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Abstract: Motivated by statistical mechanics contexts, we study the properties of the q-Laplace
transform, which is an extension of the well-known Laplace transform. In many circumstances,
the kernel function to evaluate certain integral forms has been studied. In this article, we
establish relationships between q-exponential and other well-known functional forms, such as
Mittag–Leffler functions, hypergeometric and H-function, by means of the kernel function of the
integral. Traditionally, we have been applying the Laplace transform method to solve differential
equations and boundary value problems. Here, we propose an alternative, the q-Laplace transform
method, to solve differential equations, such as as the fractional space-time diffusion equation, the
generalized kinetic equation and the time fractional heat equation.

Keywords: convolution property; G-transform; Gauss hypergeometric function; generalized kinetic
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1. Introduction

The classical Laplace, Fourier and Mellin transforms have been widely used in mathematical
physics and applied mathematics. The theory of the Laplace transform is well-known [1], and its
generalization was considered by many authors [2–6]. Various existence conditions and detailed
study about the range and invertibility were studied by Rooney [7]. The Laplace transform and
Mellin transform are widely used together to solve the fractional kinetic equations and thermonuclear
equations [8,9]. Different types of integral transforms, like the Hankel transform, Erdély–Kober
type fractional integration operators, the Gauss hypergeometric function as a kernel, the Bessel-type
integral transform, etc. [10], are introduced in the literature to solve the boundary value problems
for models of ordinary and partial differential equations. In some situations, the solutions of
the differential equation cannot be tractable using the classical integral transforms, but may be
characterized by many integral transforms with various special functions as kernels. Many of the
integral transforms can be interpreted in terms of the G-transform and H-transform [11–16].

In physical situations when an appropriate density is selected, the best practice is to maximize
the entropy. Mathai and Rathie [17] considered various generalizations of the Shannon entropy
measure and describe various properties, including additivity, the characterization theorem, etc.
Mathai and Haubold [18] introduced a new generalized entropy measure, which is a generalization
of the Shannon entropy measure. For a multinomial population P = (p1, . . . , pk), pi ≥ 0,
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i = 1, . . . , k, p1 + p2 + · · · + pk = 1, the Mathai’s entropy measure (discrete case) is given by
the relation:

Mk,α(P) =

k

∑
i=1

p2−α
i − 1

α− 1
, α 6= 1, −∞ < α < 2.

When α → 1, the above measure goes to the Shannon entropy measure, and this is a
variant of Havrda–Charvat entropy and Tsallis entropy. One can derive Tsallis statistics and
superstatistics [19–22] by using Mathai’s entropy. By optimizing Mathai’s entropy measure, a new
pathway model, which consists of many of the standard distributions in the statistical literature as
special cases (see [23]), is derived. The main idea behind the derivation of this model is the switching
properties of the special functions, like 1F1 and 1F0, which means the binomial to exponential function.

Thus, the pathway between the exponential function e−cx and the binomial function [1− c(1− α)x]
1

1−α

can be created with the parameter α named as the pathway parameter. For the real scalar case, the
pathway density can be written in the form:

f1(x) = c|x|γ[1− a(1− α)|x|δ]
η

1−α , a > 0, 1− a(1− α)|x|δ ≥ 0, η > 0, α < 1

where c is the normalizing constants. One can assume the Type 2 model by replacing (1 − α)

by −(α − 1). These distributions include Type 1 beta, Type 2 beta, gamma, Weibull, Gaussian,
Cauchy, exponential, Rayleigh, Student t, Fermi–Dirac, chi-square, logistic, etc. The corresponding
asymmetric generalization was introduced and studied in the paper [24]. By representing the entropy
function in terms of a density function f (·) for the continuous case and giving the suitable constraints
therein, the generalized entropy is maximized. There are restrictions, such as the [(γ− 1)(1− α)]-th
moment, and the [(γ− 1)(1− α)+ δ]-th moments are constants for fixed γ > 0 and δ > 0. Maximizing
Mathai’s entropy by using the calculus of variations, we get the basic function of the model, and when
the range of x is restricted over the positive real line and by evaluating the normalizing constant, we
get the pathway model introduced by Mathai [23]. As q → 1, f1(x) tend to f2(x), which is the
generalized gamma distribution, where f2(x) is given by:

f2(x) =
δ(aβ)

α
δ

2Γ
(

α
δ

) | x |α−1 exp(−aβ | x |δ); −∞ < x < ∞; a, α, β, δ > 0. (1)

For different values of parameters in the pathway model, we get different distributions like Weibull,
gamma, beta Type 1, beta Type 2, etc. By taking δ = α, β = 1, a = λα in f1(x), the
pathway model reduces to the q-Weibull distribution, which facilitates a transition to the Weibull
distribution [25]. The connection of pathway models and Tsallis statistics with the q-extended
versions of various functions is also considered. To this extent, we generalize the Laplace transform
using the switching property of 0F0 to 0F1. Here, the q-exponential function is the kernel, and we call
the extension as the q-Laplace transform; as q approaches to unity, we get the Laplace transform of
the original function.

