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Abstract: In order to obtain the conditions for the existence of periodic and almost
periodic solutions of Volterra difference equations, x(n+1) = f(n, x(n))+

∑n
s=−∞ F (n, s,

x(n+ s), x(n)), we consider certain stability properties, which are referred to as
(K, ρ)-weakly uniformly-asymptotic stability and (K, ρ)-uniformly asymptotic stability.
Moreover, we discuss the relationship between the ρ-separation condition and the
uniformly-asymptotic stability property in the ρ sense.
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1. Introduction

For ordinary and functional differential equations, the existence of almost periodic solutions of almost
periodic systems has been studied by many authors. One of the most popular methods is to assume
certain stability properties [1–8]. Song and Tian [9] showed the existence of periodic and almost
periodic solutions for nonlinear Volterra difference equations by means of the (K, ρ)-stability condition.
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Their results were extended to discrete Volterra equations by Hamaya [3]. For the existence theorem of
almost periodic solutions in ordinary differential equations, Sell [10] introduced a new stability concept
referred to as the weakly uniformly-asymptotic stability. This stability property is weaker than the
uniformly-asymptotic stability (cf. [8]). The existence of almost periodic solutions of ordinary difference
equation by using globally quasi-uniformly asymptotic stability has been recently studied [11].

In this paper, we discuss the relationship between weakly uniformly-asymptotic stability and
uniformly-asymptotic stability of periodic and almost periodic Volterra difference equations. We also
show that for periodic Volterra difference equations, (K, ρ)-weakly uniformly-asymptotic stability
and (K, ρ)-uniformly-asymptotic stability are equivalent. Moreover, we obtain the conditions for the
existence of almost periodic solutions of Volterra difference equations by using this (K, ρ)-weakly
uniformly-asymptotically-stable in the hull. The relationship between our weakly uniformly-asymptotic
stability and globally quasi-uniformly-asymptotic stability described in [11] is very complicated;
however, the definition of our stability is clearer and simpler than that in [11]. In the next section, as
an application, we show the existence of almost periodic solutions for a Ricker-type Volterra difference
equation with infinite delay by using the technique of an invariant set and luxury Lyapunov functionals.
For the finite delay case, Xu [12] showed sufficient conditions for determining the invariant and attracting
sets and the globally uniformly-asymptotic stability of Volterra difference equations, as well as providing
useful examples to illustrate the results obtained above. Finally, we consider the relationship between
the ρ-separation condition and (K, ρ)-uniformly-asymptotic stability property. It can be seen that the
results of our theorem hold for the integrodifferential equations described in [3–5].

Let Rm denote Euclidean m-space; Z is the set of integers; Z+ is the set of nonnegative integers; and
| · | will denote the Euclidean norm in Rm. For any interval I ⊂ Z, we denote by BS(I) the set of all
bounded functions mapping I into Rm and set |φ|I = sup{|φ(s)| : s ∈ I}.

Now, for any function x : (−∞, a) → Rm and n < a, define a function xn : Z− = {s|s ∈ Z,
−∞ < s ≤ 0} → Rm by xn(s) = x(n + s) for s ∈ Z−. Let BS be a real linear space of functions
mapping Z− into Rm with sup-norm:

BS = {φ| φ : Z− → Rm with |φ| = sup
s∈Z−
|φ(s)| <∞}

We introduce an almost periodic function f(n, x) : Z ×D → Rm, where D is an open set in Rm.

Definition 1. f(n, x) is said to be almost periodic in n uniformly for x ∈ D, if for any ε > 0 and any
compact set K in D, there exists a positive integer L∗(ε,K), such that any interval of length L∗(ε,K)

contains an integer τ for which:

|f(n+ τ, x)− f(n, x)| ≤ ε

for all n ∈ Z and all x ∈ K. Such a number τ in the above inequality is called an ε-translation number
of f(n, x).

In order to formulate a property of almost periodic functions (this is equivalent to Definition 1), we
discuss the concept of the normality of almost periodic functions. Namely, let f(n, x) be almost periodic



Axioms 2015, 4 347

in n uniformly for x ∈ D. Then, for any sequence {h′k} ⊂ Z, there exist a subsequence {hk} of {h′k}
and a function g(n, x), such that:

f(n+ hk, x)→ g(n, x) (1)

uniformly on Z×K as k →∞, whereK is a compact set inD. There are many properties of the discrete
almost periodic functions [13], which are corresponding properties of the continuous almost periodic
functions f(t, x) ∈ C(R ×D,Rm) [2,8]. We shall denote by T (f) the function space consisting of all
translates of f , that is fτ ∈ T (f), where:

fτ (n, x) = f(n+ τ, x), τ ∈ Z (2)

Let H(f) denote the uniform closure of T (f) in the sense of (2). H(f) is called the hull of f. In
particular, we denote by Ω(f) the set of all limit functions g ∈ H(f), such that for some sequence {nk},
nk → ∞ as k → ∞ and f(n + nk, x) → g(n, x) uniformly on Z ×S for any compact subset S in Rm.
By (1), if f : Z ×D → Rm is almost periodic in n uniformly for x ∈ D, so is a function in Ω(f). The
following concept of asymptotic almost periodicity was introduced by Frechet in the case of continuous
functions (cf. [2,8]).

Definition 2. u(n) is said to be asymptotically almost periodic if it is a sum of an almost periodic
function p(n) and a function q(n) defined on I∗ = [a,∞) ⊂ Z+ = {l ∈ Z| 0 ≤ l < +∞}, which tends
to zero as n→∞, that is,

u(n) = p(n) + q(n)

u(n) is asymptotically almost periodic if and only if for any sequence {nk}, such that nk → ∞ as
k →∞, there exists a subsequence {nkj} for which u(n+ nkj) converges uniformly on a ≤ n <∞.

2. Preliminaries

We consider a system of Volterra difference equations:

x(n+ 1) = f(n, x(n)) +
0∑

s=−∞

F (n, s, x(n+ s), x(n)) (3)

where f : Z ×Rm → Rm is continuous in the second variable x ∈ Rm and F : Z × Z− ×Rm × Rm is
continuous for x ∈ Rm and y ∈ Rm.

We impose the following assumptions on Equation (3):
(H1) f(n, x) and F (n, s, x, y) are ω-periodic functions, such that there is an ω > 0, such that f(n +

ω, x) = f(n, x) for all n ∈ Z, x ∈ Rm and F (n + ω, s, x, y) = F (n, s, x, y) for all n ∈ Z, s ∈ Z−,
x ∈ Rm and y ∈ Rm.

