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Abstract:

 This article presents a sequential growth model for the Universe that acts like a quantum computer. The basic constituents of the model are a special type of causal set (causet) called a c-causet. A c-causet is defined to be a causet that has a unique labeling. We characterize c-causets as those causets that form a multipartite graph or equivalently those causets whose elements are comparable whenever their heights are different. We show that a c-causet has precisely two c-causet offspring. It follows that there are [image: there is no content]c-causets of cardinality [image: there is no content]. This enables us to classify c-causets of cardinality [image: there is no content] in terms of n-bits. We then quantize the model by introducing a quantum sequential growth process. This is accomplished by replacing the n-bits by n-qubits and defining transition amplitudes for the growth transitions. We mainly consider two types of processes, called stationary and completely stationary. We show that for stationary processes, the probability operators are tensor products of positive rank-one qubit operators. Moreover, the converse of this result holds. Simplifications occur for completely stationary processes. We close with examples of precluded events.
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1. Introduction


One frequently hears people say that the Universe acts like a giant quantum computer, but when pressed, they are usually short on the details. This article attempts to begin giving these details. It should be emphasized that only a basic framework is presented, and much work remains to be done. If this idea is correct, then great benefits will result. One benefit is the better understanding of the Universe itself, and another is the ability to greatly increase our computational power.



We first present a theory of discrete quantum gravity in terms of causal sets (causets) [1,2,3]. Unlike previous sequential growth models, the basic elements of this theory are a special type of causet called a covariant causet (c-causet). A c-causet is defined to be a causet that has a unique labeling. That is, two different labelings of a c-causet are isomorphic. The restriction of a growth model to c-causets provides great simplifications. For example, every c-causet possesses a unique c-causet history and has precisely two covariant offspring. It follows that there are [image: there is no content]c-causets of cardinality [image: there is no content]. This enables us to classify c-causets of cardinality [image: there is no content] in terms of n-bits. The framework of a classical computer is already emerging. We characterize c-causets as those causets that form a multipartite graph or equivalently those causets whose elements are comparable whenever their heights are different.



We next quantize the model by introducing a quantum sequential growth process. This is accomplished by replacing the n-bits with n-qubits and defining transition amplitudes for the growth transitions. The transition amplitudes are given by complex-valued coupling constants [image: there is no content], [image: there is no content]. If the coupling constants are independent of j, we call the process stationary, and if they are independent of n and j, we call the process completely stationary. We show that for stationary processes, the probability operators that determine the quantum dynamics are tensor products of rank-one qubit operators. Moreover, the converse of this result holds. Simplifications occur for completely stationary processes. In this case, all of the qubit operators are the same and can be related to spin operators. We close with some examples of precluded events in the completely stationary case.




2. Covariant Causets


In this article, we call a finite partially ordered set a causet. If two causets are order isomorphic, we consider them to be identical. If a and b are elements of a causet x, we interpret the order [image: there is no content] as meaning that b is in the causal future of a and a is in the causal past of b. An element [image: there is no content] is maximal if there is no [image: there is no content] with [image: there is no content]. If [image: there is no content] and there is no [image: there is no content] with [image: there is no content], then a is a parent of b and b is a child of a. If [image: there is no content], we say that a and b are comparable if [image: there is no content] or [image: there is no content]. A chain in x is a set of mutually comparable elements of x, and an antichain is a set of mutually incomparable elements of x. The height of [image: there is no content] is the cardinality of the longest chain whose largest element is a. The height of x is the maximum of the heights of its elements. We denote the cardinality of x by [image: there is no content].



If x and y are causets with y=[image: there is no content]+1, then x produces y if y is obtained from x by adjoining a single maximal element a to x. In this case, we write [image: there is no content] and use the notation [image: there is no content]. If [image: there is no content], we also say that x is a producer of y and y is an offspring of x. In general, x may produce many offspring, and y may be the offspring of many producers.



A labeling for a causet x is a bijection ℓ:x→1,2,…,[image: there is no content], such that [image: there is no content] with [image: there is no content] implies that [image: there is no content]. A labeled causet is a pair [image: there is no content], where ℓ is a labeling of x. For simplicity, we frequently write [image: there is no content] and call x an ℓ-causet. Two ℓ-causets x and y are isomorphic if there exists a bijection [image: there is no content], such that [image: there is no content] if and only if [image: there is no content] and [image: there is no content] for every [image: there is no content]. Isomorphic ℓ-causets are considered identical as ℓ-causets. It is not hard to show that any causet can be labeled in many different ways, but there are exceptions, and these are the ones of importance in this work. A causet is covariant if it has a unique labeling (up to ℓ-causet isomorphism). Covariance is a strong restriction, which says that the elements of the causet have a unique “birth order” up to isomorphism. We call a covariant causet a c-coset.



We denote the set of c-causets with cardinality n by [image: there is no content] and the set of all c-causets by [image: there is no content]=∪[image: there is no content]. Notice that any nonempty c-causet y has a unique producer. Indeed, if y had two different producers [image: there is no content], then [image: there is no content] and [image: there is no content] could be labeled differently, and these could be used to give different labelings for y. If [image: there is no content], then the parent-child relation [image: there is no content] makes x into a graph [image: there is no content]. A graph G is multipartite if there is a partition of its vertices [image: there is no content], such that the vertices of [image: there is no content] and [image: there is no content] are adjacent and there are no other adjacencies.



Theorem 2.1. The following statements for a causet x are equivalent. (a) x is covariant, (b) the graph [image: there is no content] is multipartite, (c) [image: there is no content] are comparable whenever a and b have different heights.



