= 0 does norm retrieval. Hence all
scalable frames do norm retrieval.

Proof. This is an immediate result of Theorem 9. Observe the conditions in Theorem 9 do not depend
on the norm of each vector φi.

For the complex case we have:

Proposition 7. If {Pi}M
i=1 does norm retrieval, then whenever we choose orthonormal bases {φi,j}

Ii
j=1 of Wi and

any subcollection S ⊆ {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ Ii} then

x ⊥ span {φij}(i,j)∈S and y ⊥ span {φij}(i,j)∈Sc implies Re〈x, y〉 = 0.

Proof. Given x, y as above,

|〈x + y, φij〉| = |〈x− y, φij〉|, for all (i,j).
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Since our vectors do norm retrieval, we have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x, y〉 = ‖x− y‖2 = ‖x‖2 + ‖y‖2− 2Re〈x, y〉,

and so Re〈x, y〉 = 0.

We use Theorem 9 to give a simple proof of a result in [17] which has a very complicated proof in
that paper.

Corollary 5. If {φi}N
i=1 do norm retrieval in RN , then the vectors are orthogonal.

Proof. Assume ‖φi‖ = 1 and that φj is not orthogonal to span {φi}i 6=j. Choose a unit vector x ⊥ φi for
all i 6= j. Let y = x− 〈x, φj〉φj. Now,

〈φj, y〉 = 〈φj, x〉 − 〈x, φj〉〈φj, φj〉 = 0.

Let I = {i : i 6= j}. Then
x ⊥ span {φi}i∈I and y ⊥ φj,

but
〈x, y〉 = 〈x, x〉 − 〈x, φj〉〈x, φj〉 = 1− |〈x, φj〉|2 6= 0,

contradicting the theorem.

Corollary 6. Consider a frame Φ = {φi}M
i=1. The followings are equivalent:

1. Φ does norm retrieval.

2. For i ∈ [M] if W1 = span{φi}i∈I and W2 = span{φi}i∈Ic then, W1
⊥ ⊆W2.

Proof. By Theorem 9, it follows that Φ does norm retrieval if and only if W1
⊥ ⊥W2

⊥. This happens if
and only if W1

⊥ ⊆W2. Hence the proof.

Both phase retrieval and norm retrieval are preserved when applying projections to the vectors.
Also, phase retrieval is preserved under the application of any invertible operator (refer to [12] for
details). This is not the case with norm retrieval, in general. We prove this in the next corollary.

Corollary 7. Norm retrieval is not preserved under the application of an invertible operator, in general.

Proof. Let φ = {φi}N
i=1 be linearly independent vectors in RN which are not orthogonal. Then by

Corollary 5, Φ cannot do norm retrieval. But there exists an invertible operator T on RN so that
{Tφi}N

i=1 is an orthonormal basis and so does norm retrieval.

However, we note that unitary operators, which are invertible, do preserve norm retrieval.
The following corollary about Parseval frames also holds in the infinite dimensional case with the

same proof.

Corollary 8. If Φ is a Parseval frame, it does norm retrieval. Hence, if we partition Φ into two disjoint sets,
and choose a vector orthogonal to each set, then these vectors are orthogonal.

Proof. Let Φ = {φi}i∈I be a Parseval frame and let J ⊆ I. Let T be its analysis operator. If x ⊥ {φi}i∈J
and y ⊥ {φi}i∈Jc . Then Tx = (〈x, φi〉) and Ty = (〈y, φi〉) do not have any nonzero coordinates
in common. So Tx ⊥ Ty. Since, the analysis operator of a Parseval frame is an isometry,
we have x ⊥ y.
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A classic result in frame theory is that a Parseval frame {φi}i∈I has the property that for
W = span{φi}i 6=j, if φj /∈W then φj ⊥W. It turns out that a much more general result holds.

Corollary 9. Let {φi}M
i=1 be a Parseval frame in RN. For I ⊆ [M], let WI = span{φi}i∈I and

WIc = span{φi}i∈Ic . If WI ∩WIc = {0}, then WI ⊥WIc .

Corollary 10. If Φ = {φi}M
i=1 is a frame for RN with frame operator S which does norm retrieval, then for

every I ⊂ [N], if x ⊥ span {φi}i∈I then x ∈ span {S−1φi}i∈Ic . In particular, if Φ is a Parseval frame then
x ∈ span {φi}i∈Ic .