(H2) f(n, x) is almost periodic in n uniformly for x ∈ Rm, and F (n, s, x, y) is almost periodic in
n uniformly for (s, x, y) ∈ K∗, that is for any ε > 0 and any compact set K∗, there exists an integer
L∗ = L∗(ε,K) > 0, such that any interval of length L∗ contains a τ for which:
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|F (n+ τ, s, x, y)− F (n, s, x, y)| ≤ ε

for all n ∈ Z and all (s, x, y) ∈ K∗.
(H3) For any ε > 0 and any r > 0, there exists an S = S(ε, r) > 0, such that:

−S∑
s=−∞

|F (n, s, x(n+ s), x(n))| ≤ ε

for all n ∈ Z, whenever |x(σ)| ≤ r for all σ ≤ n.
(H4) Equation (3) has a bounded unique solution u(n) defined on Z+, which passes through (0, u0),

that is supn≥0 |u(n)| <∞ and u0 ∈ BS.
Now, we introduce ρ-stability properties with respect to the compact set K.
Let K be the compact set in Rm, such that u(n) ∈ K for all n ∈ Z, where u(n) = φ0(n) for n ≤ 0.

For any θ, ψ ∈ BS, we set:

ρ(θ, ψ) =
∞∑
j=1

ρj(θ, ψ)/[2j(1 + ρj(θ, ψ))]

where:

ρj(θ, ψ) = sup
−j≤s≤0

|θ(s)− ψ(s)|

Clearly, ρ(θn, θ)→ 0 as n→∞ if and only if θn(s)→ θ(s) uniformly on any compact subset of Z−

as n→∞.
We denote by (BS, ρ) the space of bounded functions φ : Z−→ Rm with ρ.
In what follows, we need the following 10 definitions of stability.

Definition 3. The bounded solution u(n) of Equation (3) is said to be:

(i) (K, ρ)-uniformly stable (in short, (K, ρ)-US) if for any ε > 0, there exists a δ(ε) > 0, such that if
n0 ≥ 0, ρ(xn0 , un0) < δ(ε), then ρ(xn, un) < ε for all n ≥ n0, where x(n) is a solution of (3) through
(n0, φ), such that xn0(s) = φ(s) ∈ K for all s ≤ 0. In the case above where δ(ε) depends on the initial
time n0 ≥ 0, this only gives the definition of the (K, ρ)-stable of u(n) (in short, (K, ρ)-S).

(ii) (K, ρ)-equi-asymptotically stable (in short, (K, ρ)-EAS) if it is (K, ρ)-S and for any ε > 0, there
exists a δ0(n0) > 0 and a T (n0, ε) > 0, such that if n0 ≥ 0, ρ(xn0 , un0) < δ0(n0), then ρ(xn, un) < ε for
all n ≥ n0 + T (n0, ε), where x(n) is a solution of (3) through (n0, φ), such that xn0(s) = φ(s) ∈ K for
all s ≤ 0.

(iii) (K, ρ)-weakly uniformly-asymptotically stable (in short, (K, ρ)-WUAS) if it is (K, ρ)-US and
there exists a δ0 > 0, such that if n0 ≥ 0, ρ(xn0 , un0) < δ0, then ρ(xn, un) → 0 as n → ∞, where x(n)

is a solution of (3) through (n0, φ), such that xn0(s) = φ(s) ∈ K for all s ≤ 0.
(iv) (K, ρ)-uniformly-asymptotically stable (in short, (K, ρ)-UAS) if it is (K, ρ)-US and is (K,

ρ)-quasi-uniformly-asymptotically stable, that is, if the δ0 and the T in the above (iii) are independent
of n0: for any ε > 0 there exists a δ0 > 0 and a T (ε) > 0, such that if n0 ≥ 0, ρ(xn0 , un0) < δ0,
then ρ(xn, un) < ε for all n ≥ n0 + T (ε), where x(n) is a solution of (3) through (n0, φ), such that
xn0(s) = φ(s) ∈ K for all s ≤ 0.
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(v) (K, ρ)-globally equi-asymptotically-stable (in short, (K, ρ)-GEAS) if it is (K, ρ)-S and for any
ε > 0 and any α > 0, there exists a T (n0, ε, α) > 0, such that if n0 ≥ 0, ρ(xn0 , un0) < α, then
ρ(xn, un) < ε for all n ≥ n0 + T (n0, ε, α), where x(n) is a solution of (3) through (n0, φ), such that
xn0(s) = φ(s) ∈ K for all s ≤ 0.

(vi) (K, ρ)-globally weakly uniformly-asymptotically stable (in short, (K, ρ)-GWUAS) if it is (K,
ρ)-US and ρ(xn, un)→ 0 as n→∞, where x(n) is a solution of (3) through (n0, φ), such that xn0(s) =

φ(s) ∈ K for all s ≤ 0.
(vii) (K, ρ)-globally uniformly-asymptotically stable (in short, (K, ρ)-GUAS) if it is (K, ρ)-US and is

(K, ρ)-globally quasi-uniformly-asymptotically stable, that is, if the T in the above (vi) are independent
of n0: for any ε > 0 and α > 0, there exists a T (ε, α) > 0, such that if n0 ≥ 0, ρ(xn0 , un0) < α,
then ρ(xn, un) < ε for all n ≥ n0 + T (ε, α), where x(n) is a solution of (3) through (n0, φ), such that
xn0(s) = φ(s) ∈ K for all s ≤ 0.

(viii) (K, ρ)-totally stable (in short, (K, ρ)-TS) if for any ε > 0, there exists a δ(ε) > 0 and such that
if n0 ≥ 0, ρ(xn0 , un0) < δ(ε) and h ∈ BS([n0,∞)), which satisfies |h|[n0,∞) < δ(ε), then ρ(xn, un) < ε

for all n ≥ n0, where x(n) is a solution of:

x(n+ 1) = f(n, x(n)) +
0∑

s=−∞

F (n, s, x(n+ s), x(n)) + h(n)

through (n0, φ), such that xn0(s) = φ(s) ∈ K for all s ≤ 0. In the case where h(n) ≡ 0, this gives the
definition of the (K, ρ)-US of u(n).

(ix) (K, ρ)-attracting in Ω(f, F ) (cf. [12], in short, (K, ρ)-A in Ω(f, F )), if there exists a δ0 > 0, such
that if n0 ≥ 0 and any (v, g,G) ∈ Ω(u, f, F ), ρ(xn0 , vn0) < δ0, then ρ(xn, vn) → 0 as n → ∞, where
x(n) is a solution of:

x(n+ 1) = g(n, x(n)) +
0∑

s=−∞

G(n, s, x(n+ s), x(n)) (4)

through (n0, ψ), such that xn0(s) = ψ(s) ∈ K for all s ≤ 0.
(x) (K, ρ)-weakly uniformly-asymptotically stable in Ω(f, F ) (in short, (K, ρ)-WUAS in Ω(f, F )), if

it is (K, ρ)-US in Ω(f, F ), that is if for any ε > 0, there exists a δ(ε) > 0, such that if n0 ≥ 0 and any
(v, g,G) ∈ Ω(u, f, F ), ρ(xn0 , vn0) < δ(ε), then ρ(xn, vn) < ε for all n ≥ n0, where x(n) is a solution of
(4) through (n0, ψ), such that xn0(s) = ψ(s) ∈ K for all s ≤ 0 and (K, ρ)-A in Ω(f, F ).