The article is organized as follows. In Section 2, we introduce the q-Laplace transform and the
obtained various properties of the transform. Section 3 deals with the q-Laplace transform of
some basic functions, which includes special functions, like the hypergeometric function, the
Mittag–Leffler function and the H-function. In Section 4, this transform is connected to other known
integral transforms, like the Mellin transform, the G-transform and the Henkel transforms. In
Section 5, we obtain the solution of the fractional space-time diffusion equation, the generalized
kinetic equation and the time fractional heat equation through the q-Laplace transform in terms of
the Mittag–Leffler function.
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2. The q-Laplace Transform and Basic Properties

The Laplace transform L of a function f (·) is given by:

L[ f (x)](s) ≡
∫ ∞

0
f (x) e−sx dx

where f (x) is defined over the positive real line and s ∈ C,<(s) > 0, <(·) denotes the real
part of (·). This Laplace transform plays a major role in pure and applied analysis, especially in
solving differential equations. Now, we define the extended Laplace transform concept, namely
the q-Laplace transform of a function, which will play a similar role in mathematical analysis, as
well as mathematical physics. Instead of the exponential function, here, we consider the e−sx

q the
q-exponential defined as:

e−x
q ≡ c

 [1− (1− q)x]
1

1−q for 0 < x < 1
1−q , q < 1

[1 + (q− 1)x]−
1

q−1 for x ≥ 0, q > 1
(2)

with ex
1 ≡ ex and c is the normalizing constant. More precisely, for given function f (·) and for s ∈ C

with support over (0, ∞), we define its q-Laplace transform as:

Lq[ f (x)](s) =
∫ ∞

0
[e−sx

q ] f (x)dx for ,<(s) > 0 (3)

where e−x
q is defined as in Equation (2). This Laplace transform can be written in the form,

Lq[ f (x)](s) =


∫ 1

(1−q)s
0 [1− (1− q)sx]

1
1−q f (x)dx for <(1− (1− q)sx) > 0,<(s) > 0∫ ∞

0 [1 + (q− 1)xs]−
1

q−1 f (x)dx for <(s) > 0.

The q-Laplace transform of a function f (·) is valid at every point at which f (·) is continuous provided
that the function is defined in (0, ∞), is piecewise continuous and of bounded variation in every finite
subinterval in (0, ∞), and the integral is finite. Some basic properties of the q-Laplace transform are
given below.

1. Scaling: For a real constant k, Lq[k f (x)](s) = kLq[ f (x)](s).
2. Linearity : Lq[m f (x) + ng(x)](s) = mLq[ f (x)](s) + nLq[g(x)](s), where m, n ∈ <.
3. Transform of derivatives: For <(s) > 0, Lq[

d
dx f (x)](s) = sLq( f )(sq) for all q ∈ </{1}.

Proof. Let g(x) = d
dx f (x). Then:

Lq [g(x)] (s) =
∫ ∞

0
[1 + (q− 1)xs]−

1
q−1

d
dx

[ f (x)]dx.

By applying integration by parts, we get:

∫ ∞

0
[1 + (q− 1)xs]−

1
q−1

d
dx

[ f (x)]dx = f (x)[1 + (q− 1)xs]−
1

q−1

∣∣∣∣∞
0
−∫ ∞

0
f (x)(−s)[1 + (q− 1)xs]−

1
q−1−1dx

which implies:
Lq[g(x)] = − f (0) + sL 2q−1

q
( f )(sq).
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As a consequence, we get:

Dn{Lq [ f (x)] (s)} = snLq [ f (x)] (sAn(q))−
n

∑
j=1

sn−jDj f (0) (4)

where An(q) = ∏n
j=1(j + (j− 1)q), for q > 1, D = d

dx f (x).

4. Derivatives of transforms: The nth derivative of the q-Laplace transform is given by
Dn [Lq( f )(s)

]
= An−1(q){Lq

[
(−x)n

n A−1(q) f (x n A−1)
]
(s)} where n A−1 is the reciprocal of

the nth term of An(q).

Proof. For q > 1:

D2(e−sx
q ) = qx2[e−sx

q ]1−2q

D3(e−sx
q ) = q(1− 2q)(−x3)[e−sx

q ]2−3q

...

Dn(e−sx
q ) =

n−1

∏
j=1

Aj

∫ ∞

0
(−x)ne−s n A−1(q)x

q f (n A−1(q)x)dx

= An−1(q){Lq

[
(−x)n

n A−1(q) f (x n A−1)
]
}(s).

5. Transforms of integrals: For <(s) > 0, Lq
[∫ x

0 f (t)dt
]
(s) = 1

s Lq( f )(s).

Proof. For q > 1, we have:

Lq

[∫ x

0
f (t)dt

]
(s) =

∫ ∞

0
[e−sx

q ]{
∫ x

0
f (t)dt}dx

= −1
s

∫ ∞

0
{
∫ x

0
f (t)dt} d

dx
[e−s(2−q)x

q ]dx

= −1
s

{∫ x

0
f (t)dt[e−s(2−q)x

q ]

∣∣∣∣∞
0
−
∫ ∞

0
f (x)e−sx

q dx
}

=
1
s

Lq( f )(s) for <(s) > 0.

6. Convolution property: Let f1(x) and f2(x) be two positive real scalar functions of x, and let g1(t)
and g2(t) be their q-Laplace transform. Then,

Lq[ f1(x) ∗ f2(x)](s) = g1(x)g2(x)

where f1(x) ∗ f2(x) =
∫ x

0 f1(t) f2(x− t)dt.

Proof.

