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1. Introduction

In the very early 1940s, Markov [1,2] introduced the free topological group F (X) and the free
Abelian topological group A(X) on an arbitrary completely regular Hausdorff topological space X as
a topological-algebraic counterpart of the abstract free and free Abelian groups on a set, respectively;
he also proved the existence and uniqueness of these groups. During the next decade, Graev [3,4],
Nakayama [5] and Kakutani [6] simplified the proofs of the main statements of Markov’s theory of free
topological groups, generalized Markov’s construction and proved a number of important theorems on
free topological groups. In particular, Graev generalized the notions of the free and the free Abelian
topological group on a space X by identifying the identity element of the free group with an (arbitrary)
point of X (the free topological group on X in the sense of Markov coincides with Graev’s group on
X plus an isolated point), described the topology of free topological groups on compact spaces and
extended any continuous pseudometric on X to a continuous invariant pseudometric on F (X) (and on
A(X)) which is maximal among all such extensions [3].
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This study stimulated Mal’tsev, who believed that the most appropriate place of the theory of abstract
free groups was in the framework of the general theory of algebraic systems, to introduce general free
topological algebraic systems. In 1957, he published the large paper [7], where the basics of the theory
of free topological universal algebras were presented.

Yet another decade later, Morris initiated the study of free topological groups in the most general
aspect. Namely, he introduced the notion of a variety of topological groups and a full variety of
topological groups and studied the free objects of these varieties [8–10] (see also [11]). (A definition
of a variety of topological groups (determined by a so-called varietal free topological group) was
also proposed in 1951 by Higman [12]; however, it is Morris’ definition that has proven viable
and developed into a rich theory.) Varieties of topological groups and their free objects were also
considered by Porst [13], Comfort and van Mill [14], Kopperman, Mislove, Morris, Nickolas, Pestov
and Svetlichny [15], and other authors. Special mention should be made of Dikranjan and Tkachenko’s
detailed study of varieties of Abelian topological groups with properties related to compactness [16].

The varieties of topological groups in which free objects have been studied best are, naturally,
the varieties of general and Abelian topological groups; free and free Abelian precompact groups
have also been considered (see, e.g., [17]). However, there is yet another natural variety: Boolean
topological groups. Free objects in this variety and its subvarieties have been investigated much less
extensively, although they arise fairly often in various studies (especially in the set-theoretic context).
The author is aware of only three published papers considering free Boolean topological groups from
a general point of view: [18], where free Boolean topological groups on compact spaces were studied
fairly thoroughly; [19], where the topology of the free Boolean topological group on a compact metric
space was explicitly described; and [20], where the free Boolean topological groups on compact initial
segments of ordinals were classified (see also [21]). The purpose of this paper is to draw attention to
these very interesting groups and to give a general impression of them. We collect some (known and
new) results on free Boolean topological groups, which describe both properties that these groups share
with free or free Abelian topological groups and properties specific to free Boolean groups.

2. Preliminaries and a General Description of Free Boolean Topological Groups

All topological spaces and groups considered in this paper are assumed to be completely regular
and Hausdorff.

The notation ω is used for the set of all nonnegative integers and N for the set of all positive integers.
By Z2, we denote the group of order two. The cardinality of a set A is denoted by |A| and the closure
of a set A in an ambient topological space by A. We denote the disjoint union of spaces X and Y by
X ⊕ Y .

By a zero-dimensional space, we mean a spaceX with indX = 0 and by a strongly zero-dimensional
space a space X with dimX = 0.

A Boolean group is a group in which all elements are of order two. Clearly, all Boolean groups are
Abelian. Algebraically, all Boolean groups are free, because any Boolean group is a linear space over
the field F2 = {0, 1} and must have a basis (a maximal linearly independent set) by Zorn’s lemma.
This basis freely generates the given Boolean group. Moreover, any Boolean group (linear space) with
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basis X is isomorphic to the direct sum
⊕|X| Z2 of |X| copies of Z2, i.e., the set of finitely supported

maps g : X → Z2 with pointwise addition (in the field F2). Of course, such an isomorphic representation
depends on the choice of the basis.

A variety of topological groups is a class of topological groups closed with respect to taking
topological subgroups, topological quotient groups and Cartesian products of groups with the product
topology. Thus, the abstract groups G̃ underlying the topological groups G in a variety V of topological
groups (that is, all groups G ∈ V without topology) form a usual variety Ṽ of groups. A variety V of
topological groups is full if any topological group G for which G̃ ∈ Ṽ belongs to V . The notions of a
variety and a full variety of topological groups were introduced by Morris in [8,9], who also proved the
existence of the free group of any full variety on any completely regular Hausdorff space X .

Free objects of varieties of topological groups are characterized by the corresponding universality
properties (we give a somewhat specific meaning to the word “universality,” but we use this word
only in this meaning here). Thus, the free topological group F (X) on a space X admits the following
description: X is topologically embedded in F (X) and, for any continuous map f of X to a topological
group G, there exists a continuous homomorphism f̂ : F (X)→ G for which f = f̂ � X . As an abstract
group, F (X) is the free group on the set X . The topology of F (X) can be defined as the strongest group
topology inducing the initial topology on X . On the other hand, the free topological group F (X) is
the abstract free group generated by the set X (which means that any map of the set X to any abstract
group can be extended to a homomorphism of F (X)) endowed with the weakest topology with respect
to which all homomorphic extensions of continuous maps from X to topological groups are continuous.
The free Abelian topological group A(X) on X , the free Boolean topological group B(X) on X and
free (free Abelian, free Boolean) precompact groups are defined similarly; instead of continuous maps
to any topological groups, continuous maps to topological Abelian groups, topological Boolean groups
and precompact (Abelian precompact, Boolean precompact) groups should be considered.

There is yet another family of interesting varieties of topological groups. Following Malykhin
(see also [17]), we say that a topological group is linear if it has a base of neighborhoods of the identity
element which consists of open subgroups. The classes of all linear groups, all Abelian linear groups
and all Boolean linear groups are varieties of topological groups. These varieties are not full, but for any
zero-dimensional space X , there exist free groups of all of these three varieties on X . Indeed, Morris
proved that a free group of a variety of topological groups on a given space exists if this space can be
embedded as a subspace in a group from this variety ([8], Theorem 2.6). Thus, it suffices to embed any
zero-dimensional X in a Boolean linear topological group (which belongs to all of the three varieties
under consideration). We do this below, but first we introduce more notation.

Whenever X algebraically generates a group G, we can set the length of the identity element to zero,
define the length of any non-identity g ∈ G with respect to X as the least (positive) integer n such that
g = xε11 x

ε2
2 . . . xεnn for some xi ∈ X and εi = ±1, i = 1, 2, . . . , n, and denote the set of elements of

length at most k by Gk for k ∈ ω; then, G =
⋃
Gk. Thus, we use Fk(X), Ak(X) and Bk(X) to denote

the sets of words of length at most k in F (X), A(X) and B(X), respectively.
Now, we can describe the promised embedding.
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Lemma 1. (i) For any space X with indX = 0, there exists a Hausdorff linear topological group
F ′(X) such that F ′(X) is an algebraically free group on X , X is a closed subspace of F ′(X),
and all sets Fn(X) of words of length at most n are closed in F ′(X).

(ii) For any spaceX with indX = 0, there exists a Hausdorff Abelian linear topological group A′(X)

such that A′(X) is an algebraically free Abelian group on X , X is a closed subspace of A′(X),
and all sets An(X) of words of length at most n are closed in A′(X).

(iii) For any spaceX with indX = 0, there exists a Hausdorff Boolean linear topological groupB′(X)

such that B′(X) is an algebraically free Boolean group on X , X is a closed subspace of B′(X),
and all sets Bn(X) of words of length at most n are closed in B′(X).

Proof. Assertion (i) was proven in [22], Theorem 10.5. Let us prove (ii). Given a disjoint open cover γ
of X , we set:

H(γ) =
{ n∑
i=1

(xi − yi) : n ∈ N and for each i ≤ n, there exists an Ui ∈ γ for which xi, yi ∈ Ui
}

;

this is a subgroup of the free Abelian group on X . We can assume that all words in H(γ) are reduced
(if xi is canceled with yj , then Ui = Uj , because Ui ∩ Uj 3 xi = yj and γ is disjoint, and we can
replace xi − yi + xj − yj by xj − yi). All such subgroups generate a group topology on the free Abelian
group on X; we denote the free Abelian group with this topology by A′(X) (we might as well take only
finite covers).

The space X is indeed embedded in A′(X): given any clopen neighborhood U of any point x ∈ X ,
we have x+H({U,X \ U}) ∩X = U .

Let us show that An(X) is closed in A′(X) for any n ∈ ω. Take any reduced word g = ε1x1 + ε2x2 +

· · ·+ εkxk with k > n, where εi = ±1 and xi ∈ X for i ≤ k. Let Ui be clopen neighborhoods of xi such
that Ui and Uj are disjoint if xj 6= xi and coincide if xj = xj . We set:

γ =
{
U1, . . . , Uk, X \

⋃
i≤k

Ui

}
.