When we restrict the solutions x to the ones in K, i.e., x(n) ∈ K for all n ≥ n0, then we can say
that u(n) is (K, ρ)-relatively weakly uniformly-asymptotically stable in Ω(f, F ) (i.e., (K, ρ)-RWUAS
in Ω(f, F ), and so on). For (iii) and (iv) in Definition 3, (K, ρ)-WUAS is weaker than (K, ρ)-UAS, as
shown in Example 3.1 in [8].

3. Stability of Bounded Solutions in Periodic and Almost Periodic Systems

Theorem 1. Under the Assumptions (H3) and (H4), if the bounded solution u(n) of Equation (3) is
(K, ρ)-WUAS, then it is (K, ρ)-EAS.
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Proof. Since solution u(n) of Equation (3) is (K, ρ)-US, u(n) is (K, ρ)-S. Suppose that there is no
such T in (ii) of Definition 3. Then, there exist some ε > 0, n0 ≥ 0 and sequences {xk}, {nk}, such that
ρ(un0 , x

k
n0

) ≤ δ0, nk →∞ as k →∞ and:

ρ(unk
, xknk

) ≥ ε (5)

where xk(n) is a solution of Equation (3) through (n0, x
k
n0

). On any interval [n0, n0 + l], l ∈ Z+,
the sequence {xk(n)} is uniformly bounded, since xkn0

(s) → xn0(s) uniformly on any compact set in
{s ∈ Z−| − ∞ < s ≤ n0} as k → ∞ if necessary taking a subsequence of {xk}, and hence, we can
find a solution x(n) through (n0, xn0) of (3) defined for all n ≥ n0 by Assumptions (H3) and (H4),
where ρ(xn0 , un0) ≤ δ0. Moreover, there exists a subsequence of {xk(n)}, such that {xkj(n)} tends to
x(n) as j →∞ through (n0, xn0) uniformly on any compact interval. Since, for every solution {x(n)},
ρ(un, xn)→ 0 as n→∞, we have at some n1 ≥ n0:

ρ(un1 , xn1) <
1

2
δ(ε) (6)

where δ(ε) is the one for (K, ρ)-US in (i) of Definition 3. Denoting by {xk(n)} through (n0, x
k
n0

) the
subsequence again, if k is sufficiently large, we have:

ρ(xkn1
, xn1) <

1

2
δ(ε) (7)

From (7) and (6), it follows that ρ(un1 , x
k
n1

) < δ(ε). Therefore, by the (K, ρ)-US of u(n), we have:

ρ(xkn, un) < ε

for all n ≥ n1, which contradicts (5). This proves the theorem.
For the periodic system, we have the following theorem.

Theorem 2. Under Assumptions (H1), (H3) and (H4), if the bounded solution u(n) of Equation (3) is
(K, ρ)-WUAS, then it is (K, ρ)-UAS.

Proof. Since u(n) is (K, ρ)-US, there exists a δ∗0 > 0, such that n0 is a positive integer and
ρ(xn0 , un0) ≤ δ∗0 implies ρ(un, xn) < δ0

2
for all n ≥ n0, where δ0 is the one in (iii) of Definition 3.

Suppose that for this δ∗0 , solution u(n) is not (K, ρ)-UAS. Then, for some ε > 0, there exist sequences
{kj}, {xkj} and {τkj}, such that kj →∞, τkj →∞ as j →∞, where kj is a positive integer, and:

ρ(ukjω, x
kj
kjω

) <
δ0
2

(8)

and:

ρ(ukjω+τkj , x
kj
kjω+τkj

) ≥ ε (9)

where xkj(n) is a solution of (3) through (kjω, x
kj
kjω

). Clearly, by (H4), u(n) is a bounded solution of (3)
passing through (kjω, ukjω), and hence, there is a subsequence {mj} of {kj} and un0 , such thatmj →∞
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monotonically as j → ∞ and umjω → un0 as j → ∞. Then, there exists an integer p > 0, such that if
j ≥ p, we have ρ(umjω, un0) <

δ0
4

. Thus, for any j ≥ p, we have:

ρ(umjω, umpω) <
δ0
2

(10)

From (8) with kj = mj and (10), it follows that:

ρ(xmj
mjω

, umpω) < δ0

By Theorem 1, there exists a T (mpω,
ε
4
) > 0, such that:

ρ(xn, un) <
ε

4

for all n ≥ mpω + T (mpω,
ε
4
) and where x(n) is a solution of (3) through (mpω, umjω) and:

ρ(x̃n, un) <
ε

4

for all n ≥ mpω+T (mpω,
ε
4
) and where x̃(n) is a solution of (3) through (mpω, x

mj
mpω). This implies that:

ρ(x̃n, xn) <
ε

2
(11)

for all n ≥ mpω + T (mpω,
ε
4
). Since ω is the period and mj,mp are integers, it follows from (11) that

for any j ≥ p:

ρ(xn, un) < ρ(x̃n, xn) + ρ(x̃n, un) < ε

for all n ≥ mjω + T (mpω,
ε
4
). This contradicts (9), because T (mpω,

ε
4
) depends only on ε. This

completes the proof.
The following lemma is needed for the proofs of Theorems 3, 5 and 8.

Lemma 1. When (v, g,G) ∈ Ω(u, f, F ), v(n) is a solution defined on Z of:

x(n+ 1) = g(n, x(n)) +
0∑

s=−∞

G(n, s, x(n+ s), x(n))

and v(n) ∈ K for all n ∈ Z.

Proof. Since (v, g,G) ∈ Ω(u, f, F ), there exists a sequence {nk}, nk →∞ as k →∞, such that:

f(n+ nk, x)→ g(n, x)

uniformly on Z×K for any compact set K ⊂ Rm:

F (n+ nk, s, x, y)→ G(n, s, x, y)

uniformly on Z× Z∗ ×K ×K for any compact subset Z∗ in Z− and:

u(n+ nk)→ v(n)
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uniformly on any compact subset in Z as k → ∞. Set uk(n) = u(n + nk). Then, uk(n) is a solution
defined for n ≥ −nk of:

x(n+ 1) = f(n+ nk, x(n)) +
0∑

s=−∞

F (n+ nk, s, x(n+ s), x(n)) (12)

through (0, uknk
), uknk

(s) ∈ K, s ≤ 0. There exists an r > 0, such that |uk(n)| ≤ r and |v(n)| ≤ r

for all n ∈ Z, k ≥ 1. Then, by Assumption (H3), for this r and any ε > 0, there exists an integer
S = S(ε, r) > 0, such that:

−S∑
s=−∞

|F (n, s, uk(n+ s), uk(n))| ≤ ε and
−S∑

s=−∞

|G(n, s, v(n+ s), v(n))| ≤ ε

Then, we have:

|
0∑

s=−∞

F (n, s, uk(n+ s), uk(n))−
0∑

s=−∞

G(n, s, v(n+ s), v(n))|

≤
−S∑

s=−∞

|F (n, s, uk(n+ s), uk(n))|+
−S∑

s=−∞

|G(n, s, v(n+ s), v(n))|

+
0∑

s=−S

|F (n, s, uk(n+ s), uk(n))−G(n, s, v(n+ s), v(n))|

≤ 2ε+
0∑

s=−S

|F (n, s, uk(n+ s), uk(n))−G(n, s, v(n+ s), v(n))|

Since F (n, s, x, y) and G(n, s, x, y) are continuous for x, y and uk(s) converges to v(s) on discrete
interval {s ∈ Z−|, −S ≤ s ≤ 0} as k →∞, there exists an integer k0(ε) > 0, such that:

0∑
s=−S

|F (n, s, uk(n+ s), uk(n))−G(n, s, v(n+ s), v(n))| ≤ ε

when k ≥ k0(ε). Thus, we have:

0∑
s=−∞

F (n, s, uk(n+ s), uk(n))→
0∑

s=−∞

G(n, s, v(n+ s), v(n))

as k →∞, because uk(n)→ v(n) uniformly on any compact set in Z. Therefore, by letting k →∞ in
(12), v(n) is a solution of (4) on Z and G ∈ Ω(F ).

For the almost periodic System (3), we have the following theorem.

Theorem 3. Under the above Assumptions (H2), (H3) and (H4), if the zero solution u(n) ≡ 0 of
Equation (3) is (K, ρ)-WUAS, then it is (K, ρ)-UAS.

Proof. Since the zero solution is (K, ρ)-US, there exists a δ(δ0) > 0, such that ρ(xn0 , 0) ≤ δ(δ0)

implies ρ(xn, 0) < δ0 for all n ≥ n0 ≥ 0, where x(n) is a solution of (3) through (n0, xn0) and δ0 is the
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number given in (iii) of Definition 3. Let ε > 0 be given. We shall now show that there exists a number
T (ε) > 0, such that xn0(s) ∈ K, s ≤ 0, ρ(xn0 , 0) ≤ δ(δ0), and for any n0 ≥ 0, there exists an n1,
n0 ≤ n1 ≤ n0 + T (ε), such that ρ(xn1 , 0) < δ(ε), where δ(ε) is the one for the (K, ρ)-US of u(n) ≡ 0.
Then, clearly it will follow that ρ(xn, 0) < ε for n ≥ n0 + T (ε), which shows that the zero solution is
(K, ρ)-UAS.

Suppose that there is no T (ε). Then, for each integer k ≥ 1, there exist a function xknk
(s) ∈ K, s ≤ 0

and an nk ≥ 0, such that ρ(xknk
, 0) ≤ δ(δ0) and ρ(xkn, 0) ≥ δ(ε) for all nk ≤ n ≤ nk + k, where xk(n) is

a solution of (3) through (nk, x
k
nk

). Letting yk(n) = xk(n+ nk), yk(n) is a solution of:

x(n+ 1) = f(n+ nk, x(n)) +
0∑

s=−∞

F (n+ nk, s, x(n+ s), x(n))

through (0, xknk
), xknk

(s) ∈ K, s ≤ 0 and ρ(ykn, 0) ≤ δ(ε) on 0 ≤ n ≤ k. Since ρ(xknk
, 0) ≤ δ(δ0),

ρ(ykn, 0) ≤ δ0, f(n, x) is almost periodic in n uniformly for x ∈ Rm and F (n, s, x, y) is almost periodic
in n uniformly for (s, x, y) ∈ K∗ for any compact set K∗ ⊂ Z− × Rm × Rm, there exist an initial
function xn0 , functions g(n, x), G(n, s, x, y), z(n) and a subsequence {kj} of {k}, such that:

xkjnkj
(s)→ xn0(s)

uniformly on any compact interval in Z−,

f(n+ nkj , x)→ g(n, x)

uniformly on Z×K for any compact set:

K = {x ∈ Rm||x| ≤ δ0}

F (n+ nkj , s, x, y)→ G(n, s, x, y)

uniformly on any compact set on:

Z− ×K ×K

and:

ykj(n)→ z(n)

uniformly on any compact interval in Z+ as j →∞. By Lemma 1, z(n) is a solution of:

x(n+ 1) = g(n, x(n)) +
0∑

s=−∞

G(n, s, x(n+ s), x(n))

which is defined on n ∈ Z+, x0(s) ∈ K for s ≤ 0 and passes through (0, x0). For fixed n ≥ 0, there is a
j sufficiently large, so that:

ρ(ykjn , 0)− ρ(ykjn , zn) ≤ ρ(zn, 0)
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Since ρ(y
kj
n , 0) ≥ δ(ε) and ρ(y

kj
n , zn) < δ(ε)

2
for large j, we have:

ρ(zn, 0) >
δ(ε)

2
for all n ≥ 0 (13)

Moreover, clearly:

ρ(zn, 0) ≤ δ0 for all n ≥ 0 (14)

Since (g,G) is in Ω(f, F ), (f, F ) is in Ω(g,G) and, hence, there exists a sequence {τk}, such that
τk →∞ as k →∞ and g(n+τk, x)→ f(n, x) uniformly for n ∈ Z and x ∈ K andG(n+τk, s, x, y)→
F (n, s, x, y) uniformly for n ∈ Z and (s, x, y) ∈ K∗ as k →∞. If we set vk(n) = z(n+ τk), vk(n) is a
solution through (0, zτk) of:

x(n+ 1) = g(n+ τk, x(n)) +
0∑

s=−∞

G(n+ τk, s, x(n+ s), x(n))

Since ρ(zn, 0) ≤ δ0 for all n ≥ 0, {vk(n)} is uniformly bounded. Hence, there exists a subsequence
{τkj} of {τk}, such that:

g(n+ τkj , x)→ f(n, x)

uniformly for n ∈ Z and x ∈ K,

G(n+ τkj , s, x, y)→ F (n, s, x, y) :

uniformly for n ∈ Z, s ∈ Z−,

x ∈ Kandy ∈ K

and:

vkj(n)→ w(n)

on any compact interval in Z as j → ∞. Here, we can see that w(n) is a solution of (3), by Lemma 1.
For fixed n ≥ 0, there exists a j so large that:

ρ(wn, 0) ≥ ρ(vkjn , 0)− ρ(vkjn , wn) ≥ δ(ε)

2
− δ(ε)

4
=
δ(ε)

4
(15)

because τkj > 0 for j sufficiently large and ρ(v
kj
n , 0) = ρ(zn+τkj , 0) ≥ δ(ε)

2
by (13). Moreover, by (14),

we have ρ(w0, 0) ≤ δ0. However, this implies that ρ(wn, 0) → 0 as n → ∞; this contradicts (15). This
proves the theorem.

The following corollary can be proven by the same argument as in the proof of Theorem 1.

Corollary 1. Under Assumptions (H3) and (H4), if the bounded solution u(n) of Equation (3) is
(K, ρ)-GWUAS, then it is (K, ρ)-GEAS.

