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Abstract: A sequence {un}n∈ω in abstract additively-written Abelian group G is called a
T -sequence if there is a Hausdorff group topology on G relative to which limn un = 0.
We say that a subgroupH of an infinite compact Abelian groupX is T -characterized if there
is a T -sequence u = {un} in the dual group of X , such that H = {x ∈ X : (un, x) → 1}.
We show that a closed subgroupH ofX is T -characterized if and only ifH is aGδ-subgroup
ofX and the annihilator ofH admits a Hausdorff minimally almost periodic group topology.
All closed subgroups of an infinite compact Abelian groupX are T -characterized if and only
if X is metrizable and connected. We prove that every compact Abelian group X of infinite
exponent has a T -characterized subgroup, which is not an Fσ-subgroup of X , that gives
a negative answer to Problem 3.3 in Dikranjan and Gabriyelya (Topol. Appl. 2013, 160,
2427–2442).
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1. Introduction

Notation and preliminaries: Let X be an Abelian topological group. We denote by X̂ the group of
all continuous characters on X , and X̂ endowed with the compact-open topology is denoted by X∧.
The homomorphism αX : X → X∧∧, x 7→ (χ 7→ (χ, x)), is called the canonical homomorphism.
Denote by n(X) = ∩χ∈X̂ker(χ) = ker(αX) the von Neumann radical of X . The group X is called
minimally almost periodic (MinAP ) if n(X) = X , and X is called maximally almost periodic
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(MAP ) if n(X) = {0}. Let H be a subgroup of X . The annihilator of H we denote by H⊥,
i.e., H⊥ = {χ ∈ X∧ : (χ, h) = 1 for every h ∈ H}.

Recall that an Abelian group G is of finite exponent or bounded if there exists a positive integer n,
such that ng = 0 for every g ∈ G. The minimal integer n with this property is called the exponent of G
and is denoted by exp(G). When G is not bounded, we write exp(G) = ∞ and say that G is of infinite
exponent or unbounded. The direct sum of ω copies of an Abelian group G we denote by G(ω).

Let u = {un}n∈ω be a sequence in an Abelian group G. In general, no Hausdroff topology may
exist in which u converges to zero. A very important question of whether there exists a Hausdorff group
topology τ on G, such that un → 0 in (G, τ), especially for the integers, has been studied by many
authors; see Graev [1], Nienhuys [2], and others. Protasov and Zelenyuk [3] obtained a criterion that
gives a complete answer to this question. Following [3], we say that a sequence u = {un} in an Abelian
group G is a T -sequence if there is a Hausdorff group topology on G in which un converges to zero. The
finest group topology with this property we denote by τu.

The counterpart of the above question for precompact group topologies on Z is studied by
Raczkowski [4]. Following [5,6] and motivated by [4], we say that a sequence u = {un} is a
TB-sequence in an Abelian group G if there is a precompact Hausdorff group topology on G in which
un converges to zero. For a TB-sequence u, we denote by τbu the finest precompact group topology
on G in which u converges to zero. Clearly, every TB-sequence is a T -sequence, but in general, the
converse assertion does not hold.

While it is quite hard to check whether a given sequence is a T -sequence (see, for example, [3,7–10]),
the case of TB-sequences is much simpler. Let X be an Abelian topological group and u = {un} be a
sequence in its dual group X∧. Following [11], set:

su(X) = {x ∈ X : (un, x)→ 1}.

In [5], the following simple criterion to be a TB-sequence was obtained:

Fact 1 ([5]). A sequence u in a (discrete) Abelian group G is a TB-sequence if and only if the subgroup
su(X) of the (compact) dual X = G∧ is dense.

Motivated by Fact 1, Dikranjan et al. [11] introduced the following notion related to subgroups of the
form su(X) of a compact Abelian group X:

Definition 2 ([11]). Let H be a subgroup of a compact Abelian group X and u = {un} be a sequence
in X̂ . If H = su(X), we say that u characterizes H and that H is characterized (by u).

Note that for the torus T, this notion was already defined in [12]. Characterized subgroups
have been studied by many authors; see, for example, [11–16]. In particular, the main theorem
of [15] (see also [14]) asserts that every countable subgroup of a compact metrizable Abelian group is
characterized. It is natural to ask whether a closed subgroup of a compact Abelian group is characterized.
The following easy criterion is given in [13]:

Fact 3 ([13]). A closed subgroup H of a compact Abelian group X is characterized if and only if H is
a Gδ-subgroup. In particular, X/H is metrizable, and the annihilator H⊥ of H is countable.
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The next fact follows easily from Definition 2:

Fact 4 ([17], see also [13]). Every characterized subgroup H of a compact Abelian group X is an
Fσδ-subgroup of X , and hence, H is a Borel subset of X .

Facts 3 and 4 inspired in [13] the study of the Borel hierarchy of characterized subgroups of compact
Abelian groups. For a compact Abelian group X , denote by Char(X) (respectively, SFσ(X), SFσδ(X)

and SGδ(X)) the set of all characterized subgroups (respectively, Fσ-subgroups, Fσδ-subgroups and
Gδ-subgroups) of X . The next fact is Theorem E in [13]:

Fact 5 ([13]). For every infinite compact Abelian group X , the following inclusions hold:

SGδ(X) $ Char(X) $ SFσδ(X) and SFσ(X) 6⊆ Char(X).

If in addition X has finite exponent, then:

Char(X) $ SFσ(X). (1)

The inclusion Equation (1) inspired the following question:

Question 6 (Problem 3.3 in [13]). Does there exist a compact Abelian group X of infinite exponent all
of whose characterized subgroups are Fσ-subsets of X?

Main results: It is important to emphasize that there is no restriction on the sequence u in Definition 2.
If a characterized subgroup H of a compact Abelian group X is dense, then, by Fact 1, a characterizing
sequence is also a TB-sequence. However, if H is not dense, we cannot expect in general that a
characterizing sequence of H is a T -sequence. Thus, it is natural to ask:

Question 7. For which characterized subgroups of compact Abelian groups can one find characterizing
sequences that are also T -sequences?