Proof. Conditions (b) and (c) are clearly equivalent. To prove that (a) implies (b), suppose x is covariant and let [image: there is no content], where [image: there is no content] is the set of elements in x of height i. Suppose [image: there is no content], b∈y[image: there is no content] and [image: there is no content]. We can delete maximal elements of y until b is maximal and the only element of height [image: there is no content]. Denote the resulting causet by z. We can label b by [image: there is no content], a by [image: there is no content]-1 and consistently label the other elements of z, so that z is an ℓ-causet. We can also label b by [image: there is no content]-1, a by [image: there is no content] and keep the same labels for the other elements of z. This gives two nonisomorphic labelings of z. Adjoining maximal elements to z to obtain x, we have x with two nonisomorphic labelings, which is a contradiction. Hence, [image: there is no content] so a is a parent of b. It follows that x is multipartite. To prove that (b) implies (a), suppose the graph [image: there is no content] is multipartite. Letting [image: there is no content] where [image: there is no content] is the set of elements of height i, it follows that [image: there is no content] for all a∈[image: there is no content], [image: there is no content], [image: there is no content]. We can write:


y0=a1,…,ay0y1=ay0+1,…,ay0+y1⋮ym=ay0+⋯+ym-1+1,…,ay0+⋯+ym








where j is the label on [image: there is no content]. This gives a labeling of x and is the only labeling up to isomorphism.  ☐



Theorem 2.2. If [image: there is no content], then x has precisely two covariant offspring.



Proof. By Theorem 2.1, the graph [image: there is no content] is multipartite. Suppose x has height n. Let [image: there is no content]=x↑a where a has all of the elements of height n as parents. Then, a is the only element of [image: there is no content] with height [image: there is no content]. Hence, [image: there is no content] is multipartite, so by Theorem 2.1, [image: there is no content] is a covariant offspring of x. Let [image: there is no content]=x↑b, where b has all of the elements of height [image: there is no content] in x as parents (if [image: there is no content], then b has no parents). It is clear that [image: there is no content] is a multipartite graph. By Theorem 2.1, [image: there is no content] is a covariant offspring of x. Furthermore, there is only one covariant offspring of each of these two types. Let [image: there is no content] be a covariant offspring of x that is not one of these two types, and let [image: there is no content] have label [image: there is no content]. Then, a and c are incomparable, and we can label c by [image: there is no content]+1. If we interchange the labels of a and c, we get a nonisomorphic labeling of y, which gives a contradiction. We conclude that x has precisely two covariant offspring.   ☐



Corollary 2.3. There are [image: there is no content] c-causets of cardinality [image: there is no content].



Proof. Notice that we obtain all c-causets from the producer-offspring process of Theorem 2.2. Indeed, take any [image: there is no content] and delete maximal elements until we arrive at the one element c-causet. In this way, x is obtained from the process of Theorem 2.2. We now employ induction on n. There are [image: there is no content]c-causets of cardinality one. If the result holds for c-causets of cardinality n, then by Theorem 2.2, there are 2·2[image: there is no content]=[image: there is no content]c-causets of cardinality [image: there is no content]. Hence, the result holds for c-causets of cardinality [image: there is no content].   ☐



As a bonus, we obtain an already known combinatorial identity. A composition of a positive integer n is a sequence of positive integers whose sum is n. The order of terms in the sequence is taken into account. For example, the following are the compositions of [image: there is no content].




n=1:1n=2:1+1,2n=3:1+1+1,1+2,2+1,3n=4:1+1+1+1,1+1+2,1+2+1,2+1+1,2+2,1+3,3+1,4n=5:1+1+1+1+1,1+1+1+2,1+1+2+1,1+2+1+1,2+1+1+1,1+1+3,1+3+1,3+1+1,1+4,4+1,2+3,3+2,1+2+2,2+1+2,2+2+1,5









The reader has surely noticed that for [image: there is no content], the number of compositions of n is 2[image: there is no content].



Corollary 2.4. There are 2[image: there is no content] compositions of the positive integer n.



Proof. There is a bijection between compositions of n and multipartite graphs with n vertices. The result follows from Corollary 2.3.  ☐



The pair [image: there is no content] forms a partially ordered set in its own right. Moreover, [image: there is no content] also forms a graph that is a tree. Figure 1 depicts the first five levels of this tree. The binary designations in Figure 1 will now be explained. By Corollary 2.3, at height [image: there is no content], there are [image: there is no content]c-causets, so binary numbers fit well, but how do we define a natural order for the c-causets? We have seen in Theorem 2.2 that if x∈[image: there is no content], [image: there is no content], then x has precisely two offspring in [image: there is no content], x→[image: there is no content],[image: there is no content], where [image: there is no content] has the same height as x and [image: there is no content] has the height of x plus one. We call [image: there is no content] the 0-offspring and [image: there is no content] the 1-offspring of x. We assign a binary order to [image: there is no content] recursively as follows. If x∈[image: there is no content]1, then x is the unique one element c-causet, and we designate x by 0. If x∈[image: there is no content][image: there is no content], then x has a unique producer y∈[image: there is no content]. Suppose y has binary order j[image: there is no content]jn-2⋯j2j1, [image: there is no content] or 1. If x is the 0-offspring of y, then we designate x with j[image: there is no content]⋯j2j10, and if x is a 1-offspring of y, then we designate x with j[image: there is no content]⋯j2j11. The reader can now check this definition with the binary order in Figure 1.


Figure 1. Five Steps of a Multiverse



[image: Axioms 04 00102 g001 1024]






We now see the beginning development of a giant classical computer. At the [image: there is no content]-th step of the process, n-bit strings are generated. It is estimated that we are now at about the [image: there is no content]-th step, so ([image: there is no content]-1)-bit strings are being generated. There are about 2[image: there is no content] such strings, so an enormous amount of information is being processed. When we get to quantum computers, then superpositions of strings will be possible, and the amount of information increases exponentially. It is convenient to employ the notation:


[image: there is no content]=jnj[image: there is no content]⋯j2j1








for an n-bit string. In this way, we can designate each [image: there is no content] uniquely by [image: there is no content], where n+1=[image: there is no content]. For example, the c-causets at Step 3 in Figure 1 are [image: there is no content]. In decimal notation, we can also write these as [image: there is no content].





