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Abstract: Currently, there is great renewed interest in proving the topological transitivity of
various classes of continuous dynamical systems. Even though this is one of the most basic
dynamical properties that can be investigated, the tools used by various authors are quite
diverse and are strongly related to the class of dynamical systems under consideration. The
goal of this review article is to present the state of the art for the class of Hölder extensions
of hyperbolic systems with non-compact connected Lie group fiber. The hyperbolic systems
we consider are mostly discrete time. In particular, we address the stability and genericity of
topological transitivity in large classes of such transformations. The paper lists several open
problems and conjectures and tries to place this topic of research in the general context of
hyperbolic and topological dynamics.
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1. Introduction

A dynamical system is a continuous map f of a topological space X . We emphasize that in this
paper, X will be mostly a non-compact set and f will be invertible. Given a dynamical system (X, f), a
basic property that one may study is topological transitivity, that is the existence of a dense forward
orbit x, f(x), f 2(x), . . . . If X is locally compact separable without isolated points, then (X, f) is
topologically transitive if and only if for any non-empty open subsets U, V ⊂ X , there exists n ≥ 1,
such that fn(U) ∩ V 6= ∅. The topological spaces that we will work with, Riemannian manifolds and
phase spaces of shifts of the finite type, satisfy these conditions. Let us observe that other, sometimes
equivalent with ours, definitions are introduced in the literature for topological transitivity. One may
refer to the survey papers of Blanchard [1] or Kolyada-Snoha [2] for a more in-depth discussion and
other definitions/interpretations of topological transitivity. This notion is also closely related to the
notion of topological chaos introduced by Devaney [3]. The original definition of topological chaos
given by Devaney, in addition to topological transitivity, requires the existence of a dense set of periodic
points and the sensitive dependence of initial data for the dynamical system. It was later shown by
Banks et al. [4] that the sensitivity of the initial data is a consequence of the other two conditions.

Various examples of topological transitive transformations are constructed in the literature. In some
respects, topological transitivity is the topological counterpart of ergodicity. We recall that a probability
measure µ on a measurable space X is ergodic with respect to a measurable map f : X → X if and
only if the only f -invariant subsets, up to subsets of measure zero, are X and the empty set. If X
is compact topological space and the continuous map f has an invariant Borel probability measure µ,
which is positive on open sets, then topological transitivity is implied by ergodicity. It was shown by
Oxtoby and Ulam [5] that ergodicity is a residual property, in the set of homeomorphisms of a manifold
X of dimension at least two, if µ is a nonatomic measure of full support with µ(∂X) = 0. We recall that
a residual property for a complete metric space is one that is valid for a second Baire category subset.

Examples of topological transitive transformations of the plane are constructed by Besicovitch [6,7]
and Shnirelman [8]. Their work was generalized by Sidorov [9], who constructed topological transitive
extensions of a topologically transitive map with fiber an arbitrary Banach space.

The class of hyperbolic dynamical systems, introduced in the 1960s–1970s by Anosov and Sinai [10]
in the USSR and by Bowen [11] and Smale [12] in the USA, provides many examples of ergodic and,
in particular, topologically transitive transformations. Hyperbolic systems have a splitting of the tangent
bundle into two invariant subbundles, one contracting and one expanding. These bundles are integrable
into stable/unstable foliations. A standard reference for the theory of hyperbolic dynamical systems
is the monograph of Katok and Hasselblatt [13]. During our exposition, we will assume as known or
already defined many standard notions discussed there. Similar techniques can be applied to continuous
dynamical systems, such as hyperbolic flows. Building on an argument of Hopf [14], who proved the
ergodicity of the geodesic flow of a surface of negative curvature, Anosov [15] proved the ergodicity of
the geodesic flow of any manifold of negative curvature. A key ingredient of the proof is the existence
of invariant stable and unstable foliations for the geodesic flow. These foliations are, in general, only
transversally Hölder, but exhibit the absolute continuity of the holonomy maps; this allows the Hopf
argument to be carried out.
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Partially hyperbolic diffeomorphisms were introduced in the 1980s by Brin and Pesin [16] as a
generalization of hyperbolic diffeomorphisms. Partially hyperbolic diffeomorphisms have a splitting
of the tangent bundle into three invariant subbundles, one contracting, one expanding and one, called
the center bundle, for which the expansion/contraction is in-between. The contracting and expanding
subbundles are always integrable into stable/unstable foliations. It was expected that, in the presence of a
smooth invariant volume, ergodicity with respect to the volume measure should be true for many of these
transformations. Brin and Pesin [16] proved ergodicity under the assumptions that the stable/unstable
foliations are smooth and form an accessible pair, that is, one can travel from any point in the manifold
to any other point in the manifold via a path built out of segments sitting inside stable/unstable leaves.
The argument was carried forward by Grayson, Pugh and Shub [17], Pugh and Shub [18] and Burns
and Wilkinson [19]. The state of the art in this direction is that the accessibility of the pair of
stable/unstable foliations implies ergodicity. Nevertheless, accessibility turned out to be difficult to
prove. Some progress was done in the case of a one-dimensional center subbundle; see, e.g., [20].
Hertz [21] proved the stable ergodicity of certain linear automorphisms of the torus. Furthermore,
Dolgopyat and Wilkinson [22] proved that stable accessibility is dense in the C1-topology for the class
of volume preserving partially hyperbolic diffeomorphisms. Pugh and Shub conjectured that in C2 and
even Cr, r ≥ 2 topology, accessibility is open and dense.