Theorem 4. Assume Conditions (H1), (H3) and (H4). If the solution u(n) of Equation (3) is
(K, ρ)-GWUAS, then the solution u(n) of Equation (3) is (K, ρ)-GUAS.
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Proof. Since we have a bounded solution u(n) of Equation (3) by (H4), let B > 0 be such that
|u(n)| ≤ B for all n ≥ 0 and |u0(s)| ≤ B for all s ≤ 0. Then, we can take ρ(un, 0) ≤ B/(1 +B) =: B∗

for all n ≥ 0 and ρ(us, 0) ≤ B∗ for all s ≤ 0 from the definition of ρ. Since |u(n)| ≤ B and u(n) is
(K, ρ)-GEAS by Corollary 1, we can show that the solution of (3) is (K, ρ)-equi-bounded. Therefore,
for any α > 0 and n0 ≥ 0, we can find a β(α) > 0, such that if n0 ≥ 0 and ρ(xn0 , un0) ≤ α, then
ρ(xn, un) < β(α) for all n ≥ n0.

By the assumption of (K, ρ)-GWUAS, u(n) is (K, ρ)-US, and hence, it is sufficient to show that for
any ε > 0 and α > 0, there exists a T (ε, α) > 0, such that if ρ(xn0 , un0) ≤ α, then:

ρ(xn, un) < ε for all n ≥ n0 + T (ε, α)

To do this, given α > 0, if 0 ≤ n0 < ω and ρ(xn0 , un0) ≤ 2B∗ + α, then:

ρ(xω, uω) < β(2B∗ + α)

By (K, ρ)-GEAS, there exists a T1(ω,
ε
2
, α) > 0, such that if ρ(xω, uω) < β(2B∗ + α), then

ρ(xn, un) < ε
2

for all n ≥ ω + T1(ω,
ε
2
, α).

Now, consider a solution x(n) of (3), such that ρ(xn0 , un0) ≤ α and kω ≤ n0 < (k + 1)ω, where
k = 0, 1, 2, · · · . Since System (3) is periodic in n of period ω by (H1), we have:

x(n) = x(n− kω), n ≥ n0 (16)

and xn0(s) = xn0−kω(s) ∈ K for all s ≤ 0. Moreover, u(n + kω) also is a solution of (3), such that
uk0(s) = ukω(s) ∈ K for all s ≤ 0, which we shall denote by v(n) = u(n + kω) := uk(n) through
(0, uk0). Then, we have:

ρ(vω, uω) ≤ 2B∗(< β(2B∗ + α))

and hence, we have:

ρ(vn, un) <
ε

2
for all n ≥ ω + T1(ω,

ε

2
, α) (17)

Since ρ(xn0 , un0) ≤ α and u(n0) = v(n0 − kω) through (0, ukn0
), it follows from (16) that:

ρ(xn0−kω, vn0−kω) ≤ α

which implies that ρ(xn0−kω, un0−kω) ≤ 2B∗ + α, because ρ(vn0−kω, un0−kω) ≤ 2B∗. Therefore, we
have:

ρ(xn−kω, un−kω) <
ε

2
(18)

for all n ≥ (k + 1)ω + T1(ω,
ε
2
, α) since 0 ≤ n0 − kω < ω. From (17), it follows that:

ρ(vn−kω, un−kω) <
ε

2
(19)

for all n ≥ (k + 1)ω + T1(ω,
ε
2
, α). Thus, by (18) and (19):

ρ(xn−kω, vn−kω) < ε
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for all n ≥ (k + 1)ω + T1(ω,
ε
2
, α), which implies that:

ρ(xn, un) < ε

for all n ≥ n0 + T (ε, α), where T (ε, α) = ω + T1(ω,
ε
2
, α), because n0 ≥ kω. Thus, we see that the

solution u(n) is (K, ρ)-UAS.
For the ordinary differential equation, it is well known that an example in ([8], pp. 81) is of a scalar

almost periodic equation, such that the zero solution is GWUAS, but is not GUAS.
We say that Equation (3) is regular, if the solutions of every limiting Equation (4) of (3) are unique

for the initial value problem.

Theorem 5. Under Assumptions (H2), (H3) and (H4), if Equation (3) is regular and the unique solution
u(n) of Equation (3) is (K, ρ)-RWUAS in Ω(f, F ), then the solution u(n) of Equation (3) is (K, ρ)-RTS.

Proof. Suppose that u(n) is not (K, ρ)-RTS. Then, there exists a small ε > 0, 0 < 1/k < ε < δ0,
where δ0 is the number for (K, ρ)-A in Ω(f, F ) of (ix) in Definition 3, and sequences {sk} ⊂ Z+,
{rk}, rk > 0, {hk} and {φk}, such that φk : (−∞, sk] → Rm and hk : [sk,+∞) → Rm are bounded
functions satisfying |hk(n)| < 1/k for n ≥ sk and:

ρ(usk , x
k
sk

) <
1

k
, ρ(un, x

k
n) < ε, n ∈ [sk, sk + rk − 1)

and ρ(usk+rk , x
k
sk+rk

) = ε, (20)

for sufficient large k, where xk(n) is a solution of:

x(n+ 1) = f(n, x(n)) +
0∑

s=−∞

F (n, s, x(n+ s), x(n)) + hk(n), n ≥ sk

passing through (sk, φ
k), such that xkn ∈ K̄ for all n ≥ sk and k ≥ 1, where

K̄ is the compact set, such that K̄ = N(ε0, K) for some ε0 > 0; here, N(ε0, K)

denotes the closure of the ε0 -neighborhood N(ε0, K) of K, and we let this K̄

denote K again. Since K is a compact set of Rm, it follows that for k ≥ 1,

{xk(sk + rk + n)} and {xk(sk + n)} are uniformly bounded for all sk and n ≥ −∞. We first consider
the case where {rk}k≥1, rk → ∞ as k → ∞. Taking a subsequence if necessary, we may assume from
(H2) and the properties of almost periodic functions in Ω(·) that there exists a (v, g,G) ∈ Ω(u, f, F ),
such that f(n + sk + rk, x) → g(n, x) uniformly on Z+ × K, F (n + sk + rk, s, x, y) → G(n, s, x, y)

uniformly on Z+×K∗, xk(n+ sk + rk)→ z(n) uniformly on Z+ and u(n+ sk + rk)→ v(n) uniformly
on Z+, as k →∞, where z, v : Z+ → Rm are some bounded functions. Since:

xk(n+ sk + rk + 1) = f(n+ sk + rk, x
k(n+ sk + rk))

+
0∑

s=−∞

F (n+ sk + rk, s, x
k(n+ sk + rk + s), xk(n+ sk + rk))

+ hk(n+ sk + rk)
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such that xk0(s) ∈ K for all s ≤ 0, passing to the limit as k → ∞, by Lemma 1, we conclude that z(n),
for n ≥ 0, is the solution of the following equation of:

x(n+ 1) = g(n, x(n)) +
0∑

s=−∞

G(n, s, x(n+ s), x(n)), n ∈ Z+ (21)