The binary order that we have just discussed is equivalent to a natural order in terms of the c-causet structure. Let x=a1,…,[image: there is no content]∈[image: there is no content], where we can assume without loss of generality that j is the label of [image: there is no content], [image: there is no content]. Define:


jx↑=i∈N:[image: there is no content]<ai











Thus, [image: there is no content] is the set of labels of the descendants of [image: there is no content]. Order the set of c-cosets in [image: there is no content] lexicographically as follows. If x,y∈[image: there is no content], then [image: there is no content] if:


[image: there is no content]











It is easy to check that < is a total order relation on [image: there is no content]. The next theorem, whose proof we leave to the reader, shows that the order < on [image: there is no content] is equivalent to the binary order previously discussed.



Theorem 2.5. If [image: there is no content],xn,k̲∈[image: there is no content], then [image: there is no content] if and only if [image: there is no content].



Example 1. We can illustrate Theorem 2.5 by considering [image: there is no content]4. For the c-causets x4,0,x4,1,…,x4,7∈[image: there is no content]4, we list the sets [image: there is no content]. Notice that we need not list [image: there is no content] in all cases of [image: there is no content]4.




[image: there is no content]









The lexicographical order becomes:


[image: there is no content]











Example 2. This is so much fun, that we list the sets:


[image: there is no content]








for the c-causets x5,0,…,x5,15∈[image: there is no content]5.




[image: there is no content]









This order structure ([image: there is no content],<) induces a topology on [image: there is no content], whereby we can describe the “closeness” of c-causets. For example, we can place a metric on [image: there is no content] by defining [image: there is no content]. If we want to keep the size of the metric reasonable, we could define:


ρ([image: there is no content],xn,k̲)=12[image: there is no content][image: there is no content]-k̲












3. Quantum Sequential Growth Processes


The tree [image: there is no content] can be thought of as a growth model, and an x∈[image: there is no content] is a possible universe at step (time) n. An instantaneous universe x grows one element at a time in one of two ways at each step. A path in [image: there is no content] is a sequence (string) [image: there is no content] where ωi∈[image: there is no content]i and [image: there is no content]. An n-path is a finite sequence [image: there is no content], where, again, ωi∈[image: there is no content]i and [image: there is no content]. We denote the set of paths by Ω and the set of n-paths by [image: there is no content]. We think of [image: there is no content] as a “completed” universe or as a universal history. We may also view [image: there is no content] as an evolving universe. Since a c-causet has a unique producer, an n-path [image: there is no content] is completely determined by [image: there is no content]. In other words, a c-causet possesses a unique history. We can thus identify [image: there is no content] with [image: there is no content], and we write [image: there is no content]≈[image: there is no content]. If ω=ω1ω2⋯[image: there is no content]∈[image: there is no content], we denote by [image: there is no content] the two element subset of Ω[image: there is no content] consisting of ω[image: there is no content],ω[image: there is no content], where [image: there is no content] and [image: there is no content] are the offspring of [image: there is no content]. Thus,


[image: there is no content]=ω1⋯[image: there is no content][image: there is no content],ω1⋯[image: there is no content][image: there is no content]











If A⊆[image: there is no content], we define [image: there is no content]⊆Ω[image: there is no content] by:


[image: there is no content]











Thus, [image: there is no content] is the set of one-element continuations of n-paths in A.



The set of all paths beginning with ω∈[image: there is no content] is called an elementary cylinder set and is denoted by [image: there is no content]. If A⊆[image: there is no content], then the cylinder set [image: there is no content] is defined by:


[image: there is no content]











Using the notation:


C([image: there is no content])=cyl(A):A⊆[image: there is no content]








we see that:


[image: there is no content]








is an increasing sequence of subalgebras of the cylinder algebra C(Ω)=∪C([image: there is no content]). Letting [image: there is no content] be the σ-algebra generated by [image: there is no content], we have that (Ω,[image: there is no content]) is a measurable space. For [image: there is no content], we define the sets [image: there is no content]⊆[image: there is no content] by:


[image: there is no content]=ω1ω2⋯[image: there is no content]:ω1ω2⋯[image: there is no content]ω[image: there is no content]⋯∈A











That is, [image: there is no content] is the set of n-paths that can be continued to a path in A. We think of [image: there is no content] as the n-step approximation to A. We have that:


[image: there is no content]








so that A⊆∩cyl([image: there is no content]). However, A≠∩cyl([image: there is no content]) in general, even if A∈[image: there is no content].



Let [image: there is no content]=L2([image: there is no content])=L2([image: there is no content]) be the n-path Hilbert space C[image: there is no content]=C[image: there is no content] with the usual inner product:


f,g=∑f(ω)¯g(ω):ω∈[image: there is no content]











For A⊆[image: there is no content], the characteristic function [image: there is no content] has norm ∥χA∥=A. In particular, 1n=χ[image: there is no content] satisfies:


∥1n∥=[image: there is no content]1/2=2(n-1)/2











A positive operator ρ on [image: there is no content] that satisfies [image: there is no content] is called a probability operator [1]. Corresponding to a probability operator ρ, we define the decoherence functional [1,4,5]:


Dρ:2[image: there is no content]×2[image: there is no content]→C








by [image: there is no content]. We interpret [image: there is no content] as a measure of the interference between the events A and B when the system is described by ρ. We also define the q-measure [image: there is no content]:2[image: there is no content]→R+ by [image: there is no content] and interpret [image: there is no content] as the quantum propensity of the event A⊆[image: there is no content] [1,3,6]. In general, [image: there is no content] is not additive on 2[image: there is no content], so [image: there is no content] is not a measure. However, [image: there is no content] is Grade-2 additive [1,3,6] in the sense that if A,B,C∈2[image: there is no content] are mutually disjoint, then:


[image: there is no content](A∪B∪C)=[image: there is no content](A∪B)+[image: there is no content](A∪C)+[image: there is no content](B∪C)-[image: there is no content](A)-[image: there is no content](B)-[image: there is no content](C)











Let [image: there is no content] be a probability operator on [image: there is no content], n=1,2,…. We say that the sequence [image: there is no content] is consistent if:


Dρ[image: there is no content](A→,B→)=D[image: there is no content](A,B)








for all A,B⊆[image: there is no content] [1]. We call a consistent sequence [image: there is no content] a covariant quantum sequential growth process (CQSGP). Let [image: there is no content] be a CQSGP and denote the corresponding q-measure by [image: there is no content]. A set A∈[image: there is no content] is suitable if lim[image: there is no content]([image: there is no content]) exists (and is finite), in which case, we define μ(A)=lim[image: there is no content]([image: there is no content]). We denote the collection of suitable sets by [image: there is no content]. Of course, [image: there is no content] with [image: there is no content], [image: there is no content]. If [image: there is no content] and [image: there is no content], where [image: there is no content], then it follows from consistency that lim[image: there is no content]([image: there is no content])=μm(B). Hence, [image: there is no content] and [image: there is no content]. We conclude that C(Ω)⊆S(Ω)⊆[image: there is no content], and it can be shown that the inclusions are proper, in general. In a sense, μ is a q-measure on [image: there is no content] that extends the q-measures [image: there is no content].



There are physically relevant sets that are not in [image: there is no content]. In this case, it is important to know whether such a set A is in [image: there is no content] and, if it is, to find [image: there is no content]. For example, if [image: there is no content], then:


ω=⋂[image: there is no content]∞ωn∈[image: there is no content]








but [image: there is no content]. As another example, the complement [image: there is no content]. Even if [image: there is no content], since [image: there is no content]([image: there is no content])≠1-[image: there is no content](A) for A⊆[image: there is no content] in general, it does not follow immediately that [image: there is no content]. For this reason, we would have to treat [image: there is no content] as a separate case.



We saw in Section 2 that we can represent each element of [image: there is no content] uniquely as [image: there is no content], where n=[image: there is no content] and [image: there is no content] can be considered as a binary number. We can also represent each element in [image: there is no content][image: there is no content] as a n-bit binary number [image: there is no content]=jnj[image: there is no content]⋯j2j1, [image: there is no content] or 1. Since [image: there is no content]≈[image: there is no content], we can also represent each ω∈Ω[image: there is no content] by an n-bit binary number [image: there is no content]. The standard basis for H[image: there is no content]=L2(Ω[image: there is no content]) is the set of vectors e[image: there is no content]=χω[image: there is no content], ω[image: there is no content]∈Ω[image: there is no content]. We frequently use the notation [image: there is no content]=e[image: there is no content], which is called the computational basis in quantum computation theory. In this theory, [image: there is no content] is represented by:


[image: there is no content]=jn⋯j2j1=jn⊗⋯⊗j2⊗j1








where [image: there is no content] is [image: there is no content] or [image: there is no content], which form the basis of the two-dimensional Hilbert space [image: there is no content].



The basis vectors [image: there is no content] and [image: there is no content] are called qubit states, but we shall call them qubits, for short. We also call [image: there is no content], given above, an n-qubit. This is the quantum computation analogue of an n-bit of classical computer science. If ρ[image: there is no content] is a probability operator, the corresponding decoherence matrix is the [image: there is no content]×[image: there is no content] complex matrix, whose [image: there is no content]-k̲ component is given by:


Mρ[image: there is no content]=[image: there is no content]k̲,[image: there is no content]











This is frequently shortened to:


Mρ[image: there is no content]=[image: there is no content]k̲,[image: there is no content]








but we shall not use this notation, because it can be confusing. For A,B⊆Ω[image: there is no content], we form the superpositions:


[image: there is no content]











The decoherence functional is now given by:


Dρ[image: there is no content](A,B)=ρ[image: there is no content]B,A











Superpositions are a strictly quantum phenomenon that has no counterpart in classical computation.



An event A⊆[image: there is no content] is precluded if [image: there is no content](A)=0 [6]. Precluded events have been extensively studied in [2,3,4,7,8], and they are considered to be events that never occur. We shall give simple examples later that show that if A is precluded and [image: there is no content], then B need not be precluded. However, the following properties do hold.



Theorem 3.1. (a) If A⊆[image: there is no content] is precluded and B⊆[image: there is no content] is disjoint from A, then [image: there is no content](A∪B)=[image: there is no content](B). (b) If A,B⊆[image: there is no content] are disjoint precluded events, then [image: there is no content] is precluded.



Proof. (a) Since [image: there is no content](A)=0, we have that:


∥ρn1/2χA∥2=ρn1/2χA,ρn1/2χA=[image: there is no content]χA,χA=0











Hence, [image: there is no content] so [image: there is no content]χA=0. Since, [image: there is no content], we have that:


[image: there is no content](A∪B)=[image: there is no content]χ[image: there is no content],χ[image: there is no content]=[image: there is no content](χA+χB),χA+χB=[image: there is no content]χA,χA+2Re[image: there is no content]χA,χB+[image: there is no content]χB,χB=[image: there is no content]χB,χB=[image: there is no content](B)











Part (b) follows from (a).  ☐



An event [image: there is no content] is precluded if [image: there is no content] and A is strongly precluded if there exists an [image: there is no content], such that [image: there is no content] for all [image: there is no content]. For example, if [image: there is no content], where B⊆[image: there is no content] and [image: there is no content](B)=0, then A is strongly precluded. Of course, strongly precluded events are precluded.



A precluded event is primitive if it has no proper, nonempty precluded subsets.



Theorem 3.2. If A⊆[image: there is no content] is precluded, then A is primitive or A is a union of mutually disjoint primitive precluded events.



Proof. If A is primitive, we are finished. Otherwise, there exists a proper, nonempty precluded subset [image: there is no content]. Since [image: there is no content], there exists a nonempty, primitive precluded event [image: there is no content]. Applying Theorem 3.1, we conclude that [image: there is no content](A∩A1′)=0. In a similar way, there exists a nonempty, primitive precluded event [image: there is no content]. Of course, [image: there is no content]. Continuing, this process must eventually stop, and we obtain a sequence of mutually disjoint primitive preluded events [image: there is no content] with [image: there is no content].   ☐




4. Covariant Amplitude Processes


This section considers a method of constructing a CQSGP called a covariant amplitude process. Not all CQSGPs can be constructed in this way, but this method appears to have physical motivation [1].



