

Article

On *T*-Characterized Subgroups of Compact Abelian Groups

Saak Gabriyelyan

Department of Mathematics, Ben-Gurion University of the Negev, P.O. 653, Beer-Sheva 8410501, Israel; E-Mail: saak@math.bgu.ac.il; Tel.: 972-8-646-7830

Academic Editor: Sidney A. Morris

Received: 16 February 2015 / Accepted: 16 June 2015 / Published: 19 June 2015

Abstract: A sequence $\{u_n\}_{n\in\omega}$ in abstract additively-written Abelian group G is called a T-sequence if there is a Hausdorff group topology on G relative to which $\lim_n u_n = 0$. We say that a subgroup H of an infinite compact Abelian group X is T-characterized if there is a T-sequence $\mathbf{u} = \{u_n\}$ in the dual group of X, such that $H = \{x \in X : (u_n, x) \to 1\}$. We show that a closed subgroup H of X is T-characterized if and only if H is a G_{δ} -subgroup of X and the annihilator of H admits a Hausdorff minimally almost periodic group topology. All closed subgroups of an infinite compact Abelian group X are T-characterized if and only if X is metrizable and connected. We prove that every compact Abelian group X of infinite exponent has a T-characterized subgroup, which is not an F_{σ} -subgroup of X, that gives a negative answer to Problem 3.3 in Dikranjan and Gabriyelya (*Topol. Appl.* **2013**, *160*, 2427–2442).

Keywords: characterized subgroup; *T*-characterized subgroup; *T*-sequence; dual group; von Neumann radical

MSC classifications: 22A10; 43A40; 54H11

1. Introduction

Notation and preliminaries: Let X be an Abelian topological group. We denote by \widehat{X} the group of all continuous characters on X, and \widehat{X} endowed with the compact-open topology is denoted by X^{\wedge} . The homomorphism $\alpha_X : X \to X^{\wedge \wedge}$, $x \mapsto (\chi \mapsto (\chi, x))$, is called the canonical homomorphism. Denote by $\mathbf{n}(X) = \bigcap_{\chi \in \widehat{X}} \ker(\chi) = \ker(\alpha_X)$ the von Neumann radical of X. The group X is called minimally almost periodic (*MinAP*) if $\mathbf{n}(X) = X$, and X is called maximally almost periodic

(MAP) if $\mathbf{n}(X) = \{0\}$. Let H be a subgroup of X. The annihilator of H we denote by H^{\perp} , *i.e.*, $H^{\perp} = \{\chi \in X^{\wedge} : (\chi, h) = 1 \text{ for every } h \in H\}.$

Recall that an Abelian group G is of finite exponent or bounded if there exists a positive integer n, such that ng = 0 for every $g \in G$. The minimal integer n with this property is called the exponent of G and is denoted by $\exp(G)$. When G is not bounded, we write $\exp(G) = \infty$ and say that G is of infinite exponent or unbounded. The direct sum of ω copies of an Abelian group G we denote by $G^{(\omega)}$.

Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a sequence in an Abelian group G. In general, no Hausdroff topology may exist in which \mathbf{u} converges to zero. A very important question of whether there exists a Hausdorff group topology τ on G, such that $u_n \to 0$ in (G, τ) , especially for the integers, has been studied by many authors; see Graev [1], Nienhuys [2], and others. Protasov and Zelenyuk [3] obtained a criterion that gives a complete answer to this question. Following [3], we say that a sequence $\mathbf{u} = \{u_n\}$ in an Abelian group G is a T-sequence if there is a Hausdorff group topology on G in which u_n converges to zero. The finest group topology with this property we denote by $\tau_{\mathbf{u}}$.

The counterpart of the above question for precompact group topologies on \mathbb{Z} is studied by Raczkowski [4]. Following [5,6] and motivated by [4], we say that a sequence $\mathbf{u} = \{u_n\}$ is a *TB*-sequence in an Abelian group *G* if there is a precompact Hausdorff group topology on *G* in which u_n converges to zero. For a *TB*-sequence \mathbf{u} , we denote by $\tau_{b\mathbf{u}}$ the finest precompact group topology on *G* in which \mathbf{u} converges to zero. Clearly, every *TB*-sequence is a *T*-sequence, but in general, the converse assertion does not hold.

While it is quite hard to check whether a given sequence is a *T*-sequence (see, for example, [3,7–10]), the case of *TB*-sequences is much simpler. Let *X* be an Abelian topological group and $\mathbf{u} = \{u_n\}$ be a sequence in its dual group X^{\wedge} . Following [11], set:

$$s_{\mathbf{u}}(X) = \{x \in X : (u_n, x) \to 1\}.$$

In [5], the following simple criterion to be a TB-sequence was obtained:

Fact 1 ([5]). A sequence **u** in a (discrete) Abelian group G is a TB-sequence if and only if the subgroup $s_{\mathbf{u}}(X)$ of the (compact) dual $X = G^{\wedge}$ is dense.

Motivated by Fact 1, Dikranjan *et al.* [11] introduced the following notion related to subgroups of the form $s_u(X)$ of a compact Abelian group X:

Definition 2 ([11]). Let H be a subgroup of a compact Abelian group X and $\mathbf{u} = \{u_n\}$ be a sequence in \hat{X} . If $H = s_{\mathbf{u}}(X)$, we say that \mathbf{u} characterizes H and that H is characterized (by \mathbf{u}).

Note that for the torus \mathbb{T} , this notion was already defined in [12]. Characterized subgroups have been studied by many authors; see, for example, [11–16]. In particular, the main theorem of [15] (see also [14]) asserts that every countable subgroup of a compact metrizable Abelian group is characterized. It is natural to ask whether a closed subgroup of a compact Abelian group is characterized. The following easy criterion is given in [13]:

Fact 3 ([13]). A closed subgroup H of a compact Abelian group X is characterized if and only if H is a G_{δ} -subgroup. In particular, X/H is metrizable, and the annihilator H^{\perp} of H is countable.

The next fact follows easily from Definition 2:

Fact 4 ([17], see also [13]). Every characterized subgroup H of a compact Abelian group X is an $F_{\sigma\delta}$ -subgroup of X, and hence, H is a Borel subset of X.

Facts 3 and 4 inspired in [13] the study of the Borel hierarchy of characterized subgroups of compact Abelian groups. For a compact Abelian group X, denote by Char(X) (respectively, $SF_{\sigma}(X)$, $SF_{\sigma\delta}(X)$ and $SG_{\delta}(X)$) the set of all characterized subgroups (respectively, F_{σ} -subgroups, $F_{\sigma\delta}$ -subgroups and G_{δ} -subgroups) of X. The next fact is Theorem E in [13]:

Fact 5 ([13]). For every infinite compact Abelian group X, the following inclusions hold:

 $\operatorname{SG}_{\delta}(X) \subsetneq \operatorname{Char}(X) \subsetneq \operatorname{SF}_{\sigma\delta}(X)$ and $\operatorname{SF}_{\sigma}(X) \not\subseteq \operatorname{Char}(X)$.

If in addition X has finite exponent, then:

$$\operatorname{Char}(X) \subsetneq \operatorname{SF}_{\sigma}(X).$$
 (1)

The inclusion Equation (1) inspired the following question:

Question 6 (Problem 3.3 in [13]). Does there exist a compact Abelian group X of infinite exponent all of whose characterized subgroups are F_{σ} -subsets of X?

Main results: It is important to emphasize that there is no restriction on the sequence u in Definition 2. If a characterized subgroup H of a compact Abelian group X is dense, then, by Fact 1, a characterizing sequence is also a TB-sequence. However, if H is not dense, we cannot expect in general that a characterizing sequence of H is a T-sequence. Thus, it is natural to ask:

Question 7. For which characterized subgroups of compact Abelian groups can one find characterizing sequences that are also T-sequences?

This question is of independent interest, because every T-sequence u naturally defines the group topology τ_{u} satisfying the following dual property:

Fact 8 ([18]). Let H be a subgroup of an infinite compact Abelian group X characterized by a T-sequence \mathbf{u} . Then, $(\widehat{X}, \tau_{\mathbf{u}})^{\wedge} = H(=s_{\mathbf{u}}(X))$ and $\mathbf{n}(\widehat{X}, \tau_{\mathbf{u}}) = H^{\perp}$ algebraically.

This motivates us to introduce the following notion:

Definition 9. Let H be a subgroup of a compact Abelian group X. We say that H is a T-characterized subgroup of X if there exists a T-sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ in \widehat{X} , such that $H = s_{\mathbf{u}}(X)$.

Denote by $\operatorname{Char}_T(X)$ the set of all *T*-characterized subgroups of a compact Abelian group *X*. Clearly, $\operatorname{Char}_T(X) \subseteq \operatorname{Char}(X)$. Hence, if a *T*-characterized subgroup *H* of *X* is closed, it is a G_{δ} -subgroup of *X* by Fact 3. Note also that *X* is *T*-characterized by the zero sequence.

The main goal of the article is to obtain a complete description of closed T-characterized subgroups (see Theorem 10) and to study the Borel hierarchy of T-characterized subgroups (see Theorem 18)

of compact Abelian groups. In particular, we obtain a complete answer to Question 7 for closed characterized subgroups and give a negative answer to Question 6.