Similarly, v(n) for n ≥ 0 is also a solution of (21). By (v, g,G) ∈ Ω(u, f, F ), xksk+rk → z0 and
usk+rk → v0 in BS as k →∞. It follows from (20) that we have:

ρ(v0, z0) = lim
k→∞

ρ(usk+rk , x
k
sk+rk

) = ε < δ0 (22)

Notice that v(n), for n ≥ 0, is a solution of (21) passing through (0, v0), and v(n) is RWUAS of
limiting Equation (21) by (v, g,G) ∈ Ω(u, f, F ) and the similar result of Lemma 3 in [4]. Then, we
obtain ρ(vn, zn) → 0 as n → ∞. This is a contradiction to (22). Thus, the sequence {rk} must be
bounded. We can assume that, taking a subsequence if necessary, 0 < rk → r0 < ∞ as k → ∞.
Moreover, we may assume that xk(sk + n) → z̃(n) and u(sk + n) → ṽ(n) for each n ∈ Z, and
f(n + sk, φ

k) → g̃(n, φ) uniformly on Z+ × K, F (n + sk, s, φ
k, φk) → G̃(n, s, φ, φ) uniformly on

Z+ ×K∗, for (v, g,G) ∈ Ω(u, f, F ). Since usk → ṽ0 and xksk → z̃0 = φ(s) in BS as k →∞, we have:

ρ(ṽ0, z̃0) = lim
k→∞

ρ(usk , x
k
sk

) = 0

by (20), and hence, we have ṽ0 ≡ z̃0, that is ṽ(s) = z̃(s) for all s ∈ (−∞, 0]. Moreover, ṽ(n) and z̃(n)

satisfy the same equation of:

x(n+ 1) = g̃(n, x(n)) +
0∑

s=−∞

G̃(n, s, x(n+ s), x(n))

The uniqueness of the solutions for the initial value problems implies that ṽ(n) ≡ z̃(n) for n ∈ Z+,
and hence, we have ρ(ṽr0 , z̃r0) = 0. On the other hand, and again from (20), we have:

ρ(ṽr0 , z̃r0) = lim
k→∞

ρ(usk+rk , x
k
sk+rk

) = ε

This is a contradiction. This shows that u(n) is (K, ρ)-RTS.
We have the following existence theorem of an almost periodic solution for Equation (3).

Theorem 6. Under Assumptions (H2), (H3) and (H4), if Equation (3) is regular and the unique solution
u(n) of Equation (3) is (K, ρ)-RWUAS in Ω(f, F ), then Equation (3) has an almost periodic solution.

Proof. From Theorem 5, the unique solution u(n) of Equation (3) is (K, ρ)-RTS. Thus, by
Theorem 1 and 2 in [14], we have an almost periodic solution.

4. Applications in a Prey-Predator Model

We consider the existence of an almost periodic solution of a system with a strictly positive component
of Volterra difference equation:

x1(n+ 1) = x1(n) exp{b1(n)− a1(n)x1(n)− c2(n)
∑n

s=−∞K2(n− s)x2(s)}
(E)

x2(n+ 1) = x2(n) exp{−b2(n)− a2(n)x2(n) + c1(n)
∑n

s=−∞K1(n− s)x1(s)}
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which describes a model for the dynamics of a prey-predator discrete system in mathematical ecology.
We can regard Equation (3) as the following functional difference equation with axiomatic phase space
B and (K, ρ) topology (cf. [14]):

x(n+ 1) = h(n, xn), n ∈ Z+ (23)

where h : Z+ ×B → Rm. Then, we also hold Theorems 1, 3, 5 and 6 for (23), and we can
treat System (E) as an application of Equation (3). In (E), setting ai(n) and bi(n) are R-valued
bounded almost periodic function in Z, ai = infn∈Z ai(n), Ai = supn∈Z ai(n), bi = infn∈Z bi(n),

Bi = supn∈Z bi(n), ci = infn∈Z ci(n) and Ci = supn∈Z ci(n) (i = 1, 2), and Ki : Z+ → R+(i = 1, 2)

denote delay kernels, such that:

Ki(s) ≥ 0,
∞∑
s=0

Ki(s) = 1 and
∞∑
s=0

sKi(s) <∞(i = 1, 2)

We set:

α1 = exp{B1 − 1}/a1, α2 = exp{−b2 + C1α1 − 1}/a2,
β1 = min{exp{b1 − A1α1 − C2α2}(b1 − C2α2)/A1, {b1 − C2α2}/A1}

and :

β2 = min{exp{−B2 − A2α2 + c1β1}(−B2 + c1β1)/A2, {−B2 + c1β1}/A2}

(cf. [4], and 4 Applications in population dynamic systems in [11]). We now make the following
assumptions:

(i) ai > 0, bi > 0 (i = 1, 2) and c1 > 0, c2 ≥ 0,
(ii) b1 > C2α2 and B2 < c1β1,

(iii) there exists a positive constant m, such that:

ai > Ci +m (i = 1, 2)

Then, we have 0 < βi < αi for each i = 1, 2. If u(n) = (u1(n), u2(n)) is a solution of (E) through
(0, φ), such that βi ≤ φ(s) ≤ αi(i = 1, 2) for all s ≤ 0, then we have βi ≤ ui(n) ≤ αi(i = 1, 2) for all
n ≥ 0. Let K be the closed bounded set in R2, such that:

K = {(x1, x2) ∈ R2; βi ≤ xi ≤ αi for each i = 1, 2}

Then, K is invariant for System (E), that is we can see that for any n0 ∈ Z and any ϕ, such that
ϕ(s) ∈ K, s ≤ 0, every solution of (E) through (n0, ϕ) remains in K for all n ≥ n0. Hence, K is
invariant for its limiting equations. Now, we shall see that the existence of a strictly positive almost
periodic solution of (E) can be obtained under Conditions (i), (ii) and (iii). For System (E), we first
introduce the change of variables:

ui(n) = exp{vi(n)}, xi(n) = exp{yi(n)}, i = 1, 2



Axioms 2015, 4 359

Then, System (E) can be written as:
y1(n+ 1)− y1(n) = b1(n)− a1(n) exp{y1(n)} − c2(n)

∑n
s=−∞K2(n− s) exp{y2(s)}

(E0)

y2(n+ 1)− y2(n) = −b2(n)− a2(n) exp{y2(n)}+ c1(n)
∑n

s=−∞K1(n− s) exp{y1(s)}

We now consider the Lyapunov functional:

V (v(n), y(n)) =
2∑
i=1

{|vi(n)− yi(n)|+
∞∑
s=0

Ki(s)
n−1∑
l=n−s

ci(s+ l)| exp{vi(l)} − exp{yi(l)}|}

where y(n) and v(n) are solutions of (E0), which remains in K. Calculating the differences, we have:

∆V (v(n), y(n)) ≤ −mD
2∑
i=1

|vi(n)− yi(n)|

where set D = max{exp{β1}, exp{β2}}, and let xi(n) be solutions of (E), such that xi(n) ≥ βi for
n ≥ n0 (i = 1, 2). Thus,

∑2
i=1 |vi(n) − yi(n)| → 0 as n → ∞, and hence, ρ(vn, yn) → 0 as n → ∞.