Take any reduced word h =
∑m

i=1(yi − zi) in H(γ) and consider g + h. If, for some i ≤ m, both yi and
−zi are canceled in g + h with some xj and xl, then, first, xj = xl (because any different letters in g are
separated by the cover γ, while yi and zi must belong to the same element of this cover), and secondly,
εj = −εl (because yi and zi occur in h with opposite signs). Hence, εjxj = −εlxl, which contradicts g
being reduced. Thus, among any two letters yi and −zi in h, only one can be canceled in g + h, so that
g + h cannot be shorter than g. In other words, g +H(γ) ∩ A′n(X) = ∅.

The proof that X is closed in A′(X) is similar: given any g /∈ X , we construct precisely the same γ
as above (if g /∈ −X) or set γ = {X} (if g ∈ −X) and show that g + H(γ) must contain at least one
negative letter.

The Hausdorffness of A′(X) is equivalent to the closedness of A0(X).
The proof of (iii) is similar.

This lemma and Morris’ theorem cited above ([8], Theorem 2.6) immediately imply the
following theorem.
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Theorem 2. For any spaceX with indX = 0, the free, free Abelian and free Boolean linear topological
groups F lin(X), Alin(X) and Blin(X) are defined. They are Hausdorff and contain X as a closed
subspace, and all sets Fn(X), An(X) and Bn(X) are closed in the respective groups.

By definition, the free linear groups of a zero-dimensional space X have the strongest linear group
topologies inducing the topology of X , that is, any continuous map from X to a linear topological
group (Abelian linear topological group, Boolean linear topological group) extends to a continuous
homomorphism from F lin(X) (Alin(X), Blin(X)) to this group.

Let X be a space, and let Xn, n ∈ ω, be its subspaces such that X =
⋃
Xn. Suppose that any

Y ⊂ X is open in X if and only if each Y ∩ Xn is open in Xn (replacing “open” by “closed,” we
obtain an equivalent condition). Then, X is said to have the inductive limit topology (with respect to the
decomposition X =

⋃
Xn). When talking about inductive limit topologies on F (X), A(X) and B(X),

we always mean the decompositions F (X) =
⋃
Fk(X), A(X) =

⋃
Ak(X) and B(X) =

⋃
Bk(X) and

assume the sets Fk(X), Ak(X) and Bk(X) to be endowed with the topology induced by the respective
free topological groups.

For any space X , the free Abelian topological group A(X) is the quotient topological group of F (X)

by the commutator subgroup, and the free Boolean topological group B(X) is the quotient of A(X) by
the subgroup of squaresA(2X) (which is generated by all words of the form 2x, x ∈ X) (the universality
of free objects in varieties of topological groups implies that the corresponding homomorphisms are
continuous and open). Thus, B(X) is the image of A(X) (and of F (X)) under a continuous open
homomorphism.

The topology of free groups can be described explicitly. The first descriptions were given for
free topological groups on compact spaces and free Abelian topological groups by Graev [3,4];
Tkachenko [23,24] and Pestov [25] gave explicit descriptions of the topology of general free topological
groups. There are also descriptions due to the author (see, e.g., [26,27]). Mal’tsev proposed a universal
approach to describing the topology of free topological algebras, which is not quite constructive, but
looks very promising [7]. All descriptions of the topology of free and free Abelian topological groups
of which the author is aware are given in [22]. The descriptions of the free topological group topology
are very complex (except in a few special cases); the topologies of free Abelian and Boolean topological
groups look much simpler. Thanks to the fact that B(X) = A(X)/A(2X), the descriptions of the free
Abelian topological group topology given in [22] immediately imply the following descriptions of the
free topology of B(X).

I For each n ∈ N, we fix an arbitrary entourage Wn ∈ U of the diagonal of X ×X in the universal
uniformity of X and set:

W̃ = {Wn}n∈N,
U(Wn) = {x+ y : (x, y) ∈ Wn},

U(W̃ ) =
⋃
n∈N

(U(W1) + U(W2) + · · ·+ U(Wn)).

The sets U(W̃ ), where W̃ ranges over all sequences of uniform entourages of the diagonal, form a
neighborhood base at zero for the topology of the free Boolean topological group B(X).



Axioms 2015, 4 497

II For each n ∈ N, we fix an arbitrary normal (or merely open) cover γn of the space X and set:

Γ = {γn}n∈N,
U(γn) = {x+ y : (x, y) ∈ U ∈ γn},

U(Γ) =
⋃
n∈N

(U(γ1) + U(γ2) + · · ·+ U(γn)).

The sets U(Γ), where Γ ranges over all sequences of normal (or arbitrary open) covers, form
a neighborhood base at zero for the topology of B(X).

III For an arbitrary continuous pseudometric d on X , we set:

U(d) =
{
x1 + y1 + x2 + y2 + · · ·+ xn + yn : n ∈ N, xi, yi ∈ X,

n∑
i=1

d(xi, yi) < 1
}
.

The sets U(d), where d ranges over all continuous pseudometrics on X , form a neighborhood base at
zero for the topology of B(X).

It follows directly from the second description that the base of neighborhoods of zero in Blin(X) (for
zero-dimensional X) is formed by the subgroups:

〈U(γ)〉 =
{ n∑
i=1

(xi + yi) : n ∈ N, (xi, yi) ∈ Ui ∈ γ for i ≤ n
}

generated by the sets U(γ) with γ ranging over all normal covers of X . By definition, any normal cover
of a strongly zero-dimensional space has a disjoint open refinement. Therefore, for X with dimX = 0,
the covers γ can be assumed to be disjoint, and for disjoint γ, we have:

〈U(γ)〉 =
{ n∑
i=1

(xi + yi) : n ∈ N, (xi, yi) ∈ Ui ∈ γ for i ≤ n, the word
n∑
i=1

(xi + yi) is reduced
}

(see the proof of Lemma 1). A similar description is valid for the Abelian groups Alin(X) (the pluses
must be replaced by minuses). This leads to the following statement.

Proposition 3. For any strongly zero-dimensional space X and any n ∈ ω, the topology induced on
An(X) (on Bn(X)) by Alin(X) (by Blin(X)) coincides with that induced by A(X) (by B(X)).

Proof. We can assume without loss of generality that n is even. Given any neighborhood U of zero in
A(X) (in B(X)), it suffices to take a sequence Γ = {γk}k∈N of disjoint covers such that n

2
· U(Γ) ⊂ U

and note that 〈U(γ1)〉 ∩ An(X) ⊂ n
2
· U(γ1) ⊂ U .

Graev’s procedure for extending any continuous pseudometric d on X to a maximal invariant
pseudometric d̂ on F (X) is easy to adapt to the Boolean case. Following Graev, we first consider
free topological groups in the sense of Graev, in which the identity element is identified with a point
of the generating space and the universality property is slightly different: only continuous maps of the
generating space to topological groups G that take the distinguished point to the identity elements of
G must extend to continuous homomorphisms [3]. Graev showed that the free topological and Abelian
topological groups FG(X) and AG(X) in the sense of Graev are unique (up to topological isomorphism)
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and do not depend on the choice of the distinguished point; moreover, the free topological group in the
sense of Markov is nothing but the Graev free topological group on the same space to which an isolated
point is added (and identified with the identity element).

The extension of a continuous pseudometric d on X to a maximal invariant continuous pseudometric
d̂ on the Graev free Boolean topological group BG(X) is defined by setting:

d̂(g, h) = inf
{ n∑

i=1

d(xi, yi) : n ∈ N, xi, yi ∈ X, g =
n∑
i=1

xi, h =
n∑
i=1

yi

}
for any g, h ∈ BG(X). The infimum is taken over all representations of g and h as (reducible) words of
equal lengths. The corresponding Graev seminorm ‖ · ‖d (defined by ‖g‖d = d̂(g, 0) for g ∈ BG(X),
where 0 is the zero element of BG(X)) is given by:

‖g‖d = inf
{ n∑
i=1

d(xi, yi) : g =
n∑
i=1

(xi + yi), xi, yi ∈ X
}
.

The infimum is attained at a word representing g which may contain one zero (if the length of g is
odd) and is otherwise reduced. Indeed, if the sum representing g contains terms of the form x + z and
z + y, then these terms can be replaced by one term x + y; the sum

∑n
i=1 d(xi, yi) does not increase

under such a change thanks to the triangle inequality.
For the usual (Markov’s) free Boolean topological group B(X), which is the same as BG(X ⊕ {0})

(where 0 is an isolated point identified with zero), the Graev metric depends on the distances from the
points of X to the isolated point (they can be set to 1 for all x ∈ X). The corresponding seminorm ‖ · ‖d
on the subgroup Beven(X) of B(X) consisting of words of even length does not change. The subgroup
Beven(X) is open and closed in B(X), because this is the kernel of the continuous homomorphism
f̂ : B(X) → {0, 1} extending the constant continuous map f : X → {0, 1} taking all x ∈ X to 1.
Thus, in fact, it does not matter how to extend ‖ · ‖d to B(X) \Beven(X); for convenience, we set:

‖g‖d =


min

{∑n
i=1 d(xi, yi) : g =

∑n
i=1(xi + yi), xi, yi ∈ X ,

the word
∑n

i=1(xi + yi) is reduced
} if g ∈ Beven(X),

1 if g ∈ B(X) \Beven(X).