Lq[ f1(x) ∗ f2(x)](s) =
∫ ∞

0
e−sx

q

{∫ x

0
f1(t) f2(x− t)dt

}
dx

=
∫ ∞

0

∫ x

0
[1 + (q− 1)xs]−

1
q−1 f1(t) f2(x− t)dtdx

=
∫ ∞

t=0
f1(t)

{∫ ∞

x=t
[1 + (q− 1)xs]−

1
q−1 f2(x− t)dx

}
dt.
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Now, let us consider the integral I =
∫ ∞

x=t[1 + (q− 1)xs]−
1

q−1 f2(x − t)dt. Substitute x − t = u,
and manipulate the integral; we get:

I = [1 + (q− 1)ts]−
1

q−1
∫ ∞

x=0 [1 + (q− 1)us]−
1

q−1 [1 + (q− 1)ts]
1

q−1 [1 + (q− 1)us]
1

q−1

× [1 + (q− 1)(t + u)s]−
1

q−1 f2(u)du.

Let [1 + (q− 1)ts]
1

q−1 [1 + (q− 1)us]
1

q−1 [1 + (q− 1)(t + u)s]−
1

q−1 f2(u) = f ∗2 (u), then f2(x− t) =

[1 + (q− 1)ts]−
1

q−1 [1 + (q− 1)(x− t)s]−
1

q−1 [1 + (q− 1)xs]
1

q−1 f ∗2 (x− t). Then:

Lq[ f1(x) ∗ f2(x)](s) =
∫ ∞

t=0
[1 + (q− 1)ts]−

1
q−1 f1(t){∫ ∞

x=t
[1 + (q− 1)(x− t)s]−

1
q−1 f ∗2 (x− t)dx

}
dt.

On substituting x− t = u, the integral can be separated, and hence, we have:

Lq[ f1(x) ∗ f2(x)](s) = Lq[ f1(x)]Lq[ f ∗2 (x)].

3. The q-Laplace Transform of Some Basic Functions

Let us introduce a new notation, Γ(q)(α), such that:

Γ(q)(α) =
∫ 1

1−q

0
xα−1[1− (1− q)x]

1
1−q dx for <(α) > 0, q < 1.

If we replace (1− q) by −(q− 1), then the function assumes the form:

Γ(q)(α) =
∫ ∞

0
xα−1[1 + (q− 1)x]−

1
q−1 dx for <(α) > 0, q > 1

and for q = 1 in the sense q → 1, the q-gamma function is the usual classical gamma function
defined as

Γ(α) =
∫ ∞

0
xα−1e−xdx.

Now, the q-gamma function can be explicitly written as:

Γ(q)(α) =


1

(1−q)α

Γ(α) Γ( 1
1−q +1)

Γ( 1
1−q +α+1)

for q < 1

Γ(α) for q = 1

1
(q−1)α

Γ(α) Γ( 1
q−1−α)

Γ( 1
q−1 )

for q > 1, 1
q−1 − α > 0

(5)

for <(α) > 0. Here, q = 1 in the sense q → 1 the q-gamma function Γ(q)(·) → Γ(·), which can be
easily proven using the asymptotic expansion of the gamma function:

Γ(z + a) ≈
√

2πzz+a− 1
2 e−z.

Mathai [26] introduced a general class of integrals, known as the versatile integrals, which are
connected to the reaction rate in kinetic theory. The integral is in the form:

I =
∫ ∞

0
xγ−1[1 + zδ

1(α− 1)xδ]−
1

α−1 [1 + zδ
2(β− 1)x−ρ]

− 1
β−1 (6)
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for α, β > 1, z1, z2 ≥ 0, δ, ρ > 0,<(γ + 1) > 0,<( 1
α−1 −

γ+1
δ ) > 0,<( 1

β−1 −
1
ρ ) > 0, and the solution is

obtained in terms of the H-function as follows:

I = c H2,2
2,2

z1z2(α− 1)
1
δ (β− 1)

1
ρ

∣∣∣∣(1− 1
α−1+

γ
δ , 1

δ ),(1−
1

β−1 , 1
ρ )

( γ
δ , 1

δ ),(0, 1
ρ )


where c = δρzγ

1 (α− 1)
γ
δ and Hm,n

p,r is a H-function. Here, we provide the definition of H-function as
follows:

Hm,n
p,q

[
z
∣∣(a1,α1),(a2,α2),··· ,(ak ,αk)

(b1,β1),(b2,β2),··· ,(bq ,βq)

]
=

1
2πi

∫
L

h(s)z−sds

where:

h(s) =

{
m

∏
j=1

Γ(bj + β js)

}{
n

∏
j=1

Γ(1− aj − αjs)

}
{

q

∏
j=m+1

Γ(1− bj − β js)

}{
p

∏
j=n+1

Γ(aj + αjs)

}
and L is a suitable path. An empty product is interpreted as unity, and it is assumed that the
poles of Γ(bj + β js), j = 1, 2, . . . , m are separated from the poles of Γ(1 − aj − αjs), j = 1, 2, . . . , n.
Here, a1, a2, . . . , ap; b1, b2, . . . , bq are complex numbers and α1, α2, . . . , αp, β1, β2, . . . , βq are positive

real numbers. The poles of Γ(bj + β js), j = 1, 2, . . . , m are at the points s = − bj+ν