This question is of independent interest, because every T -sequence u naturally defines the group
topology τu satisfying the following dual property:

Fact 8 ([18]). Let H be a subgroup of an infinite compact Abelian group X characterized by a
T -sequence u. Then, (X̂, τu)∧ = H(= su(X)) and n(X̂, τu) = H⊥ algebraically.

This motivates us to introduce the following notion:

Definition 9. Let H be a subgroup of a compact Abelian group X . We say that H is a T -characterized
subgroup of X if there exists a T -sequence u = {un}n∈ω in X̂ , such that H = su(X).

Denote by CharT (X) the set of all T -characterized subgroups of a compact Abelian group X .
Clearly, CharT (X) ⊆ Char(X). Hence, if a T -characterized subgroup H of X is closed, it is a
Gδ-subgroup of X by Fact 3. Note also that X is T -characterized by the zero sequence.

The main goal of the article is to obtain a complete description of closed T -characterized subgroups
(see Theorem 10) and to study the Borel hierarchy of T -characterized subgroups (see Theorem 18)



Axioms 2015, 4 197

of compact Abelian groups. In particular, we obtain a complete answer to Question 7 for closed
characterized subgroups and give a negative answer to Question 6.

Note that, if a compact Abelian group X is finite, then every T -sequence u in X̂ is eventually equal
to zero. Hence, su(X) = X . Thus, X is the unique T -characterized subgroup of X . Therefore, in what
follows, we shall consider only infinite compact groups.

The following theorem describes all closed subgroups of compact Abelian groups that are
T -characterized.

Theorem 10. Let H be a proper closed subgroup of an infinite compact Abelian group X . Then, the
following assertions are equivalent:

(1) H is a T -characterized subgroup of X;
(2) H is aGδ-subgroup ofX , and the countable groupH⊥ admits a Hausdorff MinAPgroup topology;
(3) H is a Gδ-subgroup of X and one of the following holds:

(a) H⊥ has infinite exponent;
(b) H⊥ has finite exponent and contains a subgroup that is isomorphic to Z

(
exp(H⊥)

)(ω).
Corollary 11. Let X be an infinite compact metrizable Abelian group. Then, the trivial subgroup
H = {0} is T -characterized if and only if X̂ admits a Hausdorff MinAP group topology.

As an immediate corollary of Fact 3 and Theorem 10, we obtain a complete answer to Question 7 for
closed characterized subgroups.

Corollary 12. A proper closed characterized subgroup H of an infinite compact Abelian group X is
T -characterized if and only if H⊥ admits a Hausdorff MinAP group topology.

If H is an open proper subgroup of X , then H⊥ is non-trivial and finite. Thus, every Hausdorff group
topology on H⊥ is discrete. Taking into account Fact 3, we obtain:

Corollary 13. Every open proper subgroupH of an infinite compact Abelian groupX is a characterized
non-T -characterized subgroup of X .

Nevertheless (see Example 1 below), there is a compact metrizable Abelian groupX with a countable
T -characterized subgroup H , such that its closure H̄ is open. Thus, it may happen that the closure of a
T -characterized subgroup is not T -characterized.

It is natural to ask for which compact Abelian groups all of their closed Gδ-subgroups are
T -characterized. The next theorem gives a complete answer to this question.

Theorem 14. Let X be an infinite compact Abelian group. The following assertions are equivalent:

(1) All closed Gδ-subgroups of X are T -characterized;
(2) X is connected.

By Corollary 2.8 of [13], the trivial subgroup H = {0} of a compact Abelian group X is a
Gδ-subgroup if and only if X is metrizable. Therefore, we obtain:
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Corollary 15. All closed subgroups of an infinite compact Abelian group X are T -characterized if and
only if X is metrizable and connected.

Theorems 10 and 14 are proven in Section 2.
In the next theorem, we give a negative answer to Question 6:

Theorem 16. Every compact Abelian group of infinite exponent has a dense T -characterized subgroup,
which is not an Fσ-subgroup.

As a corollary of the inclusion Equation (1) and Theorem 16, we obtain:

Corollary 17. For an infinite compact Abelian group X , the following assertions are equivalent:

(i) X has finite exponent;
(ii) every characterized subgroup of X is an Fσ-subgroup;

(iii) every T -characterized subgroup of X is an Fσ-subgroup.

Therefore, Char(X) ⊆ SFσ(X) if and only if X has finite exponent.

In the next theorem, we summarize the obtained results about the Borel hierarchy of T -characterized
subgroups of compact Abelian groups.

Theorem 18. Let X be an infinite compact Abelian group X . Then:

(1) CharT (X) $ SFσδ(X);
(2) SGδ(X)

⋂
CharT (X) $ CharT (X);

(3) SGδ(X) ⊆ CharT (X) if and only if X is connected;
(4) CharT (X)

⋂
SFσ(X) $ SFσ(X);

(5) CharT (X) ⊆ SFσ(X) if and only if X has finite exponent.

We prove Theorems 16 and 18 in Section 3.
The notions of g-closed and g-dense subgroups of a compact Abelian group X were defined in [11].

In the last section of the paper, in analogy to these notions, we define gT -closed and gT -dense subgroups
of X . In particular, we show that every gT -dense subgroup of a compact Abelian group X is dense if
and only if X is connected (see Theorem 37).

2. The Proofs of Theorems 10 and 14

The subgroup of a group G generated by a subset A we denote by 〈A〉.
Recall that a subgroup H of an Abelian topological group X is called dually closed in X if for every

x ∈ X \ H , there exists a character χ ∈ H⊥, such that (χ, x) 6= 1. H is called dually embedded in X
if every character of H can be extended to a character of X . Every open subgroup of X is dually closed
and dually embedded in X by Lemma 3 of [19].

The next notion generalizes the notion of the maximal extension in the class of all compact Abelian
groups introduced in [20].



Axioms 2015, 4 199

Definition 19. Let G be an arbitrary class of topological groups. Let (G, τ) ∈ G and H be a subgroup
of G. The group (G, τ) is called a maximal extension of (H, τ |H) in the class G if σ ≤ τ for every group
topology on G, such that σ|H = τ |H and (G, σ) ∈ G.

Clearly, the maximal extension is unique if it exists. Note that in Definition 19, we do not assume that
(H, τ |H) belongs to the class G.