If the invariant volume does not exist, then even in the presence of partial hyperbolicity, different
tools are needed in order to study topological transitivity. Given a dynamical system (X, f), a point
x ∈ X is called recurrent if for any neighborhood U of x, there exists a positive integer n ≥ 1, such that
fn(x) ∈ U . In particular, any periodic point is recurrent. Brin [23] proved that a C1 diffeomorphism that
has an accessible pair of stable/unstable foliations and a dense set of recurrent points is topologically
transitive. This result has, nevertheless, limited applicability due to the difficulty of proving the
accessibility and density of recurrent points. In particular, it is difficult to exhibit a dense set of periodic
points for such transformations. Open sets of transitive partially hyperbolic diffeomorphisms are found
by Bonatti and Diaz [24], building on previous examples found by Shub [25].

A robust obstruction to topological transitivity is the existence of a trapping region, i.e., a non-empty
open proper subset U ⊂ M , such that f(Ū) ⊆ U . When this obstruction does not occur, it follows
from the work of Bonatti and Crovisier [26] that a generic C1 diffeomorphism of a compact Riemannian
manifold is topologically transitive. This result relies on the Pugh-Hayashi [27–29] closing lemma, and
it is not available beyond the C1 category.

Another direction currently pursued in the literature is that of linear topological chaos, that is, the
study of topological chaos for infinite dimensional continuous linear operators [30]. The techniques
employed in linear topological chaos are quite different from those employed in the study of hyperbolic
dynamical systems and will not be discussed in this review.

In the rest of this review paper, we summarize the results about the topological transitivity for various
classes of non-compact Lie group extensions of hyperbolic systems. These classes of dynamical systems
can be thought of as thin classes of partially hyperbolic systems.
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2. Lie Group Extensions of Hyperbolic Systems: Basic Definitions and the Main Conjecture

Definition 1. Consider a continuous transformation f : X → X , a Lie group Γ and a continuous map
β : X → Γ called a cocycle. These determine a skew product, or Γ-extension,

fβ : X × Γ→ X × Γ, fβ(x, γ) = (fx, γβ(x))

It is assumed throughout the rest of the paper that X is a hyperbolic basic set. Of interest to us is
whether non-compact Lie group extensions of a hyperbolic basic set are typically topologically transitive.

Definition 2. Let (M,dM) be a smooth manifold endowed with a Riemannian metric. Let f : M → M

be a smooth diffeomorphism and X ⊂ M a compact and f -invariant subset of M . We say that X is
hyperbolic if there exists a continuous Df -invariant splitting Es ⊕ Eu of the tangent bundle TXM and
constants C1 > 0, 0 < λ < 1, such that for all n ≥ 0 and x ∈ X , we have:

‖(Dfn)xv‖ ≤ C1λ
n‖v‖, v ∈ Es

x

‖(Df−n)xv‖ ≤ C1λ
n‖v‖, v ∈ Eu

x

(1)

If X coincides with M , then f is called hyperbolic, or Anosov, diffeomorphism.
We say that X is locally maximal if there exists an open neighborhood U of X , such that every

compact f -invariant set of U is contained in X . A locally maximal hyperbolic set X is a basic set for
f : M →M if f : X → X is transitive and X does not consist of a single periodic orbit.

We present some motivation for the study of Lie group extensions of hyperbolic systems. These
transformations have many common properties with partially hyperbolic diffeomorphisms. If the fiber
is a compact connected Lie group, the cocycle β is at least C1 and the hyperbolic basic set (X, f) is
an Anosov diffeomorphism, then the extension is a partially hyperbolic diffeomorphism. In general, we
will see that if a certain bunching condition for the center direction holds, then fβ has stable and unstable
foliations. If the Lie group Γ is not compact, the extension fβ acts on a space that does not support an
invariant probability measure. Thus, the class of non-compact Lie group extensions can be considered
as a test bed for the more general class of partially hyperbolic diffeomorphisms that do not have a nice
invariant probability measure.

Given a connected Lie group Γ and a cocycle β : X → Γ, we consider the Γ-extension fβ : X ×Γ→
X ×Γ. We say that the cocycle β is topologically transitive (for brevity, transitive,) if the corresponding
skew product fβ is transitive.

Let LΓ be the Lie algebra of Γ. We denote by eΓ the identity element of Γ. Let Ad denote the adjoint
representation of Γ on LΓ. Let ‖ · ‖ be a norm on LΓ. There is a metric d on Γ with the following
properties (see Pollicott and Walkden [31]):

1. d(γγ1, γγ2) = d(γ1, γ2);
2. d(γ1γ, γ2γ) ≤ ‖Ad(γ)‖d(γ1, γ2);

for any γ, γ1, γ2 ∈ Γ.
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Definition 3. Let f : X → X be a map and β : X → Γ a cocycle. For k ≥ 1, we write
fkβ (x, γ) = (fkx, γβ(k, x)), where:

β(k, x) = β(x)β(fx) · · · β(fk−1x) =
k−1∏
j=0

β(f jx)

(occasionally, we use the last formula to keep notation simple; its meaning is the ordered product given
by the middle expression).