β j
where

j = 1, 2, . . . , m, ν = 0, 1, . . ., and the poles of Γ(1 − aj − αjs), j = 1, 2, . . . , n are at s = 1−ak+λ
αk

where k = 1, 2, . . . , n, λ = 0, 1, . . .. For more details about the theory and applications, refer to [27].
This integral includes the q-Laplace transform of gamma function and q-gamma function as special

cases. Now, as q → 1 in any of the functions [1 + zδ
1(α− 1)xδ]−

1
α−1 or [1 + zδ

2(β− 1)x−ρ]
− 1

β−1 , we get
the q-Laplace transform of some basic functions. The following table gives the q-Laplace transform
of some basic functions with q > 1, which are special cases of the above integral. The results are
obtained in terms of hypergeometric function. The Gaussian hyper geometric function is defined as:

mFn

[
a1,a2,··· ,am
b1,b2,··· ,bn

∣∣∣∣x] = ∞

∑
k=0

(a1)k(a2)k · · · (am)k
(b1)k(b2)k · · · (bn)k

xk

k!

where (a)m denotes the Pochhammer symbol expressed in the form:

(a)m = a(a + 1)...(a + m− 1), a 6= 0, m = 1, 2... (7)

Lemma 1. For α, s ∈ C, <(s) > 0 and for q 6= 1, the q- Laplace transform of xα−1 is given by Lq[xα−1](s) =
Γq(α)

sα for q 6= 1.

Proof. For q > 1,

Lq[xα−1](s) =
∫ ∞

0
xα−1e−sx

q dx

=
∫ ∞

0
xα−1[1 + (q− 1)sx]−

1
q−1 dx.

Now, substitute (q− 1)sx = t, and dx = 1
s(q−1)du. Then:

Lq[xα−1](s) =
Γq(α)

sα
, α, s ∈ C,<(s) > 0.
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Lemma 2. For s ∈ C, <(s) > 0, there holds the formula:

Lq[e−ax](s) =
1

(2− q)s 1F1

[
1;

2q− 3
q− 1

;
a

s(q− 1)

]
for a > 0, 3

2 < q < 2.

Proof. For q > 1,

Lq[e−ax](s) =
∫ ∞

0
[1 + (q− 1)sx]−

1
q−1 e−axdx

=
∞

∑
k=0

(−a)k

k!

∫ ∞

0
xk[1 + (q− 1)sx]−

1
q−1 dx

=
1
s

∞

∑
k=0

(− a
s )

k

k!

Γ(q)(k + 1)

sk+1 ,<( 1
q− 1

− k− 1) > 0

=
1

s(2− q) 1F1

[
1;

2q− 3
q− 1

;
a

s(q− 1)

]
for

3
2
< q < 2,<(s) > 0, a > 0.

Lemma 3. For a ∈ <,<(s) > 0, the q-Laplace transform of the function e−ax
q is given by Lq[e−ax

q ](s) =

1
(s+a)(2−q) 2F1

[
1, 1

2 ; 2q−3
q−1 ;− 4as

(a+s)2

]
for 3

2 < q < 2,
∣∣∣∣ 4as
(a+s)2

∣∣∣∣ < 1.

Proof. For q > 1, the q-Laplace transform of the q-exponential function is given by:

Lq[e−ax
q ](s) =

∫ ∞

0
[1 + (q− 1)sx]−

1
q−1 [1 + (q− 1)ax]−

1
q−1 dx

=
∫ ∞

0
{[1 + (q− 1)sx][1 + (q− 1)ax]}−

1
q−1 dx

=
∫ ∞

0

[
1 + (q− 1)sx + (q− 1)ax + (q− 1)2asx2

]− 1
q−1 dx

=
1

(s + a)(2− q) 2F1

[
1,

1
2

;
2q− 3
q− 1

;− 4as
(a + s)2

]
provided

3
2
< q < 2,

∣∣∣∣ 4as
(a + s)2

∣∣∣∣ < 1.

Lemma 4. For <(s) > 0 and for 3
2 < q < 2, a ∈ <, there holds the formula, Lq[cos(ax)](s) =

1
s(2−q) 1F2

(
1; 2q−3

2(q−1) , 3q−4
2(q−1) ;− a2

[2s(q−1)]2

)
.

Proof. For q > 1 , <(s) > 0, a ∈ <, the q-Laplace transform of the trigonometric function cos(ax) is
given by:

Lq[cos(ax)](s) =
∫ ∞

0
[1 + (q− 1)sx]−

1
q−1 cos(ax)dx

=
∞

∑
k=0

(−1)k a2k

(2k)!

∫ ∞

0
x2k[1 + (q− 1)sx]−

1
q−1 dx
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=
1

s(2− q)

∞

∑
k=0

(a2)k

[4(q− 1)2s2]k
(1)k

k!
(

2q−3
2(q−1)

)
k

(
3q−4

2(q−1)

)
k

for q >
3
2

.

By applying the properties of the beta function and integral evaluations, we get:

Lq[cos(ax)](s) =
1

s(2− q) 1F2

(
1;

2q− 3
2(q− 1)

,
3q− 4

2(q− 1)
;− a2

[2s(q− 1)]2

)
,

for
3
2
< q < 2, q > 1,<(s) > 0, a ∈ <.

One can easily check that as q → 1, the above function gives a direct connection to the Laplace
transforms of the original function simply by applying Sterling’s approximation for the gamma
function involved in the hypergeometric function involved in the equation.