If H is a subgroup of an Abelian group G and u is a T -sequence (respectively, a TB-sequence) in H ,
we denote by τu(H) (respectively, τbu(H)) the finest (respectively, precompact) group topology on H
generated by u. We use the following easy corollary of the definition of T -sequences.

Lemma 20. For a sequence u in an Abelian group G, the following assertions are equivalent:

(1) u is a T -sequence in G;
(2) u is a T -sequence in every subgroup of G containing 〈u〉;
(3) u is a T -sequence in 〈u〉.

In this case, 〈u〉 is open in τu (and hence, 〈u〉 is dually closed and dually embedded in (G, τu)), and
(G, τu) is the maximal extension of (〈u〉, τu(〈u〉) in the class TAG of all Abelian topological groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let u be a T -sequence in 〈u〉. Let τ be the topology
on G whose base is all translationsof τu(〈u〉)-open sets. Clearly, u converges to zero in τ . Thus, u is a
T -sequence in G. Therefore, (3) implies (1).

Let us prove the last assertion. By the definition of τu, we have also τ ≤ τu, and hence,
τ |〈u〉 = τu(〈u〉) ≤ τu|〈u〉. Thus, 〈u〉 is open in τu, and hence, it is dually closed and dually embedded in
(G, τu) by [19] (Lemma 3.3). On the other hand, τu|〈u〉 ≤ τu(〈u〉) = τ |〈u〉 by the definition of τu(〈u〉).
Therefore, τu is an extension of τu(〈u〉). Now, clearly, τ = τu, and (G, τu) is the maximal extension of
(〈u〉, τu(〈u〉) in the class TAG.

For TB-sequences, we have the following:

Lemma 21. For a sequence u in an Abelian group G, the following assertions are equivalent:

(1) u is a TB-sequence in G;
(2) u is a TB-sequence in every subgroup of G containing 〈u〉;
(3) u is a TB-sequence in 〈u〉.

In this case, the subgroup 〈u〉 is dually closed and dually embedded in (G, τbu), and (G, τbu) is the
maximal extension of (〈u〉, τbu(〈u〉)) in the class of all precompact Abelian groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let u be a TB-sequence in 〈u〉.
Then, (〈u〉, τbu(〈u〉))∧ separates the points of 〈u〉. Let τ be the topology on G whose base is all
translations of τbu(〈u〉)-open sets. Then, (〈u〉, τbu(〈u〉)) is an open subgroup of (G, τ). It is easy to
see that (G, τ)∧ separates the points of G. Since u converges to zero in τ , it also converges to zero in τ+,
where τ+ is the Bohr topology of (G, τ). Thus, u is a TB-sequence in G. Therefore, (3) implies (1).

The last assertion follows from Proposition 1.8 and Lemma 3.6 in [20].



Axioms 2015, 4 200

For a sequence u = {un}n∈ω of characters of a compact Abelian group X , set:

Ku =
⋂
n∈ω

ker(un).

The following assertions is proven in [13]:

Fact 22 (Lemma 2.2(i) of [13]). For every sequence u = {un}n∈ω of characters of a compact Abelian
group X , the subgroup Ku is a closed Gδ-subgroup of X and Ku = 〈u〉⊥.

The next two lemmas are natural analogues of Lemmas 2.2(ii) and 2.6 of [13].

Lemma 23. Let X be a compact Abelian group and u = {un}n∈ω be a T -sequence in X̂ .
Then, su(X)/Ku is a T -characterized subgroup of X/Ku.

Proof. Set H := su(X) and K := Ku. Let q : X → X/K be the quotient map. Then, the adjoint
homomorphism q∧ is an isomorphism from (X/K)∧ onto K⊥ in X∧. For every n ∈ ω, define the
character ũn of X/K as follows: (ũn, q(x)) = (un, x) (ũn is well-defined, since K ⊆ ker(un)).
Then, ũ = {ũn}n∈ω is a sequence of characters of X/K, such that q∧(ũn) = un. Since u ⊂ K⊥, u is a
T -sequence in K⊥ by Lemma 20. Hence, ũ is a T -sequence in (X/K)∧ because q∧ is an isomorphism.

We claim that H/K = sũ(X/K). Indeed, for every h + K ∈ H/K, by definition, we have
(ũn, h+K) = (un, h)→ 1. Thus, H/K ⊆ sũ(X/K). If x + K ∈ sũ(X/K), then (ũn, x + K) =

(un, x)→ 1. This yields x ∈ H . Thus, x+K ∈ H/K.

Let u = {un}n∈ω be a T -sequence in an Abelian group G. For every natural number m, set
um = {un}n≥m. Clearly, um is a T -sequence in G, τu = τum and su(X) = sum(X) for every natural
number m.

Lemma 24. Let K be a closed subgroup of a compact Abelian group X and q : X → X/K be the
quotient map. Then, H̃ is a T -characterized subgroup ofX/K if and only if q−1(H̃) is a T -characterized
subgroup of X .

Proof. Let H̃ be a T -characterized subgroup of X/K, and let a T -sequence
ũ = {ũn}n∈ω-characterized H̃ . Set H := q−1(H̃). We have to show that H is a T -characterized
subgroup of X .

Note that the adjoint homomorphism q∧ is an isomorphism from (X/K)∧ onto K⊥ in X∧.
Set u = {un}n∈ω, where un = q∧(ũn). Since q∧ is injective, u is a T -sequence in K⊥. By Lemma 20, u
is a T -sequence in X̂ . Therefore, it is enough to show that H = su(X). This follows from the following
chain of equivalences. By definition, x ∈ su(X) if and only if:

(un, x)→ 1 ⇔ (ũn, q(x))→ 1 ⇔ q(x) ∈ H̃ = H/K ⇔ x ∈ H.

The last equivalence is due to the inclusion K ⊆ H .
Conversely, let H := q−1(H̃) be a T -characterized subgroup of X and a T -sequence

u = {un}n∈ω-characterized H . Proposition 2.5 of [13] implies that we can find m ∈ N, such
that K ⊆ Kum . Therefore, taking into account that H = su(X) = sum(X) for every natural
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number m, without loss of generality, we can assume that K ⊆ Ku. By Lemma 23, H/Ku is a
T -characterized subgroup of X/Ku. Denote by qu the quotient homomorphism from X/K onto X/Ku.
Then, H̃ = q−1u (H/Ku) is T -characterized in X/K by the previous paragraph of the proof.