If Q is a trajectory of f of length k (i.e., Q = {x, f(x), . . . , fk−1(x)} for some x), then we define
the height of β over Q to be β(Q) = β(k, x). In particular, if x is a periodic point of period `, then the
height of the corresponding periodic orbit P is β(P ) = β(`, x).

By abuse of notation, we often refer to “the periodic orbit P” instead of “the orbit of the periodic
point x” when x is clear from the context.

Definition 4. Given a cocycle β : X → Γ over f : X → X , define µ ≥ 1 to be:

µ = max
{

lim
n→∞

sup
x∈X
‖Ad(β(n, x))‖1/n, lim

n→∞
sup
x∈X
‖Ad(β(n, x))−1‖1/n

}
For f fixed, we say that the cocycle β has subexponential growth if µ = 1.

Remark 1. The subexponential growth condition is automatically satisfied for any cocycle if the group Γ

is compact, nilpotent or a semidirect product of compact and nilpotent. This follows from the well-known
result that nilpotent Lie groups have polynomial growth [32].

Recall the definition of cohomology:

Definition 5. Let Γ be a topological group. If β1, β2 : X → Γ are continuous functions and f : X → X

is a continuous map, then β1, β1 are called cohomologous (over f ) if there exists a continuous map
u : X → Γ, such that:

β1 = (u ◦ f)β2u
−1

In [33], we proposed a general conjecture about topological transitivity in the class of Hölder cocycles.
We start by observing that if the cocycle β takes values in a proper closed sub-semigroup S of the
fiber Γ, then obviously fβ is not transitive. An example is the group Γ = R with sub-semigroup S

consisting of the set of non-negative numbers. As IntS 6= ∅, we can construct open sets of nontransitive
R-extensions. Another example is the group Γ = SL(n,R) with sub-semigroup S consisting of
matrices with non-negative entries. Since IntS 6= ∅, again we can construct open sets of nontransitive
SL(n,R)-extensions.

Our conjecture is that this situation is the only essential obstruction to transitivity.

Conjecture 1 (Main Conjecture). Assume that X is a hyperbolic basic set for f : X → X and Γ is a
finite-dimensional connected Lie group. Among the Hölder cocycles β : X → Γ with subexponential
growth that are not cohomologous to a cocycle with values in a maximal sub-semigroup of Γ with a
non-empty interior, there is a Hölder open and dense set for which the extension fβ is transitive.
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3. Statements of Available Results

The conjecture is proven for various classes of Lie groups. The techniques used so far are quite
diverse and seem to depend heavily on the particular properties of the group that appears in the fiber.

3.1. Γ Compact Connected Lie Group

We start by observing that in this case, closed sub-semigroups coincide with closed subgroups and
that there are no proper sub-semigroups with a nonempty interior. It was proven by Brin [23] that if the
fiber Γ is a compact connected Lie group, then topologically transitive extensions of a transitive Anosov
diffeomorphism contain a set that is open and dense in the C2-topology. An extension of Brin’s general
transitivity result is obtained in [34,35], in which accessibility is replaced by ε-accessibility for any ε > 0.
This improvement allows one to consider extensions with a disconnected base, such as subshifts of the
finite type.

As observed in [20], Brin’s result also holds in the Hölder topology. In fact, over an Anosov
diffeomorphism, for any r > 0, the Cr cocycles that are transitive contain a Hölder-open (meaning
Cs-open for any s ∈ (0, 1), s ≤ r) and Cr-dense set, and this result generalizes to extensions of a
hyperbolic attractor. The latter result does not hold for extensions of general hyperbolic basic sets when
r < 1 (in particular, the result is false if (X, f) is topologically conjugate to a subshift of finite type
and Γ is a torus: the interior of the transitive Cr-cocycles contains no cocycle of higher smoothness).
However, for compact group extensions of general hyperbolic basic sets, Field et al. [36] proved that the
transitive extensions contain a set that is: (i) Hölder open and dense (proving the Main Conjecture 1);
and (ii) C2-open, Cr-dense for all r ≥ 2. See, also, [37–39].

Burns and Wilkinson [40] generalized Brin’s result by showing the stability of the ergodicity of the
extensions with compact fiber for perturbations in the class of Cr diffeomorphisms.

3.2. Γ = Rn

In this case, the maximal sub-semigroups with non-empty interior are the half-spaces whose bounding
hyperplane contains the origin. Hence, stable transitivity is certainly not a generic property of
Rn-extensions. However, there are no further obstructions. We recall that a continuous map f of a
topological space X is called weakly topologically mixing if f × f is topologically transitive. We
can associate with each periodic orbit fnx = x a height β(n, x) :=

∑n−1
i=0 β(f ix). We denote by

PDβ = {β(n, x) : fnx = x, x ∈ X} the collection of all heights over the closed orbits of f .
Nitica and Pollicott [41] proved the following result:

Theorem 1. Let X be an infranilmanifold, f : X → X an Anosov diffeomorphism and β : X → Rn a
Hölder cocycle. Then, the following are equivalent:

1. the cocycle β is not cohomologous to a cocycle that takes values in a half-space;
2. the set PDβ is not separated by any hyperplane passing through the origin;
3. the extension fβ is transitive;
4. the extension fβ is C0-stably transitive;
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5. the extension fβ is weakly mixing;
6. the extension fβ is C0-stably weakly mixing;
7. for any direction in Rn, there exist orbits of fβ that are unbounded in the positive sense and orbits

that are unbounded in the negative sense (i.e., ∀v ∈ Rn − {0}, ∃x, y ∈ X , ∀N > 0, ∃n,m ≥ 0

such that 〈β(n, x), v〉 ≥ N and 〈β(m, y), v〉 ≤ −N ).