Lemma 5. The q-Laplace transform of the Gauss hypergeometric function is given by:

Lq[mFn](s) =
1

s(2− q) m+1Fn+1

[
a1,a2,··· ,am ,1
b1,b2,··· ,bn , 2q−3

q−1

∣∣∣∣ 1
(q− 1)s

]
for <(s) > 0, 3

2 < q < 2.

Proof. For q > 1, the q-Laplace transform of the Gauss hyper geometric function is given by:

Lq[mFn](s) =
∞

∑
k=0

(a1)k(a2)k · · · (am)k
(b1)k(b2)k · · · (bn)k

1
k!

∫ ∞

0
xk[1 + (q− 1)sx]−

1
q−1

=
1

(2− q)s

∞

∑
k=0

(a1)k(a2)k · · · (am)k, (1)k

(b1)k(b2)k · · · (bn)k, ( 2q−3
q−1 )k

( 1
(q−1)s )

k

k!

=
1

s(2− q) m+1Fn+1

[
a1,a2,··· ,am ,1
b1,b2,··· ,bn , 2q−3

q−1

∣∣∣∣ 1
(q− 1)s

]
for <(s) > 0,

3
2
< q < 2.

Corollary: When m = n = 0, we get the exponential function, and the q-Laplace transform is the
confluent hypergeometric function 1F1.

3.1. The q-Laplace Transform of the Mittag–Leffler Function

The single parameter Mittag–Leffler function is defined as follows:

Eα(z) =
∞

∑
k=0

zk

Γ(1 + αk)
, for α ∈ C,<(α) > 0.

Lemma 6. For q > 1,<(s) > 0, the q-Laplace transform of Eα(xα) is given by:

Lq[Eα(xα)](s) =
1

s(q− 1)Γ( 1
q−1 )

H2 1
1 2

 1
sα(q− 1)α

∣∣∣∣(0,1)

(0,1),( 2−q
q−1 ,α)


with suitable restrictions for the existence of Mittag–Leffler function.
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Proof. For q > 1,<(s) > 0, the q-Laplace transform of the Mittag–Leffler function is given by:

Lq[Eα(xα)](s) =
∞

∑
k=o

1
Γ(1 + αk)

∫ ∞

0
xαk[1 + (q− 1)sx]−

1
q−1 dx

=
∞

∑
k=o

Γ
(

2−q
q−1 − αk

)
Γ( 1

q−1 )

(
1

s(q− 1)

)αk+1

=
1

s(q− 1)Γ( 1
q−1 )

H2 1
1 2

 1
sα(q− 1)α

∣∣∣∣(0,1)

(0,1),( 2−q
q−1 ,α)

 .

The generalized Mittag–Leffler function introduced by Prabhakar is defined as follows:

Eδ
β,γ(z) =

∞

∑
k=0

(δ)nzk

Γ(βk + γ)
, for β, γ, δ ∈ C,<(γ) > 0,<(δ) > 0.

Lemma 7. Let β, γ, δ ∈ C,<(β) > 0,<(γ) > 0,<(δ) > 0,<( 1
q−1 − γ) > 0, and for 1 < q < 2, there holds

the formula:

Lq[Eδ
β,γ(axβ)](s) =

1
sγ(q− 1)γΓ(δ)Γ( 1

q−1 )
H2 1

1 2

[
(1−δ,1)
(0,1),( 1

q−1−γ,β)

∣∣∣∣ 1
sβ(q− 1)β

]

for 1 < q < 2,<(β) > 0,<(γ) > 0,<(δ) > 0,<( 1
q−1 − γ) > 0.

The proof is similar to Lemma (7).
The details of the existence conditions, various properties and applications of H-functions are

available in [27].

3.2. The q-Laplace Transform of the Fox H Function

Lemma 8. For q < 1, consider the following restrictions. Let a∗ = ∑n
i=1 ai − ∑

p
i=n+1 αi + ∑m

j=1 β j −
∑r

j=m+1 β j, ∆ = ∑r
j=1 β j − ∑

p
i=1 αi and µ = ∑r

j=1 bj − ∑
p
i=1 ai +

p−r
2 from the basic definition of the

H-function.

If either a∗ > 0, a∗ = 0,<(µ) < −1, min
1≤j≤m

<(bj)

β j
> −1

when a∗ > 0, a∗ = 0, ∆ ≥ 0, min
1≤j≤m

[
<(bj)

β j
,
<(µ) + 1

2
∆

]
> −1

when a∗ = 0, ∆ < 0, then for 1 < q < 2, the q-Laplace transform of the H-function exists, and the formula:

Lq[Hm,n
p,r ](s) =

1
s(q− 1)Γ( 1

q−1 )
Hm+1,n+1

p+1,r+1

[
1

s(q− 1)

∣∣(a1,α1),(a2,α2),··· ,(ak ,αk),(0,1)

(b1,β1),(b2,β2),··· ,(br ,βr),(
2−q
q−1 ,1)

]

holds for s ∈ C,<(s) > 0.

Proof. For q > 1,

Lq[Hm,n
p,r ](s) =

1
2πi

∫
L

h(t)
∫ ∞

0
x−t[1 + (q− 1)sx]−

1
q−1 dx ∧ dt

=
1

s(q− 1)Γ( 1
q−1 )

1
2πi

∫
L

h(t) Γ(1− t) Γ
(

2− q
q− 1

+ t
)

dt
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=
1

s(q− 1)Γ( 1
q−1 )

Hm+1,n+1
p+1,r+1

[
1

s(q− 1)

∣∣(a1,α1),(a2,α2),··· ,(ak ,αk),(0,1)

(b1,β1),(b2,β2),··· ,(br ,βr),(
2−q
q−1 ,1)

]

with suitable existing conditions.

