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Abstract:



Motivated by statistical mechanics contexts, we study the properties of the q-Laplace transform, which is an extension of the well-known Laplace transform. In many circumstances, the kernel function to evaluate certain integral forms has been studied. In this article, we establish relationships between q-exponential and other well-known functional forms, such as Mittag–Leffler functions, hypergeometric and H-function, by means of the kernel function of the integral. Traditionally, we have been applying the Laplace transform method to solve differential equations and boundary value problems. Here, we propose an alternative, the q-Laplace transform method, to solve differential equations, such as as the fractional space-time diffusion equation, the generalized kinetic equation and the time fractional heat equation.
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1. Introduction


The classical Laplace, Fourier and Mellin transforms have been widely used in mathematical physics and applied mathematics. The theory of the Laplace transform is well-known [1], and its generalization was considered by many authors [2,3,4,5,6]. Various existence conditions and detailed study about the range and invertibility were studied by Rooney [7]. The Laplace transform and Mellin transform are widely used together to solve the fractional kinetic equations and thermonuclear equations [8,9]. Different types of integral transforms, like the Hankel transform, Erdély–Kober type fractional integration operators, the Gauss hypergeometric function as a kernel, the Bessel-type integral transform, etc. [10], are introduced in the literature to solve the boundary value problems for models of ordinary and partial differential equations. In some situations, the solutions of the differential equation cannot be tractable using the classical integral transforms, but may be characterized by many integral transforms with various special functions as kernels. Many of the integral transforms can be interpreted in terms of the G-transform and H-transform [11,12,13,14,15,16].



In physical situations when an appropriate density is selected, the best practice is to maximize the entropy. Mathai and Rathie [17] considered various generalizations of the Shannon entropy measure and describe various properties, including additivity, the characterization theorem, etc. Mathai and Haubold [18] introduced a new generalized entropy measure, which is a generalization of the Shannon entropy measure. For a multinomial population [image: there is no content], the Mathai’s entropy measure (discrete case) is given by the relation:


Mk,α(P)=∑i=1kpi2−α−1α−1,α≠1,−∞<α<2.











When [image: there is no content], the above measure goes to the Shannon entropy measure, and this is a variant of Havrda–Charvat entropy and Tsallis entropy. One can derive Tsallis statistics and superstatistics [19,20,21,22] by using Mathai’s entropy. By optimizing Mathai’s entropy measure, a new pathway model, which consists of many of the standard distributions in the statistical literature as special cases (see [23]), is derived. The main idea behind the derivation of this model is the switching properties of the special functions, like F11 and F01, which means the binomial to exponential function. Thus, the pathway between the exponential function [image: there is no content] and the binomial function [image: there is no content] can be created with the parameter α named as the pathway parameter. For the real scalar case, the pathway density can be written in the form:


[image: there is no content]








where c is the normalizing constants. One can assume the Type 2 model by replacing [image: there is no content] by [image: there is no content]. These distributions include Type 1 beta, Type 2 beta, gamma, Weibull, Gaussian, Cauchy, exponential, Rayleigh, Student t, Fermi–Dirac, chi-square, logistic, etc. The corresponding asymmetric generalization was introduced and studied in the paper [24]. By representing the entropy function in terms of a density function [image: there is no content] for the continuous case and giving the suitable constraints therein, the generalized entropy is maximized. There are restrictions, such as the [(γ−1)(1−α)]-th moment, and the [image: there is no content]-th moments are constants for fixed [image: there is no content] and [image: there is no content]. Maximizing Mathai’s entropy by using the calculus of variations, we get the basic function of the model, and when the range of x is restricted over the positive real line and by evaluating the normalizing constant, we get the pathway model introduced by Mathai [23]. As q→1,f1(x) tend to [image: there is no content], which is the generalized gamma distribution, where [image: there is no content] is given by:


f2(x)=δ(aβ)αδ2Γ(αδ)∣x∣α−1exp(−aβ∣x∣δ);−∞<x<∞;a,α,β,δ>0.