Remark 2. We note that, due to a result of Bousch [42], one can check if a cocycle β is cohomologous
to one that takes values in a half-space by looking at the periodic data PDβ .

Therefore, one has a complete dichotomy for an Rn-extension fβ over an infranil Anosov
diffeomorphism: either it is transitive (and, hence, stably transitive), or β is cohomologous to a cocycle
with values in such a half-space. Moreover, the transitive Hölder Rn-extensions fβ are actuallyC0-stably
transitive, that is, if β′ is C0-close enough to β and fβ is transitive, then fβ′ is transitive.

A crucial ingredient in the proof of Theorem 1 is that the induced map in the first Čech cohomology
groups f ∗ : H1(X,Z) → H1(X,Z) does not have one as an eigenvalue. This is known to be the case
for an Anosov diffeomorphism of an infranilmanifold, and it is an important open question as to whether
this is the case for all Anosov diffeomorphisms (cf. [43]) (indeed, it is an open question as to whether
there are Anosov diffeomorphisms on spaces other than infranilmanifolds).

Moss and Walkden [44] replace the condition about the induced map in cohomology by the weaker
condition that the first Čech cohomology group H1(X,Z) has finite rank, where X is a hyperbolic basic
set. Moreover, the action in the base is extended to hyperbolic flows. Their proof gives an explicit
and global description of the set of functions β that give rise to transitive skew-products in terms of the
cohomology of the hyperbolic basic set X .

We recall that a continuous map f of a topological space X is called topologically mixing if for any
open subsets U, V ⊆ X , there exists a positive integer N , such that fn(U) ∩ V 6= ∅ for any n ≥ N . The
following problem seems to be open.

Problem 1. Find a topologically mixing R-extension of an Anosov diffeomorphism.

For general hyperbolic basic sets, transitive Rn-extensions need not be stably transitive. However,
let S denote the set of cocycles that are not cohomologous to a cocycle with values in a half-space.
For cocycles in S, Field et al. [36] proved a result identical to that stated above for compact group
extensions. Again this proves the Main Conjecture 1 for Rn-extensions. Similar results hold for general
Abelian finite-dimensional Lie groups Γ = Rn × Td, where Td is a d-dimensional torus.

3.3. Γ Is a Euclidean-Type Group

An important test case of a Euclidean-type group is the special Euclidean group, which is the
semidirect product Γ = SE(n) = SO(n)nRn with the action of SO(n) on Rn given by the usual matrix
multiplication. In this case, it is easy to see that there are no proper sub-semigroups with non-empty
interior. It is shown in [33,45,46] that when n is even, the set of cocycles that are transitive is Hölder-open
and Cr-dense, thus solving the conjecture in this case. The conjecture remains open for n ≥ 3 odd. The
difference between the case n odd and n even is due to the different behavior of a generic element in



Axioms 2015, 4 91

Γ: if n is even, then for a residual set of elements in Γ, the closure of the semigroup generated by an
element is a compact subgroup of Γ; if n is odd, then for a residual set of elements in Γ, the closure of
the semigroup generated by an element is an unbounded subset of Γ.

Problem 2. For 0 < α < 1, find a Cα-stable transitive SE(3)-extension of an Anosov diffeomorphism.

In this direction, we show in [47] that for SE(n)-extensions, n ≥ 3 odd, the transitivity is generic.

Theorem 2. Let X be a basic hyperbolic set for f : X → X . Let r > 0, and let n ≥ 3 be odd. Amongst
the Cr cocycles β : X → SE(n), the transitive cocycles form a residual set.

More generally, one may consider Euclidean-type groups of the form Γ = G n Rn, where G is a
compact connected Lie group acting linearly (and orthogonally) on Rn, and the group multiplication is
given by:

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2)

Let FixG = {v ∈ Rn : gv = v for all g ∈ G}. Set π : Γ → FixG to be the projection onto the
Rn-component and then orthogonal projection onto FixG. If FixG 6= {0}, then there is an obvious
obstruction to transitivity, namely that πβ : X → FixG takes values in a half-space. More generally, if
πβ is cohomologous to a cocycle with values in a half space, then fβ is not transitive. This is the only
obstruction in generalizing Theorem 2 to general Euclidean-type groups.

Theorem 3. Let X be a basic hyperbolic set for f : X → X , and let Γ = Gn Rn be a Euclidean-type
group. Let r > 0. Define S to be the space of Cr cocycles β : X → Γ for which πβ : X → FixG is not
cohomologous to a cocycle with values in a half-space.

Then, S is an open subset of the space of Cr cocycles, and the transitive cocycles β : X → Γ form a
residual subset of S.

Remark 3. (1) If FixG = 0, then there is no obstruction to transitivity, so Theorem 2 is a special case
of Theorem 3.

(2) By a standard argument, the set of transitive Cr cocycles can be written as a countable
intersection of Cr-open sets. We include the argument below. Hence, it suffices to prove the density in
Theorems 2 and 3.