4. Connection to Other Integral Transforms

In this section, we consider connections of the q-Laplace transform of a function f (·) to other
integral transforms. The following theorem gives a relation between the Mellin transform of the
q-Laplace transform of a function, where the Mellin transform of the function f (x) for x > 0 is defined
by (M f )(t) =

∫ ∞
0 xt−1 f (x)dx, t ∈ C.

Theorem 1. For t ∈ C, <(t) < 1
q−1 , q > 1, the Mellin transform Lq[xγ−1 f (x)](s) is given by:

M(Lq(xγ−1 f ); t) =
Γ(t)Γ( 1

q−1 − t)

(q− 1)tΓ( 1
q−1 )

M( f ; γ− t).

Proof. For q > 1:

MLq[xγ−1 f (x)](s) =
∫ ∞

0
st−1

∫ ∞

0
xγ−1e−sx

q f (x)dx

=
∫ ∞

0
xγ−1 f (x)

1
(q− 1)txt

Γ(t)Γ( 1
q−1 − t)

Γ( 1
q−1 )

; <( 1
q− 1

− t) > 0

=
Γ(t)Γ( 1

q−1 − t)

Γ( 1
q−1 )

M( f ; γ− t); <(t) < 1
q− 1

hence the result.

Remark 1. For γ = 1 and t ∈ C, it directly implies that the Mellin transform of the q-Laplace transform is
given by:

M(Lq( f ); t) =
Γ(t)Γ( 1

q−1 − t)

(q− 1)tΓ( 1
q−1 )

M( f ; 1− t) for q > 1,<(t) < 1
q− 1

.

The G-transform of the function f (x) is given in the form:

(G f )(t) =
∫ ∞

0
Gm,n

p,r

[
xt
∣∣(ai)1,p
(bi)1,r

]
f (x)dx

where the Meijers G-function is considered as the kernel, with suitable existence conditions.
The following theorem helps to evaluate the G-transform of Lq( f (x)).

Theorem 2. The G-transform of Lq( f (x)) is given by the following relation:

Gm,n
p,r {Lq[ f (x)]}(t) =

1
(q− 1)Γ( 1

q−1 )
Gm+1,n+1

p+1,r+1 [ f (x)](t)

with suitable existing conditions.

Proof.

Gm,n
p,r {Lq[ f (x)]}(t) =

∫ ∞

0
Gm,n

p,r

[
st
∣∣∣∣(ai)1,p

(bj)1,r

]
f (s)ds
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=
1

2πi

∫
L

∫ ∞

0
h(ω)(st)−ω Lq[ f (x)](s)dsdω

=
1

2πi

∫
L

∫ ∞

0

∫ ∞

0
h(ω)(st)−ω [1 + (q− 1)sx]−

1
q−1 f (x)dxdsdω

=
1

2πi

∫
L

∫ ∞

0
h(ω)xω−1

Γ(1−ω)Γ( 1
q−1 − 1 + ω)

[x(q− 1)]1−ωΓ( 1
q−1 )

f (x)dxdω

=
1

(q− 1)Γ( 1
q−1 )

∫ ∞

0
Gm+1,n+1

p+1,r+1

st
∣∣∣∣(ai)1,p , 1

q−1

(bj)1,r ,1

 f (s)ds

=
1

(q− 1)Γ( 1
q−1 )

Gm+1,n+1
p+1,r+1 [ f (x)](t).

Remark 2. The q-Laplace transform can be converted in terms of the G-transform in the sense that the

q-exponential can be converted as 1
Γ( 1

q−1 )
G1,0

0,1
[
−(q− 1)sx

∣∣1− 1
q−1
]

for |(q− 1)sx| ≤ 1. That is:

Lq[ f (x)](s) =
∫ ∞

0
G1,0

0,1
[
−(q− 1)sx

∣∣1− 1
q−1

0
]

f (x)dx for s > 0, |(q− 1)sx| ≤ 1. (8)

Now, the integral transforms is of the form:

(H f )(t) =
∫ ∞

0
Hm,n

p,r

[
xt
∣∣(ai ,αi)1,p
(bi ,βi)1,r

]
f (x)dx

which is known as the H-transform with suitable existence conditions.

The Hankel transform of a function f (x) for x > 0 is defined by:

(Hn f )(t) =
∫ ∞

0
(xt)

1
2 Jn(xt) f (x)dx

where Jn(z) is the Bessel function of the first kind of order η ∈ C, such that <(η) > −1, which is
given by:

Jn(z) =
∞

∑
k=0

(−1)k

Γ(η + k + 1)k!

( z
2

)2k+η
.

Theorem 3. The Hankel transform of the q-Laplace transform (HnLq( f ))(t) can be expressed in terms of the
H-transform.

Proof. The integral transform with the Hankel kernel, which is operated on the q-Laplace transform,
is given by:

HnLq( f )(t) =
∫ ∞

0
(st)

1
2 Jn(st)

∫ ∞

0
e−sx

q f (x)dxds

=
∫ ∞

0
t

1
2

∞

∑
k=0

(−1)k

Γ(η + k + 1)k!