(1)







For different values of parameters in the pathway model, we get different distributions like Weibull, gamma, beta Type 1, beta Type 2, etc. By taking δ=α,β=1,a=λα in [image: there is no content], the pathway model reduces to the q-Weibull distribution, which facilitates a transition to the Weibull distribution [25]. The connection of pathway models and Tsallis statistics with the q-extended versions of various functions is also considered. To this extent, we generalize the Laplace transform using the switching property of F00 to F10. Here, the q-exponential function is the kernel, and we call the extension as the q-Laplace transform; as q approaches to unity, we get the Laplace transform of the original function.



The article is organized as follows. In Section 2, we introduce the q-Laplace transform and the obtained various properties of the transform. Section 3 deals with the q-Laplace transform of some basic functions, which includes special functions, like the hypergeometric function, the Mittag–Leffler function and the H-function. In Section 4, this transform is connected to other known integral transforms, like the Mellin transform, the G-transform and the Henkel transforms. In Section 5, we obtain the solution of the fractional space-time diffusion equation, the generalized kinetic equation and the time fractional heat equation through the q-Laplace transform in terms of the Mittag–Leffler function.




2. The q-Laplace Transform and Basic Properties


The Laplace transform L of a function [image: there is no content] is given by:


L[f(x)](s)≡∫0∞f(x)e−sxdx








where [image: there is no content] is defined over the positive real line and [image: there is no content], [image: there is no content] denotes the real part of [image: there is no content]. This Laplace transform plays a major role in pure and applied analysis, especially in solving differential equations. Now, we define the extended Laplace transform concept, namely the q-Laplace transform of a function, which will play a similar role in mathematical analysis, as well as mathematical physics. Instead of the exponential function, here, we consider the [image: there is no content] the q-exponential defined as:


eq−x≡c[1−(1−q)x]11−qfor0<x<11−q,q<1[1+(q−1)x]−1q−1forx≥0,q>1



(2)




with [image: there is no content] and c is the normalizing constant. More precisely, for given function [image: there is no content] and for [image: there is no content] with support over [image: there is no content], we define its q-Laplace transform as:


Lq[f(x)](s)=∫0∞[eq−sx]f(x)dxfor,ℜ(s)>0



(3)




where [image: there is no content] is defined as in Equation (2). This Laplace transform can be written in the form,


Lq[f(x)](s)=∫01(1−q)s[1−(1−q)sx]11−qf(x)dxforℜ(1−(1−q)sx)>0,ℜ(s)>0∫0∞[1+(q−1)xs]−1q−1f(x)dxforℜ(s)>0.











The q-Laplace transform of a function [image: there is no content] is valid at every point at which [image: there is no content] is continuous provided that the function is defined in [image: there is no content], is piecewise continuous and of bounded variation in every finite subinterval in [image: there is no content], and the integral is finite. Some basic properties of the q-Laplace transform are given below.

	
Scaling: For a real constant k, [image: there is no content].



	
Linearity : [image: there is no content], where [image: there is no content].



	
Transform of derivatives: For [image: there is no content], [image: there is no content] for all [image: there is no content].

Proof. 

Let [image: there is no content]. Then:


[image: there is no content]








By applying integration by parts, we get:


∫0∞[1+(q−1)xs]−1q−1ddx[f(x)]dx=f(x)[1+(q−1)xs]−1q−1|0∞−∫0∞f(x)(−s)[1+(q−1)xs]−1q−1−1dx








which implies:


[image: there is no content]








As a consequence, we get:


[image: there is no content]



(4)




where [image: there is no content], for [image: there is no content], [image: there is no content]. ☐







	
Derivatives of transforms: The [image: there is no content] derivative of the q-Laplace transform is given by Dn[Lq(f)(s)]=An−1(q){Lq(−x)nA−1n(q)f(xA−1n)(s)} where A−1n is the reciprocal of the [image: there is no content] term of [image: there is no content].

Proof. 

For [image: there is no content]:


D2(eq−sx)=qx2[eq−sx]1−2qD3(eq−sx)=q(1−2q)(−x3)[eq−sx]2−3q⋮Dn(eq−sx)=∏j=1n−1Aj∫0∞(−x)neq−sA−1n(q)xf(A−1n(q)x)dx=An−1(q){Lq((−x)nA−1n(q)f(xA−1n))}(s).