Choose a countable basis {Uk}k of the topology on X × Γ and denote by Cr
k,` the Cr cocycles β ∈ S

for which there is a positive integer n, such that fnβ (Uk) ∩ U` 6= ∅. Each set Cr
k,` is clearly Cr-open, and

f is transitive if and only if β is in each of the sets Cr
k,`.

3.4. Γ Is a Nilpotent Lie Group

Definition 6. For n ≥ 1, letHn denote the group consisting of matrices of the form:

(a, b, c) :=

 1 aT c

0 In b

0 0 1

 ∈ Matn+2(R) (2)
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where a, b ∈ Rn, c ∈ R and In is the n-dimensional identity matrix.

Remark 4. (1) We can identifyHn with Rn ⊕ Rn ⊕ R endowed with the multiplication:

(a, b, c)(A,B,C) = (a+ A, b+B, c+ C + aTB) (3)

where a, b, A,B ∈ Rn, c, C ∈ R
(2)H1 is the standard three-dimensional Heisenberg group.

The center of Hn is [Hn,Hn] = {(0, 0, c)} = R. Denote Ĥn = Hn/R ∼= R2n. If β : X → Hn is
a cocycle, denote by β̂ : X → Ĥn the corresponding quotient cocycle. There is an obvious obstruction
to transitivity, namely that β̂ : X → Ĥn

∼= R2n takes values in a half-space bounded by a hyperplane
passing through the origin (for brevity, call this a half-space from now on). More generally, if β̂ is
cohomologous to a cocycle with values in a half-space, then fβ is not transitive.

If r > 0, let Sr(X,Hn) be the set of Cr cocycles β : X → Hn for which β̂ is not cohomologous to a
cocycle with values in a half-space. The main result in [48], improving on a weaker result showing only
genericity and proven in [49], is:

Theorem 4 ([48, Theorem 1.4]). Assume that X is a hyperbolic basic set for f : X → X . Let r > 0.
Then Sr(X,Hn) contains a dense and open set of transitive cocycles.

More precisely, we prove:

Theorem 5 ([48, Theorem 1.5]). Let X be a hyperbolic basic set for f : X → X and β : X → Hn a
Hölder cocycle. If β̂ : X → R2n is transitive, then so is β.

This implies Theorem 4, because, by [36,41]:

Theorem 6 ([48, Theorem 1.6]). For r > 0, there is an open and dense set in Sr(X,Rd) consisting of
transitive cocycles.

A new technical tool needed in the proof of Theorem 4, which is of independent interest, is a
diophantine approximation result, which shows the existence of an infinite set of approximate positive
integer solutions for a diophantine system of equations consisting of a quadratic indefinite form and
several linear equations, provided exact solutions exist over R. The set of approximate solutions can be
chosen to point in a certain direction; this direction can be chosen from a residual subset of full measure
of the set of real directions solving exactly the system of equations.

Theorem 7 ([48, Theorem 6.2]). For d ≥ 2, assume given in Rd a (homogeneous) quadratic form Q

and k (homogeneous) linear forms L1, L2, . . . , Lk, such that Q|∩Ker Li
is indefinite.

Assume that rankQ ≥ 2k+3. Then, for a residual, full measure set (in the induced topology/Lebesgue
measure) of vectors v 6= 0 in:

{Q = 0} ∩ {Li = 0, 1 ≤ i ≤ k}

for any ε > 0, there are xn ∈ Zd, such that:
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(1) ‖xn‖ → ∞,
(2) sup |Q(xn)| <∞,
(3) dist(xn,R+v) ≤ ε.

In particular,
|Li(xn)| ≤ Cε, for all 1 ≤ i ≤ k and all n

with a constant C > 0 determined by the linear forms.

There is a class of nilpotent groups, analogous to the Heisenberg groups, but with a compact center,
for which we obtain stronger results and for which the proofs are much simpler.

The normal subgroup of Hn generated by (0, 0, 1) is isomorphic to Z. Denote by Γn the quotient
Hn/Z. The center of Γn is R/Z ∼= S1; let Γ̂n = Γn/S

1 ∼= R2n.
If β : X → Γn is a cocycle, denote by β̂ : X → R2n the corresponding quotient cocycle. For r > 0,

let Sr(X,Γn) be the set of Cr cocycles β : X → Γn for which β̂ is not cohomologous to a cocycle with
values in a half-space.

Theorem 8 ([49, Theorem 1.5]). Assume that X is a basic hyperbolic set for f : X → X . Let n ≥ 1,
r > 0. Then, there is an open and dense set of transitive cocycles in Sr(X,Γn).

3.5. Γ Is a Compact and Nilpotent Semidirect Product

In this subsection, we follow [50].

Definition 7. A connected Lie group Γ is called a good semidirect product if it is a semidirect product
K nN , where N is a nilpotent Lie group, K is a compact Lie group and, in addition, if T is a maximal
torus in K; the only element of N fixed under conjugation by T is the identity.

Definition 8. A connected Lie group Γ is perfect if its commutator subgroup [Γ,Γ] coincides with Γ.

Theorem 9 ([50, Theorem 1.1]). Assume that X is a hyperbolic basic set for f : X → X . Let
Γ = K nN be a good semidirect product that is perfect. Then, in the class of Cr-cocycles β : X → Γ,
r > 0, the transitive ones contain an open and dense set.

We describe next a large class of Lie groups that satisfy the assumptions in Theorem 9.