A transition amplitude is a map [image: there is no content]:[image: there is no content]×[image: there is no content]→C, such that [image: there is no content] if [image: there is no content] and [image: there is no content] for all [image: there is no content]. This is similar to a Markov chain, except [image: there is no content] may be complex. The covariant amplitude process (CAP) corresponding to [image: there is no content] is given by the maps [image: there is no content]:[image: there is no content]→C where:


[image: there is no content](ω1ω2⋯[image: there is no content])=[image: there is no content](ω1,ω2)[image: there is no content](ω2,ω3)⋯[image: there is no content](ω[image: there is no content],[image: there is no content])











We can consider [image: there is no content] to be a vector in [image: there is no content]=L2([image: there is no content])=L2([image: there is no content]). Notice that for x∈[image: there is no content], we can define [image: there is no content](x) to be [image: there is no content](ω), where ω∈[image: there is no content] is the unique history of x. Observe that:


1n,[image: there is no content]=∑ω∈[image: there is no content][image: there is no content](ω)=1








and we also have that:


∥[image: there is no content]∥=∑ω∈[image: there is no content][image: there is no content](ω)21/2











Define the rank-one positive operator [image: there is no content]=[image: there is no content][image: there is no content] on [image: there is no content]. The norm of [image: there is no content] is:


∥[image: there is no content]∥=∥[image: there is no content]∥2=∑ω∈[image: there is no content][image: there is no content](ω)2











Since [image: there is no content]1n,1n=1n,[image: there is no content]2=1, we conclude that [image: there is no content] is a probability operator. It is shown in [1] that [image: there is no content] is consistent, so [image: there is no content] forms a CQSGP. We call [image: there is no content] the CQSGP generated by the CAP [image: there is no content].



The decoherence functional corresponding to the CAP [image: there is no content] becomes:


Dn(A,B)=[image: there is no content]χB,χA=χB,[image: there is no content][image: there is no content],χA=∑ω∈A[image: there is no content](ω)¯∑ω∈B[image: there is no content](ω)











In particular, for ω,ω′∈[image: there is no content], the decoherence matrix elements:


Dn(ω,ω′)=[image: there is no content](ω)¯[image: there is no content](ω′)








are the matrix elements of [image: there is no content] in the standard basis. The q-measure [image: there is no content]:2[image: there is no content]→R+ is given by:


[image: there is no content](A)=Dn(A,A)=∑ω∈A[image: there is no content](ω)2











In particular, [image: there is no content](ω)=[image: there is no content](ω)2 for every ω∈[image: there is no content] and [image: there is no content]([image: there is no content])=1. Of course, we also have that [image: there is no content](x)=[image: there is no content](x)2 for all x∈[image: there is no content].



Since each x∈[image: there is no content] has precisely two offspring, we can describe a transition amplitude [image: there is no content] and the corresponding CAP [image: there is no content] in a simple way. Let:


[image: there is no content]([image: there is no content],xn+1,[image: there is no content]0)=cn,[image: there is no content]








and


[image: there is no content]([image: there is no content],xn+1,[image: there is no content]0)=1−cn,[image: there is no content]








j=0,1,…,2[image: there is no content]-1. We call the numbers cn,[image: there is no content]∈C coupling constants for the corresponding CAP [image: there is no content].



Example 3. If the CAP [image: there is no content] has coupling constants cn,[image: there is no content], then we have [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



We shall only need a special case of the next theorem, but it still has independent interest.



Theorem 4.1. An operator M on [image: there is no content] is a rank-one probability operator if and only if M has a matrix representation [image: there is no content], where [image: there is no content], [image: there is no content], satisfy [image: there is no content].



Proof. Suppose [image: there is no content] with [image: there is no content], where [image: there is no content]. Let [image: there is no content] be the vector [image: there is no content]. We have that [image: there is no content], so M is positive with rank-one. To show that M is a probability operator, we have:


[image: there is no content]











Conversely, let M be a rank-one probability operator. Since M is rank-one, it has the form [image: there is no content] for some [image: there is no content]. We then have the matrix representation:


[image: there is no content]








where [image: there is no content], [image: there is no content], is the standard basis for [image: there is no content]. Letting αj=ψ,[image: there is no content], we conclude that [image: there is no content]. Since M is a probability operator, we have that:


[image: there is no content]











Now, there exists a [image: there is no content], such that [image: there is no content]. Letting [image: there is no content], we obtain:


[image: there is no content]








where [image: there is no content], [image: there is no content]. Hence, [image: there is no content].   ☐



An operator on [image: there is no content] is called a qubit operator. We shall only need the following corollary of Theorem 4.1.



Corollary 4.2. A qubit operator M is a rank-one probability operator if and only if M has a matrix representation:


M=c2c¯(1-c)c(1-c¯)1-c2



(4.1)




where [image: there is no content].



A CAP [image: there is no content] is stationary if the coupling constants cn,[image: there is no content] are independent of j. In this case, we write cn,[image: there is no content]=[image: there is no content], and we have [image: there is no content]([image: there is no content],xn+1,[image: there is no content]0)=[image: there is no content],[image: there is no content]([image: there is no content],xn+1,[image: there is no content]1)=1-[image: there is no content]. By Corollary 4.2, the operators:


[image: there is no content]j=cj2c¯j(1-cj)cj(1-c¯j)1-cj2








are qubit rank-one probability operators.