Note that, if a compact Abelian group X is finite, then every T-sequence u in \hat{X} is eventually equal to zero. Hence, $s_u(X) = X$. Thus, X is the unique T-characterized subgroup of X. Therefore, in what follows, we shall consider only infinite compact groups.

The following theorem describes all closed subgroups of compact Abelian groups that are T-characterized.

Theorem 10. Let H be a proper closed subgroup of an infinite compact Abelian group X. Then, the following assertions are equivalent:

- (1) *H* is a *T*-characterized subgroup of *X*;
- (2) *H* is a G_{δ} -subgroup of *X*, and the countable group H^{\perp} admits a Hausdorff MinAP group topology;
- (3) *H* is a G_{δ} -subgroup of *X* and one of the following holds:
 - (a) H^{\perp} has infinite exponent;
 - (b) H^{\perp} has finite exponent and contains a subgroup that is isomorphic to $\mathbb{Z}\left(\exp(H^{\perp})\right)^{(\omega)}$.

Corollary 11. Let X be an infinite compact metrizable Abelian group. Then, the trivial subgroup $H = \{0\}$ is T-characterized if and only if \widehat{X} admits a Hausdorff MinAP group topology.

As an immediate corollary of Fact 3 and Theorem 10, we obtain a complete answer to Question 7 for closed characterized subgroups.

Corollary 12. A proper closed characterized subgroup H of an infinite compact Abelian group X is T-characterized if and only if H^{\perp} admits a Hausdorff MinAP group topology.

If H is an open proper subgroup of X, then H^{\perp} is non-trivial and finite. Thus, every Hausdorff group topology on H^{\perp} is discrete. Taking into account Fact 3, we obtain:

Corollary 13. Every open proper subgroup H of an infinite compact Abelian group X is a characterized non-T-characterized subgroup of X.

Nevertheless (see Example 1 below), there is a compact metrizable Abelian group X with a countable T-characterized subgroup H, such that its closure \overline{H} is open. Thus, it may happen that the closure of a T-characterized subgroup is not T-characterized.

It is natural to ask for which compact Abelian groups all of their closed G_{δ} -subgroups are T-characterized. The next theorem gives a complete answer to this question.

Theorem 14. Let X be an infinite compact Abelian group. The following assertions are equivalent:

- (1) All closed G_{δ} -subgroups of X are T-characterized;
- (2) X is connected.

By Corollary 2.8 of [13], the trivial subgroup $H = \{0\}$ of a compact Abelian group X is a G_{δ} -subgroup if and only if X is metrizable. Therefore, we obtain:

Corollary 15. All closed subgroups of an infinite compact Abelian group X are T-characterized if and only if X is metrizable and connected.

Theorems 10 and 14 are proven in Section 2.

In the next theorem, we give a negative answer to Question 6:

Theorem 16. Every compact Abelian group of infinite exponent has a dense T-characterized subgroup, which is not an F_{σ} -subgroup.

As a corollary of the inclusion Equation (1) and Theorem 16, we obtain:

Corollary 17. For an infinite compact Abelian group X, the following assertions are equivalent:

- (i) *X* has finite exponent;
- (ii) every characterized subgroup of X is an F_{σ} -subgroup;
- (iii) every *T*-characterized subgroup of *X* is an F_{σ} -subgroup.

Therefore, $Char(X) \subseteq SF_{\sigma}(X)$ *if and only if* X *has finite exponent.*

In the next theorem, we summarize the obtained results about the Borel hierarchy of T-characterized subgroups of compact Abelian groups.

Theorem 18. Let X be an infinite compact Abelian group X. Then:

- (1) $\operatorname{Char}_T(X) \subseteq \operatorname{SF}_{\sigma\delta}(X);$
- (2) $\operatorname{SG}_{\delta}(X) \cap \operatorname{Char}_{T}(X) \subsetneq \operatorname{Char}_{T}(X)$;
- (3) $SG_{\delta}(X) \subseteq Char_T(X)$ if and only if X is connected;
- (4) $\operatorname{Char}_T(X) \bigcap \operatorname{SF}_{\sigma}(X) \subsetneqq \operatorname{SF}_{\sigma}(X);$
- (5) $\operatorname{Char}_T(X) \subseteq \operatorname{SF}_{\sigma}(X)$ if and only if X has finite exponent.

We prove Theorems 16 and 18 in Section 3.

The notions of \mathfrak{g} -closed and \mathfrak{g} -dense subgroups of a compact Abelian group X were defined in [11]. In the last section of the paper, in analogy to these notions, we define \mathfrak{g}_T -closed and \mathfrak{g}_T -dense subgroups of X. In particular, we show that every \mathfrak{g}_T -dense subgroup of a compact Abelian group X is dense if and only if X is connected (see Theorem 37).

2. The Proofs of Theorems 10 and 14

The subgroup of a group G generated by a subset A we denote by $\langle A \rangle$.

Recall that a subgroup H of an Abelian topological group X is called dually closed in X if for every $x \in X \setminus H$, there exists a character $\chi \in H^{\perp}$, such that $(\chi, x) \neq 1$. H is called dually embedded in X if every character of H can be extended to a character of X. Every open subgroup of X is dually closed and dually embedded in X by Lemma 3 of [19].

The next notion generalizes the notion of the maximal extension in the class of all compact Abelian groups introduced in [20].

Definition 19. Let \mathcal{G} be an arbitrary class of topological groups. Let $(G, \tau) \in \mathcal{G}$ and H be a subgroup of G. The group (G, τ) is called a maximal extension of $(H, \tau|_H)$ in the class \mathcal{G} if $\sigma \leq \tau$ for every group topology on G, such that $\sigma|_H = \tau|_H$ and $(G, \sigma) \in \mathcal{G}$.

Clearly, the maximal extension is unique if it exists. Note that in Definition 19, we do not assume that $(H, \tau|_H)$ belongs to the class \mathcal{G} .

If *H* is a subgroup of an Abelian group *G* and **u** is a *T*-sequence (respectively, a *TB*-sequence) in *H*, we denote by $\tau_{\mathbf{u}}(H)$ (respectively, $\tau_{b\mathbf{u}}(H)$) the finest (respectively, precompact) group topology on *H* generated by **u**. We use the following easy corollary of the definition of *T*-sequences.

Lemma 20. For a sequence **u** in an Abelian group G, the following assertions are equivalent:

- (1) **u** is a T-sequence in G;
- (2) **u** is a *T*-sequence in every subgroup of *G* containing $\langle \mathbf{u} \rangle$;
- (3) **u** *is a T*-sequence in $\langle \mathbf{u} \rangle$.

In this case, $\langle \mathbf{u} \rangle$ is open in $\tau_{\mathbf{u}}$ (and hence, $\langle \mathbf{u} \rangle$ is dually closed and dually embedded in $(G, \tau_{\mathbf{u}})$), and $(G, \tau_{\mathbf{u}})$ is the maximal extension of $(\langle \mathbf{u} \rangle, \tau_{\mathbf{u}} (\langle \mathbf{u} \rangle))$ in the class **TAG** of all Abelian topological groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let u be a *T*-sequence in $\langle u \rangle$. Let τ be the topology on *G* whose base is all translations of $\tau_u(\langle u \rangle)$ -open sets. Clearly, u converges to zero in τ . Thus, u is a *T*-sequence in *G*. Therefore, (3) implies (1).

Let us prove the last assertion. By the definition of $\tau_{\mathbf{u}}$, we have also $\tau \leq \tau_{\mathbf{u}}$, and hence, $\tau|_{\langle \mathbf{u}\rangle} = \tau_{\mathbf{u}}(\langle \mathbf{u}\rangle) \leq \tau_{\mathbf{u}}|_{\langle \mathbf{u}\rangle}$. Thus, $\langle \mathbf{u}\rangle$ is open in $\tau_{\mathbf{u}}$, and hence, it is dually closed and dually embedded in $(G, \tau_{\mathbf{u}})$ by [19] (Lemma 3.3). On the other hand, $\tau_{\mathbf{u}}|_{\langle \mathbf{u}\rangle} \leq \tau_{\mathbf{u}}(\langle \mathbf{u}\rangle) = \tau|_{\langle \mathbf{u}\rangle}$ by the definition of $\tau_{\mathbf{u}}(\langle \mathbf{u}\rangle)$. Therefore, $\tau_{\mathbf{u}}$ is an extension of $\tau_{\mathbf{u}}(\langle \mathbf{u}\rangle)$. Now, clearly, $\tau = \tau_{\mathbf{u}}$, and $(G, \tau_{\mathbf{u}})$ is the maximal extension of $(\langle \mathbf{u}\rangle, \tau_{\mathbf{u}}(\langle \mathbf{u}\rangle)$ in the class TAG. \Box

For TB-sequences, we have the following:

Lemma 21. For a sequence u in an Abelian group G, the following assertions are equivalent:

- (1) **u** is a TB-sequence in G;
- (2) **u** is a TB-sequence in every subgroup of G containing $\langle \mathbf{u} \rangle$;
- (3) **u** is a *TB*-sequence in $\langle \mathbf{u} \rangle$.