Thus, we have that v(n) is (K, ρ)-A in Ω of (E0). Moreover, by using this Lyapunov functional, we can
show that v(n) is (K, ρ)-RUS in Ω of (E0), that is (K, ρ)-RWUAS in Ω of (E0). Thus, from Theorem 5,
v(n) is (K, ρ)-RTS, because K is invariant. By the equivalence between (E) and (E0), the solution u(n)

of (E) is (K, ρ)-RWUAS in Ω, and hence, it is (K, ρ)-RTS. Therefore, it follows from Theorem 6 that
System (E) has an almost periodic solution p(n), such that βi ≤ pi(n) ≤ αi, (i = 1, 2), for all n ∈ Z.

5. Stability Property and Separation Condition

In order to discuss the conditions for the existence of an almost periodic solution in a Volterra
integrodifferential equation with infinite delay, we discussed the relationship between the total stability
with respect to a certain metric ρ and the separation condition with respect to ρ (cf. [5]). In this final
section, we discuss a new approach of a relationship between the ρ-separation condition and (K,
ρ)-uniformly-asymptotic stability property in a metric ρ sense for a nonlinear Volterra difference equation
with infinite delay.

Let K be a compact set in Rm, such that u(n) ∈ K for all n ∈ Z, where u(n) = φ0(n) for n < 0. If
x(n) is a solution, such that x(n) ∈ K for all n ∈ Z, we say that x is in K.

Definition 4. We say that Equation (3) satisfies the ρ-separation condition in K, if for each (g,G) ∈
Ω(f, F ), there exists a λ(g,G) > 0, such that if x and y are distinct solution of (4) in K, then we have:

ρ(xn, yn) ≥ λ(g,G) for all, n ∈ Z

If Equation (3) satisfies the ρ-separation condition in K, then we can choose a positive constant λ0
independent of (g,G) for which ρ(xn, yn) ≥ λ0 for all n ∈ Z, where x and y are a distinct solution of
(4) in K. We call λ0 the ρ-separation constant in K (e.g., [8], pp. 189–190).

Definition 5. A solution x(n) of (3) in K is said to be (K, ρ)-relatively totally stable (in short,
(K, ρ)-RTS), if for any ε > 0, there exists a δ(ε) > 0, such that ρ(xn, yn) < ε for all n ≥ n0 whenever
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ρ(xn0 , yn0) < δ(ε) at some n0 ∈ Z and h ∈ BS([n0,∞)), which satisfies |h|[n0,∞) < δ(ε), for n ≥ n0.
Here, y(n) is a solution through (n0, yn0) of:

x(n+ 1) = f(n, x(n)) +
0∑

s=−∞

F (n, s, x(n+ s), x(n)) + h(n)

such that yn0(s) ∈ K for all s ≤ 0 and y(n) ∈ K for n ≥ n0. In the case where h(n) ≡ 0, this gives the
definition of the (K, ρ)-relatively uniform stability of x(n) (in short, (K, ρ)-RUS).

The following Proposition 1 can be proven by the same argument as in the proof for integrodifferential
equations by Hamaya and Yoshizawa [5].

Proposition 1. Under Assumptions (H2), (H3) and (H4), if Equation (3) satisfies the ρ-separation
condition in K, then for any (g,G) ∈ Ω(f, F ), any solution x of (4) in K is (K, ρ)-RTS. Moreover,
we can choose the number δ(·) in Definition 5, so that δ(ε) depends only on ε and is independent of
(g,G) and solutions.

Theorem 7. Under Assumptions (H2), (H3) and (H4), suppose that Equation (3) satisfies the
ρ-separation condition in K. If w(n) is a solution of (3), such that w(n) ∈ K for all n ∈ Z, then
w(n) is almost periodic.

Proof. By Proposition 1, solution w(n) of (3) is (K, ρ)-RTS, because (f, F ) ∈ Ω(f, F ). Then,
w(n) is asymptotically almost periodic on [0,∞) by Theorem 1 in [14]. Thus, it has the decomposition
w(n) = p(n) + q(n), where p(n) is almost periodic in n, q(n) is bounded function and q(n) → 0 as
n→∞. Since w(n) ∈ K for all n ∈ Z, p(n) is a solution of (3) in K. If w(n1) 6= p(n1) at some n1, we
have two distinct solutions of (3) in K. Thus, we have ρ(wn, pn) ≥ λ0 > 0 for all n ∈ Z, where λ0 is the
ρ-separation constant. However, w(n) − p(n) → 0 as n → ∞, and hence, ρ(wn, pn) → 0 as n → ∞.
This contradiction shows w(n) ≡ p(n) for all n ∈ Z.

Definition 6. A solution x(n) of (3) in K is said to be (K, ρ)-relatively uniformly-asymptotically stable
(in short, (K, ρ)-RUAS), if it is (K, ρ)-RUS and if there exists a δ0 > 0 and for any ε > 0 there exists a
T (ε) > 0, such that if ρ(xn0 , yn0) < δ0 at some n0 ∈ Z, then ρ(xn, yn) < ε for all n ≥ n0 + T (ε), where
y(n) is a solution of (3) through (n0, yn0), such that yn0(s) ∈ K for all s ≤ 0 and y(n) ∈ K for all
n ≥ n0.

We show that the ρ-separation condition will be characterized in terms of (K, ρ) uniformly-asymptotic
stability of solutions in K of limiting equations. For ordinary differential equations, this kind of problem
has been discussed by Nakajima [15].

Theorem 8. Under Assumptions (H2), (H3) and (H4), Equation (3) satisfies the ρ-separation condition
in K if and only if for any (g,G) ∈ Ω(f, F ), any solution x of (4) in K is (K, ρ)-RUAS with common
triple (δ0, δ(·), T (·)).

Proof. We suppose that Equation (3) satisfies the ρ-separation condition in K. Then, it follows from
Proposition 1 that for any ε > 0, there exists a δ(ε) > 0, such that for any (g,G) ∈ Ω(f, F ) and any
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solution x(n) of (4) in K, if ρ(xn0 , yn0) < δ(ε) at some n0 ∈ Z, then ρ(xn, yn) < ε for all n ≥ n0, where
y(n) is a solution of (4), such that yn0(s) ∈ K for all s ≤ 0 and y(n) ∈ K for n ≥ n0. Now, let δ0 be
a positive constant, such that δ0 < δ(λ0/2), where λ0 is the ρ-separation constant. For this δ0, we shall
show that for any ε > 0, there exists a T (ε) > 0, such that for any (g,G) ∈ Ω(f, F ) and any solution
x(n) of (4) in K, ρ(xn, yn) < ε for all n ≥ n0 +T (ε), whenever ρ(xn0 , yn0) < δ0 at some n0 ∈ Z, where
y(n) is a solution of (4), such that yn0(s) ∈ K for all s ≤ 0 and y(n) ∈ K for all n ≥ n0.