All open balls (as well as all open balls of any fixed radius not exceeding one) in all seminorms ‖ · ‖d
for d ranging over all continuous pseudometrics on X form a base of open neighborhoods of zero in
B(X).

Topological spaces X and Y are said to be M -equivalent (A-equivalent) if their free (free Abelian)
topological groups are topologically isomorphic. We shall say that X and Y are B-equivalent if B(X)

and B(Y ) are topologically isomorphic.
Given X ⊃ Y , we use B(Y |X) to denote the topological subgroup of B(X) generated by Y .
A special role in the theory of topological groups and in set-theoretic topology is played by Boolean

topological groups generated by almost discrete spaces, that is, spaces having only one non-isolated
point. With each free filter F on any set X , we associate the almost discrete space XF = X ∪ {∗} (∗
is a point not belonging to X); all points of X are isolated, and the neighborhoods of ∗ are {∗} ∪ A,
A ∈ F . For a space with infinitely many isolated points, there is no difference between the canonical



Axioms 2015, 4 499

definition of the groups F (X), A(X) and B(X) and Graev’s generalizations FG(X), AG(X) and
BG(X). Indeed, Graev showed that FG(X) and AG(X) are unique (up to topological isomorphism)
and do not depend on the choice of the distinguished point. Graev’s argument, which uses only the
universality property, carries over word for word to free Boolean topological groups. Thus, when dealing
with spaces XF associated with filters, we can identify B(XF) with BG(XF) and assume that the only
non-isolated point of XF is the zero of B(XF); the descriptions of the neighborhoods of zero and the
Graev seminorm are altered accordingly. To understand how they change, take the new (but in fact,
the same) space X̃F = XF ∪ {0}, where 0 is one more isolated point, represent B(XF) as the Graev
free Boolean topological group BG(X̃F) with distinguished point (zero of BG(X̃F)) 0, and consider
the topological isomorphism g 7→ g + 0 between this group and the similar group with distinguished
point (zero) ∗.

For example, since any open cover of XF can be assumed to consist of a neighborhood of ∗
and singletons, Description II reads as follows in this case: For each n ∈ N, we fix an arbitrary
neighborhood Vn of ∗, that is, An ∪ {∗}, where An ∈ F , and set:

W = {Vn}n∈N,
U(Vn) = {x+ ∗ : x ∈ Vn} = {x : x ∈ An} (∗ is zero),

U(W ) =
⋃
n∈N

(U(V1) + U(V2) + · · ·+ U(Vn)) =
⋃
n∈N

{x1 + · · ·+ xn : xi ∈ Ai for i ≤ n}.

The sets U(W ), where the W range over all sequences of neighborhoods of ∗, form a neighborhood
base at zero for the topology of B(XF). Strictly speaking, to obtain a full analogy with Description II of
the Markov free group topology, we should set:

U(W ) =
⋃
n∈N

(2U(V1) + 2U(V2) + · · ·+ 2U(Vn)) =
⋃
n∈N

{x1 + y1 · · ·+ xn + yn : xi, yi ∈ Vi for i ≤ n},

but this would not affect the topology: the former U(W ) equals the latter for a sequence of smaller
neighborhoods, say V ′n =

⋂
i≤2n Vi (remember that some of the xi and yi in the expression for U(W )

may equal ∗, that is, vanish).
Similarly, the base neighborhoods of zero in Description III take the form:

U(d) =
{
x1 + x2 + · · ·+ xn : n ∈ N, x1, . . . , xn ∈ X,

n∑
i=1

d(xi, ∗) < 1
}
,

where d ranges over continuous pseudometrics onXF (again, we should set U(d) =
{
x1+y1+x2+y2+

· · ·+ xn + yn : n ∈ N, xi, yi ∈ X ∪ {∗},
∑n

i=1 d(xi, yi) < 1
}

, but this would not make any difference).

It is also easy to see that the isomorphism between BG(X̃F) (with distinguished point ∗) and B(XF)

does not essentially affect the sets of words of length at most n; in particular, they remain closed, and
BG(X̃F) is the inductive limit of these sets with the induced topology if and only if B(XF) has the
inductive limit topology. In what follows, by B(XF), we shall usually mean the Graev free Boolean
topological group with zero ∗.

Thus,B(XF) is naturally identified with the group [X]<ω of all finite subsets ofX under the operation
4 of symmetric difference (A4B = (A \ B) ∪ (B \ A)). The point ∗, which is the zero element of
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B(XF), is identified with the empty set ∅, which belongs to [X]<ω as the zero element. In the context
of free Boolean groups on almost discrete spaces, we also identify each x ∈ X with the one-point set
{x} ∈ [X]<ω.

Sets of the form [X]<ω often arise in set-theoretic topology and in forcing. The role of X is often
played by ω, and the filter F is usually an ultrafilter with certain properties.

We assume all filters F on ω to be free, i.e., to contain the Fréchet filter (of all cofinite sets).
A filter F on ω is said to be a P -filter if, for any family of Ai ∈ F , i ∈ ω, the filter F contains a

pseudo-intersection of this family, i.e., a set A ⊂ ω such that |A \ Ai| < ω for all i ∈ ω. For ultrafilters,
this property is equivalent to being a P -point, or weakly selective, ultrafilter. A filter F on ω is said to
be a Ramsey filter if, for any family of Ai ∈ F , i ∈ ω, the filter F contains a diagonal of this family, i.e.,
a set D ⊂ ω such that, whenever i, j ∈ D and i < j, we have j ∈ Ai. Ultrafilters with this property are
known as Ramsey, or selective, ultrafilters.

We use the standard notation [ω]<ω for the set of all finite subsets of ω and ω<ω for the set of all finite
sequences of elements of ω. Given s, t ∈ [ω]<ω, s @ t means that s is an initial segment of t, i.e., s ⊂ t

and all elements of t \ s are greater than all elements of s. For s ∈ [ω]<ω \ {∅}, by max s, we mean the
greatest element of s in the ordering of ω. We also set max ∅ = −1.

3. A Comparison of Free, Free Abelian and Free Boolean Topological Groups

3.1. Similarity

There are a number of known properties of free and free Abelian topological groups that automatically
carry over to free Boolean topological groups simply because they are preserved by taking topological
quotient groups or, more generally, by continuous maps. Thus, if F (X) (and A(X)) is separable,
Lindelöf, ccc, and so on, then so is B(X). It is also quite obvious that X is discrete if and only if
so are F (X), A(X) and B(X).

Let X be a space, and let Y be its subspace. The topological subgroup B(Y |X) of B(X) generated
by Y is not always the free Boolean topological group on Y (the induced topology of B(Y |X) may be
weaker). Looking at Description I of the free group topology on B(X), we see that X and Y equipped
with the universal uniformities UX and UY are uniform subspaces of B(X) and B(Y ) with their group
uniformities WB(X) and WB(Y ) (generated by entourages of the form W (U) = {(g, h) : h ∈ g + U},
where U ranges over all neighborhoods of zero in the corresponding group), which completely determine
the topologies of B(X) and B(Y ). Thus, if the topology of B(Y |X) coincides with that of B(Y ),
then, like in the case of free and free Abelian topological groups [28,29], (Y,UY ) must be a uniform
subspace of (X,UX), which means that any bounded continuous pseudometric on Y can be extended to
a continuous pseudometric on X (in this case, Y is said to be P -embedded in X [30]). The converse
has been proven to be true for free Abelian (presented in [28] with an incomplete proof and completely
proven in [29]) and even free [27] (see also [22], where a minor misprint in the condition 3◦ on p. 186
of [27] is corrected) topological groups. Since B(X) and B(Y ) are the topological quotients of A(X)

andA(Y ) by the subgroups of squaresA(2X) andA(2Y ) andA(2Y ) = A(2X)∩A(Y ), we immediately
obtain the following theorem.
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Theorem 4. Let X be a space, and let Y be its subspace. The topological subgroup of the free Boolean
groups B(X) generated by Y is the free topological group B(Y ) if and only if each bounded continuous
pseudometric on Y can be extended to a continuous pseudometric on X .

Any space X is closed in its free Boolean topological group B(X) (see, e.g., ([9], Theorems 2.1 and
2.2)), as well as in F (X) and A(X) [1,2]. Moreover, all Fn(X), An(X) and Bn(X) (the sets of words
of length at most n) are closed in their respective groups, as well. The most elegant proof of this fact
was first proposed by Arkhangel’skii in the unavailable book [31] (for F (X), but the argument works for
A(X) and B(X) without any changes): Note that all Fn(βX) ⊂ F (βX) are compact, since these are
the continuous images of (X⊕{e}⊕X−1)n under the natural multiplication maps in : (xε11 , . . . , x

εn
n ) 7→

xε11 . . . xεnn (here, e denotes the identity element of F (X), εi = ±1, and the word xε11 . . . xεnn may be
reducible, i.e., have length shorter than n). Therefore, the Fn(βX) are closed in F (βX), and hence, the
sets Fn(X) = Fn(βX)∩ F (X|βX) are closed in F (X|βX). It follows that these sets are also closed in
F (X), which is the same group as F (X|βX), but has stronger topology.