In this case, the subgroup $\langle \mathbf{u} \rangle$ is dually closed and dually embedded in $(G, \tau_{b\mathbf{u}})$, and $(G, \tau_{b\mathbf{u}})$ is the maximal extension of $(\langle \mathbf{u} \rangle, \tau_{b\mathbf{u}} (\langle \mathbf{u} \rangle))$ in the class of all precompact Abelian groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let \mathbf{u} be a *TB*-sequence in $\langle \mathbf{u} \rangle$. Then, $(\langle \mathbf{u} \rangle, \tau_{b\mathbf{u}}(\langle \mathbf{u} \rangle))^{\wedge}$ separates the points of $\langle \mathbf{u} \rangle$. Let τ be the topology on *G* whose base is all translations of $\tau_{b\mathbf{u}}(\langle \mathbf{u} \rangle)$ -open sets. Then, $(\langle \mathbf{u} \rangle, \tau_{b\mathbf{u}}(\langle \mathbf{u} \rangle))$ is an open subgroup of (G, τ) . It is easy to see that $(G, \tau)^{\wedge}$ separates the points of *G*. Since \mathbf{u} converges to zero in τ , it also converges to zero in τ^+ , where τ^+ is the Bohr topology of (G, τ) . Thus, \mathbf{u} is a *TB*-sequence in *G*. Therefore, (3) implies (1).

The last assertion follows from Proposition 1.8 and Lemma 3.6 in [20]. \Box

For a sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ of characters of a compact Abelian group X, set:

$$K_{\mathbf{u}} = \bigcap_{n \in \omega} \ker(u_n).$$

The following assertions is proven in [13]:

Fact 22 (Lemma 2.2(i) of [13]). For every sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ of characters of a compact Abelian group X, the subgroup $K_{\mathbf{u}}$ is a closed G_{δ} -subgroup of X and $K_{\mathbf{u}} = \langle \mathbf{u} \rangle^{\perp}$.

The next two lemmas are natural analogues of Lemmas 2.2(ii) and 2.6 of [13].

Lemma 23. Let X be a compact Abelian group and $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a T-sequence in \hat{X} . Then, $s_{\mathbf{u}}(X)/K_{\mathbf{u}}$ is a T-characterized subgroup of $X/K_{\mathbf{u}}$.

Proof. Set $H := s_{\mathbf{u}}(X)$ and $K := K_{\mathbf{u}}$. Let $q : X \to X/K$ be the quotient map. Then, the adjoint homomorphism q^{\wedge} is an isomorphism from $(X/K)^{\wedge}$ onto K^{\perp} in X^{\wedge} . For every $n \in \omega$, define the character \widetilde{u}_n of X/K as follows: $(\widetilde{u}_n, q(x)) = (u_n, x)$ (\widetilde{u}_n is well-defined, since $K \subseteq \ker(u_n)$). Then, $\widetilde{\mathbf{u}} = {\widetilde{u}_n}_{n \in \omega}$ is a sequence of characters of X/K, such that $q^{\wedge}(\widetilde{u}_n) = u_n$. Since $\mathbf{u} \subset K^{\perp}$, \mathbf{u} is a *T*-sequence in K^{\perp} by Lemma 20. Hence, $\widetilde{\mathbf{u}}$ is a *T*-sequence in $(X/K)^{\wedge}$ because q^{\wedge} is an isomorphism.

We claim that $H/K = s_{\widetilde{\mathbf{u}}}(X/K)$. Indeed, for every $h + K \in H/K$, by definition, we have $(\widetilde{u}_n, h + K) = (u_n, h) \to 1$. Thus, $H/K \subseteq s_{\widetilde{\mathbf{u}}}(X/K)$. If $x + K \in s_{\widetilde{\mathbf{u}}}(X/K)$, then $(\widetilde{u}_n, x + K) = (u_n, x) \to 1$. This yields $x \in H$. Thus, $x + K \in H/K$. \Box

Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a *T*-sequence in an Abelian group *G*. For every natural number *m*, set $\mathbf{u}_m = \{u_n\}_{n \geq m}$. Clearly, \mathbf{u}_m is a *T*-sequence in *G*, $\tau_{\mathbf{u}} = \tau_{\mathbf{u}_m}$ and $s_{\mathbf{u}}(X) = s_{\mathbf{u}_m}(X)$ for every natural number *m*.

Lemma 24. Let K be a closed subgroup of a compact Abelian group X and $q : X \to X/K$ be the quotient map. Then, \tilde{H} is a T-characterized subgroup of X/K if and only if $q^{-1}(\tilde{H})$ is a T-characterized subgroup of X.

Proof. Let \widetilde{H} be a *T*-characterized subgroup of X/K, and let a *T*-sequence $\widetilde{\mathbf{u}} = {\widetilde{u}_n}_{n \in \omega}$ -characterized \widetilde{H} . Set $H := q^{-1}(\widetilde{H})$. We have to show that H is a *T*-characterized subgroup of X.

Note that the adjoint homomorphism q^{\wedge} is an isomorphism from $(X/K)^{\wedge}$ onto K^{\perp} in X^{\wedge} . Set $\mathbf{u} = \{u_n\}_{n \in \omega}$, where $u_n = q^{\wedge}(\widetilde{u}_n)$. Since q^{\wedge} is injective, \mathbf{u} is a *T*-sequence in K^{\perp} . By Lemma 20, \mathbf{u} is a *T*-sequence in \widehat{X} . Therefore, it is enough to show that $H = s_{\mathbf{u}}(X)$. This follows from the following chain of equivalences. By definition, $x \in s_{\mathbf{u}}(X)$ if and only if:

$$(u_n, x) \to 1 \Leftrightarrow (\widetilde{u}_n, q(x)) \to 1 \Leftrightarrow q(x) \in H = H/K \Leftrightarrow x \in H.$$

The last equivalence is due to the inclusion $K \subseteq H$.

Conversely, let $H := q^{-1}(H)$ be a *T*-characterized subgroup of *X* and a *T*-sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ -characterized *H*. Proposition 2.5 of [13] implies that we can find $m \in \mathbb{N}$, such that $K \subseteq K_{\mathbf{u}_m}$. Therefore, taking into account that $H = s_{\mathbf{u}}(X) = s_{\mathbf{u}_m}(X)$ for every natural

number m, without loss of generality, we can assume that $K \subseteq K_{\mathbf{u}}$. By Lemma 23, $H/K_{\mathbf{u}}$ is a T-characterized subgroup of $X/K_{\mathbf{u}}$. Denote by q_u the quotient homomorphism from X/K onto $X/K_{\mathbf{u}}$. Then, $\tilde{H} = q_u^{-1}(H/K_{\mathbf{u}})$ is T-characterized in X/K by the previous paragraph of the proof. \Box

The next theorem is an analogue of Theorem B of [13], and it reduces the study of T-characterized subgroups of compact Abelian groups to the study of T-characterized ones of compact Abelian metrizable groups:

Theorem 25. A subgroup H of a compact Abelian group X is T-characterized if and only if H contains a closed G_{δ} -subgroup K of X, such that H/K is a T-characterized subgroup of the compact metrizable group X/K.

Proof. Let H be T-characterized in X by a T-sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ in \widehat{X} . Set $K := K_{\mathbf{u}}$. Since K is a closed G_{δ} -subgroup of X by Fact 22, X/K is metrizable. By Lemma 23, H/K is a T-characterized subgroup of X/K.

Conversely, let H contain a closed G_{δ} -subgroup K of X, such that H/K is a T-characterized subgroup of the compact metrizable group X/K. Then, H is a T-characterized subgroup of X by Lemma 24. \Box

As was noticed in [21] before Definition 2.33, for every *T*-sequence **u** in an infinite Abelian group G, the subgroup $\langle \mathbf{u} \rangle$ is open in $(G, \tau_{\mathbf{u}})$ (see also Lemma 20), and hence, by Lemmas 1.4 and 2.2 of [22], the following sequences are exact:

$$0 \to (\langle \mathbf{u} \rangle, \tau_{\mathbf{u}}) \to (G, \tau_{\mathbf{u}}) \to G/\langle \mathbf{u} \rangle \to 0, 0 \to (G/\langle \mathbf{u} \rangle)^{\wedge} \to (G, \tau_{\mathbf{u}})^{\wedge} \to (\langle \mathbf{u} \rangle, \tau_{\mathbf{u}}|_{\langle \mathbf{u} \rangle})^{\wedge} \to 0,$$
(2)

where $(G/\langle \mathbf{u} \rangle)^{\wedge} \cong \langle \mathbf{u} \rangle^{\perp}$ is a compact subgroup of $(G, \tau_{\mathbf{u}})^{\wedge}$ and $(\langle \mathbf{u} \rangle, \tau_{\mathbf{u}})^{\wedge} \cong (G, \tau_{\mathbf{u}})^{\wedge}/\langle \mathbf{u} \rangle^{\perp}$.

Let $\mathbf{u} = \{u_n\}_{n \in \omega}$ be a *T*-sequence in an Abelian group *G*. It is known [10] that $\tau_{\mathbf{u}}$ is sequential, and hence, $(G, \tau_{\mathbf{u}})$ is a *k*-space. Therefore, the natural homomorphism $\alpha := \alpha_{(G,\tau_{\mathbf{u}})} : (G, \tau_{\mathbf{u}}) \to (G, \tau_{\mathbf{u}})^{\wedge \wedge}$ is continuous by [23] (5.12). Let us recall that $(G, \tau_{\mathbf{u}})$ is MinAP if and only if $(G, \tau_{\mathbf{u}}) = \ker(\alpha)$.