☐







	
Transforms of integrals: For [image: there is no content], [image: there is no content].

Proof. 

For [image: there is no content], we have:


Lq∫0xf(t)dt(s)=∫0∞[eq−sx]{∫0xf(t)dt}dx=−1s∫0∞{∫0xf(t)dt}ddx[eq−s(2−q)x]dx=−1s∫0xf(t)dt[eq−s(2−q)x]|0∞−∫0∞f(x)eq−sxdx=1sLq(f)(s)forℜ(s)>0.








☐







	
Convolution property: Let [image: there is no content] and [image: there is no content] be two positive real scalar functions of x, and let [image: there is no content] and [image: there is no content] be their q-Laplace transform. Then,


[image: there is no content]








where [image: there is no content].

Proof. 



Lq[f1(x)∗f2(x)](s)=∫0∞eq−sx∫0xf1(t)f2(x−t)dtdx=∫0∞∫0x[1+(q−1)xs]−1q−1f1(t)f2(x−t)dtdx=∫t=0∞f1(t)∫x=t∞[1+(q−1)xs]−1q−1f2(x−t)dxdt.








Now, let us consider the integral [image: there is no content] Substitute [image: there is no content], and manipulate the integral; we get:


I=[1+(q−1)ts]−1q−1∫x=0∞[1+(q−1)us]−1q−1[1+(q−1)ts]1q−1[1+(q−1)us]1q−1×[1+(q−1)(t+u)s]−1q−1f2(u)du.








Let [image: there is no content], then [image: there is no content]. Then:


Lq[f1(x)∗f2(x)](s)=∫t=0∞[1+(q−1)ts]−1q−1f1(t)∫x=t∞[1+(q−1)(x−t)s]−1q−1f2∗(x−t)dxdt.








On substituting [image: there is no content], the integral can be separated, and hence, we have:


[image: there is no content]








☐













3. The q-Laplace Transform of Some Basic Functions


Let us introduce a new notation, [image: there is no content], such that:


Γ(q)(α)=∫011−qxα−1[1−(1−q)x]11−qdxforℜ(α)>0,q<1.











If we replace [image: there is no content] by [image: there is no content], then the function assumes the form:


Γ(q)(α)=∫0∞xα−1[1+(q−1)x]−1q−1dxforℜ(α)>0,q>1








and for [image: there is no content] in the sense [image: there is no content], the q-gamma function is the usual classical gamma function defined as


[image: there is no content]











Now, the q-gamma function can be explicitly written as:


Γ(q)(α)=1(1−q)αΓ(α)Γ(11−q+1)Γ(11−q+α+1)forq<1Γ(α)forq=11(q−1)αΓ(α)Γ(1q−1−α)Γ(1q−1)forq>1,1q−1−α>0



(5)




for [image: there is no content]. Here, [image: there is no content] in the sense [image: there is no content] the q-gamma function [image: there is no content], which can be easily proven using the asymptotic expansion of the gamma function:


[image: there is no content]











Mathai [26] introduced a general class of integrals, known as the versatile integrals, which are connected to the reaction rate in kinetic theory. The integral is in the form:


[image: there is no content]



(6)




for [image: there is no content], and the solution is obtained in terms of the H-function as follows:


I=cH2,22,2z1z2(α−1)1δ(β−1)1ρ|(γδ,1δ),(0,1ρ)(1−1α−1+γδ,1δ),(1−1β−1,1ρ)








where [image: there is no content] and [image: there is no content] is a H-function. Here, we provide the definition of H-function as follows:


[image: there is no content]








where:


[image: there is no content]








and L is a suitable path. An empty product is interpreted as unity, and it is assumed that the poles of [image: there is no content] are separated from the poles of [image: there is no content]. Here, [image: there is no content]; [image: there is no content] are complex numbers and [image: there is no content], [image: there is no content] are positive real numbers. The poles of Γ(bj+βjs),j=1,2,…,m are at the points [image: there is no content] where [image: there is no content], and the poles of [image: there is no content] are at [image: there is no content] where [image: there is no content]. For more details about the theory and applications, refer to [27]. This integral includes the q-Laplace transform of gamma function and q-gamma function as special cases. Now, as [image: there is no content] in any of the functions [image: there is no content] or [image: there is no content], we get the q-Laplace transform of some basic functions. The following table gives the q-Laplace transform of some basic functions with [image: there is no content], which are special cases of the above integral. The results are obtained in terms of hypergeometric function. The Gaussian hyper geometric function is defined as:


Fnma1,a2,⋯,amb1,b2,⋯,bn|x=∑k=0∞(a1)k(a2)k⋯(am)k(b1)k(b2)k⋯(bn)kxkk!








where [image: there is no content] denotes the Pochhammer symbol expressed in the form:


(a)m=a(a+1)…(a+m−1),a≠0,m=1,2…



(7)







Lemma 1. 

For [image: there is no content], [image: there is no content]and for [image: there is no content], the q- Laplace transform of [image: there is no content]is given by [image: there is no content]for [image: there is no content].





Proof. 

For [image: there is no content],


Lq[xα−1](s)=∫0∞xα−1eq−sxdx=∫0∞xα−1[1+(q−1)sx]−1q−1dx.













Now, substitute [image: there is no content], and [image: there is no content]. Then:


Lq[xα−1](s)=Γq(α)sα,α,s∈C,ℜ(s)>0.








☐



Lemma 2. 

For [image: there is no content], [image: there is no content], there holds the formula:


Lq[e−ax](s)=1(2−q)s1F11;2q−3q−1;as(q−1)








for [image: there is no content], [image: there is no content].





Proof. 

For [image: there is no content],


Lq[e−ax](s)=∫0∞[1+(q−1)sx]−1q−1e−axdx=∑k=0∞(−a)kk!∫0∞xk[1+(q−1)sx]−1q−1dx=1s∑k=0∞(−as)kk!Γ(q)(k+1)sk+1,ℜ(1q−1−k−1)>0=1s(2−q)1F11;2q−3q−1;as(q−1)for32<q<2,ℜ(s)>0,a>0.








☐





Lemma 3. 

For [image: there is no content], the q-Laplace transform of the function [image: there is no content]is given by Lq[eq−ax](s)=1(s+a)(2−q)2F11,12;2q−3q−1;−4as(a+s)2for [image: there is no content], [image: there is no content].





Proof. 

For [image: there is no content], the q-Laplace transform of the q-exponential function is given by:


Lq[eq−ax](s)=∫0∞[1+(q−1)sx]−1q−1[1+(q−1)ax]−1q−1dx=∫0∞[1+(q−1)sx][1+(q−1)ax]−1q−1dx=∫0∞1+(q−1)sx+(q−1)ax+(q−1)2asx2−1q−1dx=1(s+a)(2−q)2F11,12;2q−3q−1;−4as(a+s)2provided32<q<2,|4as(a+s)2|<1.








☐





Lemma 4. 

For [image: there is no content]and for [image: there is no content], [image: there is no content], there holds the formula, Lq[cos(ax)](s)=1s(2−q)1F21;2q−32(q−1),3q−42(q−1);−a2[2s(q−1)]2.





Proof. 

For [image: there is no content] , [image: there is no content], [image: there is no content], the q-Laplace transform of the trigonometric function [image: there is no content] is given by:


Lq[cos(ax)](s)=∫0∞[1+(q−1)sx]−1q−1cos(ax)dx=∑k=0∞(−1)ka2k(2k)!∫0∞x2k[1+(q−1)sx]−1q−1dx=1s(2−q)∑k=0∞(a2)k[4(q−1)2s2]k(1)kk!2q−32(q−1)k3q−42(q−1)kforq>32.








By applying the properties of the beta function and integral evaluations, we get:


Lq[cos(ax)](s)=1s(2−q)1F21;2q−32(q−1),3q−42(q−1);−a2[2s(q−1)]2,for32<q<2,q>1,ℜ(s)>0,a∈ℜ.