Definition 9. Let K be R or C. Let n be a positive integer, and let n = n1 + n2 + · · · + n`, where
ni, 1 ≤ i ≤ ` are also positive integers. Define G(n1, n2, . . . , n`,K) to be the subgroup of GL(n,K),
which consists of all block matrices:

A1 B1,2 B1,3 . . . B1,`

0 A2 B2,3 . . . B2,`

0 0 A3 · · · B3,`

...
...

... . . . ...
0 0 0 . . . A`

 (4)
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where:

• the blockAi is an arbitrary matrix in the orthogonal group SO(ni) (respectively, the unitary group
U(ni)), 1 ≤ i ≤ `;
• the block Bi,j is an arbitrary matrix in Mat(ni, nj), for 1 ≤ i ≤ `− 1, i+ 1 ≤ j ≤ `,
• the blocks below the diagonal are zero.

Remark 5. For n ≥ 3, the partition (n− 1, 1) gives the special Euclidean group SE(n− 1).

Theorem 10 ([50, Theorem 1.2]). Let K be R or C. Let n ≥ 3 be an integer and n1 +n2 + · · ·+n` = n

a partition of n, where (n1, n2, . . . , n`) are even integers, all greater or equal to four, except possibly
for a single occurrence of one. Then, Γ = G(n1, n2, . . . , n`,K) is a good semidirect product, which
is perfect.

Problem 3. If ni = 2, for some 1 ≤ i ≤ `, and if there is no more than one one among the ni’s, then the
group G(n1, n2, . . . , n`,R) is a good semidirect product that is not perfect. If there are at least two ones
among the ni’s, then the group G(n1, n2, . . . , n`,R) is not a good semidirect product. With the exception
of the case G = SE(2) = G(2, 1,R), solved in [46] using results about extensions with Abelian fiber,
Theorem 10 leaves open the transitivity conjecture for these cases.

Definition 10. If Γ is a topological group, we call g ∈ Γ compact if the closure of the subgroup generated
by g is compact. We denote by C(Γ) the set of compact elements in Γ.

Remark 6. The proof of Theorem 9 is based on the existence of an open dense set of compact elements in
Γ. It is shown in [51] that if a connected Lie subgroup H of GL(n,K) contains an open neighborhood of
the identity in which compact elements are dense and is maximal with this property, then H is conjugate
to a group G(n1, n2, . . . , n`,K). This remark shows the optimality of our results and the limitations of
the method. In order to solve Problem 3, one needs to develop new techniques.

3.6. Γ Is a Non-Compact Semisimple Lie Group

The conjecture is not verified for any non-compact semisimple Lie group. Nevertheless, for
Γ = SL(2,R) and, more generally, for Γ = Sp(n,R), open sets of transitive extensions are constructed
in [33]. Here is a brief description of the construction. One uses the existence of compact elements in
Γ that are stably compact under small perturbations. No such elements are known in SL(3,R) or many
other non-compact semisimple Lie groups. These compact elements can be chosen arbitrarily close to
the identity. We start with the identity cocycle β. After a small perturbation, we can arrange for the
height of β over the orbit of a fixed periodic point x0 ∈ X to be a stably compact element. Using
the method described in Section 4, this allows one to construct a set of generators for Γ in the range
Lβ(x0) (defined in Section 4) that are close to the identity. The generating property is stable under small
perturbations due to a classical result of Kuranishi [52]. In conjunction with Theorem 11 in Section 4,
this gives a stably transitive extension with fiber Sp(n,R).

The following problem is left open:
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Problem 4. For α ∈ (0, 1), find aCα-stable transitive SL(3,R)-extension of an Anosov diffeomorphism.

4. Criterion for Transitivity

In order to prove the topological transitivity of extensions with non-compact fiber, sometimes we are
able to use the methods developed by Brin in the proof of his general result mentioned in the Introduction.
This is due to the existence of the pair of stable/unstable foliations for the extension and the fact that
generic accessibility for the pair is easy to prove in some cases. The difficult part is to show the density
of recurrent points. The compact factors in Γ are sometimes easy to accommodate, due to the existence
of compact elements. See [46] for the case of Γ = SE(2) and Γ = K × Rn with K compact.

We denote by W s(x) and W u(x) the stable and unstable leaves of the hyperbolic dynamical system
f through the point x ∈ X . The next lemma is a consequence of [20, Appendix A]. Detailed proofs can
be found in [53].

Lemma 1. Assume that X is a hyperbolic basic set for f : X → X , that Γ is a connected Lie group and
β : X → Γ an α-Hölder cocycle that has subexponential growth. Then, the Γ-extension fβ : X × Γ →
X×Γ admits stable and unstable foliations, which are α-Hölder and invariant under right multiplication
by elements of Γ. The stable and unstable leaves of fβ through (x, eΓ) ∈ X × Γ are the graphs of
the functions:

γsx : W s(x)→ Γ, γsx(y) = lim
n→∞

β(n, x)β(n, y)−1

γux : W u(x)→ Γ, γux(y) = lim
n→∞

β(−n, x)β(−n, y)−1

These functions are α-Hölder and vary continuously with the cocycle β in the following sense: if
βk → β in the C0-topology and βk remains Cα-bounded, then γsk,x → γsx and γuk,x → γux on W s

loc(x) in
the C0-topology.

We call the values of the functions γsx, γ
u
x holonomies along stable/unstable leaves.