Theorem 4.3. Let [image: there is no content] be the coupling constants for a stationary CAP. The generated CQSGP [image: there is no content] has the form:


[image: there is no content]=[image: there is no content][image: there is no content]⊗[image: there is no content]n-2⊗⋯⊗[image: there is no content]2⊗[image: there is no content]1



(4.2)







Proof. Since [image: there is no content]≈[image: there is no content], we can write:


ρ2=D2=c12c¯1(1-c1)c1(1-c¯1)1-c12=[image: there is no content]1











At the next step, we apply Example 3 to obtain:


ρ3=D3=c12[image: there is no content]2c12c¯2(1-[image: there is no content])c¯1(1-c1)[image: there is no content]2c¯1(1-c1)c¯2(1-[image: there is no content])c12[image: there is no content](1-c¯2)c121-[image: there is no content]2c¯1(1-c1)[image: there is no content](1-c¯2)c¯1(1-c1)1-[image: there is no content]2c1(1-c¯1)[image: there is no content]2c1(1-c¯1)c¯2(1-[image: there is no content])1-c12[image: there is no content]21-c12c¯2(1-[image: there is no content])c1(1-c¯1)[image: there is no content](1-c¯2)c1(1-c¯1)1-[image: there is no content]21-c12[image: there is no content](1-c¯2)1-c121-[image: there is no content]2=c12[image: there is no content]2c¯1(1-c1)[image: there is no content]2c1(1-c¯1)[image: there is no content]21-c12[image: there is no content]2=[image: there is no content]2⊗[image: there is no content]1











Continuing by induction, we have that (4.2) holds.



Equation (4.2) shows that the [image: there is no content]-qubit probability operator [image: there is no content] is the tensor product of [image: there is no content] qubit probability operators. The next result shows that the converse of Theorem 4.3 holds.



Theorem 4.4. If the CQSGP [image: there is no content] has the form:


[image: there is no content]=β[image: there is no content]⊗βn-2⊗⋯⊗β2⊗β1








where [image: there is no content] is a rank-one probability operator, then [image: there is no content] is generated by a stationary CAP.



Proof. Since [image: there is no content], [image: there is no content], is a rank-one qubit probability operator, by Corollary 4.2, we have that:


[image: there is no content]=cj2c¯j(1-cj)cj(1-c¯j)1-cj2








where [image: there is no content]. As in the proof of Theorem 4.3, [image: there is no content] is generated by a stationary CAP whose coupling constants are [image: there is no content].   ☐



We say that a CAP is completely stationary if the coupling constants cn,[image: there is no content] are independent of n and [image: there is no content]. In this case, we have a single coupling constant [image: there is no content], and the generated CQSGP [image: there is no content] has the form:


[image: there is no content]=[image: there is no content]⊗⋯⊗[image: there is no content]=⨂1[image: there is no content][image: there is no content]








where [image: there is no content] has the form of (4.1).




5. Examples of Q-Measures


In this section, we compute some simple examples of q-measures in the stationary case. Let [image: there is no content] be a stationary CAP with corresponding coupling constants [image: there is no content]. As usual, we can identify [image: there is no content] with [image: there is no content]. If ω=ω1⋯[image: there is no content]∈[image: there is no content], we have that [image: there is no content](ω)=[image: there is no content]([image: there is no content]). For [image: there is no content]2=x2,0,x2,1, we have [image: there is no content], [image: there is no content], so [image: there is no content] and [image: there is no content]. For:


[image: there is no content]3=[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]








we have [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. Hence, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. We now compute the q-measure of some two element sets. We have that:


[image: there is no content]











Since [image: there is no content] in general, we conclude that [image: there is no content] and [image: there is no content] interfere with each other, except in special cases. If:


μ3[image: there is no content],[image: there is no content]<μ3([image: there is no content])+μ3([image: there is no content])








we say that [image: there is no content] and [image: there is no content] interfere destructively, and if:


μ3[image: there is no content],[image: there is no content]>μ3([image: there is no content])+μ3([image: there is no content])








we say that [image: there is no content] and [image: there is no content] interfere constructively. The three possible cases, [image: there is no content], can occur depending on the value of [image: there is no content]. In a similar way, we have that μ[image: there is no content],[image: there is no content]=[image: there is no content]2:


μ3[image: there is no content],[image: there is no content]=1-c1-[image: there is no content]+2c1[image: there is no content]2μ3[image: there is no content],[image: there is no content]=c1+[image: there is no content]-2c1[image: there is no content]2μ3[image: there is no content],[image: there is no content]=1-[image: there is no content]2











It follows that any pair of elements of [image: there is no content]3 interfere, in general. Finally, we compute the q-measures of some three element sets:


μ[image: there is no content],[image: there is no content],[image: there is no content]=c1+[image: there is no content]-2c1[image: there is no content]2μ3[image: there is no content],[image: there is no content],[image: there is no content]=1-[image: there is no content]+2c1[image: there is no content]2











We now consider:


[image: there is no content]4=x4,0,x4,1,x4,2,x4,3,x4,4,x4,5,x4,6,x4,7











In this case, we have a4(x4,0)=c1[image: there is no content]c3, a4(x4,1)=c1[image: there is no content](1-c3), a4(x4,2)=c1(1-[image: there is no content])c3, a4(x4,3)=c1(1-[image: there is no content])(1-c3), a4(x4,4)=(1-c1)[image: there is no content]c3, a4(x4,5)=(1-c1)[image: there is no content](1-c3), a4(x4,6)=(1-c1)(1-[image: there is no content])c3, a4(x4,7)=(1-c1)(1-[image: there is no content])(1-c3). We then have that [image: there is no content], [image: there is no content]. In general, the pattern is clear that:


[image: there is no content]([image: there is no content])=c1′2c2′2⋯c[image: there is no content]′2








where [image: there is no content] if the history of [image: there is no content] turns “left” at the i-th step and [image: there is no content] if it turns “right” at the i-th step. Some q-measures of two element sets are:


μ4x4,0,x4,1=c12[image: there is no content]2μ4x4,1,x4,2=c12[image: there is no content]+c32











In general, any pair of c-causets in [image: there is no content]4 interfere.