☐





One can easily check that as [image: there is no content], the above function gives a direct connection to the Laplace transforms of the original function simply by applying Sterling’s approximation for the gamma function involved in the hypergeometric function involved in the equation.



Lemma 5. 

The q-Laplace transform of the Gauss hypergeometric function is given by:


Lq[Fnm](s)=1s(2−q)Fn+1m+1a1,a2,⋯,am,1b1,b2,⋯,bn,2q−3q−1|1(q−1)s








for [image: there is no content].





Proof. 

For [image: there is no content], the q-Laplace transform of the Gauss hyper geometric function is given by:


Lq[mFn](s)=∑k=0∞(a1)k(a2)k⋯(am)k(b1)k(b2)k⋯(bn)k1k!∫0∞xk[1+(q−1)sx]−1q−1=1(2−q)s∑k=0∞(a1)k(a2)k⋯(am)k,(1)k(b1)k(b2)k⋯(bn)k,(2q−3q−1)k(1(q−1)s)kk!=1s(2−q)Fn+1m+1a1,a2,⋯,am,1b1,b2,⋯,bn,2q−3q−1|1(q−1)sforℜ(s)>0,32<q<2.








☐



Corollary: When [image: there is no content] we get the exponential function, and the q-Laplace transform is the confluent hypergeometric function F11.





3.1. The q-Laplace Transform of the Mittag–Leffler Function


The single parameter Mittag–Leffler function is defined as follows:


Eα(z)=∑k=0∞zkΓ(1+αk),forα∈C,ℜ(α)>0.











Lemma 6. 

For [image: there is no content], the q-Laplace transform of [image: there is no content]is given by:


Lq[Eα(xα)](s)=1s(q−1)Γ(1q−1)H12211sα(q−1)α|(0,1),(2−qq−1,α)(0,1)








with suitable restrictions for the existence of Mittag–Leffler function.





Proof. 

For [image: there is no content], the q-Laplace transform of the Mittag–Leffler function is given by:


Lq[Eα(xα)](s)=∑k=o∞1Γ(1+αk)∫0∞xαk[1+(q−1)sx]−1q−1dx=∑k=o∞Γ2−qq−1−αkΓ(1q−1)1s(q−1)αk+1=1s(q−1)Γ(1q−1)H12211sα(q−1)α|(0,1),(2−qq−1,α)(0,1).








☐





The generalized Mittag–Leffler function introduced by Prabhakar is defined as follows:


Eβ,γδ(z)=∑k=0∞(δ)nzkΓ(βk+γ),forβ,γ,δ∈C,ℜ(γ)>0,ℜ(δ)>0.











Lemma 7. 

Let [image: there is no content], [image: there is no content], and for [image: there is no content], there holds the formula:


Lq[Eβ,γδ(axβ)](s)=1sγ(q−1)γΓ(δ)Γ(1q−1)H1221(0,1),(1q−1−γ,β)(1−δ,1)|1sβ(q−1)β








for [image: there is no content]





The proof is similar to Lemma (7).



The details of the existence conditions, various properties and applications of H-functions are available in [27].




3.2. The q-Laplace Transform of the Fox H Function


Lemma 8. 

For [image: there is no content], consider the following restrictions. Let a∗=∑i=1nai−∑i=n+1pαi+∑j=1mβj−∑j=m+1rβj,Δ=∑j=1rβj−∑i=1pαiand [image: there is no content]from the basic definition of the H-function.



If either [image: there is no content]



when [image: there is no content]



when [image: there is no content], then for [image: there is no content], the q-Laplace transform of the H-function exists, and the formula:


[image: there is no content]








holds for [image: there is no content]





Proof. 