A new criterion for topological transitivity applicable to extensions was developed in [33]. One of the
key notions introduced in [33] is:

Definition 11. Let Γ be a connected Lie group, X a basic hyperbolic set for f : X → X , β : X → Γ a
cocycle and fβ : X × Γ→ X × Γ the skew-extension. Given x ∈ X , let:

Lβ(x) = {γ ∈ Γ : there exist xk ∈ X and nk > 0 such that xk → x and fnk
β (xk, eΓ)→ (x, γ)}

We will refer to Lβ(x) as the range of β over x.

That is, the set Lβ(x) consists of the possible limits limk→∞ β(nk, xk), subject to xk → x and
fnk(xk)→ x. Note that we do not require that nk →∞ or that xk 6= x. Clearly, Lβ(x) is a closed subset
of Γ.

The following theorem is [33, Lemma 3.1, Theorem 3.3].

Theorem 11. Assume that X is a hyperbolic basic set for f : X → X , that Γ is a connected Lie group
and β : X → Γ a Hölder cocycle that has subexponential growth. Then:
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(1) Lβ(x) is a closed semigroup of Γ for each x ∈ X .
(2) If there exists a point x0 ∈ X , such that Lβ(x0) = Γ, then β is a transitive cocycle.

The following lemma is [33, Lemma 2.2]. Briefly, it says that the heights of fβ over two nearby
trajectories in the base are close, independent of the lengths of the trajectories. This result is used in the
constructions of elements in Lβ .

Lemma 2. Assume that X is a hyperbolic basic set for f : X → X , that Γ is a connected Lie group and
β : X → Γ an α-Hölder cocycle that has subexponential growth. Then, there is a constant C5 > 0 with
the following property.

For any ε > 0 sufficiently small, any n ≥ 1 and any two trajectories xk = fk(x0), yk = fk(y0), such
that dM(xk, yk) < ε for 0 ≤ k ≤ n− 1,

d(β(n, x0), β(n, y0)) ≤ C5(‖Ad(β(n, x0))‖+ 1)εα

5. Admissible Sequences of Products of Holonomies

We observe that a priori, the set Lβ introduced in the previous section may be empty. In this section,
we describe a method for obtaining elements in Lβ . We follow closely [47].

Throughout this section, (M,dM) is a Riemannian manifold, X ⊂ M is a basic hyperbolic set for
f : X → X with contraction constant λ ∈ (0, 1) satisfying (1), Γ a connected Lie group and β : X → Γ

an α-Hölder cocycle that has subexponential growth.

Definition 12. By a periodic heteroclinic cycle, we mean a cycle consisting of points p1, . . . , pk that are
periodic for the map f , have disjoint trajectories, such that pj is transverse heteroclinic to pj+1 through
a point ζj ∈ W u(pj) ∩W s(pj+1), for j = 1, . . . , k (where pk+1 = p1).

Let P1, . . . , Pk be the corresponding periodic orbits and denote the periods by `1, . . . , `k. Denote by
Oj the heteroclinic trajectory from pj to pj+1 (of the point ζj chosen above), and by Hj the holonomy
along this heteroclinic connection (that is, along W u(pj) from pj to ζj and then along W s(pj+1) from ζj

to pj+1).

Replace the heteroclinic orbit Oj from pj to pj+1 by the trajectory Qj of length `jMj + `j+1Mj+1

that spends time `jMj in the first half of Oj and time `j+1Mj+1 in the second half of Oj; that is,
Qj = {fn(ζj) | −`jMj ≤ n < 0} ∪ {fn(ζj) | 0 ≤ n < `j+1Mj+1}). For the trajectory connecting pk to
pk+1, we allow M1 and Mk+1 to be distinct. The positive integers Mj will be chosen later.

Consider the heights β(Pj) and β(Qj) over the periodic orbits Pj and trajectories Qj .

Lemma 3. For j = 1, . . . , k, the limit:

lim
Mj ,Mj+1→∞

β(Pj)
−Mjβ(Qj)β(Pj+1)−Mj+1 = Hj

exists and is the product of the holonomies along the unstable and stable leaves of Oj , from pj to pj+1.

Proof. This follows from Lemma 1.
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Definition 13. Consider a sequence of vectors N(1), N(2) . . . ∈ Nk+1 whose entries are positive
integers. Write N(i) = (M1(i), . . . ,Mk+1(i)). The sequence is admissible if there is a constant C2 ≥ 1,
such that Mp(i)/Mq(i) ≤ C2, for all p, q = 1 . . . , k + 1 and all i ≥ 1.

If N = (M1, . . . ,Mk+1) is a sequence, we write N →∞ if Mp →∞ for p = 1, . . . , k + 1.

Theorem 12. Let N = (M1, . . . ,Mk+1) ∈ Nk+1. Define:

A(N) = β(P1)M1H1 β(P2)2M2H2 · · · β(Pk)
2MkHk β(P1)Mk+1

If the limit A = limN→∞A(N) exists along an admissible sequence N(1), N(2), . . . , then
A ∈ Lβ(p1).

In the remainder of this section, we prove Theorem 12. From now on, we assume for notational
simplicity that Pj = pj are fixed points (so, `j = 1).