The topological structure of a free group becomes much clearer when this group has the inductive
limit topology (or, equivalently, when the inductive limit topology is a group topology). The problem of
describing all spaces for which F (X) (or A(X)) possesses this property has proven extremely difficult
(and is still unsolved). Apparently, the problem was first stated explicitly by Pestov and Tkachenko in
1985 [32], but it was tackled as early as in 1948 by Graev [3], who proved that the free topological
group of a compact space has the inductive limit topology. Then, Mack, Morris and Ordman [33]
proved the same for kω-spaces. The strongest (to the author’s knowledge) result in this direction was
obtained by Tkachenko [34], who proved that if X is a P -space or a Cω-space (the latter means X is
the inductive limit of an increasing sequence {Xn} of its closed subsets such that all finite powers of
each Xn are countably compact and strictly collection-wise normal), then F (X) has the inductive limit
topology. All of these sufficient conditions are also valid for A(X) and B(X) by virtue of the following
simple observation.

Proposition 5. Suppose that X =
⋃
n∈NXn, Y =

⋃
n∈N Yn, X is the inductive limit of its subspaces

Xn, n ∈ N, and f : X → Y is a quotient map such that f(Xn) = Yn for each n ∈ N. Then, Y is the
inductive limit of its subspaces Yn.

Proof. Let U ⊂ Y be such that all Un = U ∩ Yn are open in Yn. Consider V = f−1(U) and Vn =

f−1(Un) ∩ Xn for n ∈ ω. Each Vn is open in Xn, because the restriction of f to Xn is continuous and
f(Xn) = Yn. On the other hand,

Vn = f−1(U ∩ Yn) ∩Xn = (f−1(U) ∩ f−1(Yn)) ∩Xn = V ∩Xn;

therefore, V is open in X . Since the map f is quotient, it follows that U = f(V ) is an open set.

For X of the form ωF (where F is a filter on ω), not only the sufficient conditions mentioned above,
but also a necessary and sufficient condition for F (X) and A(X) to have the inductive limit topology is
known. This condition is also valid for B(X).

Theorem 6. Given a filter F on ω, B(ωF) has the inductive limit topology if and only if F is a P -filter.
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Proof. This theorem is true for free and free Abelian topological groups [35]. Therefore, by
Proposition 5, B(ωF) has the inductive limit topology for any P -filter. It remains to prove that if B(ωF)

is the inductive limit of the Bn(ωF), then F is a P -filter.
Thus, suppose that B(ωF) is the inductive limit of the Bn(ωF), but F is not a P -filter, that is, there

exists a decreasing sequence of An ∈ F , n ∈ ω, such that, for any A ∈ F , there is an i for which the
intersection A ∩ Ai is infinite. As usual, we assume that the zero element of B(ωF) is the non-isolated
point ∗ of ωF .

Without loss of generality, we can assume that A0 = ω and all sets An \ An+1 are infinite. We
enumerate these sets as:

An \ An+1 = {xni : i ∈ ω}

and put:

Dn = {xnm + xi1j1 + xi2j2 + · · ·+ xinjn : n < i1 < i2 < · · · < in < j1 < j2 < · · · < jn < m}

for all n ∈ ω. Let us show that each Dn is a closed discrete subset of B(ωF). Fix n and consider
X = {∗} ∪ {xni : i ∈ ω} and the retraction r : ωF → X that takes ωF \ X to {∗}. Clearly, X is
discrete, and the map r is continuous. Let r̂ : B(ωF)→ B(X) be the homomorphic extension of r; then,
r̂ continuously maps B(ωF) onto the discrete group B(X). For any g ∈ B(X), the set r̂−1(g) ∩ Dn

is finite: if r̂−1(g) ∩ Dn is nonempty, then we have g = r̂(xnm0 + xi01j01 + xi02j02 + · · · + xi0nj0n ) for
some m0, i0k , j0k ∈ ω such that n < i01 < i02 < · · · < i0n < j01 < j02 < · · · < j0n < m0, whence
g = xnm0 and:

r̂−1(g) ∩Dn = {xnm0 + xi1j1 + xi2j2 + · · ·+ xinjn :

n < i1 < i2 < · · · < im < j1 < j2 < · · · < jn < m0}.

Since the sets r̂−1(g), g ∈ B(X), form an open cover of B(ωF), it follows that Dn is a closed discrete
subspace of B(ωF).

The length of each word in Dn equals n + 1. Therefore, D =
⋃
nDn is closed in the inductive limit

topology. It remains to show that ∗ (the zero of B(ωF)) belongs to the closure of D in the free group
topology, i.e., that U(d) ∩ D 6= ∅ for any continuous pseudometric d on ωF (see Description III of the
topology of B(ωF)).

Take an arbitrary (continuous) pseudometric d on ωF . In ωF , the ball Bd(∗, 12) of radius 1
2

centered
at ∗ with respect to d is a neighborhood of ∗; that is, the punctured ball (with ∗ removed) belongs
to F . By assumption, there is an n ∈ ω for which the set M = {i ∈ ω : d(∗, xni) < 1

2
)} is

infinite. Since Bd(∗, 1
2n

) ∩ An+1 is a punctured neighborhood of ∗ and hence belongs to F , it follows
by assumption that the sets Ji = {j ∈ ω : d(∗, xij) < 1

2n
} are infinite for infinitely many i. Choose

i1 < i2 < · · · < in greater than n so that all Jik are infinite, then choose jk ∈ Jik , k ≤ n, so that in <
j1 < · · · < jn, and take m ∈M such that m > jn. We have g = xnm + xi1j1 + xi2j2 + · · ·+ xinjn ∈ Dn.
We also have g ∈ U(d), because:

d(∗, xnm) +
n∑
k=1

d(∗, xikjk) <
1

2
+ n

1

2n
= 1.

Therefore, g ∈ Dn ∩ U(d).
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In [36] Tkachuk proved that the free Abelian topological group of a disjoint union of two spacesX and
Y is topologically isomorphic to the direct sum A(X)

⊕
A(Y ) = A(X)× A(Y ). His argument carries

over to varieties of Abelian topological groups closed under direct sums (or, in topological terminology,
σ-products with respect to the zero elements of factors) with the box topology. We denote such sums
by σ�.

Proposition 7. For any family {Xα : α ∈ A} of spaces,

A
(⊕
α∈A

Xα

)
∼= σ�α∈AA(Xα) and B

(⊕
α∈A

Xα

)
∼= σ�α∈AB(Xα).

If all Xα are zero-dimensional, then:

Alin
(⊕
α∈A

Xα

)
∼= σ�α∈AA

lin(Xα) and Blin
(⊕
α∈A

Xα

)
∼= σ�α∈AB

lin(Xα).

Proof. Let T stand forA,B,Alim orBlim, and let 0α denote the zero element of T (Xα). For each α ∈ A,
we set X ′α = σ�β∈AYβ , where Yα = Xα and Yβ = {0β} for β 6= α. Every X ′α is embedded in the group
T ′α(Xα) defined accordingly as a product of T (Xα) and zeros. Clearly, the union

⋃
α∈AX

′
α algebraically

generates σ�α∈AT (Xα) and is homeomorphic to
⊕

α∈AXα. It remains to show that the homomorphic
extension of any continuous map of this union to any topological group from the corresponding variety
is continuous. Let f :

⋃
α∈AX

′
α → G be such a map. For each α ∈ A, the homomorphic extension

f̂α : T ′α(Xα) → G of the restriction of f to X ′α is continuous. We define f̂ : σ�α∈AT (Xα) → G by
setting f̂

(
(gα)α∈A

)
=
∑

α∈A f̂α(gα) for each (gα)α∈A ∈ σ�α∈AT (Xα); the sum is defined, because any
element of σ�α∈AT (Xα) has only finitely many nonzero components. Let us show that f̂ is continuous.
It suffices to check continuity at the zero element of σ�α∈AT (Xα). Take any neighborhood U of zero
in G. Its preimages Vα under the component maps f̂α are open neighborhoods of zero in T ′α(Xα).
The product σ�αVα is the preimage of U under f̂ , and it is open in the box topology.