For [image: there is no content],


Lq[Hp,rm,n](s)=12πi∫Lh(t)∫0∞x−t[1+(q−1)sx]−1q−1dx∧dt=1s(q−1)Γ(1q−1)12πi∫Lh(t)Γ(1−t)Γ2−qq−1+tdt=1s(q−1)Γ(1q−1)Hp+1,r+1m+1,n+11s(q−1)|(b1,β1),(b2,β2),⋯,(br,βr),(2−qq−1,1)(a1,α1),(a2,α2),⋯,(ak,αk),(0,1)








with suitable existing conditions. ☐







4. Connection to Other Integral Transforms


In this section, we consider connections of the q-Laplace transform of a function [image: there is no content] to other integral transforms. The following theorem gives a relation between the Mellin transform of the q-Laplace transform of a function, where the Mellin transform of the function [image: there is no content] for [image: there is no content] is defined by (Mf)(t)=∫0∞xt−1f(x)dx,t∈C.



Theorem 1. 

For [image: there is no content], [image: there is no content], the Mellin transform [image: there is no content]is given by:


[image: there is no content]













Proof. 

For [image: there is no content]:


MLq[xγ−1f(x)](s)=∫0∞st−1∫0∞xγ−1eq−sxf(x)dx=∫0∞xγ−1f(x)1(q−1)txtΓ(t)Γ(1q−1−t)Γ(1q−1);ℜ(1q−1−t)>0=Γ(t)Γ(1q−1−t)Γ(1q−1)M(f;γ−t);ℜ(t)<1q−1








hence the result. ☐





Remark 1. 

For [image: there is no content]and [image: there is no content], it directly implies that the Mellin transform of the q-Laplace transform is given by:


M(Lq(f);t)=Γ(t)Γ(1q−1−t)(q−1)tΓ(1q−1)M(f;1−t)forq>1,ℜ(t)<1q−1.













The G-transform of the function [image: there is no content] is given in the form:


[image: there is no content]








where the Meijers G-function is considered as the kernel, with suitable existence conditions. The following theorem helps to evaluate the G-transform of [image: there is no content].



Theorem 2. 

The G-transform of [image: there is no content]is given by the following relation:


[image: there is no content]








with suitable existing conditions.





Proof. 



Gp,rm,n{Lq[f(x)]}(t)=∫0∞Gp,rm,nst|(bj)1,r(ai)1,pf(s)ds=12πi∫L∫0∞h(ω)(st)−ωLq[f(x)](s)dsdω










=12πi∫L∫0∞∫0∞h(ω)(st)−ω[1+(q−1)sx]−1q−1f(x)dxdsdω=12πi∫L∫0∞h(ω)xω−1Γ(1−ω)Γ(1q−1−1+ω)[x(q−1)]1−ωΓ(1q−1)f(x)dxdω=1(q−1)Γ(1q−1)∫0∞Gp+1,r+1m+1,n+1st|(bj)1,r,1(ai)1,p,1q−1f(s)ds=1(q−1)Γ(1q−1)Gp+1,r+1m+1,n+1[f(x)](t).








☐





Remark 2. 

The q-Laplace transform can be converted in terms of the G-transform in the sense that the q-exponential can be converted as [image: there is no content]for [image: there is no content]. That is:


Lq[f(x)](s)=∫0∞G0,11,0−(q−1)sx|01−1q−1f(x)dxfors>0,|(q−1)sx|≤1.



(8)









Now, the integral transforms is of the form:


[image: there is no content]








which is known as the H-transform with suitable existence conditions.



The Hankel transform of a function [image: there is no content] for [image: there is no content] is defined by:


[image: there is no content]








where [image: there is no content] is the Bessel function of the first kind of order [image: there is no content], such that [image: there is no content], which is given by:


[image: there is no content]











Theorem 3. 

The Hankel transform of the q-Laplace transform [image: there is no content]can be expressed in terms of the H-transform.





Proof. 

The integral transform with the Hankel kernel, which is operated on the q-Laplace transform, is given by:


HnLq(f)(t)=∫0∞(st)12Jn(st)∫0∞eq−sxf(x)dxds=∫0∞t12∑k=0∞(−1)kΓ(η+k+1)k!t22k+ηΓ(2k+η+32)Γ(1q−1−2k−η−32)[(q−1)x]2k+η+32Γ(1q−1)f(x)dx=tη+122η(q−1)η+32Γ(1q−1)∫0∞H1321t2(q−1)x2|(−η−12,2)(0,1),(1q−1−η−32),(η,1)x−η−32f(x)dx








which is the H-transform of [image: there is no content]. ☐





Remark 3. 