To prove Theorem 10, we need the following:

Fact 26 ([16]). For each T-sequence **u** in a countably infinite Abelian group G, the group $(G, \tau_{\mathbf{u}})^{\wedge}$ is Polish.

Now, we are in a position to prove Theorem 10.

Proof of Theorem 10. (1) \Rightarrow (2) Let H be a proper closed T-characterized subgroup of X and a T-sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$ -characterized H. Since H is also characterized, it is a G_{δ} -subgroup of X by Fact 3. We have to show that H^{\perp} admits a MinAP group topology.

Our idea of the proof is the following. Set $G := \hat{X}$. By Fact 8, H^{\perp} is the von Neumann radical of $(G, \tau_{\mathbf{u}})$. Now, assume that we found another *T*-sequence \mathbf{v} that characterizes *H* and such that $\langle \mathbf{v} \rangle = H^{\perp}$ (maybe $\mathbf{v} = \mathbf{u}$). By Fact 8, we have $\mathbf{n}(G, \tau_{\mathbf{v}}) = H^{\perp} = \langle \mathbf{v} \rangle$. Lemma 20 implies that the subgroup $(\langle \mathbf{v} \rangle, \tau_{\mathbf{v}} |_{\langle \mathbf{v} \rangle})$ of $(G, \tau_{\mathbf{v}})$ is open, and hence, it is dually closed and dually embedded in $(G, \tau_{\mathbf{v}})$.

Hence, $\mathbf{n}(\langle \mathbf{v} \rangle, \tau_{\mathbf{v}}|_{\langle \mathbf{v} \rangle}) = \mathbf{n}(G, \tau_{\mathbf{v}}) (= \langle \mathbf{v} \rangle)$ by Lemma 4 of [16]. Therefore, $(\langle \mathbf{v} \rangle, \tau_{\mathbf{v}}|_{\langle \mathbf{v} \rangle})$ is MinAP. Thus, $H^{\perp} = \langle \mathbf{v} \rangle$ admits a MinAP group topology, as desired.

We find such a *T*-sequence v in four steps (in fact, we show that v has the form \mathbf{u}_m for some $m \in \mathbb{N}$). Step 1. Let $q : X \to X/K_{\mathbf{u}}$ be the quotient map. For every $n \in \omega$, define the character \tilde{u}_n of $X/K_{\mathbf{u}}$ by the equality $u_n = \tilde{u}_n \circ q$ (this is possible since $K_{\mathbf{u}} \subseteq \ker(u_n)$). As was shown in the proof of Lemma 23, the sequence $\tilde{\mathbf{u}} = {\tilde{u}_n}_{n\in\omega}$ is a *T*-sequence, which characterizes $H/K_{\mathbf{u}}$ in $X/K_{\mathbf{u}}$. Set $\tilde{X} := X/K_{\mathbf{u}}$ and $\tilde{H} := H/K_{\mathbf{u}}$. Therefore, $\tilde{H} = s_{\tilde{\mathbf{u}}}(\tilde{X})$. By [24] (5.34 and 24.11) and since $K_{\mathbf{u}} \subseteq H$, we have:

$$H^{\perp} \cong (X/H)^{\wedge} \cong \left(\widetilde{X}/\widetilde{H}\right)^{\wedge} \cong \widetilde{H}^{\perp}.$$
(3)

By Fact 3, \widetilde{X} is metrizable. Hence, \widetilde{H} is also compact and metrizable, and $\widetilde{G} := \widehat{\widetilde{X}}$ is a countable Abelian group by [24] (24.15). Since H is a proper closed subgroup of X, Equation (3) implies that \widetilde{G} is non-zero.

We claim that \tilde{G} is countably infinite. Indeed, suppose for a contradiction that \tilde{G} is finite. Then, $X/K_{\mathbf{u}} = \tilde{X}$ is also finite. Now, Fact 22 implies that $\langle \mathbf{u} \rangle$ is a finite subgroup of G. Since \mathbf{u} is a *T*-sequence, \mathbf{u} must be eventually equal to zero. Hence, $H = s_{\mathbf{u}}(X) = X$ is not a proper subgroup of X, a contradiction.

Step 2. We claim that there is a natural number m, such that the group $(\langle \widetilde{\mathbf{u}}_m \rangle, \tau_{\widetilde{\mathbf{u}}}|_{\langle \widetilde{\mathbf{u}}_m \rangle}) = (\langle \widetilde{\mathbf{u}}_m \rangle, \tau_{\widetilde{\mathbf{u}}}_m|_{\langle \widetilde{\mathbf{u}}_m \rangle})$ is MinAP.

Indeed, since \widetilde{G} is countably infinite, we can apply Fact 8. Therefore, $\widetilde{H} = (\widetilde{G}, \tau_{\widetilde{u}})^{\wedge}$ algebraically. Since \widetilde{H} and $(\widetilde{G}, \tau_{\widetilde{u}})^{\wedge}$ are Polish groups (see Fact 26), \widetilde{H} and $(\widetilde{G}, \tau_{\widetilde{u}})^{\wedge}$ are topologically isomorphic by the uniqueness of the Polish group topology. Hence $(\widetilde{G}, \tau_{\widetilde{u}})^{\wedge \wedge} = \widetilde{H}^{\wedge}$ is discrete. As was noticed before the proof, the natural homomorphism $\widetilde{\alpha} : (\widetilde{G}, \tau_{\widetilde{u}}) \to (\widetilde{G}, \tau_{\widetilde{u}})^{\wedge \wedge}$ is continuous. Since $(\widetilde{G}, \tau_{\widetilde{u}})^{\wedge \wedge}$ is discrete, we obtain that the von Neumann radical ker $(\widetilde{\alpha})$ of $(\widetilde{G}, \tau_{\widetilde{u}})$ is open in $\tau_{\widetilde{u}}$. Therefore, there exists a natural number m, such that $\widetilde{u}_n \in \ker(\widetilde{\alpha})$ for every $n \ge m$. Hence, $\langle \widetilde{u}_m \rangle \subseteq \ker(\widetilde{\alpha})$. Lemma 20 implies that the subgroup $\langle \widetilde{u}_m \rangle$ is open in $(\widetilde{G}, \tau_{\widetilde{u}})$, and hence, it is dually closed and dually embedded in $(\widetilde{G}, \tau_{\widetilde{u}})$. Now, Lemma 4 of [16] yields $\langle \widetilde{u}_m \rangle = \ker(\widetilde{\alpha})$, and $(\langle \widetilde{u}_m \rangle, \tau_{\widetilde{u}}|_{\langle \widetilde{u}_m \rangle})$ is MinAP.

Step 3. Set $\mathbf{v} = \{v_n\}_{n \in \omega}$, where $v_n = u_{n+m}$ for every $n \in \omega$. Clearly, \mathbf{v} is a *T*-sequence in *G* characterizing H, $\tau_{\mathbf{u}} = \tau_{\mathbf{v}}$ and $K_{\mathbf{u}} \subseteq K_{\mathbf{v}}$. Let $t : X \to X/K_{\mathbf{v}}$ and $r : X/K_{\mathbf{u}} \to X/K_{\mathbf{v}}$ be the quotient maps. Analogously to Step 1 and the proof of Lemma 23, the sequence $\tilde{\mathbf{v}} = \{\tilde{v}_n\}_{n \in \omega}$ is a *T*-sequence in $\widehat{X/K_{\mathbf{v}}}$, which characterizes $H/K_{\mathbf{v}}$ in $X/K_{\mathbf{v}}$, where $v_n = \tilde{v}_n \circ t$. Since $t = r \circ q$, we have:

$$v_n = \widetilde{v}_n \circ t = t^{\wedge}(\widetilde{v}_n) = q^{\wedge}(r^{\wedge}(\widetilde{v}_n)),$$

where t^{\wedge} , r^{\wedge} and q^{\wedge} are the adjoint homomorphisms to t, r and q, respectively.

Since q^{\wedge} and r^{\wedge} are embeddings, we have $r^{\wedge}(\widetilde{v}_n) = \widetilde{u}_{n+m}$. In particular, $\langle \mathbf{v} \rangle \cong \langle \widetilde{\mathbf{v}} \rangle \cong \langle \widetilde{\mathbf{u}}_m \rangle$ and :

$$(\langle \widetilde{\mathbf{u}}_m \rangle, \tau_{\widetilde{\mathbf{u}}}|_{\langle \widetilde{\mathbf{u}}_m \rangle}) = (\langle \widetilde{\mathbf{u}}_m \rangle, \tau_{\widetilde{\mathbf{u}}_m}|_{\langle \widetilde{\mathbf{u}}_m \rangle}) \cong (\langle \widetilde{\mathbf{v}} \rangle, \tau_{\widetilde{\mathbf{v}}}|_{\langle \widetilde{\mathbf{v}} \rangle}) \cong (\langle \mathbf{v} \rangle, \tau_{\mathbf{v}}|_{\langle \mathbf{v} \rangle}).$$

By Step 2, $(\langle \widetilde{\mathbf{u}}_m \rangle, \tau_{\widetilde{\mathbf{u}}_m} |_{\langle \widetilde{\mathbf{u}}_m \rangle})$ is MinAP. Hence, $(\langle \mathbf{v} \rangle, \tau_{\mathbf{v}} |_{\langle \mathbf{v} \rangle})$ is MinAP, as well.