The next theorem is an analogue of Theorem B of [13], and it reduces the study of T -characterized
subgroups of compact Abelian groups to the study of T -characterized ones of compact Abelian
metrizable groups:

Theorem 25. A subgroup H of a compact Abelian group X is T -characterized if and only if H contains
a closed Gδ-subgroup K of X , such that H/K is a T -characterized subgroup of the compact metrizable
group X/K.

Proof. Let H be T -characterized in X by a T -sequence u = {un}n∈ω in X̂ . Set K := Ku. Since K is
a closed Gδ-subgroup of X by Fact 22, X/K is metrizable. By Lemma 23, H/K is a T -characterized
subgroup of X/K.

Conversely, let H contain a closed Gδ-subgroup K of X , such that H/K is a T -characterized
subgroup of the compact metrizable group X/K. Then, H is a T -characterized subgroup of X by
Lemma 24.

As was noticed in [21] before Definition 2.33, for every T -sequence u in an infinite Abelian group
G, the subgroup 〈u〉 is open in (G, τu) (see also Lemma 20), and hence, by Lemmas 1.4 and 2.2 of [22],
the following sequences are exact:

0→ (〈u〉, τu)→ (G, τu)→ G/〈u〉 → 0,

0→ (G/〈u〉)∧ → (G, τu)∧ → (〈u〉, τu|〈u〉)∧ → 0,
(2)

where (G/〈u〉)∧ ∼= 〈u〉⊥ is a compact subgroup of (G, τu)∧ and (〈u〉, τu)∧ ∼= (G, τu)∧/〈u〉⊥.
Let u = {un}n∈ω be a T -sequence in an Abelian group G. It is known [10] that τu is sequential, and

hence, (G, τu) is a k-space. Therefore, the natural homomorphism α := α(G,τu) : (G, τu) → (G, τu)∧∧

is continuous by [23] (5.12). Let us recall that (G, τu) is MinAP if and only if (G, τu) = ker(α).
To prove Theorem 10, we need the following:

Fact 26 ([16]). For each T -sequence u in a countably infinite Abelian group G, the group
(G, τu)∧ is Polish.

Now, we are in a position to prove Theorem 10.

Proof of Theorem 10. (1) ⇒ (2) Let H be a proper closed T -characterized subgroup of X and a
T -sequence u = {un}n∈ω-characterizedH . Since H is also characterized, it is a Gδ-subgroup of X
by Fact 3. We have to show that H⊥ admits a MinAP group topology.

Our idea of the proof is the following. Set G := X̂ . By Fact 8, H⊥ is the von Neumann radical
of (G, τu). Now, assume that we found another T -sequence v that characterizes H and such that
〈v〉 = H⊥ (maybe v = u). By Fact 8, we have n(G, τv) = H⊥ = 〈v〉. Lemma 20 implies that the
subgroup (〈v〉, τv|〈v〉) of (G, τv) is open, and hence, it is dually closed and dually embedded in (G, τv).
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Hence, n(〈v〉, τv|〈v〉) = n(G, τv)(= 〈v〉) by Lemma 4 of [16]. Therefore, (〈v〉, τv|〈v〉) is MinAP. Thus,
H⊥ = 〈v〉 admits a MinAP group topology, as desired.

We find such a T -sequence v in four steps (in fact, we show that v has the form um for some m ∈ N).
Step 1. Let q : X → X/Ku be the quotient map. For every n ∈ ω, define the character ũn

of X/Ku by the equality un = ũn ◦ q (this is possible since Ku ⊆ ker(un)). As was shown in the
proof of Lemma 23, the sequence ũ = {ũn}n∈ω is a T -sequence, which characterizes H/Ku in X/Ku.
Set X̃ := X/Ku and H̃ := H/Ku. Therefore, H̃ = sũ(X̃). By [24] (5.34 and 24.11) and sinceKu ⊆ H ,
we have:

H⊥ ∼= (X/H)∧ ∼=
(
X̃/H̃

)∧ ∼= H̃⊥. (3)

By Fact 3, X̃ is metrizable. Hence, H̃ is also compact and metrizable, and G̃ :=
̂̃
X is a countable

Abelian group by [24] (24.15). Since H is a proper closed subgroup of X , Equation (3) implies that G̃
is non-zero.

We claim that G̃ is countably infinite. Indeed, suppose for a contradiction that G̃ is finite.
Then, X/Ku = X̃ is also finite. Now, Fact 22 implies that 〈u〉 is a finite subgroup of G. Since u is
a T -sequence, u must be eventually equal to zero. Hence, H = su(X) = X is not a proper subgroup of
X , a contradiction.

Step 2. We claim that there is a natural number m, such that the group (〈ũm〉, τũ|〈ũm〉) =

(〈ũm〉, τũm|〈ũm〉) is MinAP.
Indeed, since G̃ is countably infinite, we can apply Fact 8. Therefore, H̃ = (G̃, τũ)∧ algebraically.

Since H̃ and (G̃, τũ)∧ are Polish groups (see Fact 26), H̃ and (G̃, τũ)∧ are topologically isomorphic
by the uniqueness of the Polish group topology. Hence (G̃, τũ)∧∧ = H̃∧ is discrete. As was noticed
before the proof, the natural homomorphism α̃ : (G̃, τũ) → (G̃, τũ)∧∧ is continuous. Since (G̃, τũ)∧∧ is
discrete, we obtain that the von Neumann radical ker(α̃) of (G̃, τũ) is open in τũ. Therefore, there exists
a natural number m, such that ũn ∈ ker(α̃) for every n ≥ m. Hence, 〈ũm〉 ⊆ ker(α̃). Lemma 20 implies
that the subgroup 〈ũm〉 is open in (G̃, τũ), and hence, it is dually closed and dually embedded in (G̃, τũ).
Now, Lemma 4 of [16] yields 〈ũm〉 = ker(α̃), and (〈ũm〉, τũ|〈ũm〉) is MinAP.