We now consider the extremal left path [image: there is no content]=x1,0x2,0[image: there is no content]⋯. Is [image: there is no content]? We have that:


[image: there is no content](xn,0)=c1′2c2′2⋯c[image: there is no content]′2











Now, [image: there is no content] if and only if lim[image: there is no content](xn,0) exists, and this depends on the values of [image: there is no content]. In fact, we can set values of [image: there is no content] so that lim[image: there is no content](xn,0)=r for an [image: there is no content]. For example, if we let [image: there is no content]=c[image: there is no content]=⋯=1, then we obtain:


μ([image: there is no content])=limμm(xm,0)=c1′2c2′2⋯c[image: there is no content]′2











Moreover, in this case, [image: there is no content] for every [image: there is no content] with similar values for [image: there is no content].



As another example, let [image: there is no content] be the set of paths [image: there is no content], such that [image: there is no content] are the “middle half” of [image: there is no content]3,[image: there is no content]4,…. That is, A1=[image: there is no content]1, A2=[image: there is no content], A3=[image: there is no content],[image: there is no content],




A4=x4,2,x4,3x4,4,x4,5A5=x5,4,x5,5x5,6,x5,7x5,8x5,9x5,10x5,11⋮









Now, [image: there is no content], μ3(A3)=c1+[image: there is no content]-2c1[image: there is no content]2:


μ4(A4)=c1(1-[image: there is no content])c3+c1(1-[image: there is no content])(1-c3)+(1-c1)[image: there is no content]c3+(1-c1)[image: there is no content](1-c3)2=c1(1-[image: there is no content])+(1-c1)[image: there is no content]2=c1+[image: there is no content]-2c1[image: there is no content]2











It is not a coincidence that [image: there is no content]. In fact, [image: there is no content] and [image: there is no content]. It follows that [image: there is no content], so [image: there is no content] with [image: there is no content]. In a similar way, [image: there is no content] with μ([image: there is no content])=1-c1-[image: there is no content]+21[image: there is no content]2. We can interpret [image: there is no content] as the “one fourth end paths” with A′n=([image: there is no content])′, n=3,4,….



The situation for non-cylinder sets is more complicated, so to simplify matters, we consider a completely stationary CAP. In this case, we have only one coupling constant c. For x∈[image: there is no content], we have that [image: there is no content](x)=cj(1-c)k, where [image: there is no content], j is the number of “left turns” and k is the number of “right turns.” We then have explicitly that:


[image: there is no content]([image: there is no content])=∑x∈[image: there is no content][image: there is no content](x)2=∑[image: there is no content][image: there is no content][image: there is no content]jcj(1-c)(n-1-j)2=(c+1-c)[image: there is no content]2=1











The q-measure of x∈[image: there is no content] becomes:


[image: there is no content](x)=cj(1-c)k2=c2j1-c2k











It is interesting that in this case, we have:


∑x∈[image: there is no content][image: there is no content](x)=∑[image: there is no content]n-`[image: there is no content]jc2j1-c2)(n-1-j)=c2+1-c2[image: there is no content]











If [image: there is no content], then:


[image: there is no content]ωn=[image: there is no content]([image: there is no content])=c2j1-c2k











Whether lim[image: there is no content]([image: there is no content]) exists or not depends on c. If [image: there is no content], then [image: there is no content] for every [image: there is no content] and [image: there is no content]. If [image: there is no content], then [image: there is no content] for every [image: there is no content]. If [image: there is no content], [image: there is no content] or vice versa, then [image: there is no content] for some [image: there is no content] and [image: there is no content] for others. Except for the trivial cases [image: there is no content] or [image: there is no content], we have that [image: there is no content] whenever [image: there is no content]. An interesting example of a set [image: there is no content] is:


B=ω1ω2⋯∈Ω:ωjisconnectedj∈N











Thus, [image: there is no content] where [image: there is no content] is the extremal left path. Then, [image: there is no content] and [image: there is no content](Bn)=1-c[image: there is no content]2. If [image: there is no content], then lim[image: there is no content](Bn)=1 so [image: there is no content] with [image: there is no content].



As a special case, let [image: there is no content] be a completely stationary CAP with coupling constant [image: there is no content]. This is probably the simplest nontrivial coupling constant. Notice that [image: there is no content] and [image: there is no content]. Moreover:


c=12eiπ/4,c¯=12e-iπ/4











For x∈[image: there is no content], we have that [image: there is no content](x)=1/2[image: there is no content]. It follows that [image: there is no content] for every [image: there is no content] and [image: there is no content]. In a similar way, if [image: there is no content] is finite, then [image: there is no content] and [image: there is no content]. Moreover, [image: there is no content] and μ([image: there is no content])=1. In [image: there is no content]3, we have that:


μ3[image: there is no content],[image: there is no content]=c2=[image: there is no content]=μ3([image: there is no content])+μ3([image: there is no content])








so, in this case, [image: there is no content] and [image: there is no content] do not interfere. In a similar way, μ3[image: there is no content],[image: there is no content]=1/2, so [image: there is no content] and [image: there is no content] do not interfere. On the other hand,


μ3[image: there is no content],[image: there is no content]=1-2c-2c22=0








so [image: there is no content] and [image: there is no content] interfere destructively. Furthermore,


μ3[image: there is no content],[image: there is no content]=2c-2c22=4c(1-c)2=1








so [image: there is no content] and [image: there is no content] interfere constructively. Even in this simple case, we can get strange results:


μ3[image: there is no content],[image: there is no content],[image: there is no content]=2c-2c22=54











We can check Grade-2 additivity:


54=μ3[image: there is no content],[image: there is no content],[image: there is no content]=μ3[image: there is no content],[image: there is no content]+μ3[image: there is no content],[image: there is no content]+μ3[image: there is no content],[image: there is no content]-μ3([image: there is no content])-μ3([image: there is no content])-μ3([image: there is no content])=[image: there is no content]+[image: there is no content]+1-34











An interesting property of this special case is that the probability operators [image: there is no content]=ρ2⊗⋯⊗ρ2 are closely related to the Pauli spin operator:


σy=0-ii0











In particular, for [image: there is no content], we have:


ρ2=c2c¯(1-c)c(1-c¯)1-c2=[image: there is no content]1-ii1=[image: there is no content](I+σy)











In this way, [image: there is no content] corresponds to a state for [image: there is no content] spin-[image: there is no content] particles.