Step 4. By the second exact sequence in Equation (2) applying to v, Fact 8, and since $(\langle \mathbf{v} \rangle, \tau_{\mathbf{v}}|_{\langle \mathbf{v} \rangle})$ is MinAP (by Step 3), we have $H = s_{\mathbf{v}}(X) = (G, \tau_{\mathbf{v}})^{\wedge} = (G/\langle \mathbf{v} \rangle)^{\wedge} = \langle \mathbf{v} \rangle^{\perp}$ algebraically. Thus, $H^{\perp} = \langle \mathbf{v} \rangle$, and hence, H^{\perp} admits a MinAP group topology generated by the *T*-sequence v.

(2) \Rightarrow (1): Since H is a G_{δ} -subgroup of X, H is closed by [13] (Proposition 2.4) and X/H is metrizable (due to the well-known fact that a compact group of countable pseudo-character is metrizable). Hence, $H^{\perp} = (X/H)^{\wedge}$ is countable. Since H^{\perp} admits a MinAP group topology, H^{\perp} must be countably infinite. By Theorem 3.8 of [9], H^{\perp} admits a MinAP group topology generated by a T-sequence $\tilde{\mathbf{u}} = {\tilde{u}_n}_{n\in\omega}$. By Fact 8, this means that $s_{\tilde{\mathbf{u}}}(X/H) = {0}$. Let $q : X \to X/H$ be the quotient map. Set $u_n = \tilde{u}_n \circ q = q^{\wedge}(\tilde{u}_n)$. Since q^{\wedge} is injective, \mathbf{u} is a T-sequence in \hat{X} by Lemma 20. We have to show that $H = s_{\mathbf{u}}(X)$. By definition, $x \in s_{\mathbf{u}}(X)$ if and only if:

$$(u_n, x) = (\widetilde{u}_n, q(x)) \to 1 \Leftrightarrow q(x) \in s_{\widetilde{\mathbf{u}}}(X/H) \Leftrightarrow q(x) = 0 \Leftrightarrow x \in H.$$

 $(2) \Leftrightarrow (3)$ follows from Theorem 3.8 of [9]. The theorem is proven.

Proof of Theorem 14. (1) \Rightarrow (2): Suppose for a contradiction that X is not connected. Then, by [24] (24.25), the dual group $G = X^{\wedge}$ has a non-zero element g of finite order. Then, the subgroup $H := \langle g \rangle^{\perp}$ of X has finite index. Hence, H is an open subgroup of X. Thus, H is not T-characterized by Corollary 13. This contradiction shows that X must be connected.

 $(2) \Rightarrow (1)$: Let H be a proper G_{δ} -subgroup of X. Then, H is closed by [13] (Proposition 2.4), and X/H is connected and non-zero. Hence, $H^{\perp} \cong (X/H)^{\wedge}$ is countably infinite and torsion free by [24] (24.25). Thus, H^{\perp} has infinite exponent. Therefore, by Theorem 10, H is T-characterized. \Box

The next proposition is a simple corollary of Theorem B in [13].

Proposition 27. The closure \overline{H} of a characterized (in particular, *T*-characterized) subgroup *H* of a compact Abelian group *X* is a characterized subgroup of *X*.

Proof. By Theorem B of [13], H contains a compact G_{δ} -subgroup K of X. Then, \overline{H} is also a G_{δ} -subgroup of X. Thus, \overline{H} is a characterized subgroup of X by Theorem B of [13]. \Box

In general, we cannot assert that the closure \overline{H} of a *T*-characterized subgroup *H* of a compact Abelian group *X* is also *T*-characterized, as the next example shows.

Example 1. Let $X = \mathbb{Z}(2) \times \mathbb{T}$ and $G = \hat{X} = \mathbb{Z}(2) \times \mathbb{Z}$. It is known (see the end of (1) in [7]) that there is a *T*-sequence **u** in *G*, such that the von Neumann radical $\mathbf{n}(G, \tau_{\mathbf{u}})$ of $(G, \tau_{\mathbf{u}})$ is $\mathbb{Z}(2) \times \{0\}$, the subgroup $H := s_{\mathbf{u}}(X)$ is countable and $\bar{H} = \{0\} \times \mathbb{T}$. Therefore, the closure \bar{H} of the countable *T*-characterized subgroup *H* of *X* is open. Thus, \bar{H} is not *T*-characterized by Corollary 13.

We do not know the answers to the following questions:

Problem 28. Let H be a characterized subgroup of a compact Abelian group X, such that its closure \overline{H} is T-characterized. Is H a T-characterized subgroup of X?

Problem 29. Does there exists a metrizable Abelian compact group that has a countable non-*T*-characterized subgroup?

3. The Proofs of Theorems 16 and 18

Recall that a Borel subgroup H of a Polish group X is called polishable if there exists a Polish group topology τ on H, such that the inclusion map $i : (H, \tau) \to X$ is continuous. Let H be a T-characterized subgroup of a compact metrizable Abelian group X by a T-sequence $\mathbf{u} = \{u_n\}_{n \in \omega}$. Then, by [16] (Theorem 1), H is polishable by the metric:

$$\rho(x,y) = d(x,y) + \sup\{|(u_n,x) - (u_n,y)|, \ n \in \omega\},\tag{4}$$

where d is the initial metric on X. Clearly, the topology generated by the metric ρ on H is finer than the induced one from X.

To prove Theorem 16 we need the following three lemmas.

For a real number x, we write [x] for the integral part of x and ||x|| for the distance from x to the nearest integer. We also use the following inequality proven in [25]:

$$\pi|\varphi| \le |1 - e^{2\pi i\varphi}| \le 2\pi |\varphi|, \quad \varphi \in \left[-\frac{1}{2}, \frac{1}{2}\right).$$
(5)

Lemma 30. Let $\{a_n\}_{n\in\omega} \subset \mathbb{N}$ be such that $a_n \to \infty$ and $a_n \ge 2, n \in \omega$. Set $u_n = \prod_{k\le n} a_n$ for every $n \in \omega$. Then, $\mathbf{u} = \{u_n\}_{n\in\omega}$ is a *T*-sequence in $X = \mathbb{T}$, and the *T*-characterized subgroup $H = s_{\mathbf{u}}(\mathbb{T})$ of \mathbb{T} is a dense non- F_{σ} -subset of \mathbb{T} .

Proof. We consider the circle group \mathbb{T} as \mathbb{R}/\mathbb{Z} and write it additively. Therefore, d(0, x) = ||x|| for every $x \in \mathbb{T}$. Recall that every $x \in \mathbb{T}$ has the unique representation in the form:

$$x = \sum_{n=0}^{\infty} \frac{c_n}{u_n},\tag{6}$$

where $0 \le c_n < a_n$ and $c_n \ne a_n - 1$ for infinitely many indices n.

It is known [26] (see also (12) in the proof of Lemma 1 of [25]) that x with representation Equation (6) belongs to H if and only if:

$$\lim_{n \to \infty} \frac{c_n}{a_n} \pmod{1} = 0. \tag{7}$$

Hence, H is a dense subgroup of \mathbb{T} . Thus, u is even a TB-sequence in \mathbb{Z} by Fact 1.

We have to show that H is not an F_{σ} -subset of \mathbb{T} . Suppose for a contradiction that H is an F_{σ} -subset of \mathbb{T} . Then, $H = \bigcup_{n \in \mathbb{N}} F_n$, where F_n is a compact subset of \mathbb{T} for every $n \in \mathbb{N}$. Since H is a subgroup of \mathbb{T} , without loss of generality, we can assume that $F_n - F_n \subseteq F_{n+1}$. Since all F_n are closed in (H, ρ) , as well, the Baire theorem implies that there are $0 < \varepsilon < 0.1$ and $m \in \mathbb{N}$, such that $F_m \supseteq \{x : \rho(0, x) \le \varepsilon\}$.