Step 3. Set v = {vn}n∈ω, where vn = un+m for every n ∈ ω. Clearly, v is a T -sequence in G
characterizing H , τu = τv and Ku ⊆ Kv. Let t : X → X/Kv and r : X/Ku → X/Kv be the quotient
maps. Analogously to Step 1 and the proof of Lemma 23, the sequence ṽ = {ṽn}n∈ω is a T -sequence in
X̂/Kv, which characterizes H/Kv in X/Kv, where vn = ṽn ◦ t. Since t = r ◦ q, we have:

vn = ṽn ◦ t = t∧(ṽn) = q∧ (r∧(ṽn)) ,

where t∧, r∧ and q∧ are the adjoint homomorphisms to t, r and q, respectively.
Since q∧ and r∧ are embeddings, we have r∧(ṽn) = ũn+m. In particular, 〈v〉 ∼= 〈ṽ〉 ∼= 〈ũm〉 and :

(〈ũm〉, τũ|〈ũm〉) = (〈ũm〉, τũm |〈ũm〉)
∼= (〈ṽ〉, τṽ|〈ṽ〉) ∼= (〈v〉, τv|〈v〉).

By Step 2, (〈ũm〉, τũm|〈ũm〉) is MinAP. Hence, (〈v〉, τv|〈v〉) is MinAP, as well.
Step 4. By the second exact sequence in Equation (2) applying to v, Fact 8, and since (〈v〉, τv|〈v〉)

is MinAP (by Step 3), we have H = sv(X) = (G, τv)∧ = (G/〈v〉)∧ = 〈v〉⊥ algebraically.
Thus, H⊥ = 〈v〉, and hence, H⊥ admits a MinAP group topology generated by the T -sequence v.
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(2) ⇒ (1): Since H is a Gδ-subgroup of X , H is closed by [13] (Proposition 2.4) and X/H

is metrizable (due to the well-known fact that a compact group of countable pseudo-character is
metrizable). Hence, H⊥ = (X/H)∧ is countable. Since H⊥ admits a MinAP group topology, H⊥

must be countably infinite. By Theorem 3.8 of [9], H⊥ admits a MinAP group topology generated by
a T -sequence ũ = {ũn}n∈ω. By Fact 8, this means that sũ(X/H) = {0}. Let q : X → X/H be the
quotient map. Set un = ũn ◦ q = q∧(ũn). Since q∧ is injective, u is a T -sequence in X̂ by Lemma 20.
We have to show that H = su(X). By definition, x ∈ su(X) if and only if:

(un, x) = (ũn, q(x))→ 1⇔ q(x) ∈ sũ(X/H)⇔ q(x) = 0⇔ x ∈ H.

(2)⇔(3) follows from Theorem 3.8 of [9]. The theorem is proven.

Proof of Theorem 14. (1) ⇒ (2): Suppose for a contradiction that X is not connected. Then,
by [24] (24.25), the dual group G = X∧ has a non-zero element g of finite order. Then, the subgroup
H := 〈g〉⊥ of X has finite index. Hence, H is an open subgroup of X . Thus, H is not T -characterized
by Corollary 13. This contradiction shows that X must be connected.

(2) ⇒ (1): Let H be a proper Gδ-subgroup of X . Then, H is closed by [13] (Proposition 2.4), and
X/H is connected and non-zero. Hence, H⊥ ∼= (X/H)∧ is countably infinite and torsion free by [24]
(24.25). Thus, H⊥ has infinite exponent. Therefore, by Theorem 10, H is T -characterized.

The next proposition is a simple corollary of Theorem B in [13].

Proposition 27. The closure H̄ of a characterized (in particular, T -characterized) subgroup H of a
compact Abelian group X is a characterized subgroup of X .

Proof. By Theorem B of [13], H contains a compact Gδ-subgroup K of X . Then, H̄ is also a
Gδ-subgroup of X . Thus, H̄ is a characterized subgroup of X by Theorem B of [13].

In general, we cannot assert that the closure H̄ of a T -characterized subgroupH of a compact Abelian
group X is also T -characterized, as the next example shows.

Example 1. Let X = Z(2) × T and G = X̂ = Z(2) × Z. It is known (see the end of (1) in [7]) that
there is a T -sequence u in G, such that the von Neumann radical n(G, τu) of (G, τu) is Z(2) × {0},
the subgroup H := su(X) is countable and H̄ = {0} × T. Therefore, the closure H̄ of the countable
T -characterized subgroup H of X is open. Thus, H̄ is not T -characterized by Corollary 13.

We do not know the answers to the following questions:

Problem 28. Let H be a characterized subgroup of a compact Abelian group X , such that its closure
H̄ is T -characterized. Is H a T -characterized subgroup of X?

Problem 29. Does there exists a metrizable Abelian compact group that has a countable
non-T -characterized subgroup?
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3. The Proofs of Theorems 16 and 18

Recall that a Borel subgroup H of a Polish group X is called polishable if there exists a Polish group
topology τ on H , such that the inclusion map i : (H, τ)→ X is continuous. Let H be a T -characterized
subgroup of a compact metrizable Abelian group X by a T -sequence u = {un}n∈ω. Then, by [16]
(Theorem 1), H is polishable by the metric:

ρ(x, y) = d(x, y) + sup{|(un, x)− (un, y)|, n ∈ ω}, (4)

where d is the initial metric on X . Clearly, the topology generated by the metric ρ on H is finer than the
induced one from X .

To prove Theorem 16 we need the following three lemmas.
For a real number x, we write [x] for the integral part of x and ‖x‖ for the distance from x to the

nearest integer. We also use the following inequality proven in [25]:

π|ϕ| ≤ |1− e2πiϕ| ≤ 2π|ϕ|, ϕ ∈
[
−1

2
,
1

2

)
. (5)

Lemma 30. Let {an}n∈ω ⊂ N be such that an → ∞ and an ≥ 2, n ∈ ω. Set un =
∏

k≤n an for every
n ∈ ω. Then, u = {un}n∈ω is a T -sequence in X = T, and the T -characterized subgroup H = su(T)

of T is a dense non-Fσ-subset of T.