We now consider precluded events for the CAP that we are discussing. We say that [image: there is no content],[image: there is no content]∈[image: there is no content] are an antipodal pair if [image: there is no content]([image: there is no content])=-[image: there is no content]([image: there is no content]). Since [image: there is no content](xn,m)=cjc¯k, [image: there is no content], we have that:


[image: there is no content](xn,m)=2(n-1)/2eirπ/4








for some [image: there is no content]. It follows that [image: there is no content] and [image: there is no content] are an antipodal pair if and only if:


[image: there is no content]([image: there is no content])=2(n-1)/2eirπ/4=-[image: there is no content]([image: there is no content])








for some [image: there is no content]. We leave the proof of the following result to the reader. As usual, we apply the identity [image: there is no content]≈[image: there is no content].



Theorem 5.1. A set A⊆[image: there is no content] is a nonempty, primitive precluded event if and only if A=[image: there is no content],[image: there is no content], where [image: there is no content] and [image: there is no content] are an antipodal pair.



Applying Theorems 5.1 and 3.2, we obtain:



Corollary 5.2. A set A⊆[image: there is no content] is precluded if and only if A is a disjoint union of antipodal pairs.



Example 4. We illustrate Corollary 5.2 by displaying the antipodal pairs in [image: there is no content]3, [image: there is no content]4 and [image: there is no content]5. In [image: there is no content]3, there is only one antipodal pair ([image: there is no content],[image: there is no content]). In [image: there is no content]4, the antipodal pairs are:


(x4,0,x4,3),(x4,0,x4,5),(x4,0,x4,6)(x4,1,x4,7),(x4,2,x4,7),(x4,4,x4,7)











In [image: there is no content]5, there are 28 antipodal pairs. To save writing, we use the notation [image: there is no content]. The antipodal pairs in [image: there is no content]5 are:


(0,3),(0,5),(0,6),(0,9),(0,10),(0,12)(15,3),(15,5),(15,6),(15,9),(15,10),(15,12)(1,7),(1,11),(1,13),(1,14),(2,7),(2,11),(2,13),(2,14)(4,7),(4,11),(4,13),(4,14),(8.7),(8,11),(8,13),(8,14)











According to the coevent formulation [3,5,7,8], precluded events do not occur, so we can remove them from consideration. What is left can occur in some a homomorphic realization of possible universes [3,7,8]. We can remove a precluded event from [image: there is no content] (or [image: there is no content]), which is as large as possible, but there is no unique way of doing this, in general. To illustrate this method, let us remove the “left” and “right” precluded extremes. In [image: there is no content]3, we remove the precluded event [image: there is no content],[image: there is no content], and we obtain:


A3=[image: there is no content],[image: there is no content]








with [image: there is no content]. In [image: there is no content]4, we remove the precluded event:


[image: there is no content]








and we obtain:


[image: there is no content]








with [image: there is no content]. In [image: there is no content]5, we remove the precluded event:


[image: there is no content]








and we obtain:


[image: there is no content]








with [image: there is no content]. Continuing this process, we conjecture that we obtain a sequence of events An⊆[image: there is no content], where [image: there is no content] and [image: there is no content](An)=1. Although [image: there is no content] increases exponentially, if this conjecture holds, then [image: there is no content] only increases linearly. This gives a huge reduction for the number of possible universes. If [image: there is no content] satisfies [image: there is no content]=An, then [image: there is no content] with [image: there is no content] and [image: there is no content] with μ([image: there is no content])=0. We would then conclude that [image: there is no content] is precluded, and a realizable universe would have to be in A.




6. Concluding Remarks


Let us emphasize that we did not say that the Universe is a giant quantum computer. We are only suggesting that the present mathematical model for the Universe begins to resemble a quantum computer. Moreover, we do not mean that employing this model will eventually enable us to tap into the Universe with our laptops to gain enormous computational power. Such a goal may actually be impossible, because we have presented a multiverse theory and communication between individual universes will probably not be possible. What will be attainable is the design of quantum computers at the nuclear or even elementary particle level with a subsequent huge increase in speed and memory. In fact, the c-causets we have presented describe a framework or scaffolding for the universe. Each vertex of a c-causet may represent a four-dimensional cell of Planckian volume. We may be able to take advantage of this granular space-time structure to build quantum computers.



The precise definition of a quantum computer is fairly technical, and we do not need to consider it here. The rough idea is that two or more particles are prepared in an initial quantum state (frequently entangled) and are directed through a sequence of quantum gates described by unitary operators. The gates are designed to implement a quantum algorithm for performing a desired computation. The resulting final state is subjected to a measurement called a quantum operation. The measurement value gives information about the computation. The process may be repeated a number of times to gain more information. The important point for us is that the quantum states are usually constructed from two-level quantum systems, such as electron spin in a fixed direction or photon polarization. One promising possibility is nuclear spin in a nuclear magnetic resonance machine. Such two-level systems are called qubits. By combining n of these systems (say n electrons), we obtain an n-qubit whose states are superpositions of tensor products of n qubit states. We have seen in Section 3 that n-qubits also describe c-causets corresponding to various universes. Although the universes do not evolve exactly according to a unitary dynamics (for one thing, the corresponding Hilbert spaces have increasing dimensions), as we saw in Section 4, the dynamics is governed by a transition amplitude. These amplitudes are characteristic of quantum mechanics, and it is well-known that they are closely related to unitary operators. In a rough sense, the universes evolve by passing through quantum gates. Of course, the Universe does not itself make a conscious measurement. This is up to us, the observers. In summary, this is why we say that our model begins to resemble a quantum computer.



We have one final remark. It is possible that the concept of a c-causet is too strong, so our discrete quantum gravity model is too restrictive to describe a universal sequential growth process. If this is the case, we can still say that a subsystem of the full system begins to behave like a quantum computer. At the very least, certain regular quantum systems may well be used as computer memory to store vast amounts of information.
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