The q-Laplace transform of [image: there is no content]for [image: there is no content]can be considered as a general case of the Riemann–Liouville integral operator, since for [image: there is no content]and for [image: there is no content], we get the general form of the Riemann–Liouville operator.





Remark 4. 

We can extend the q-Laplace transform to its generalized version by considering the function [image: there is no content]with support over [image: there is no content]with:


Lq[f(x)](s)=∫0∞(xs)−α[eq−sx]f(x)dxforℜ(s)>0,ℜ(α)>0



(9)




where [image: there is no content]is defined as in 2. Now, as [image: there is no content], we get the generalized Laplace transform of the function f, with support over the positive real line defined as:


[image: there is no content]








that has interesting application in various fields.






5. Differential Equations by Means of the q-Laplace Transform


In this section, we apply the properties of the q-Laplace transform to solve the fractional space-time diffusion equation, the kinetic equation and the time-fractional heat equation.



5.1. Fractional Space-Time Diffusion: Laplace Transform and H-Function


We consider the following diffusion model with fractional-order spatial and temporal derivatives:


0DtβN(x,t)=ηxDθαN(x,t),



(10)




with the initial conditions Dtβ−10N(x,0)=σ(x),0≤β≤1,limx→±∞N(x,t)=0, where η is a diffusion constant; [image: there is no content] are real parameters with the constraints:


[image: there is no content]








and [image: there is no content] is the Dirac-delta function. Then, for the fundamental solution of (1) with initial conditions, there holds the formula:


N(x,t)=tβ−1α|x|H3,32,1|x|(ηtβ)1/α(1,1/α),(1,1),(1,ρ)(1,1/α),(β,β/α),(1,ρ),α>0



(11)




where [image: there is no content]. The following special cases of (1) are of special interest for fractional diffusion models:



(i) For [image: there is no content], the corresponding solution of (1), denoted by [image: there is no content], can be expressed in terms of the H-function as given below and can be defined for [image: there is no content]:



Non-diffusion: [image: there is no content]


Nαθ(x)=tα−1α|x|H3,32,1|x|tη1/α(1,1/α),(1,1),(1,ρ)(1,1/α),(α,1),(1,ρ),ρ=α−θ2α.



(12)







(ii) When [image: there is no content], then (1) reduces to the space-fractional diffusion equation, which is the fundamental solution of the following space-time fractional diffusion model:


∂N(x,t)∂t=ηxDθαN(x,t),η>0,x∈R,



(13)




with the initial conditions [image: there is no content] where η is a diffusion constant and [image: there is no content] is the Dirac-delta function. Hence, for the solution of (1), there holds the formula:


Lαθ(x)=1α(ηt)1/αH2,21,1(ηt)1/α|x|(1α,1α),(ρ,ρ)(1,1),(ρ,ρ),0<α<1,|θ|≤α,



(14)




where [image: there is no content]. The density represented by the above expression is known as α-stable Lévy density. Another form of this density is given by:


Lαθ(x)=1α(ηt)1/αH2,21,1|x|(ηt)1/α(0,1),(1−ρ,ρ)(1−1α,1α),(1−ρ,ρ),1<α<2,|θ|≤2−α.



(15)







(iii) Next, if we take [image: there is no content], then we obtain the time-fractional diffusion, which is governed by the following time-fractional diffusion model:


∂βN(x,t)∂tβ=η∂2∂x2N(x,t),η>0,x∈R,0<β≤2,



(16)




with the initial conditions Dtβ−10N(x,0)=σ(x),0Dtβ−2N(x,0)=0,forx∈r,limx→±∞N(x,t)=0, where η is a diffusion constant and [image: there is no content] is the Dirac-delta function, whose fundamental solution is given by the equation:


N(x,t)=tβ−12|x|H1,11,0|x|(ηtβ)1/2(1,1)(β,β/2).