Proof. We consider the circle group T as R/Z and write it additively. Therefore, d(0, x) = ‖x‖ for
every x ∈ T. Recall that every x ∈ T has the unique representation in the form:

x =
∞∑
n=0

cn
un
, (6)

where 0 ≤ cn < an and cn 6= an − 1 for infinitely many indices n.
It is known [26] (see also (12) in the proof of Lemma 1 of [25]) that xwith representation Equation (6)

belongs to H if and only if:
lim
n→∞

cn
an

(mod 1) = 0. (7)

Hence, H is a dense subgroup of T. Thus, u is even a TB-sequence in Z by Fact 1.
We have to show that H is not an Fσ-subset of T. Suppose for a contradiction that H is an Fσ-subset

of T. Then, H = ∪n∈NFn, where Fn is a compact subset of T for every n ∈ N. Since H is a subgroup of
T, without loss of generality, we can assume that Fn − Fn ⊆ Fn+1. Since all Fn are closed in (H, ρ), as
well, the Baire theorem implies that there are 0 < ε < 0.1 andm ∈ N, such that Fm ⊇ {x : ρ(0, x) ≤ ε}.

Fix arbitrarily l > 0, such that 2
ul−1

< ε
20

. For every natural number k > l, set:

xk :=
k∑
n=l

1

un
·
[

(an − 1)ε

20

]
.

Then, for every k > l, we have:

xk =
k∑
n=l

1

un
·
[

(an − 1)ε

20

]
<

k∑
n=l

1

un−1
· ε

20
<

1

ul−1

k−l∑
n=0

1

2n
<

2

ul−1
<

ε

20
<

1

2
.
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This inequality and Equation (5) imply that:

d(0, xk) = ‖xk‖ = xk <
ε

20
, for every k > l. (8)

For every s ∈ ω and every natural number k > l, we estimate |1− (us, xk)| as follows.
Case 1. Let s < k. Set q = max{s+ 1, l}. By the definition of xk, we have:

2π [(us · xk) (mod 1)] = 2π

[
us

k∑
n=l

1

un
·
[

(an − 1)ε

20

]
(mod 1)

]
< 2π

k∑
n=q

us
un
· (an − 1)ε

20

<
πε

10

(
1 +

1

as+1

+
1

as+1as+2

+
1

as+1as+2as+3

+ . . .

)
<
πε

10

(
1 +

1

2
+

1

22
+

1

23
+ . . .

)
=
πε

10
· 2 < 2ε

3
<

1

2
.

This inequality and Equation (5) imply:

|1− (us, xk)| = |1− exp {2πi · [(us · xk) (mod 1)]}| < 2ε

3
. (9)

Case 2. Let s ≥ k. By the definition of xk, we have:

|1− (us, xk)| = 0. (10)

In particular, Equation (10) implies that xk ∈ H for every k > l.
Now, for every k > l, Equations (4) and (8)–(10) imply:

ρ(0, xk) <
ε

20
+

2ε

3
< ε.

Thus, xk ∈ Fm for every natural number k > l. Clearly,

xk → x :=
∞∑
n=l

1

un
·
[

(an − 1)ε

20

]
in T.

Since Fm is a compact subset of T, we have x ∈ Fm. Hence, x ∈ H . On the other hand, we have:

lim
n→∞

1

an
·
[

(an − 1)ε

20

]
(mod 1) =

ε

20
6= 0.

Therefore, Equation (7) implies that x 6∈ H . This contradiction shows that H = su(T) is not an
Fσ-subset of T.

For a prime number p, the group Z(p∞) is regarded as the collection of fractions m/pn ∈ [0, 1).
Let ∆p be the compact group of p-adic integers. It is well known that ∆̂p = Z(p∞).

Lemma 31. Let X = ∆p. For an increasing sequence of natural numbers 0 < n0 < n1 < . . . , such
that nk+1 − nk →∞, set:

uk =
1

pnk+1
∈ Z(p∞).

Then, the sequence u = {uk}k∈ω is a T -sequence in Z(p∞), and the T -characterized subgroup
H = su(∆p) is a dense non-Fσ-subset of ∆p.
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Proof. Let ω = (an)n∈ω ∈ ∆p, where 0 ≤ an < p for every n ∈ ω. Recall that, for every k ∈ ω, [24]
(25.2) implies:

(uk, ω) = exp

{
2πi

pnk+1
(a0 + pa1 + · · ·+ pnkank

)

}
. (11)

Further, by [24] (10.4), if ω 6= 0, then d(0, ω) = 2−n, where n is the minimal index, such that an 6= 0.
Following [27] (2.2), for every ω = (an) ∈ ∆p and every natural number k > 1, set:

mk = mk(ω) = max{jk, nk−1},

where:
jk = nk if 0 < ank

< p− 1,

and otherwise:

jk = min{j : either as = 0 for j < s ≤ nk, or as = p− 1 for j < s ≤ nk}.

In [27] (2.2), it is shown that:

ω ∈ su(∆p) if and only if nk −mk →∞. (12)

Therefore, H := su(∆p) contains the identity 1 = (1, 0, 0, . . . ) of ∆p. By [24] (Remark 10.6), 〈1〉 is
dense in ∆p. Hence, H is dense in ∆p, as well. Now, Fact 1 implies that u is a T -sequence in Z(p∞).

We have to show that H is not an Fσ-subset of ∆p. Suppose for a contradiction that H = ∪n∈NFn is
an Fσ-subset of ∆p, where Fn is a compact subset of ∆p for every n ∈ N. Since H is a subgroup of ∆p,
without loss of generality, we can assume that Fn−Fn ⊆ Fn+1. Since all Fn are closed in (H, ρ), as well,
the Baire theorem implies that there are 0 < ε < 0.1 and m ∈ N, such that Fm ⊇ {x : ρ(0, x) ≤ ε}.

Fix a natural number s, such that 1
2s
< ε

20
. Choose a natural number l > s, such that, for every natural

number w ≥ l, we have:
nw+1 − nw > s. (13)

For every r ∈ N, set:

ωr := (arn), where arn =

{
1, if n = nl+i − s for some 1 ≤ i ≤ r,

0, otherwise.