Fix arbitrarily l > 0, such that $\frac{2}{u_{l-1}} < \frac{\varepsilon}{20}$. For every natural number k > l, set:

$$x_k := \sum_{n=l}^k \frac{1}{u_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right].$$

Then, for every k > l, we have:

$$x_{k} = \sum_{n=l}^{k} \frac{1}{u_{n}} \cdot \left[\frac{(a_{n}-1)\varepsilon}{20} \right] < \sum_{n=l}^{k} \frac{1}{u_{n-1}} \cdot \frac{\varepsilon}{20} < \frac{1}{u_{l-1}} \sum_{n=0}^{k-l} \frac{1}{2^{n}} < \frac{2}{u_{l-1}} < \frac{\varepsilon}{20} < \frac{1}{2}.$$

This inequality and Equation (5) imply that:

$$d(0, x_k) = ||x_k|| = x_k < \frac{\varepsilon}{20}, \text{ for every } k > l.$$
(8)

For every $s \in \omega$ and every natural number k > l, we estimate $|1 - (u_s, x_k)|$ as follows. Case 1. Let s < k. Set $q = \max\{s + 1, l\}$. By the definition of x_k , we have:

$$2\pi \left[(u_s \cdot x_k) \pmod{1} \right] = 2\pi \left[u_s \sum_{n=l}^k \frac{1}{u_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right] \pmod{1} \right] < 2\pi \sum_{n=q}^k \frac{u_s}{u_n} \cdot \frac{(a_n - 1)\varepsilon}{20} < \frac{\pi\varepsilon}{10} \left(1 + \frac{1}{a_{s+1}} + \frac{1}{a_{s+1}a_{s+2}} + \frac{1}{a_{s+1}a_{s+2}a_{s+3}} + \dots \right) < \frac{\pi\varepsilon}{10} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots \right) = \frac{\pi\varepsilon}{10} \cdot 2 < \frac{2\varepsilon}{3} < \frac{1}{2}.$$

This inequality and Equation (5) imply:

$$|1 - (u_s, x_k)| = |1 - \exp\{2\pi i \cdot [(u_s \cdot x_k) \pmod{1}]\}| < \frac{2\varepsilon}{3}.$$
(9)

Case 2. Let $s \ge k$. By the definition of x_k , we have:

$$|1 - (u_s, x_k)| = 0. (10)$$

In particular, Equation (10) implies that $x_k \in H$ for every k > l. Now, for every k > l, Equations (4) and (8)–(10) imply:

$$\rho(0, x_k) < \frac{\varepsilon}{20} + \frac{2\varepsilon}{3} < \varepsilon.$$

Thus, $x_k \in F_m$ for every natural number k > l. Clearly,

$$x_k \to x := \sum_{n=l}^{\infty} \frac{1}{u_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right] \quad \text{in } \mathbb{T}.$$

Since F_m is a compact subset of \mathbb{T} , we have $x \in F_m$. Hence, $x \in H$. On the other hand, we have:

$$\lim_{n \to \infty} \frac{1}{a_n} \cdot \left[\frac{(a_n - 1)\varepsilon}{20} \right] \pmod{1} = \frac{\varepsilon}{20} \neq 0.$$

Therefore, Equation (7) implies that $x \notin H$. This contradiction shows that $H = s_{\mathbf{u}}(\mathbb{T})$ is not an F_{σ} -subset of \mathbb{T} . \Box

For a prime number p, the group $\mathbb{Z}(p^{\infty})$ is regarded as the collection of fractions $m/p^n \in [0, 1)$. Let Δ_p be the compact group of p-adic integers. It is well known that $\widehat{\Delta_p} = \mathbb{Z}(p^{\infty})$.

Lemma 31. Let $X = \Delta_p$. For an increasing sequence of natural numbers $0 < n_0 < n_1 < \ldots$, such that $n_{k+1} - n_k \rightarrow \infty$, set:

$$u_k = \frac{1}{p^{n_k+1}} \in \mathbb{Z}(p^\infty).$$

Then, the sequence $\mathbf{u} = \{u_k\}_{k \in \omega}$ is a T-sequence in $\mathbb{Z}(p^{\infty})$, and the T-characterized subgroup $H = s_{\mathbf{u}}(\Delta_p)$ is a dense non- F_{σ} -subset of Δ_p .

Proof. Let $\omega = (a_n)_{n \in \omega} \in \Delta_p$, where $0 \le a_n < p$ for every $n \in \omega$. Recall that, for every $k \in \omega$, [24] (25.2) implies:

$$(u_k, \omega) = \exp\left\{\frac{2\pi i}{p^{n_k+1}} \left(a_0 + pa_1 + \dots + p^{n_k} a_{n_k}\right)\right\}.$$
 (11)

Further, by [24] (10.4), if $\omega \neq 0$, then $d(0, \omega) = 2^{-n}$, where *n* is the minimal index, such that $a_n \neq 0$. Following [27] (2.2), for every $\omega = (a_n) \in \Delta_p$ and every natural number k > 1, set:

$$m_k = m_k(\omega) = \max\{j_k, n_{k-1}\}$$

where:

$$j_k = n_k$$
 if $0 < a_{n_k} < p - 1$,

and otherwise:

$$j_k = \min\{j : \text{ either } a_s = 0 \text{ for } j < s \le n_k, \text{ or } a_s = p - 1 \text{ for } j < s \le n_k\}$$

In [27] (2.2), it is shown that:

$$\omega \in s_{\mathbf{u}}(\Delta_p)$$
 if and only if $n_k - m_k \to \infty$. (12)

Therefore, $H := s_{\mathbf{u}}(\Delta_p)$ contains the identity $\mathbf{1} = (1, 0, 0, ...)$ of Δ_p . By [24] (Remark 10.6), $\langle \mathbf{1} \rangle$ is dense in Δ_p . Hence, H is dense in Δ_p , as well. Now, Fact 1 implies that \mathbf{u} is a T-sequence in $\mathbb{Z}(p^{\infty})$.

We have to show that H is not an F_{σ} -subset of Δ_p . Suppose for a contradiction that $H = \bigcup_{n \in \mathbb{N}} F_n$ is an F_{σ} -subset of Δ_p , where F_n is a compact subset of Δ_p for every $n \in \mathbb{N}$. Since H is a subgroup of Δ_p , without loss of generality, we can assume that $F_n - F_n \subseteq F_{n+1}$. Since all F_n are closed in (H, ρ) , as well, the Baire theorem implies that there are $0 < \varepsilon < 0.1$ and $m \in \mathbb{N}$, such that $F_m \supseteq \{x : \rho(0, x) \le \varepsilon\}$.

Fix a natural number s, such that $\frac{1}{2^s} < \frac{\varepsilon}{20}$. Choose a natural number l > s, such that, for every natural number $w \ge l$, we have:

$$n_{w+1} - n_w > s.$$
 (13)

For every $r \in \mathbb{N}$, set:

$$\omega_r := (a_n^r), \text{ where } a_n^r = \begin{cases} 1, \text{ if } n = n_{l+i} - s \text{ for some } 1 \le i \le r, \\ 0, \text{ otherwise.} \end{cases}$$

Then, for every $r \in \mathbb{N}$, Equation (13) implies that ω_r is well defined and:

$$d(0,\omega_r) = \frac{1}{2^{n_{l+1}-s}} < \frac{1}{2^{n_l}} \le \frac{1}{2^l} < \frac{1}{2^s} < \frac{\varepsilon}{20}.$$
(14)

Note that:

$$1 + p + \dots + p^{k} = \frac{p^{k+1} - 1}{p - 1} < p^{k+1}.$$
(15)

For every $k \in \omega$ and every $r \in \mathbb{N}$, we estimate $|1 - (u_k, \omega_r)|$ as follows. Case 1. Let $k \leq l$. By Equations (11) and (13) and the definition of ω_r , we have:

$$|1 - (u_k, \omega_r)| = 0.$$
(16)

Case 2. Let $l < k \le l + r$. Then, Equation (15) yields:

$$\frac{2\pi}{p^{n_k+1}} \left| p^{n_{l+1}-s} + \dots + p^{n_k-s} \right| < \frac{2\pi}{p^{n_k+1}} \cdot p^{n_k-s+1} = \frac{2\pi}{p^s} \le \frac{2\pi}{2^s} < \frac{\varepsilon}{2} < \frac{1}{2}$$

This inequality and the inequality Equations (5) and (11) imply:

$$|1 - (u_k, \omega_r)| = \left|1 - \exp\left\{\frac{2\pi i}{p^{n_k + 1}} \left(p^{n_{l+1} - s} + \dots + p^{n_k - s}\right)\right\}\right| < \frac{\varepsilon}{2}.$$
 (17)

Case 3. Let l + r < k. By Equation (15), we have:

$$\frac{2\pi}{p^{n_{k+1}}} \left| p^{n_{l+1}-s} + \dots + p^{n_{l+r}-s} \right| < \frac{2\pi}{p^{n_{k+1}}} \cdot p^{n_{l+r}-s+1} < \frac{2\pi}{p^{n_{k}+1}} \cdot p^{n_{k}-s+1} = \frac{2\pi}{p^{s}} \le \frac{2\pi}{2^{s}} < \frac{\varepsilon}{2}.$$

These inequalities, Equations (5) and (11) immediately yield:

$$|1 - (u_k, \omega_r)| = \left|1 - \exp\left\{\frac{2\pi i}{p^{n_k + 1}} \left(p^{n_{l+1} - s} + \dots + p^{n_{l+r} - s}\right)\right\}\right| < \frac{\varepsilon}{2},\tag{18}$$

and:

$$|1 - (u_k, \omega_r)| < \frac{2\pi}{p^{n_k+1}} \cdot p^{n_{l+r}-s+1} \to 0, \text{ as } k \to \infty.$$
 (19)

Therefore, Equation (19) implies that $\omega_r \in H$ for every $r \in \mathbb{N}$. For every $r \in \mathbb{N}$, by Equations (4), (14) and (16)–(18), we have:

$$\rho(0,\omega_r) = d(0,\omega_r) + \sup\left\{ \left| 1 - (u_k,\omega_r) \right|, \ k \in \omega \right\} < \frac{\varepsilon}{20} + \frac{\varepsilon}{2} < \varepsilon.$$