The free Boolean topological group of a non-discrete space is never metrizable (as well as the free
and free Abelian topological groups). Indeed, if B(X) is metrizable and X is non-discrete, then X

contains a convergent sequence S with limit point ∗, and B(S) = B(S|X) (see Theorem 4); thus, it
suffices to show that B(S) is non-metrizable. Suppose that it is metrizable. Then, the topology of B(S)

is generated by a continuous norm ‖ · ‖. For all pairs of positive integers n and m ≤ n, choose different
snm ∈ S so that ‖snm + ∗‖ < 1

n2 . Clearly, the set:

D = {(sn1 + ∗) + (sn2 + ∗) + . . . (snn + ∗) : n ≥ 0}

has finite intersection with each Bk(S); hence, it must be discrete, because B(S) has the inductive limit
topology. On the other hand, D is a sequence convergent to zero, since:

‖(sn1 + ∗) + (sn2 + ∗) + . . . (snn + ∗)‖ ≤
n∑
i=1

(sni + ∗) < n · 1

n2
=

1

n
.

The list of properties shared by free, free Abelian and free Boolean topological groups that can be
proven without much effort is very long. Many of these properties are proven for Boolean groups by
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analogy, but sometimes, their proofs are drastically simplified. We conclude our brief excursion by one
such examples. The proof of the following theorem for free topological groups given in [27] is extremely
complicated (it is based on a more general construction). The proof given in [22] is much shorter, but
still very cumbersome. In the Boolean case, the proof becomes almost trivial.

Theorem 8. If dimX = 0, then indB(X) = 0.

Proof. Any continuous pseudometric d on X is majorized by a non-Archimedean pseudometric ρ (a
pseudometric ρ is said to be non-Archimedean if ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)} for any x, y, z ∈ X)
taking only values of the form 1

2n
. To see this, it suffices to consider the elements V0, V1, . . . of the

universal uniformity on X which are determined by decreasing disjoint open refinements γ0, γ1, . . . of
the covers of X by balls of radii 1

21
, 1
22
, . . . with respect to d and apply the construction in the proof

of Theorem 8.1.10 of [37] (see also [38]). Since the covers γn determining the entourages Vn are
disjoint and each γi+1 is a refinement of γi, it follows that the function f in this construction has the
property f(x, z) ≤ max{f(x, y), f(y, z)}, and therefore, the pseudometric ρ constructed there from f

is non-Archimedean and takes the values 1
2n

. Clearly, it majorizes d.
Each value ‖g‖ρ, g ∈ B(X), of the Graev extension ‖ · ‖ρ of ρ is either one or a finite sum of values

of d (recall that the minimum in the expression for ‖g‖ρ is attained at an irreducible representation of g).
Hence, ‖ · ‖ρ takes only rational values, and the balls with irrational radii centered at zero in this norm
are open and closed. They form a base of neighborhoods of zero, and their translates form a base of the
entire topology on B(X).

3.2. Difference

Pestov gave an example of a spaceX for which F (X) is not homeomorphic toA(X) [39]. Spaces for
which A(X) is not homeomorphic to B(X) exist, too.

Proposition 9. The free Abelian topological group of any connected space has infinitely many connected
components. The free Boolean topological group of any connected space has two connected components.

Proof. Consider a connected space X . The connected component of zero in A(X) is the subgroup
Ac(X) consisting of all words

∑n
i=1 x

εi
i with

∑n
i=1 εi = 0 (see ([17], Lemma 7.10.2)). Clearly, all words

in this subgroup are of even length, and the canonical homomorphism A(X) → B(X) takes Ac(X) to
the subgroupBc(X) ofB(X) consisting of all words of even length. Since the canonical homomorphism
is continuous and open, the subgroup Bc(X) is connected and open (and hence, closed), and it has index
two in B(X). Thus, B(X) has two connected components, while A(X) has infinitely many connected
components, because A(X)/Ac(X) ∼= Z (see ([17], Lemma 7.10.2)).

There is a fundamental difference in the very topological-algebraic nature of free, free Abelian
and free Boolean groups. Thus, nontrivial free and free Abelian groups admit no compact group
topologies (see [40]); this follows from the well-known algebraic description of infinite compact Abelian
groups ([41], Theorem 25.25). On the other hand, for any infinite cardinal κ, the direct sum

⊕
2κ Z2

of 2κ copies of Z2 (that is, the free Boolean group of rank 2κ) is algebraically isomorphic to the
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Cartesian product (Z2)
κ ([42], Lemma 4.5) and, therefore, admits compact group topologies (e.g., the

product topology).
The free and free Abelian groups are never finite, while the free Boolean group of any finite set

is finite.
The free and free Abelian topological groups of any completely regular Hausdorff topological

space X contain all finite powers Xn of X as closed subspaces. Thus, each Xn is homeomorphic
to the closed subset {x1 . . . xn : xi ∈ X for i = 1 ≤ n} of F (X) [43] and to the closed subset
{x1 + 2x2 + · · · + nxn : xi ∈ X for i = 1 ≤ n} of A(X) [44]. (Arkhangel’skii announced the result
for F (X) in [43] and proved it in [31] by considering the Stone–Čech compactification of X and its free
topological group; details can be found in Theorem 7.1.13 of [17]. Unfortunately, the book [31], which
is a rotaprint edition of a lecture course, is (and always was) virtually unavailable, even in Russia. Thus,
the result was rediscovered by Joiner [45] and the idea of proof by Morris [9] (see also [46]). In fact, both
Arkhangel’skii and Joiner proved a stronger statement; namely, they gave the same complete description
of the topological structure of all Fn(X), although obtained by different methods (Arkhangel’skii proof
is much shorter).)

However, the situation with free Boolean topological groups is much more complicated. For example,
consider extremally disconnected free topological groups.

Extremally disconnected groups are discussed in the next section. Here, we only mention that
non-discrete F (X) and A(X) are never extremally disconnected, while B(X) may be non-discrete and
extremally disconnected under certain set-theoretic assumptions (e.g., under CH), even for countable
X of the form ωF , and that any hereditarily normal, in particular, countable, extremally disconnected
space, is hereditarily extremally disconnected (this is shown in the next section). It follows that if X is
a non-discrete countable space for which B(X) is extremally disconnected, then B(X) does not contain
X2 as a subspace. Indeed, otherwise,X2 is extremally disconnected (and non-discrete), and the existence
of such spaces is prohibited by the following simple observation; it must be known, although the author
failed to find a reference.

Proposition 10. If X ×X is extremally disconnected, then X is discrete.

This immediately follows from Frolík’s general theorem that the fixed-point set of any surjective
self-homeomorphism of an extremally disconnected space is clopen [47]: it suffices to consider
the self-homeomorphism of X × X defined by (x, y) 7→ (y, x). (Frolík proved this theorem for
compact extremally disconnected spaces and not necessarily surjective self-homeomorphisms; in the
surjective case, the theorem is extended to non-compact spaces by considering their Stone–Čech
compactifications, which are always extremally disconnected for extremally disconnected spaces (this
and other fundamental properties of extremally disconnected spaces can be found in the book [48]).)

Thus, there exist (under CH) filters F on ω for which (ωF)2 is not contained in B(ωF) as a subspace.
However, in the simplest case whereF is the Fréchet filter (i.e., ωF is a convergent sequence),B(ωF) not
merely contains (ωF)n, but is topologically isomorphic toB(ωF)n for all n by virtue of Proposition 7 and
the fact that a convergent sequence is B-equivalent to the disjoint union of two convergent sequences,
which can be demonstrated as follows.
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Any M -equivalent spaces are A-equivalent, and any A-equivalent spaces are B-equivalent, because
A(X) (B(X)) is the quotient of F (X) (A(X)) by an algebraically determined subgroup not depending
on X . Therefore, all known sufficient conditions for M - and A-equivalence (see, e.g., [3,4,49–51])
remain valid for B-equivalence. In particular, if X0 is a space, K is a retract of X0, X is the space
obtained by adding an isolated point to X0 and Y = X0/K ⊕K, then X and Y are M -equivalent ([50],
Theorem 2.4). This immediately implies the required B-equivalence of a convergent sequence S and
the disjoint union S ⊕ S of two convergent sequences: it suffices to take S ⊕ S for X0 and X and the
two-point set of the two limit points in S ⊕ S for K.

However, there exist B-equivalent spaces, which are neither F - nor A-equivalent. Genze, Gul’ko and
Khmyleva obtained necessary and sufficient conditions for infinite initial segments of ordinals to be F -,
A- and B-equivalent [20] (see also [21]). It turned out that the criteria for F - and A-equivalence are the
same, and the criterion for B-equivalence differs from them; see [20] for details.

Finally, the following theorem shows that there is also a fundamental difference between free groups
of the varieties of Abelian and Boolean linear topological groups.

Theorem 11. The free Boolean linear topological group of any strongly zero-dimensional
pseudocompact space is precompact.

Proof. Let X be a strongly zero-dimensional pseudocompact space. As mentioned in the preceding
section, a base of neighborhoods of zero in Blim(X) is formed by subgroups of the form:

〈U(γ)〉 =
{ n∑
i=1

(xi + yi) : n ∈ ω, (xi, yi) ∈ Ui ∈ γ for i ≤ n
}
,

where γ in a disjoint open cover of X; note that all such covers are finite. Clearly,

〈U(γ)〉 =
{ 2n∑
i=1

xi : n ∈ ω, |{i ≤ 2n : xi ∈ U}| is even for each U ∈ γ
}
.