Then, for every r ∈ N, Equation (13) implies that ωr is well defined and:

d(0, ωr) =
1

2nl+1−s
<

1

2nl
≤ 1

2l
<

1

2s
<

ε

20
. (14)

Note that:

1 + p+ · · ·+ pk =
pk+1 − 1

p− 1
< pk+1. (15)

For every k ∈ ω and every r ∈ N, we estimate |1− (uk, ωr)| as follows.
Case 1. Let k ≤ l. By Equations (11) and (13) and the definition of ωr, we have:

|1− (uk, ωr)| = 0. (16)
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Case 2. Let l < k ≤ l + r. Then, Equation (15) yields:

2π

pnk+1

∣∣pnl+1−s + · · ·+ pnk−s
∣∣ < 2π

pnk+1
· pnk−s+1 =

2π

ps
≤ 2π

2s
<
ε

2
<

1

2
.

This inequality and the inequality Equations (5) and (11) imply:

|1− (uk, ωr)| =
∣∣∣∣1− exp

{
2πi

pnk+1

(
pnl+1−s + · · ·+ pnk−s

)}∣∣∣∣ < ε

2
. (17)

Case 3. Let l + r < k. By Equation (15), we have:

2π

pnk+1

∣∣pnl+1−s + · · ·+ pnl+r−s
∣∣ < 2π

pnk+1
· pnl+r−s+1

<
2π

pnk+1
· pnk−s+1 =

2π

ps
≤ 2π

2s
<
ε

2
.

These inequalities, Equations (5) and (11) immediately yield:

|1− (uk, ωr)| =
∣∣∣∣1− exp

{
2πi

pnk+1

(
pnl+1−s + · · ·+ pnl+r−s

)}∣∣∣∣ < ε

2
, (18)

and:
|1− (uk, ωr)| <

2π

pnk+1
· pnl+r−s+1 → 0, as k →∞. (19)

Therefore, Equation (19) implies that ωr ∈ H for every r ∈ N.
For every r ∈ N, by Equations (4), (14) and (16)–(18), we have:

ρ(0, ωr) = d(0, ωr) + sup {|1− (uk, ωr)| , k ∈ ω} <
ε

20
+
ε

2
< ε.

Thus, ωr ∈ Fm for every r ∈ N. Evidently,

ωr → ω̃ = (ãn) in ∆p, where ãn =

{
1, if n = nl+i − s for some i ∈ N,

0, otherwise.

Since Fm is a compact subset of ∆p, we have ω̃ ∈ Fm. Hence, ω̃ ∈ H . On the other hand, it is
clear that mk(ω̃) = nk − s for every k ≥ l + 1. Thus, for every k ≥ l + 1, nk − mk(ω̃) = s 6→ ∞.
Now, Equation (12) implies that ω̃ 6∈ H . This contradiction shows that H is not an Fσ-subset of ∆p.

Lemma 32. Let X =
∏

n∈ω Z(bn), where 1 < b0 < b1 < . . . and G := X̂ =
⊕

n∈ω Z(bn).
Set u = {un}n∈ω, where un = 1 ∈ Z(bn)∧ ⊂ G for every n ∈ ω. Then, u is a T -sequence in G,
and the T -characterized subgroup H = su(X) is a dense non-Fσ-subset of X .

Proof. Set H := su(X). In [27] (2.3), it is shown that:

ω = (an) ∈ su(X) if and only if
∥∥∥∥anbn

∥∥∥∥→ 0. (20)

Therefore,
⊕

n∈ω Z(bn) ⊆ H . Thus, H is dense in X . Now, Fact 1 implies that u is a T -sequence
in G.
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We have to show that H is not an Fσ-subset of X . Suppose for a contradiction that H = ∪n∈NFn is
an Fσ-subset of X , where Fn is a compact subset of X for every n ∈ N. Since H is a subgroup of X ,
without loss of generality, we can assume that Fn−Fn ⊆ Fn+1. Since all Fn are closed in (H, ρ), as well,
the Baire theorem yields that there are 0 < ε < 0.1 and m ∈ N, such that Fm ⊇ {ω ∈ X : ρ(0, ω) ≤ ε}.

Note that d(0, ω) = 2−l, where 0 6= ω = (an)n∈ω ∈ X and l is the minimal index, such that al 6= 0.
Choose l, such that 2−l < ε/3. For every natural number k > l, set:

ωk := (akn), where akn =


[
εbn
20

]
, for every n such that l ≤ n ≤ k,

0, if either 1 ≤ n < l or k < n.

Since (un, ωk) = 1 for every n > k, we obtain that ωk ∈ H for every k > l. For every n ∈ ω,
we have:

2π · 1

bn

[
εbn
20

]
<

2πε

20
< ε <

1

2
.

This inequality and the inequality Equations (4) and (5) imply:

ρ(0, ωk) = d(0, ωk) + sup {|1− (un, ωk)| , n ∈ ω}

≤ 1

2l
+ max

{∣∣∣∣1− exp

{
2πi

1

bn

[
εbn
20

]}∣∣∣∣ , l ≤ n ≤ k

}
≤ ε

3
+ 2π ·max

{
1

bn

[
εbn
20

]
, l ≤ n ≤ k

}
<
ε

3
+

2πε

20
< ε.

Thus, ωk ∈ Fm for every natural number k > l. Evidently,

ωk → ω̃ = (ãn)n∈ω in X, where ãn =


0, if 0 ≤ n < l,[

εbn
20

]
, if l ≤ n.

Since Fm is a compact subset of X , we have ω̃ ∈ Fm. Hence, ω̃ ∈ H . On the other hand, since
bn →∞, we have:

lim
n→∞

∥∥∥∥ ãnbn
∥∥∥∥ = lim

n→∞

1

bn

[
εbn
20

]
=

ε

20
6= 0.

Thus, ω̃ 6∈ H by Equation (20). This contradiction shows that H is not an Fσ-subset of X .

Now, we are in a position to prove Theorems 16 and 18.

Proof of Theorem 16. Let X be a compact Abelian group of infinite exponent. Then, G := X̂ also
has infinite exponent. It is well-known that G contains a countably-infinite subgroup S of one of the
following form:

(a) S ∼= Z;
(b) S ∼= Z(p∞);
(c) S ∼=

⊕
n∈ω Z(bn), where 1 < b0 < b1 < . . . .