Thus, $\omega_r \in F_m$ for every $r \in \mathbb{N}$. Evidently,

$$\omega_r \to \widetilde{\omega} = (\widetilde{a}_n) \text{ in } \Delta_p, \text{ where } \widetilde{a}_n = \begin{cases} 1, \text{ if } n = n_{l+i} - s \text{ for some } i \in \mathbb{N}, \\ 0, \text{ otherwise.} \end{cases}$$

Since F_m is a compact subset of Δ_p , we have $\widetilde{\omega} \in F_m$. Hence, $\widetilde{\omega} \in H$. On the other hand, it is clear that $m_k(\widetilde{\omega}) = n_k - s$ for every $k \ge l + 1$. Thus, for every $k \ge l + 1$, $n_k - m_k(\widetilde{\omega}) = s \not\to \infty$. Now, Equation (12) implies that $\widetilde{\omega} \notin H$. This contradiction shows that H is not an F_{σ} -subset of Δ_p . \Box

Lemma 32. Let $X = \prod_{n \in \omega} \mathbb{Z}(b_n)$, where $1 < b_0 < b_1 < \ldots$ and $G := \widehat{X} = \bigoplus_{n \in \omega} \mathbb{Z}(b_n)$. Set $\mathbf{u} = \{u_n\}_{n \in \omega}$, where $u_n = 1 \in \mathbb{Z}(b_n)^{\wedge} \subset G$ for every $n \in \omega$. Then, \mathbf{u} is a T-sequence in G, and the T-characterized subgroup $H = s_{\mathbf{u}}(X)$ is a dense non- F_{σ} -subset of X.

Proof. Set $H := s_u(X)$. In [27] (2.3), it is shown that:

$$\omega = (a_n) \in s_{\mathbf{u}}(X) \text{ if and only if } \left\| \frac{a_n}{b_n} \right\| \to 0.$$
 (20)

Therefore, $\bigoplus_{n \in \omega} \mathbb{Z}(b_n) \subseteq H$. Thus, H is dense in X. Now, Fact 1 implies that \mathbf{u} is a T-sequence in G.

We have to show that H is not an F_{σ} -subset of X. Suppose for a contradiction that $H = \bigcup_{n \in \mathbb{N}} F_n$ is an F_{σ} -subset of X, where F_n is a compact subset of X for every $n \in \mathbb{N}$. Since H is a subgroup of X, without loss of generality, we can assume that $F_n - F_n \subseteq F_{n+1}$. Since all F_n are closed in (H, ρ) , as well, the Baire theorem yields that there are $0 < \varepsilon < 0.1$ and $m \in \mathbb{N}$, such that $F_m \supseteq \{\omega \in X : \rho(0, \omega) \le \varepsilon\}$.

Note that $d(0, \omega) = 2^{-l}$, where $0 \neq \omega = (a_n)_{n \in \omega} \in X$ and l is the minimal index, such that $a_l \neq 0$. Choose l, such that $2^{-l} < \varepsilon/3$. For every natural number k > l, set:

$$\omega_k := (a_n^k), \text{ where } a_n^k = \begin{cases} \left[\frac{\varepsilon b_n}{20}\right], \text{ for every } n \text{ such that } l \leq n \leq k, \\ 0, \text{ if either } 1 \leq n < l \text{ or } k < n. \end{cases}$$

Since $(u_n, \omega_k) = 1$ for every n > k, we obtain that $\omega_k \in H$ for every k > l. For every $n \in \omega$, we have:

$$2\pi \cdot \frac{1}{b_n} \left[\frac{\varepsilon b_n}{20} \right] < \frac{2\pi\varepsilon}{20} < \varepsilon < \frac{1}{2}.$$

This inequality and the inequality Equations (4) and (5) imply:

$$\rho(0,\omega_k) = d(0,\omega_k) + \sup\left\{ \left| 1 - (u_n,\omega_k) \right|, \ n \in \omega \right\}$$

$$\leq \frac{1}{2^l} + \max\left\{ \left| 1 - \exp\left\{ 2\pi i \frac{1}{b_n} \left[\frac{\varepsilon b_n}{20} \right] \right\} \right|, \ l \leq n \leq k \right\}$$

$$\leq \frac{\varepsilon}{3} + 2\pi \cdot \max\left\{ \frac{1}{b_n} \left[\frac{\varepsilon b_n}{20} \right], \ l \leq n \leq k \right\} < \frac{\varepsilon}{3} + \frac{2\pi\varepsilon}{20} < \varepsilon.$$

Thus, $\omega_k \in F_m$ for every natural number k > l. Evidently,

$$\omega_k \to \widetilde{\omega} = (\widetilde{a}_n)_{n \in \omega}$$
 in X, where $\widetilde{a}_n = \begin{cases} 0, \text{ if } 0 \leq n < l, \\ \left[\frac{\varepsilon b_n}{20}\right], \text{ if } l \leq n. \end{cases}$

Since F_m is a compact subset of X, we have $\widetilde{\omega} \in F_m$. Hence, $\widetilde{\omega} \in H$. On the other hand, since $b_n \to \infty$, we have:

$$\lim_{n \to \infty} \left\| \frac{\widetilde{a}_n}{b_n} \right\| = \lim_{n \to \infty} \frac{1}{b_n} \left[\frac{\varepsilon b_n}{20} \right] = \frac{\varepsilon}{20} \neq 0.$$

Thus, $\widetilde{\omega} \notin H$ by Equation (20). This contradiction shows that H is not an F_{σ} -subset of X. \Box

Now, we are in a position to prove Theorems 16 and 18.

Proof of Theorem 16. Let X be a compact Abelian group of infinite exponent. Then, $G := \hat{X}$ also has infinite exponent. It is well-known that G contains a countably-infinite subgroup S of one of the following form:

- (a) $S \cong \mathbb{Z}$;
- (b) $S \cong \mathbb{Z}(p^{\infty});$
- (c) $S \cong \bigoplus_{n \in \omega} \mathbb{Z}(b_n)$, where $1 < b_0 < b_1 < \dots$

Fix such a subgroup S. Set $K = S^{\perp}$ and $Y = X/K \cong S_d^{\wedge}$, where S_d denotes the group S endowed with the discrete topology. Since S is countable, Y is metrizable. Hence, $\{0\}$ is a G_{δ} -subgroup of

Y. Thus, K is a G_{δ} -subgroup of X. Let $q : X \to Y$ be the quotient map. By Lemmas 30–32, the compact group Y has a dense T-characterized subgroup \tilde{H} , which is not an F_{σ} -subset of Y. Lemma 24 implies that $H := q^{-1}(\tilde{H})$ is a dense T-characterized subgroup of X. Since the continuous image of an F_{σ} -subset of a compact group is an F_{σ} -subset, as well, we obtain that H is not an F_{σ} -subset of X. Thus, the subgroup H of X is T-characterized, but it is not an F_{σ} -subset of X. The theorem is proven. \Box

Proof of Theorem 18. (1) Follows from Fact 5.

(2) By Lemma 3.6 in [13], every infinite compact Abelian group X contains a dense characterized subgroup H. By Fact 1, H is T-characterized. Since every G_{δ} -subgroup of X is closed in X by Proposition 2.4 of [13], H is not a G_{δ} -subgroup of X.

- (3) Follows from Theorem 14 and the aforementioned Proposition 2.4 of [13].
- (4) Follows from Fact 5.
- (5) Follows from Corollary 17. \Box

It is trivial that $\operatorname{Char}_T(X) \subseteq \operatorname{Char}(X)$ for every compact Abelian group X. For the circle group \mathbb{T} , we have:

Proposition 33. $\operatorname{Char}_T(\mathbb{T}) = \operatorname{Char}(\mathbb{T}).$

Proof. We have to show only that $\operatorname{Char}(\mathbb{T}) \subseteq \operatorname{Char}_T(\mathbb{T})$. Let $H = s_{\mathbf{u}}(\mathbb{T}) \in \operatorname{Char}(\mathbb{T})$ for some sequence \mathbf{u} in \mathbb{Z} .

If H is infinite, then H is dense in T. Therefore, u is a T-sequence in Z by Fact 1. Thus, $H \in Char_T(\mathbb{T})$.

If H is finite, then H is closed in \mathbb{T} . Clearly, H^{\perp} has infinite exponent. Thus, $H \in \operatorname{Char}_{T}(\mathbb{T})$ by Theorem 10. \Box

Note that, if a compact Abelian group X satisfies the equality $\operatorname{Char}_T(X) = \operatorname{Char}(X)$, then X is connected by Fact 3 and Theorem 14. This fact and Proposition 33 justify the next problem:

Problem 34. Does there exists a connected compact Abelian group X, such that $\operatorname{Char}_T(X) \neq \operatorname{Char}(X)$? Is it true that $\operatorname{Char}_T(X) = \operatorname{Char}(X)$ if and only if X is connected?

For a compact Abelian group X, the set of all subgroups of X that are both $F_{\sigma\delta}$ - and $G_{\delta\sigma}$ -subsets of X we denote by $S\Delta_3^0(X)$. To complete the study of the Borel hierarchy of (T-)characterized subgroups of X, we have to answer the next question.

Problem 35. Describe compact Abelian groups X of infinite exponent for which $Char(X) \subseteq S\Delta_3^0(X)$. For which compact Abelian groups X of infinite exponent there exists a T-characterized subgroup H that does not belong to $S\Delta_3^0(X)$?