Proof. Given x as in the corollary,

x =
M

∑
i=1
〈x, φi〉S−1φi

= ∑
i∈Ic
〈x, φi〉S−1φi.

We next provide a classification of norm retrieval using Naimark’s theorem. It turns out that
every frame can be scaled to look similar to Naimark’s theorem.

Proposition 8. If {φi}M
i=1 is a frame with Bessel bound 1 on RN, then there is an isometry T : RN → `2M−1

2
with orthonormal basis {ei}2M−1

i=1 so that the orthogonal projection onto RN satisfies: Pei = Tφi for
every i ∈ [M].

Proof. Let {gi}N
i=1 be the eigenbasis for the frame with respective eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λN .

For M + 1 ≤ M + i ≤ 2M− 1 let
φM+i =

√
1− λi+1 gi+1.

Now, for any φ ∈ RN we have

2M−1

∑
i=1
|〈φ, φi〉|2 =

M

∑
i=1
|〈φ, φi〉|2 +

2M−1

∑
i=M+1

|〈φ, φi〉|2

=
M

∑
i=1
|λi〈φ, gi〉|2 +

M−1

∑
i=1
|〈φ,

√
1− λi+1gi+1〉|2

=
M

∑
i=1

λi|〈φ, gi〉|2 +
M

∑
i=2

(1− λi)|〈φ, gi〉|2

= |〈φ, g1〉|2 +
M

∑
i=2
|〈φ, gi〉|2

= ‖φ‖2.

So {φi}2M−1
i=1 is a Parseval frame. The analysis operator of this Parseval frame T : RN → `2M−1

2 is
then an isometry where Tφ = ∑2M−1

i=1 〈φ, φi〉ei where {ei}2M−1
i=1 is the unit vector basis of `2M−1

2 . Let P be
the orthogonal projection of `2M−1

2 onto T(RN). Then given i ∈ [2M− 1], we have for all j ∈ [2M− 1]:

〈Pei, Tφj〉 = 〈ei, Tφj〉 = 〈T∗ei, φj〉 = 〈φi, φj〉 = 〈Tφi, Tφj〉.

It follows that Pei = Tφi for all i ∈ [M].

We can now prove one of the main results in this section.
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Theorem 10. Let Φ = {φi}M
i=1 be a frame for RN . The following are equivalent:

1. Φ does norm retrieval.
2. By Proposition 8 if T : RN → `2M−1

2 is an isometry and {ei}2M−1
i=1 is the unit vector basis for `2M−1

2 then
for every φ, ψ ∈ RN with |〈φ, φi〉| = |〈ψ, φi〉| for i ∈ [M], we have

‖
2M−1

∑
i=M+1

〈Tφ, ei〉ei‖2 =
2M−1

∑
i=M+1

|〈Tφ, ei〉|2 = ‖
2M−1

∑
i=M+1

〈Tψ, φi〉ei‖2 =
2M−1

∑
i=M+1

|〈Tψ, φi〉|2.

Proof. (1)⇒ (2): We have for i ∈ [M],

|〈φ, φi〉| = |〈Tφ, Tφi〉| = |〈Tφ, Pei〉| = |〈Tφ, ei〉| = |〈Tψ, Tφi〉|

By (1), we know that ‖φ‖ = ‖Tφ‖ = ‖ψ‖ = ‖Tψ‖. Hence,

‖Tφ‖2 =
M

∑
i=1
|〈Tφi, ei〉|2 +

2M−1

∑
i=M+1

|〈Tφ, ei〉|2

= ‖ψ‖2 =
M

∑
i=1
|〈Tφi, ei〉|2 +

2M−1

∑
i=M+1

|〈Tφ, ei〉|2.

Since ∑M
i=1 |〈Tφ, ei〉|2 = ∑M

i=1 |〈Tψ, ei〉|2, the result follows.

(2)⇒ (1): If |〈φ, φi〉| = |〈ψ, φi〉| for all i ∈ [M] then applying (2) as above we have:

‖φ‖2 = ‖Tφ‖2

=
M

∑
i=1
|〈Tφi, ei〉|2 +

2M−1

∑
i=M+1

|〈Tφ, ei〉|2

=
M

∑
i=1
|〈Tψ, ei〉|2 +

2M−1

∑
i=M+1

|〈Tφ, ei〉|2 = ‖Tψ‖2.

so ‖φ‖ = ‖ψ‖ and Φ does norm retrieval.
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