(
t
2

)2k+η Γ(2k + η + 3
2 )Γ(

1
q−1 − 2k− η − 3

2 )

[(q− 1)x]2k+η+ 3
2 Γ( 1

q−1 )
f (x)dx

=
tη+ 1

2

2η(q− 1)η+ 3
2 Γ( 1

q−1 )

∫ ∞

0
H2 1

1 3

( t
2(q− 1)x

)2 ∣∣∣∣(0,1),( 1
q−1−η− 3

2 ),(η,1)

(−η− 1
2 ,2)

 x−η− 3
2 f (x)dx
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which is the H-transform of x−η− 3
2 f (x).

Remark 3. The q-Laplace transform of f (·) for q < 1 can be considered as a general case of the
Riemann–Liouville integral operator, since for q = 0 and for x = u

t , we get the general form of the
Riemann–Liouville operator.

Remark 4. We can extend the q-Laplace transform to its generalized version by considering the function f (·)
with support over (0, ∞) with:

Lq[ f (x)](s) =
∫ ∞

0
(xs)−α[e−sx

q ] f (x)dx for <(s) > 0,<(α) > 0 (9)

where e−x
q is defined as in 2. Now, as q → 1, we get the generalized Laplace transform of the function f , with

support over the positive real line defined as:

(L f )(t) =
∫ ∞

0
(xt)−αe−(tx)

k
f (x)dx

that has interesting application in various fields.

5. Differential Equations by Means of the q-Laplace Transform

In this section, we apply the properties of the q-Laplace transform to solve the fractional
space-time diffusion equation, the kinetic equation and the time-fractional heat equation.

5.1. Fractional Space-Time Diffusion: Laplace Transform and H-Function

We consider the following diffusion model with fractional-order spatial and temporal
derivatives:

0Dβ
t N(x, t) = η xDα

θ N(x, t), (10)

with the initial conditions 0Dβ−1
t N(x, 0) = σ(x), 0 ≤ β ≤ 1, limx→±∞ N(x, t) = 0, where η is a

diffusion constant; η, t > 0, x ∈ R; α, θ, β are real parameters with the constraints:

0 < α ≤ 2, |θ| ≤ min(α, 2− α),

and δ(x) is the Dirac-delta function. Then, for the fundamental solution of (1) with initial conditions,
there holds the formula:

N(x, t) =
tβ−1

α|x| H
2,1
3,3

[
|x|

(ηtβ)1/α

∣∣∣(1,1/α),(β,β/α),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]
, α > 0 (11)

where ρ = α−θ
2α . The following special cases of (1) are of special interest for fractional diffusion models:

(i) For α = β, the corresponding solution of (1), denoted by Nθ
α , can be expressed in terms of the

H-function as given below and can be defined for x > 0:

Non-diffusion: 0 < α = β < 2; θ ≤ min {α, 2− α} ,

Nθ
α(x) =

tα−1

α|x| H
2,1
3,3

[
|x|

tη1/α

∣∣∣(1,1/α),(α,1),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]
, ρ =

α− θ

2α
. (12)

(ii) When β = 1, 0 < α ≤ 2; θ ≤ min {α, 2− α}, then (1) reduces to the space-fractional diffusion
equation, which is the fundamental solution of the following space-time fractional diffusion model:

∂N(x, t)
∂t

= η xDα
θ N(x, t), η > 0, x ∈ R, (13)
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with the initial conditions N(x, t = 0) = σ(x), lim
x→±∞

N(x, t) = 0, where η is a diffusion constant and

σ(x) is the Dirac-delta function. Hence, for the solution of (1), there holds the formula:

Lθ
α(x) =

1
α(ηt)1/α

H1,1
2,2

[
(ηt)1/α

|x|

∣∣∣∣(1,1),(ρ,ρ)
( 1

α , 1
α ),(ρ,ρ)

]
, 0 < α < 1, |θ| ≤ α, (14)

where ρ = α−θ
2α . The density represented by the above expression is known as α-stable Lévy density.

Another form of this density is given by:

Lθ
α(x) =

1
α(ηt)1/α

H1,1
2,2

[
|x|

(ηt)1/α

∣∣∣∣(1− 1
α , 1

α ),(1−ρ,ρ)
(0,1),(1−ρ,ρ)

]
, 1 < α < 2, |θ| ≤ 2− α. (15)

(iii) Next, if we take α = 2, 0 < β < 2; θ = 0, then we obtain the time-fractional diffusion, which
is governed by the following time-fractional diffusion model:

∂βN(x, t)
∂tβ

= η
∂2

∂x2 N(x, t), η > 0, x ∈ R, 0 < β ≤ 2, (16)

with the initial conditions 0Dβ−1
t N(x, 0) = σ(x),0 Dβ−2

t N(x, 0) = 0, for x ∈ r,
limx→±∞ N(x, t) = 0, where η is a diffusion constant and σ(x) is the Dirac-delta function, whose
fundamental solution is given by the equation:

N(x, t) =
tβ−1

2|x| H1,0
1,1

[
|x|

(ηtβ)1/2

∣∣∣(β,β/2)
(1,1)

]
. (17)

(iv) If we set α = 2, β = 1 and θ → 0, then for the fundamental solution of the standard
diffusion equation:

∂

∂t
N(x, t) = η

∂2

∂x2 N(x, t), (18)

with initial condition:
N(x, t = 0) = σ(x), lim

x→±∞
N(x, t) = 0, (19)

there holds the formula:

N(x, t) =
1

2|x|H
1,0
1,1

[
|x|

η1/2t1/2

∣∣∣(1,1/2)
(1,1)

]
= (4πηt)−1/2 exp[−|x|

2

4ηt
], (20)

which is the classical Gaussian density.