(17)







(iv) If we set [image: there is no content] and [image: there is no content], then for the fundamental solution of the standard diffusion equation:


[image: there is no content]



(18)




with initial condition:


[image: there is no content]



(19)




there holds the formula:


N(x,t)=12|x|H1,11,0|x|η1/2t1/2(1,1)(1,1/2)=(4πηt)−1/2exp[−|x|24ηt],



(20)




which is the classical Gaussian density.




5.2. Solution of the Generalized Kinetic Equation


Consider the generalized kinetic equation derived by Haubold and Mathai [8],


N(t)−N0=−c00Dt−αN(t)forα>0,



(21)




where Dt−α0N(t) is the Riemann–Liouville integral operator, in the form:


0Dt−αN(t)=1Γ(α)∫0t(t−u)α−1f(u)du








with the assumption that Dt0ag(t)=g(t).



Lemma 9. 

The solution of the kinetic Equation (21) is given by:


[image: there is no content]








where [image: there is no content]represents the two parameter Mittag–Leffler function.





Proof. 

The q-Laplace transform of the Riemann–Liouville integral operator is given by [image: there is no content] using the convolution property of the q-Laplace transform, and [image: there is no content] is the q-Laplace transform of [image: there is no content]. Now, by applying the q-Laplace transform on both sides of (21), we get:


[image: there is no content]








where [image: there is no content], the q-Laplace transform of [image: there is no content] Simplifying the equation we get


[image: there is no content]













This can be expanded as an infinite sum, and on finding the inverse q-Laplace transform, we get:


N(t)=N(0)(2−q)∑k=0∞c0Γ(q)(α)Γ(α)(2−q)ktαkΓ(αk+1)=N(0)2−qEαc0Γ(q)(α)tαΓ(α)(2−q)








for [image: there is no content] where [image: there is no content] represents the two-parameter Mittag–Leffler function. ☐




5.3. Solution of the Time-Fractional Heat Equation


The standard heat equation is:


[image: there is no content]








where [image: there is no content] represents the temperature, which is a function of time t and space x. Let us write the equation in terms of the derivative operator D, such as:


[image: there is no content]



(22)




where [image: there is no content]. Then, for [image: there is no content], the boundary conditions are that [image: there is no content] where L represents the length of a heating rod and an initial condition:


[image: there is no content]








where [image: there is no content]. The general solution for Equation (22) assumed to be in the form [image: there is no content] yields:


[image: there is no content]








obtained from the general Equation (22). Let θ be the temperature decaying rate, and let [image: there is no content] for [image: there is no content]; then, the ordinary differential equations [image: there is no content] and [image: there is no content] provide the general solution of Equation (22) of the form:


[image: there is no content]











Now, let us consider the time fractional heat equation of the form:


Dtα(u)=Dx2(u)0≤α<2.



(23)







By considering similar steps as in the general solution and using the Laplace transform method to solve the differential equation [image: there is no content], this yields the Mittag–Leffler function (similar steps as in Section 5.) as in the form:


[image: there is no content]



(24)







Now, motivated from the same, we apply the q-Laplace transform for Equation (23) to obtain the solution for [image: there is no content]. The solution turns out to be:


[image: there is no content]



(25)




and hence, the general solution can be derived accordingly. Throughout the derivation, we consider the Laplace transformation for [image: there is no content]. Similar derivation exists, when [image: there is no content].





6. Conclusions


In this article, we have proposed the q-Laplace transform as a suitable extension of the well-known Laplace transform. Despite the fact that it is difficult to evaluate some of the H-function numerically due to the constraints, the proposed method is an improvement over the regular practice of evaluating the Laplace transform within boundary values. The numerical illustration is not incorporated in this article; however, the methodology proposed here would be to generalize the result obtained in the regular sense of the Laplace transform. Another enhancement in this theory is that we applied the method of q-Laplace transforms in the generalized functional forms, such as Mittag–Leffler, hyper geometric, etc., so that applicability for particular functions, such as exponential, gamma, etc., can be easily deductible. The natural extension of the existing methodology explained in this article would further be considered for its generalized form, and it is an avenue for further research that could flow from this work.
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