Suppose not. Then, there exist an ε, 0 < ε < δ0/2 and sequences {(gk, Gk)}, {xk}, {yk}, {sk} and
{nk}, such that (gk, Gk) ∈ Ω(f, F ), xk(n) is a solution in K of:

x(n+ 1) = gk(n, x(n)) +
0∑

s=−∞

Gk(n, s, x(n+ s), x(n)) (24)

and that nk ≥ sk + k,

ρ(xksk , y
k
sk

) < δ0 < δ(λ0/2) (25)

and:

ρ(xknk
, yknk

) ≥ ε

where yk(n) is a solution of (24), such that yksk(s) ∈ K for all s ≤ 0 and yk(n) ∈ K for all n ≥ sk.
Since (25) implies ρ(xkn, y

k
n) < λ0/2 for all n ≥ sk, we have:

ε ≤ ρ(xknk
, yknk

) ≤ λ0/2 (26)

If we set wk(n) = xk(n+ nk) and zk(n) = yk(n+ nk), then wk(n) is a solution in K of:

x(n+ 1) = gk(n+ nk, x(n)) +
0∑

s=−∞

Gk(n+ nk, s, x(n+ s), x(n)) (27)

and zk(n) is defined for n ≥ −k and is a solution of (27), such that zk−k(s) ∈ K for all s ≤ 0

and zk(n) ∈ K for all n ≥ −k. Since (gk(n + nk, x), Gk(n + nk, s, x, y)) ∈ Ω(f, F ), taking a
subsequence if necessary, we can assume that wk(n) → w(n) uniformly on any compact interval in
Z, zk(n) → z(n) uniformly on any compact interval in Z, gk(n + nk, x) → h(n, x) uniformly on
Z×K and G(n+ nk, s, x, y)→ H(n, s, x, y) uniformly on Z× S∗×K ×K for any compact set S∗ in
(−∞, 0] as k →∞, where (h,H) ∈ Ω(f, F ). Then, by the similar argument as in the proof of Lemma 1
(cf. Lemma 5 in [5]), w(n) and z(n) are solutions in K of:

x(n+ 1) = h(n, x(n)) +
0∑

s=−∞

H(n, s, x(n+ s), x(n)) (28)

On the other hand, we have:

ρ(w0, z0) = lim
k→∞

ρ(wk0 , z
k
0 ) = lim

k→∞
ρ(xknk

, yknk
)

Thus, it follows from (26) that:

ε ≤ ρ(w0, z0) ≤ λ0/2 (29)
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Since w(n) and z(n) are distinct solutions of (28) in K, (29) contradicts the ρ-separation condition.
This shows that for any (g,G) ∈ Ω(f, F ), any solution x of (4) in K is (K, ρ)-RUAS with a common
triple (δ0, δ(·), T (·)).

Now, we assume that for any (g,G) ∈ Ω(f, F ), any solution of (4) in K is (K, ρ)-RUAS with a
common triple (δ0, δ(·), T (·)). First of all, we shall see that any two distinct solutions x(n) and y(n) in
K of a limiting equation of (3) satisfy:

lim inf
n→−∞

ρ(xn, yn) ≥ δ0 (30)

Suppose not. Then, for some (g,G) ∈ Ω(f, F ), there exist two distinct solutions x(n) and y(n) of (4)
in K that satisfy:

lim inf
n→−∞

ρ(xn, yn) < δ0 (31)

Since x(n) 6≡ y(n), we have |x(n0)− y(n0)| = ε > 0 at some n0 ∈ Z. Thus, we have ρ(xn0 , yn0) ≥
ε/2(1 + ε). By (31), there exists an n1 ∈ Z, such that ρ(xn1 , yn1) < δ0 and n1 < n0 − T (ε/4(1 + ε)),
where T (·) is the number for (K, ρ)-RUAS. Since x(n) is (K, ρ)-RUAS, we have ρ(xn0 , yn0) < ε/4(1+ε),
which contradicts ρ(xn0 , yn0) ≥ ε/2(1 + ε). Thus, we have (30).

For any solution x(n) in K, there exists a positive constant c, such that |x(n)| ≤ c for all n ∈ Z.
Denote by O+(x ) the set of the closure of positive orbit of x, that is,

O+(x ) := {xn |n ∈ Z+}

such that |φ(s)| ≤ c for s ∈ (−∞, 0]. Then, O+(x ) is compact in (BS, ρ). Thus, there is a finite
number of coverings, which consist of m0 balls with a diameter of δ0/4. We shall see that the number of
distinct solutions of (4) inK is at mostm0. Suppose that there arem0 +1 distinct solutions x(j)(n) (j =

1, 2, · · · ,m0 + 1). By (30), there exists an n2 ∈ Z, such that:

ρ(x(i)n2
, x(j)n2

) ≥ δ0/2 for i 6= j (32)

Since x(j)n2 , j = 1, 2, · · · ,m0 + 1 are in O+(x ), some two of these, say x(i)n2 , x
(j)
n2 , (i 6= j), are in one

ball, and hence, ρ(x
(i)
n2 , x

(j)
n2 ) < δ0/4, which contradicts (32). Therefore the number of solutions of (4) in

K is m ≤ m0. Thus, we have the set of solutions of (4) in K:

{x(1)(n), x(2)(n), · · · , x(m)(n)}
and

lim inf
n→−∞

ρ(x(i)n , x
(j)
n ) ≥ δ0 for i 6= j. (33)

Consider a sequence {nk}, such that nk → −∞, g(n + nk, x) → g(n, x) uniformly on Z × K

and G(n + nk, s, x, y) → G(n, s, x, y) uniformly on Z × S∗ × K × K for any compact set S∗ in
(−∞, 0] as k → ∞. Since the sequences {x(j)(n + nk)}, 1 ≤ j ≤ m, are uniformly bounded, there
exists a subsequence of {nk}, which will be denoted by {nk} again, and functions y(j)(n), such that
x(j)(n + nk) → y(j)(n), uniformly on any compact interval in Z as k → ∞. Clearly, y(j)(n) is the
solution of (4) in K. Since we have:

ρ(y(i)n , y
(j)
n ) = lim

k→∞
ρ(x

(i)
n+nk

, x
(j)
n+nk

) for n ∈ Z
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it follows from (33) that:

ρ(y(i)n , y
(j)
n ) ≥ δ0 for all n ∈ Z and i 6= j (34)

Since we have (34), distinct solutions of (4) in K are y(1)(n), y(2)(n), · · · , y(m)(n). This shows that
Equation (3) satisfies the ρ-separation condition in K with the ρ-separation constant δ0.
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