5.2. Solution of the Generalized Kinetic Equation

Consider the generalized kinetic equation derived by Haubold and Mathai [8],

N(t)− N0 = −c0 0D−α
t N(t) for α > 0, (21)

where 0D−α
t N(t) is the Riemann–Liouville integral operator, in the form:

0D−α
t N(t) =

1
Γ(α)

∫ t

0
(t− u)α−1 f (u)du

with the assumption that aD0
t g(t) = g(t).
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Lemma 9. The solution of the kinetic Equation (21) is given by:

N(t) =
N(0)
2− q

Eα

(
c0Γ(q)(α)tα

Γ(α)(2− q)

)

where Eα(·) represents the two parameter Mittag–Leffler function.

Proof. The q-Laplace transform of the Riemann–Liouville integral operator is given by Lq[ f (s)] =
Γ(q)(α) f̃ (u)
sα(2−q)Γ(α) using the convolution property of the q-Laplace transform, and f̃ (u) is the q-Laplace
transform of f (u). Now, by applying the q-Laplace transform on both sides of (21), we get:

Ñ(t)− N(0)
s(2− q)

= −c0
Γ(q)(α)

sα(2− q)Γ(α)
Ñ(t)

where Ñ(t) = Lq[N(t)], the q-Laplace transform of N(t). Simplifying the equation we get

Ñ(t) =
N(0)

s(2− q)

{
1 +

c0Γ(q)(α)

sα(2− q)Γ(α)

}−1

This can be expanded as an infinite sum, and on finding the inverse q-Laplace transform, we get:

N(t) =
N(0)
(2− q)

∞

∑
k=0

[
c0Γ(q)(α)

Γ(α)(2− q)

]k
tαk

Γ(αk + 1)

=
N(0)
2− q

Eα

(
c0Γ(q)(α)tα

Γ(α)(2− q)

)

for
∣∣∣∣ c0Γ(q)(α)

Γ(α)(2−q)

∣∣∣∣ < 1 where Eα(·) represents the two-parameter Mittag–Leffler function.

5.3. Solution of the Time-Fractional Heat Equation

The standard heat equation is:
∂u(x, t)

∂t
=

∂2u(x, t)
∂x2

where u(x, t) represents the temperature, which is a function of time t and space x. Let us write the
equation in terms of the derivative operator D, such as:

Dt(u) = D2
x(u) (22)

where u = u(x, t). Then, for t ≥ 0, the boundary conditions are that u(t, 0) = u(t, L) = 0 where L
represents the length of a heating rod and an initial condition:

u(0, x) = − 4a
L2 x2 +

4a
L

x

where a = u(0, L
2 ). The general solution for Equation (22) assumed to be in the form u(t, x) =

w(t)v(x) yields:

D(w(t))v(x) = w(t)D2(v(x))⇒ Dt(w(t))
w(t)

=
D2

x(v(x))
w(x)

= K(say)
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obtained from the general Equation (22). Let θ be the temperature decaying rate, and let K = −θ2

for θ ∈ <; then, the ordinary differential equations D(w(t)) = −θ2w(t) and D2(v(x)) = −θ2v(x)
provide the general solution of Equation (22) of the form:

u(t, x) = K1 cos(θx)e−θ2t + K2 sin(θx)e−θ2t.

Now, let us consider the time fractional heat equation of the form:

Dα
t (u) = D2

x(u) 0 ≤ α < 2. (23)

By considering similar steps as in the general solution and using the Laplace transform method
to solve the differential equation Dα

t (w(t)) = −θ2w(t), this yields the Mittag–Leffler function (similar
steps as in Section 5.) as in the form:

w(t) =
∞

∑
k=0

(−θ2tα)k

Γ(αk + 1)
. (24)

Now, motivated from the same, we apply the q-Laplace transform for Equation (23) to obtain the
solution for Dα

t (w(t)) = −θ2w(t). The solution turns out to be:

w(t) =
1

(2− q)

∞

∑
k=0

[
−θ2Γ(q)(α)

Γ(α)(2− q)

]k
tαk

Γ(αk + 1)
=

1
2− q

Eα

(
−θ2Γ(q)(α)tα

Γ(α)(2− q)

)
(25)

and hence, the general solution can be derived accordingly. Throughout the derivation, we consider
the Laplace transformation for q > 1. Similar derivation exists, when q < 1.

6. Conclusions

In this article, we have proposed the q-Laplace transform as a suitable extension of the
well-known Laplace transform. Despite the fact that it is difficult to evaluate some of the H-function
numerically due to the constraints, the proposed method is an improvement over the regular
practice of evaluating the Laplace transform within boundary values. The numerical illustration is
not incorporated in this article; however, the methodology proposed here would be to generalize
the result obtained in the regular sense of the Laplace transform. Another enhancement in this
theory is that we applied the method of q-Laplace transforms in the generalized functional forms,
such as Mittag–Leffler, hyper geometric, etc., so that applicability for particular functions, such as
exponential, gamma, etc., can be easily deductible. The natural extension of the existing methodology
explained in this article would further be considered for its generalized form, and it is an avenue for
further research that could flow from this work.
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