Every such subgroup has finite index. Therefore, B(X) is precompact.

This theorem is not true for Abelian groups; moreover, free Abelian linear groups are never
precompact. Indeed, the group Ac(X) =

{∑n
i=1 x

εi
i : n ∈ N,

∑n
i=1 εi = 1

}
considered above is always

open, being the preimage of the isolated point zero under the homomorphism A(X) → Z2 = {0, 1},
which extends the constant map X → {0, 1} taking everything to one. As already mentioned, Ac(X)

has infinite index in A(X).

4. Extremally Disconnected Groups

There is an old problem of Arkhangel’skii on the existence in ZFC of a non-discrete Hausdorff
extremally disconnected topological group; it was posed in 1967 [52] and has been extensively studied
since then. The problem is still open even for countable groups, although several consistent examples
have been constructed [53–58]. An impression of the state-of-the-art in this area can be gained from
Zelenyuk’s book [59] and the author’s papers [60] and [61]. The most recent result (presented in [61])
asserts that, under additional set-theoretic assumptions, a countable extremally disconnected group



Axioms 2015, 4 507

cannot contain a sequence of open subgroups whose intersection has an empty interior; in other words,
if there exists in ZFC a non-discrete countable extremally disconnected group, then there must exist
such a group without open subgroups (note in this connection that any extremally disconnected space is
strongly zero-dimensional, and any zero-dimensional free Boolean topological group contains a family
of open subgroups with trivial intersection (see Theorem 2)). Here, we present a new observation closely
related to free Boolean topological groups.

A spaceX is said to be extremally disconnected if the closure of each open set in this space is open or,
equivalently, if any two disjoint open sets have disjoint closures. In particular, the space XF associated
with a filter F is extremally disconnected if and only if F is an ultrafilter. The most fundamental
properties of extremally disconnected spaces can be found in the book [48]. Much useful information
(especially in the topological-algebraic context) is contained in [62]. The central place in the theory of
extremally disconnected topological groups is occupied by Boolean topological groups because of the
following theorem of Malykhin.

Theorem 12 (Malykhin [54]). Any extremally disconnected group contains an open (and therefore
closed) Boolean subgroup.

This theorem follows from Frolík’s fixed-point theorem mentioned at the end of the preceding section.
In [54], Malykhin reproved Frolík’s theorem for the particular self-homeomorphism g 7→ g−1; its
fixed-point set U is an open neighborhood of the identity element, and the subgroup generated by an
open neighborhood V of the identity for which V 2 ⊂ U is as required.

Thus, in the theory of extremally disconnected groups, only Boolean groups matter. As is known,
the existence of a non-discrete extremally disconnected free Boolean topological group implies the
existence of either measurable cardinals or Ramsey ultrafilters [60] (this is proven by reduction to the
free Boolean topological group on a countable space with one non-isolated point); it is also known
that the simultaneous nonexistence of measurable cardinals and Ramsey ultrafilters is consistent with
ZFC (see [63]). The following two theorems have a stronger consequence.

Theorem 13. Any hereditarily normal extremally disconnected space is hereditarily extremally
disconnected.

Proof. LetX be a hereditarily normal extremally disconnected space. We must prove that any Y ⊂ X is
extremally disconnected. We can assume that Y is closed in X , because, obviously, any dense subspace
of an extremally disconnected space is extremally disconnected. We must show that the closures in Y of
any disjoint sets U and V which are open in Y are disjoint. Note that such sets U and V are separated
(in Y and, therefore, in X), that is, U ∩ V = U ∩ V = ∅. Since X is hereditarily normal, there exist
disjoint open (in X) sets U ′ ⊃ U and V ′ ⊃ V ([37], Theorem 2.1.7). Their closures in X cannot
intersect, because X is extremally disconnected; thus, the closures in Y of the smaller sets U and V do
not intersect either.

Theorem 14. If G is a hereditarily normal extremally disconnected Boolean group, then any closed
linearly independent subset of G contains at most one non-isolated point.
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Proof. Let A ⊂ G be a closed linearly-independent subset of G. Suppose that a ∈ A and b ∈ A are
distinct limit points of A. Take their disjoint closed neighborhoods U 3 a and V 3 b. Since A is linearly
independent and closed, it follows that a+(V ∩A)∩b+(U ∩A) = {a+b}, and the sets a+(V ∩A) and
b+ (U ∩A) are closed. Therefore, the sets a+ ((V \ {b})∩A) and b+ ((U \ {a})∩A) are closed in the
normal subspace (a+(V ∩A)∪b+(U ∩A))\{a+b} ofG and, hence, can be separated by disjoint open
neighborhoods in this subspace. These neighborhoods remain open in a+(V ∩A)∪b+(U∩A); obviously,
a+ b belongs to the closure of each of them, which contradicts the hereditary extremal disconnectedness
of G.

Corollary 15. If X is a non-discrete countable space for which B(X) is extremally disconnected, then
X is almost discrete.

We shall see in the next section that, in fact, the space X in Corollary 15 must be associated with a
Ramsey ultrafilter.

5. Free Boolean Groups on Filters on ω

We have already seen in the preceding sections that free Boolean groups on almost discrete countable
spaces (associated with filters on ω) exhibit interesting behavior. Moreover, they are encountered more
often than it may seem at first glance.

Consider any Boolean group B(X) with countable basis X . As mentioned in Section 2, this group
is (algebraically) isomorphic to the direct sum (or, in topological terminology, σ-product)

⊕ℵ0 Z2 of
countably many copies of Z2. There is a familiar natural topology on this σ-product, namely the usual
product topology; let us denote it by τprod. This topology induces the topology of a convergent sequence
on X ⊕ {0} (where 0 denotes the zero element of B(X)) and is metrizable; therefore, it never coincides
with the topology τfree of the free Boolean topological group on X . Moreover, τprod is contained in τfree
only when X is discrete or has the form ωF for some filter (recall that we assume all filters to be free,
i.e., contain the filter of cofinite sets, and identify the non-isolated points of the associated spaces with
the zeros of their free Boolean groups). On the other hand, any countable space is zero-dimensional;
therefore, any countable free Boolean topological group contains a sequence of subgroups with trivial
intersection (see Theorem 2). In [61], the following lemma was proven.

Lemma 16 ([61]). Let G be a countable non-discrete Boolean topological group that contains a family
of open subgroups with trivial intersection. Then, there exists a basis of G such that the isomorphism
G→

⊕ℵ0 Z2 taking this basis to the canonical basis of
⊕ℵ0 Z2 is continuous with respect to the product

topology on
⊕ℵ0 Z2 = σ(Z2)

ℵ0 .

This immediately implies the following assertion.

Theorem 17. Any countable Boolean topological group containing a family of open subgroups with
trivial intersection (in particular, any free Boolean topological or linear topological group on a
countable space) has either a discrete closed basis or a closed basis homeomorphic to the space ωF
associated with a filter F on ω.
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Spaces of the form ωF are one of the rare examples where the free Boolean topological group is
naturally embedded in the free and free Abelian topological groups as a closed subspace. The embedding
of B(ωF) into A(ωF) is defined simply by x1 + x2 + · · · + xn 7→ x1 + x2 + · · · + xn (for the Graev
free groups, which are the same as Markov ones for such spaces), and the embedding into F (ωF) is
x1 +x2 + · · ·+xn 7→ x1x2 . . . xn, provided that x1 < x2 < · · · < xn. These embeddings take B(ωF) to:

A = {x1 + x2 + · · ·+ xn = (x1 − ∗) + (x2 − ∗) + · · ·+ (xn − ∗) : n ∈ N, xi ∈ ω} ⊂ A(ωF)

and:

F = {x1x2 . . . xn = x1 ∗−1 x2 ∗−1 . . . xn∗−1 : n ∈ N, xi ∈ ω, x1 < x2 < · · · < xn} ⊂ F (ωF).

The topologies induced onA and F byA(ωF) and F (ωF) are easy to describe; the restrictions of base
neighborhoods of the zero (identity) element to these sets are determined by sequences of open covers of
ωF (i.e., of neighborhoods of the non-isolated point ∗) in the same manner as in Description II (see [22]).
A straightforward verification shows that A, B and B(ωF) are homeomorphic. The rigorous proof of
this fact is rather tedious, and we omit it.

As mentioned in the Introduction, for any filter F , the free Boolean group on ωF is simply [ω]<ω.
Any topology on [ω]<ω (as well as on any other set) is a partially ordered (by inclusion) family of subsets.
Partial orderings of subsets of [ω]<ω have been extensively studied in forcing, and countable Boolean
topological groups turn out to be closely related to them. In this section, we shall try to give an intuitive
explanation of this relationship. The basic definitions and facts related to forcing can be found in Jech’s
book [64].