Given N = (M1, . . . ,Mk+1) ∈ Nk+1, define:

|N | = (M1 +Mk+1)/2 +
k∑
j=2

Mj,minN = min{M1, . . . ,Mk+1},maxN = max{M1, . . . ,Mk+1}

Note that for an admissible sequence N , we have maxN ≤ C2 minN . Define:

Hj(N) = β(Pj)
−Mjβ(Qj)β(Pj+1)−Mj+1 .

By Lemma 3, limN→∞Hj(N) = Hj (independent of the sequence N ). Moreover, by [20, proof of
Theorem 4.3(g)], there is δ0 ∈ (0, 1), such that:

d(Hj(N), Hj) = O(δminN
0 ) (5)

Recall that Qj is a trajectory of length Mj + Mj+1 that shadows the heteroclinic connection from pj

to pj+1. Concatenate these trajectories to form a periodic pseudo-orbit Q = Q1 . . . Qk of length 2|N |.
Then, Q is a δ-pseudo-orbit with δ ≤ C3λ

minN , where C3 > 0 is a constant (depending on f : X → X)
and λ is the contraction constant. By the hyperbolicity of X , there is a periodic orbit Q̃ of length 2|N |
that ε-shadows Q with ε ≤ C4λ

minN , where C4 > 0 is a constant. See [54, page 74] for standard
shadowing techniques.

Proposition 1.

(1) β(Q) = β(P1)M1H1(N) β(P2)2M2H2(N) · · · β(Pk)
2MkHk(N) β(P1)Mk+1 .

(2) limN→∞ d(β(Q), β(Q̃)) = 0 along admissible sequences N .
(3) limN→∞ d(β(Q), A(N)) = 0 along admissible sequences N .

Proof. Part (1) is a direct calculation, namely:

β(Q) =
k∏
j=1

β(Qj) =
k∏
j=1

β(Pj)
MjHj(N)β(Pj+1)Mj+1
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Next, write Q̃ = Q̃1 . . . Q̃k where Q̃j has length Mj + Mj+1. Define γj = β(Qj), γ̃j = β(Q̃j). Note
thatQj and Q̃j have a length of at most 2 maxN and that Q̃j ε-shadowsQj with ε ≤ C4λ

minN . It follows
from Lemma 2 that d(γi, γ̃i) ≤ CλαminN(‖Ad(γi)‖+ 1) where C = Cα

4 C5. Hence, using the properties
of the metric on Γ and the fact that β has subexponential growth, we have:

d(β(Q), β(Q̃)) = d(γ1γ2 · · · γk, γ̃1γ̃2 · · · γ̃k)
≤ d(γ1γ2 · · · γk, γ̃1γ2 · · · γk) + d(γ̃1γ2γ3 · · · γk, γ̃1γ̃2γ3 · · · γk)+
· · ·+ d(γ̃1γ̃2 · · · γ̃k−1γk, γ̃1γ̃2 · · · γ̃k−1γ̃k)

≤ d(γ1, γ̃1)‖Ad(γ2 . . . γk)‖+ d(γ2, γ̃2)‖Ad(γ3 . . . γk)‖+ · · ·+ d(γk, γ̃k)

≤ CλαminN [(1 + η)2 maxN + 1][(1 + η)2 maxN + · · ·+ (1 + η)2(k−1) maxN ]

where η > 0 can be chosen arbitrarily small and ‖Ad(β(n, x))‖ ≤ (1 + η)n for n large enough.
Restricting to admissible sequences, minN and maxN are comparable, and Part (2) follows. The proof
of Part (3) is similar using (5).

Proof of Theorem 12. By assumption, A(N) → A. Hence, by Proposition 1, Part (2,3), β(Q̃) → A.
We conclude that A ∈ Lβ(p1) by definition of Lβ(p1).

Remark 7. Proving that the limit A = limN→∞A(N) exists is challenging. The proof depends on the
group that appears in the fiber. If Γ is the Heisenberg group, the components of A(N) are a quadratic
and several linear polynomials. In order to extract a convergent subsequence, we need to show that a
diophantine system of a quadratic and several linear equations has approximate solutions. A difficulty
is that, even though we can prescribe the leading coefficients in these equations, we cannot control all of
the coefficients. Lower order coefficients depend on the holonomy factors in A(N), which are difficult to
control generically. This is the place where the diophantine approximation results, such as Theorem 7,
come into play.

6. Semigroup Problem

For many Lie groups Γ, it is not hard to show that, for an integer p > 0 big enough, there is a large
open set U ⊂ Γp, such that if F ∈ U , then the family F generates Γ, that is the group generated by
F is dense in Γ. The proof of transitivity of an extension fβ is based on showing that the set Lβ(x) of
“heights” of β over a (periodic) point x is the whole fiber Γ. See Theorem 11. To obtain the condition
Lβ(x) = Γ, we have to prove that for a typical family F ∈ Γp that generates Γ as a group, if F is not
contained in a maximal sub-semigroup with a non-empty interior, then F generates Γ as a semigroup, as
well. We refer to this question as the semigroup problem. For example, if Γ = R, the problem states that
if a set S contains both positive and negative numbers, then the closure of the semigroup generated by S
is a group.

The semigroup problem was solved for Γ = Rn [41] and more generally for groups of the
form Γ = K × Rn, where K is a compact Lie group [33, Theorem 5.10]. It is also solved for
Γ = SE(n) [33, Theorem 6.8], for certain solvable groups that are semidirect products of Rn with
Rm, such as Aff+ in [55], and for the Heisenberg group in [48].
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