Fix such a subgroup S. Set K = S⊥ and Y = X/K ∼= S∧d , where Sd denotes the group S endowed
with the discrete topology. Since S is countable, Y is metrizable. Hence, {0} is a Gδ-subgroup of
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Y . Thus, K is a Gδ-subgroup of X . Let q : X → Y be the quotient map. By Lemmas 30–32, the
compact group Y has a dense T -characterized subgroup H̃ , which is not an Fσ-subset of Y . Lemma 24
implies that H := q−1(H̃) is a dense T -characterized subgroup of X . Since the continuous image of
an Fσ-subset of a compact group is an Fσ-subset, as well, we obtain that H is not an Fσ-subset of
X . Thus, the subgroup H of X is T -characterized, but it is not an Fσ-subset of X . The theorem is
proven.

Proof of Theorem 18. (1) Follows from Fact 5.
(2) By Lemma 3.6 in [13], every infinite compact Abelian group X contains a dense characterized

subgroup H . By Fact 1, H is T -characterized. Since every Gδ-subgroup of X is closed in X by
Proposition 2.4 of [13], H is not a Gδ-subgroup of X .

(3) Follows from Theorem 14 and the aforementioned Proposition 2.4 of [13].
(4) Follows from Fact 5.
(5) Follows from Corollary 17.

It is trivial that CharT (X) ⊆ Char(X) for every compact Abelian group X . For the circle group T,
we have:

Proposition 33. CharT (T) = Char(T).

Proof. We have to show only that Char(T) ⊆ CharT (T). Let H = su(T) ∈ Char(T) for some
sequence u in Z.

If H is infinite, then H is dense in T. Therefore, u is a T -sequence in Z by Fact 1. Thus, H ∈
CharT (T).

If H is finite, then H is closed in T. Clearly, H⊥ has infinite exponent. Thus, H ∈ CharT (T) by
Theorem 10.

Note that, if a compact Abelian group X satisfies the equality CharT (X) = Char(X), then X is
connected by Fact 3 and Theorem 14. This fact and Proposition 33 justify the next problem:

Problem 34. Does there exists a connected compact Abelian group X , such that CharT (X) 6=
Char(X)? Is it true that CharT (X) = Char(X) if and only if X is connected?

For a compact Abelian group X , the set of all subgroups of X that are both Fσδ- and Gδσ-subsets of
X we denote by S∆0

3(X). To complete the study of the Borel hierarchy of (T -)characterized subgroups
of X , we have to answer the next question.

Problem 35. Describe compact Abelian groups X of infinite exponent for which Char(X) ⊆ S∆0
3(X).

For which compact Abelian groups X of infinite exponent there exists a T -characterized subgroup H
that does not belong to S∆0

3(X)?
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4. gT -Closed and gT -Dense Subgroups of Compact Abelian Groups

The following closure operator g of the category of Abelian topological groups is defined in [11].
Let X be an Abelian topological group and H its arbitrary subgroup. The closure operator g = gX is
defined as follows:

gX(H) :=
⋂

u∈X̂N

{su(X) : H ≤ su(X)} ,

and we say that H is g-closed if H = g(H), and H is g-dense if g(H) = X .
The set of all T -sequences in the dual group X̂ of a compact Abelian group X we denote by Ts(X̂).

Clearly, Ts(X̂) $ X̂N. Let H be a subgroup of X . In analogy to the closure operator g, g-closure and
g-density, the operator gT is defined as follows:

gT (H) :=
⋂

u∈Ts(X̂)

{su(X) : H ≤ su(X)} ,

and we say that H is gT -closed if H = gT (H), and H is gT -dense if gT (H) = X .
In this section, we study some properties of gT -closed and gT -dense subgroups of a compact Abelian

group X . Note that every g-dense subgroup of X is dense by Lemma 2.12 of [11], but for gT -dense
subgroups, the situation changes:

Proposition 36. Let X be a compact Abelian group.

(1) If H is a gT -dense subgroup of X , then the closure H̄ of H is an open subgroup of X .
(2) Every open subgroup of a compact Abelian group X is gT -dense.

Proof. (1) Suppose for a contradiction that H̄ is not open inX . Then,X/H̄ is an infinite compact group.
By Lemma 3.6 of [13], X/H̄ has a proper dense characterized subgroup S. Fact 1 implies that S is a
T -characterized subgroup of X/H̄ . Let q : X → X/H̄ be the quotient map. Then, Lemma 24 yields
that q−1(S) is a T -characterized dense subgroup of X containing H . Since q−1(S) 6= X , we obtain that
H is not gT -dense in X , a contradiction.

(2) Let H be an open subgroup of X . If H = X , the assertion is trivial. Assume that H is a proper
subgroup (so X is disconnected). Let u be an arbitrary T -sequence, such that H ⊆ su(X). Since H
is open, su(X) is open, as well. Now, Corollary 13 implies that su(X) = X . Thus, H is gT -dense
in X .

Proposition 36(2) shows that gT -density may essentially differ from the usual g-density. In the next
theorem, we characterize all compact Abelian groups for which all gT -dense subgroups are also dense.

Theorem 37. All gT -dense subgroups of a compact Abelian group X are dense if and only if X
is connected.

Proof. Assume that all gT -dense subgroup of X are dense. Proposition 36(2) implies that X has no
open proper subgroups. Thus, X is connected by [24] (7.9).

Conversely, let X be connected and H be a gT -dense subgroup of X . Proposition 36(1) implies that
the closure H̄ of H is an open subgroup of X . Since X is connected, we obtain that H̄ = X . Thus, H
is dense in X .
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For gT -closed subgroups, we have:

Proposition 38. Let X be a compact Abelian group.

(1) Every proper open subgroup H of X is a g-closed non-gT -closed subgroup.
(2) If every g-closed subgroup of X is gT -closed, then X is connected.

Proof. (1) The subgroup H is gT -dense in X by Proposition 36. Therefore, H is not gT -closed. On the
other hand, H is g-closed in X by Theorem A of [13].

(2) Item (1) implies that X has no open subgroups. Thus, X is connected by [24] (7.9).

We do not know whether the converse in Proposition 38(2) holds true:

Problem 39. Let a compact Abelian group X be connected. Is it true that every g-closed subgroup of
X is also gT -closed?
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