By a notion of forcing, we mean a partially ordered set (briefly, poset) (P,≤). Elements of a notion
of forcing are called conditions; given two conditions p, q ∈ P, we say that p is stronger than q if
p ≤ q. A partially ordered set (P,≤) is separative if, whenever p 6≤ q, there exists an r ≤ p which
is incompatible with q. Thus, any topology is a generally non-separative notion of forcing, and the
family of all regular open sets in a topology is a separative notion of forcing. Any separative forcing
notion (P,≤) is isomorphic to a dense subset of a complete Boolean algebra. Indeed, consider the set
P ↓ p = {q : q ≤ p} for each p ∈ P. The family {X ⊂ P : (P ↓ p) ⊂ X for every p ∈ X} generates
a topology on P. The complete Boolean algebra mentioned above is the algebra RO(P) of regular open
sets in this topology.

Two notions of forcing P and Q are said to be forcing equivalent if the algebras RO(P) and RO(Q)

are isomorphic or, equivalently, if P can be densely embedded in Q and vice versa (which means that P
and Q give the same generic extensions).

Roughly speaking, given a countable transitive model M of set theory, the method of forcing extends
M by adding a so-called generic subset (called also a generic filter) G of P not belonging to M; the
extended model, called a generic extension of M, contains

⋃
G, which has certain desired properties

ensured by the choice of P and G.
In the context of free Boolean groups on filters, most interesting are two well-known notions of

forcing, Mathias forcing and Laver forcing relativized to (usual) filters on ω.
In Mathias forcing relative to a filter F , the forcing poset, denoted M(F), is formed by pairs (s, A)

consisting of a finite set s ⊂ ω and an (infinite) set A ∈ F such that every element of s is less than every
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element of A in the ordering of ω. A condition (t, B) is stronger than (s, A) ((t, B) ≤ (s, A)) if s @ t,
B ⊂ A and t \ s ⊂ A.

The poset in Laver forcing consists of subsets of the set ω<ω of ordered finite sequences in ω.
However, it is more convenient for our purposes to consider its modification consisting of subsets of
[ω]<ω. Thus, we restrict the Laver forcing poset to the set ω↑<ω of strictly increasing finite sequences
in ω (this restricted poset is forcing equivalent to the original one) and note that the latter is naturally
identified with [ω]<ω. Below, we give the definition of the corresponding modification of Laver forcing.

The definition of Laver forcing uses the notion of a Laver tree. A Laver tree is a set p of finite subsets
of ω such that:

(i) p is a tree (i.e., if t ∈ p, then p contains any initial segment of t),
(ii) p has a stem, i.e., a maximal node s(p) ∈ p, such that s(p) @ t or t @ s(p) for all t ∈ p and

(iii) if t ∈ p and s(p) @ t, then the set succ(t) = {n ∈ ω : n > max t, t ∪ {n} ∈ p} is infinite.

In Laver forcing relative to F , the poset, denoted L(F), is the set of Laver trees p such that succ(t) ∈
F for any t ∈ p with s(p) @ t, ordered by inclusion.

The Mathias and Laver forcings M(F) and L(F) have the special feature that they diagonalize the
filter F (i.e., add its pseudo-intersection). They determine two natural topologies on [ω]<ω: the Mathias
topology τM generated by the base:

{[s, A] : s ∈ [ω]<ω, A ∈ F}, where [s, A] = {t ∈ [ω]<ω : s @ t, t \ s ⊂ A},

and the Laver topology τL generated by all sets U ⊂ [ω]<ω such that:

t ∈ U =⇒ {n > max t : t ∪ {n} ∈ U} ∈ F .

It is easy to see that the Mathias topology is nothing but the topology of the free Boolean linear
topological group on ωF (recall that linear groups are those with topology generated by subgroups): a
base of neighborhoods of zero is formed by the sets [∅, A] withA ∈ F , that is, by all subgroups generated
by elements of F .

The neighborhoods of zero in the Laver topology are not so easy to describe explicitly; their recursive
definition immediately follows from that given above for general open sets (the only condition that must
be added is ∅ ∈ U ). Thus, U is an open neighborhood of zero if, first, ∅ ∈ U ; by definition, U must also
contain all n ∈ A(∅) for some A(∅) ∈ F (moreover, U may contain no other elements of size one); for
each of these n, there must exist an A(n) ∈ F such that A(n) ∩ {0, 1, . . . , n} = ∅ and U contains all
{n,m} with m ∈ A(n) (moreover, U may contain no other element of size two); for any such {n,m}
(m > n), there must exist an A({n,m}) ∈ F such that A({n,m}) ∩ {0, 1, . . . ,m} = ∅ and U contains
all {n,m, l} with l ∈ A({n,m}), and so on. Thus, each neighborhood of zero is determined by a family
{A(s) : s ∈ [ω]<ω} of elements of F . Clearly, the topology τL is invariant with respect to translation
by elements of [ω]<ω; upon a little reflection, it becomes clear that τL is the maximal invariant topology
on [ω]<ω in which the filter F converges to zero. (An invariant topology is a topology with respect to
which the group operation is separately continuous; groups with an invariant topology are said to be
semi-topological. The convergence of F to zero means that τL induces the initially given topology on
ωF .) Since the free group topology is invariant as well, it is weaker than τL.
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The Mathias topology is, so to speak, the uniform version of the Laver topology: a neighborhood
of zero in the Laver topology determined by a family {A(s) ∈ F : s ∈ [ω]<ω} is open in the Mathias
topology if and only if there exists a single A ∈ F such that A(s) = A \ {0, 1, . . . ,max s} for each
s. (In [65], the corresponding relationship between Mathias and Laver forcings was discussed from a
purely set-theoretic point of view.) Hence, τM ⊂ τL.

The topology of the free Boolean topological group on ωF occupies an intermediate position between
the Mathias and the Laver topology: it is not so uniform as the former, but more uniform than the latter.
A neighborhood of zero is determined not by a single element of the filter (like in the Mathias topology),
but by a family of elements of F assigned to s ∈ [ω]<ω (like in the Laver topology), but these elements
depend only on the lengths of s.

The following theorem shows that the Laver topology is a group topology only for special filters.
This theorem was proven in 2007 by Egbert Thümmel, who kindly communicated it, together with a
complete proof, to the author. The symbols τfree and τindlim in its statement denote the topology of the
free topological group B(ωF) and the inductive limit topology of B(ωF), respectively.

Theorem 18 (Thümmel, 2007 [66]). For any filter on ω, the following conditions are equivalent:

(i) F is Ramsey;
(ii) τM = τfree = τindlim = τL;

(iii) τL is a group topology;
(iv) for any sequence of Ai ∈ F , i ∈ ω, the set U = {∅} ∪

⋃
i∈ω[i, Ai] is open in τfree.

This theorem is particularly interesting because its original (Thümmel’s) proof uses an argument that
is simple and still quite typical of the method of forcing. The proof given below only slightly differs
from Thümmel’s and uses this argument, as well.

Proof. First, note that τM ⊂ τfree ⊂ τindlim ⊂ τL. Indeed, the first two inclusions are obvious, and the
third one follows from Proposition 3 (or from the inclusion τfree ⊂ τL noted above) and the observation
that τL is the inductive limit of its restrictions to Bn(ωF).

Thus, to prove the implication (i)⇒ (ii), it suffices to show that τM = τL for any Ramsey filter. Let U
be a neighborhood of ∅ in τL. For each i ∈ ω, we set:

Ai =
⋂{
{n > max s : s ∪ {n} ∈ U} : s ∈ U, max s ≤ i

}
.

Since the number of s ∈ [ω]<ω with max s ≤ i is finite, it follows that Ai ∈ F . Take a diagonal
D ∈ F for the family {Ai : i ∈ ω}. We can assume that D ⊂ A0. Clearly, [∅, D] ⊂ U , whence U ∈ τM .

The implication (ii)⇒ (iii) is trivial.
Let us prove (iii)⇒ (iv). Note that it follows from (iii) that τfree = τL, because τfree ⊂ τL and τfree is

the strongest group topology inducing the initially given topology on ωF . It remains to note that any set
of the form {∅} ∪

⋃
i∈ω[i, Ai], where Ai ∈ F , is open in τL.

We proceed to the last implication (iv)⇒ (i). Take any family {Ai : i ∈ ω} ⊂ F and consider the set
U defined as in (iv). Since this is an open neighborhood of zero in the group topology τfree, there exists
an open neighborhood V of zero (in τfree) such that V + V ⊂ U . The set D = {i ∈ ω : i ∈ V } belongs
to F (because τfree induces the initially given topology on ωF) and is a diagonal of {Ai : i ∈ ω}.
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This theorem is worth comparing to Judah and Shelah’s proof that if F is a Ramsey ultrafilter, then
M(F) is forcing equivalent to L(F) ([67], Theorem 1.20 (i)).

Thümmel also obtained the following remarkable result as a simple corollary of Theorem 18.

Theorem 19 (Thümmel, 2007 [66]). Given a filter F on ω, the group B(ωF) is extremally disconnected
if and only if F is a Ramsey ultrafilter.