4. g_T -Closed and g_T -Dense Subgroups of Compact Abelian Groups

The following closure operator \mathfrak{g} of the category of Abelian topological groups is defined in [11]. Let X be an Abelian topological group and H its arbitrary subgroup. The closure operator $\mathfrak{g} = \mathfrak{g}_X$ is defined as follows:

$$\mathfrak{g}_X(H) := \bigcap_{\mathbf{u} \in \widehat{X}^{\mathbb{N}}} \left\{ s_{\mathbf{u}}(X) : H \le s_{\mathbf{u}}(X) \right\},\,$$

and we say that H is \mathfrak{g} -closed if $H = \mathfrak{g}(H)$, and H is \mathfrak{g} -dense if $\mathfrak{g}(H) = X$.

The set of all *T*-sequences in the dual group \widehat{X} of a compact Abelian group *X* we denote by $\mathcal{T}_s(\widehat{X})$. Clearly, $\mathcal{T}_s(\widehat{X}) \subsetneq \widehat{X}^{\mathbb{N}}$. Let *H* be a subgroup of *X*. In analogy to the closure operator \mathfrak{g} , \mathfrak{g} -closure and \mathfrak{g} -density, the operator \mathfrak{g}_T is defined as follows:

$$\mathfrak{g}_T(H) := \bigcap_{\mathbf{u} \in \mathcal{T}_s(\widehat{X})} \left\{ s_{\mathbf{u}}(X) : H \le s_{\mathbf{u}}(X) \right\},\$$

and we say that H is \mathfrak{g}_T -closed if $H = \mathfrak{g}_T(H)$, and H is \mathfrak{g}_T -dense if $\mathfrak{g}_T(H) = X$.

In this section, we study some properties of \mathfrak{g}_T -closed and \mathfrak{g}_T -dense subgroups of a compact Abelian group X. Note that every \mathfrak{g} -dense subgroup of X is dense by Lemma 2.12 of [11], but for \mathfrak{g}_T -dense subgroups, the situation changes:

Proposition 36. *Let X be a compact Abelian group.*

- (1) If H is a \mathfrak{g}_T -dense subgroup of X, then the closure \overline{H} of H is an open subgroup of X.
- (2) Every open subgroup of a compact Abelian group X is g_T -dense.

Proof. (1) Suppose for a contradiction that \overline{H} is not open in X. Then, X/\overline{H} is an infinite compact group. By Lemma 3.6 of [13], X/\overline{H} has a proper dense characterized subgroup S. Fact 1 implies that S is a T-characterized subgroup of X/\overline{H} . Let $q : X \to X/\overline{H}$ be the quotient map. Then, Lemma 24 yields that $q^{-1}(S)$ is a T-characterized dense subgroup of X containing H. Since $q^{-1}(S) \neq X$, we obtain that H is not \mathfrak{g}_T -dense in X, a contradiction.

(2) Let H be an open subgroup of X. If H = X, the assertion is trivial. Assume that H is a proper subgroup (so X is disconnected). Let \mathbf{u} be an arbitrary T-sequence, such that $H \subseteq s_{\mathbf{u}}(X)$. Since H is open, $s_{\mathbf{u}}(X)$ is open, as well. Now, Corollary 13 implies that $s_{\mathbf{u}}(X) = X$. Thus, H is \mathfrak{g}_T -dense in X. \Box

Proposition 36(2) shows that g_T -density may essentially differ from the usual g-density. In the next theorem, we characterize all compact Abelian groups for which all g_T -dense subgroups are also dense.

Theorem 37. All \mathfrak{g}_T -dense subgroups of a compact Abelian group X are dense if and only if X is connected.

Proof. Assume that all \mathfrak{g}_T -dense subgroup of X are dense. Proposition 36(2) implies that X has no open proper subgroups. Thus, X is connected by [24] (7.9).

Conversely, let X be connected and H be a \mathfrak{g}_T -dense subgroup of X. Proposition 36(1) implies that the closure \overline{H} of H is an open subgroup of X. Since X is connected, we obtain that $\overline{H} = X$. Thus, H is dense in X. \Box

For g_T -closed subgroups, we have:

Proposition 38. Let X be a compact Abelian group.

- (1) Every proper open subgroup H of X is a \mathfrak{g} -closed non- \mathfrak{g}_T -closed subgroup.
- (2) If every \mathfrak{g} -closed subgroup of X is \mathfrak{g}_T -closed, then X is connected.

Proof. (1) The subgroup H is \mathfrak{g}_T -dense in X by Proposition 36. Therefore, H is not \mathfrak{g}_T -closed. On the other hand, H is \mathfrak{g} -closed in X by Theorem A of [13].

(2) Item (1) implies that X has no open subgroups. Thus, X is connected by [24] (7.9). \Box

We do not know whether the converse in Proposition 38(2) holds true:

Problem 39. Let a compact Abelian group X be connected. Is it true that every \mathfrak{g} -closed subgroup of X is also \mathfrak{g}_T -closed?

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Graev, M. Free topological groups. Izv. Akad. Nauk SSSR Ser. Mat. 1948, 12, 278-324.
- 2. Nienhuys, J. Construction of group topologies on Abelian groups. Fund. Math. 1972, 75, 101–116.
- 3. Protasov, I.V.; Zelenyuk, E.G. Topologies on abelian groups. Math. USSR Izv. 1991, 37, 445-460.
- 4. Raczkowski, S.U. Totally bounded topological group topologies on the integers. *Topol. Appl.* **2002**, *121*, 63–74.
- 5. Barbieri, G.; Dikranjan, D.; Milan, C.; Weber, H. Answer to Raczkowski's question on convergent sequences of integers. *Topol. Appl.* **2003**, *132*, 89–101.
- 6. Barbieri, G.; Dikranjan, D.; Milan, C.; Weber, H. Convergent sequences in precompact group topologies. *Appl. Gen. Topol.* **2005**, *6*, 149–169.
- 7. Gabriyelyan, S. Characterization of almost maximally almost-periodic groups. *Topol. Appl.* **2009**, *156*, 2214–2219.
- 8. Gabriyelyan, S. Finitely generated subgroups as a von Neumann radical of an Abelian group. *Mat. Stud.* **2012**, *38*, 124–138.
- Gabriyelyan, S. Bounded subgroups as a von Neumann radical of an Abelian group. *Topol. Appl.* 2014, 178, 185–199.
- Protasov, I.V.; Zelenyuk, E.G. *Topologies on Groups Determined by Sequences*; Monograph Series; Math. Studies VNTL, L'viv, 1999.
- 11. Dikranjan, D.; Milan, C.; Tonolo, A. A characterization of the MAP abelian groups. *J. Pure Appl. Algebra* **2005**, *197*, 23–41.
- 13. Dikranjan, D.; Gabriyelyan, S. On characterized subgroups of compact abelian groups. *Topol. Appl.* **2013**, *160*, 2427–2442.

- 14. Beiglböck, M.; Steineder, C.; Winkler, R. Sequences and filters of characters characterizing subgroups of compact abelian groups. *Topol. Appl.* **2006**, *153*, 1682–1695.
- 15. Dikranjan, D.; Kunen, K. Characterizing subgroups of compact abelian groups. J. Pure Appl. Algebra 2007, 208, 285–291.
- 16. Gabriyelyan, S. On T-sequences and characterized subgroups. Topol. Appl. 2010, 157, 2834–2843.
- 17. Comfort, W.; Raczkowski, S.; Trigos-Arrieta, F.-J. Making group topologies with, and without, convergent sequences. *Appl. Gen. Topol.* **2006**, *7*, 109–124.
- 18. Gabriyelyan, S. On a generalization of Abelian sequential groups. Fund. Math. 2013, 221, 95–127.
- 19. Noble, N. k-groups and duality. Trans. Amer. Math. Soc. 1970, 151, 551–561.
- 20. Dikranjan, D.; Gabriyelyan, S.; Tarieladze, V. Characterizing sequences for precompact group topologies. *J. Math. Anal. Appl.* **2014**, *412*, 505–519.
- 21. Gabriyelyan, S. Characterizable groups: Some results and open questions. *Topol. Appl.* **2012**, *159*, 2378–2391.
- 22. Banaszczyk, W.; Chasco, M.; Martin-Peinador, E. Open subgroups and Pontryagin duality. *Math. Z.* **1994**, *215*, 195–204.
- 23. Außenhofer, L. Contributions to the Duality Theory of Abelian Topological Groups and to the Theory of Nuclear Groups. *Diss. Math.* **1999**, *384*, 113.
- 24. Hewitt, E.; Ross, K. *Abstract Harmonic Analysis*, 2nd ed.; Springer-Verlag: Berlin, Germany, 1979; Volume I.
- 25. Gabriyelyan, S. Groups of quasi-invariance and the Pontryagin duality. *Topol. Appl.* **2010**, *157*, 2786–2802.
- 26. Aaronson, J.; Nadkarni, M. L_{∞} eigenvalues and L_2 spectra of non-singular transformations. *Proc. Lond. Math. Soc.* **1987**, *55*, 538–570.
- 27. Gabriyelyan, S. Reflexive group topologies on Abelian groups. J. Group Theory 2010, 13, 891–901.

© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).