Proof. The proof of the if part is essentially contained in Sirota’s construction of a (consistent) example
of an extremally disconnected group [56]. The proof of the only if part is based on the equivalence
(iv) ⇔ (i) of Theorem 18: for any family {Ai : i ∈ ω} ⊂ F , the set

⋃
i∈ω[i, Ai] is open even in the

Mathias topology, and its closure in τfree, which must be open by virtue of extremal disconnectedness,
is {∅} ∪

⋃
i∈ω[i, Ai]. The assertion (iv) ⇔ (i) implies that F is a Ramsey filter. It remains to apply

Theorem 13 and recall that ωF is extremally disconnected if and only if F is an ultrafilter.

Thümmel has never published these results, and Theorem 19 was rediscovered by Zelenyuk, who
included it, among other impressive results, in his book [59] (see Theorem 5.1 in [59]).

Combining Theorem 19 with Corollary 15, we obtain yet another corollary.

Corollary 20. The free Boolean group on a non-discrete countable space X is extremally disconnected
if and only if X is an almost discrete space associated with a Ramsey ultrafilter.

Free Boolean topological and free Boolean linear (that is, Mathias) topological groups on spaces
associated with filters, as well as Boolean groups with other topologies determined by filters, are the main
tool in the study of topological groups with extreme topological properties (see [59] and the references
therein). However, free Boolean (linear) topological groups on filters arise also in more “conservative”
domains. We conclude with mentioning an instance of this kind.

The most elegant (in the author’s opinion) example of a countable non-metrizable Fréchet–Urysohn
group was constructed by Nyikos in [68] under the relatively mild assumption p = b (Hrušák and
Ramos-García have recently proven that such an example cannot be constructed in ZFC [69]).

It is clear from general considerations that test spaces most convenient for studying convergence
properties that can be defined pointwise (such as the Fréchet–Urysohn property and the related
αi-properties) are countable almost discrete spaces (that is, spaces of the form ωF ), and the most
convenient test groups for studying such properties in topological groups are those generated by such
spaces, simplest among which are free Boolean linear topological groups. Thus, it is quite natural that
Nyikos’ example is Blin(ωF) for a very cleverly constructed filter F . In fact, he constructed it on ω × ω
(which does not make any difference, of course) as the set of neighborhoods of the only non-isolated
point in a Ψ-like space defined by using graphs of functions ω → ω from a special family. In the same
paper, Nyikos proved many interesting convergence properties of groups Blin(ωF) for arbitrary filters
F on ω. We do not give any more details here: the interested reader will gain much more benefit and
pleasure from reading Nyikos’ original paper.
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6. A Few Open Problems

Free Boolean topological groups have not yet been extensively studied, and related unsolved problems
are numerous. Some of the problems most interesting to the author are suggested below.

Problem 1. Describe those spaces X whose finite powers are embedded in the free Boolean topological
groups B(X). Is it true that if F is a free ultrafilter on ω, then ωF × ωF cannot be embedded in B(ωF)?

The following problem is open not only for free Boolean topological groups, but also for free and free
Abelian ones.

Problem 2. Describe those spaces X for which B(X) (F (X), A(X)) is normal.

Of course, if F (X) or A(X) is normal, then so are all finite powers of X , because they are embedded
in F (X) and A(X) as closed subspaces. However, in the Boolean case, even this has not been proven.

Problem 3. Does there exist a space X such that B(X) is normal, but X2 is not?

Similarly, for Boolean groups, the following problem becomes nontrivial.

Problem 4. Describe spaces X for which B(X) is Lindelöf. Does there exist a space X such that B(X)

is Lindelöf, but X2 is not?

Problem 5. Does there exist a space X for which B(X) is normal (Lindelöf, ccc), but F (X) or A(X)

is not?

Problem 6. Is it true that B(X) is Weil complete for any Dieudonné complete space X?

A positive answer to this question in the case where X is a product of metrizable spaces would imply
a positive answer in the general case. Indeed, any Dieudonné complete space X can be embedded
in a product P of metric spaces as a closed subspace in such a way that every bounded continuous
pseudometric on X can be extended to P . Therefore, by Theorem 4, B(X) is a subgroup of B(P ); it is
easy to see that B(X) is closed in B(P ), and hence, B(X) is Weil complete if so is B(P ). For free and
free Abelian topological groups, Problem 6 has been completely solved: Tkachenko proved that if X
is Dieudonné complete, then A(X) is Weil complete [28]; Uspenskii proved the Weil completeness of
F (X) in the case where X is a product of metrizable spaces [29]; and the author extended Uspenskii’s
result to arbitrary Dieudonné complete spaces [27].

The following problem has been solved only for free Abelian topological groups [70].

Problem 7. Is it true that the free (Boolean) topological group of any stratifiable space is stratifiable?

The following two problems have been extensively studied and proven very difficult for free and
free Abelian topological groups. Results related to the inductive limit topology were mentioned
in Section 3.1, and results related to the natural multiplication maps being quotient can be found,
e.g., in [25,34,71–73].
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Problem 8. Describe spaces X for which B(X) has the inductive limit topology.

Problem 9. Describe spaces X for which all (or some) of the natural addition maps in : X ∪ X−1 →
B(X) defined by (xε11 , x

ε2
2 , . . . , x

εn
n ) 7→ x1 + x2 + · · · + xn for n ∈ N, xi ∈ X and εi = ±1 (i ≤ n)

are quotient.

We conclude this short list of problems with a problem closely related to extremally disconnected
groups.

Problem 10. Does there exist a (countable) non-discrete Boolean topological group in which all linearly
independent sets are closed and discrete?

Acknowledgments

The author is very grateful to Evgenii Reznichenko for useful discussions and to the referees for their
detailed and highly valuable comments.

This work was financially supported by the Russian Foundation for Basic Research (Project
No. 15-01-05369).

Conflicts of Interest

The author declares no conflict of interest.

References and Notes

1. Markov, A.A. On free topological groups. Dokl. Akad. Nauk SSSR 1941, 31, 299–301.
2. Markov, A.A. On free topological groups. Am. Math. Soc. Transl. 1950, 30, 11–88.
3. Graev, M.I. Free topological groups. Am. Math. Soc. Transl. 1962, 8, 305–364.
4. Graev, M.I. The theory of topological groups I. Uspekhi Mat. Nauk 1950, 5, 3–56.
5. Nakayama, T. Note on free topological groups. Proc. Imp. Acad. Tokyo 1953, 19, 471–475.
6. Kakutani, S. Free topological groups and infinite direct product of topological groups. Proc. Imp.

Acad. Tokyo 1944, 20, 595–598.
7. Mal’tsev, A.I. Free topological algebras. Am. Math. Soc. Transl. Ser. II 1961, 17, 173–200.
8. Morris, S.A. Varieties of topological groups. Bull. Aust. Math. Soc. 1969, 1, 145–160.
9. Morris, S.A. Varieties of topological groups II. Bull. Aust. Math. Soc. 1970, 2, 1–13.

10. Morris, S.A. Varieties of topological groups III. Bull. Aust. Math. Soc. 1970, 2, 165–178.
11. Morris, S.A. Varieties of topological groups: A survey. Colloq. Math. 1982, 46, 147–165.
12. Higman, G. Unrestricted free products, and varieties of topological groups. J. London Math. Soc.

1952, 27, 73–81.
13. Porst, H.E. On the existence and structure of free topological groups. In Category Theory at Work;

Herrlich, H., Porst, H.E., Eds.; Heldermann: Berlin, Germany, 1991; pp. 165–176.
14. Comfort, W.W.; van Mill, J. On the existence of free topological groups. Topol. Appl. 1988, 29,

245–265.



Axioms 2015, 4 515

15. Kopperman, R.D.; Mislove, M.W.; Morris, S.A.; Nickolas, P.; Pestov, V.; Svetlichny, S. Limit laws
for wide varieties of topological groups. Houston J. Math. 1996, 22, 307–328.

16. Dikranjan, D.; Tkachenko, M. Varieties generated by countably compact Abelian groups. Proc.
Am. Math. Soc. 2002, 130, 2487–2496.

17. Arhangel’skii, A.; Tkachenko, M. Topological Groups and Related Structures; Atlantis/World Sci.:
Amsterdam, The Netherlands, 2008.

18. Hart K.P.; van Mill, J. A separable normal topological group which is not Lindelöf. Topol. Appl.
1985, 20, 279–287.

19. Genze, L.V. Free Boolean topological groups. Vestn. Tomsk. Gos. Univ. 2006, 290, 11–13.
20. Genze, L.V.; Gul’ko, S.P.; Khmyleva, T.E. Classification of the free Boolean topological groups on

ordinals. Vestn. Tomsk. Gos. Univ. Mat. Mekh. 2008, 1, 23–31.
21. Genze, L.V.; Gul’ko, S.P.; Khmyleva, T.E. Classification of continuous n-valued function spaces

and free periodic topological groups for ordinals. Topol. Proc. 2011, 38, 1–15.
22. Sipacheva, O.V. The topology of free topological groups. J. Math. Sci. 2005, 131, 5765–5838.
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