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Abstract: We recall the construction of the Gromov—Wasserstein distance and concentrate
on quantitative aspects of the definition.
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1. Introduction

Modeling datasets as metric spaces seems to be natural for some applications and concepts revolving
around the Gromov—Hausdorft distance—a notion of distance between compact metric spaces—provide
a useful language for expressing properties of data and shape analysis methods. In many situations,
however, this is not enough, and one must incorporate other sources of information into the model, with
“weights” attached to each point being one of them. This gives rise to the idea of representing data
as metric measure spaces, which are metric spaces endowed with a probability measure. In terms of a
distance, the Gromov—Hausdorff metric is replaced with the Gromov—Wasserstein metric.

1.1. Notation and Background Concepts

The book by Burago, et al. [1] is a valuable source for many concepts in metric geometry. We refer
the reader to that book for any concepts not explicitly defined in these notes.

We let M denote the collection of all compact metric spaces and by M™° the collection
of all isometry classes of M. Recall that for a given metric space (X,dxy) € M, its
diameter is defined as diam (X) := max, ycx dx(x,2’). Similarly, the radius of X is defined as
rad (X) := minge y max,cx dx(z,z’).

For a fixed metric space (Z,dz), we let dZ, denote the Hausdorff distance between (closed)
subsets of Z.
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We will often refer to a metric space (X, dx) by only X, but the notation for the underlying metric
will be implicitly understood to be dx. Recall that a map ¢ : X — Y between metric spaces
(X,dx) and (Y,dy) is an isometric embedding if dy (p(z), p(2')) = dx(z,2') for all z,2' € X.
The map ¢ is an isometry if it is a surjective isometric embedding.

Recall that given measurable spaces (X, X x) and (Y, Xy ), a measure i on (X, ¥ x) and a measurable
map f : X — Y, the push-forward measure fzu on (Y, Xy) acts according to fuu(B) = u(f~(B))
forany B € Yy.

A metric measure space (mm-space for short) is a triple (X, dy, px) where (X, dx) is a compact
metric space and py is a Borel probability measure with full support: supp (ux) = X. We denote
by M™ the collection of all mm-spaces. An isomorphism between X,Y € MY is any isometry
VX —Y,suchthat Wypx = py.

2. The Gromov-Hausdorff Distance

One says that a subset R C X x Y is a correspondence between sets X and Y whenever m;(R) = X
and my(R) = Y, wherem; : X XY — X and m : X x Y — Y are the canonical projections. Let
R(X,Y) denote the set of all correspondences between X and Y.

The Gromov-Hausdorff (GH) distance between compact metric spaces (X,dx) and (Y,dy) is
defined as:

1.
dgu(X,Y) := —inf sup |dx($,9€/) - dY(Z/y@/)‘ (D
2 R (ay)(a'y)eR

where R ranges over R(X,Y).

Example 1. The GH distance between any compact metric space X and the space with exactly one point

is equal to 1diam (X)) .
It turns out that (M, dgy) is a nice space in that is has many compact subclasses.

Theorem 1. ([1]) Let N : [0,+00) — N be a bounded function and D > 0. Let F(N,D) C M be
any family of compact metric spaces, such that diam (X) < D forall X € F(N, D), such that for any
e >0, any X € F(N,¢) admits an c-net with at most N (¢) elements. Then, F (N, D) is pre-compact in
the Gromov—Hausdorff topology.

Example 2. An important example of families, such as the above, is given by those closed n-dimensional
Riemannian manifolds (X, gx) € M(n,k,D) with the diameter bounded by D > 0 and the Ricci

curvature bounded below by k.
Theorem 2 ([2]). The space (M™° dgy) is complete.

It then follows from the two theorems above that classes F (N, D), such as above, are totally bounded
for the Gromov—Hausdorff distance. This means that such classes are easy to organize in the sense of
clustering or databases.

In many practical applications, one would like to take into account “weights” attached to points in a
dataset. For example, the two metric spaces with the weights below are isometric, but not isomorphic in

the sense that no isometry respects the weights:
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The idea is that weights represent how much we trust a given “measurement” in practical applications.
This leads to considering a more general collection of datasets and, in turn, an adapted notion of equality
and a compatible metric over them. This naturally leads to regarding datasets as mm-spaces and then

finding a notion of distance on M™ compatible with isomorphism of mm-spaces.

3. A Metric on MY

Let (X, dx, ux) and (Y, dy, py ) be two given mm-spaces. In our path to defining a distance between
mm-spaces, we emulate the construction of the Gromov—Hausdorff distance and start by identifying
a notion of correspondence between mm-spaces.

A probability measure ; over X X Y is called a coupling between yx and juy if (7m1)xp = px and
(m2) 44t = f1y. We denote by U (pux, p1y') the collection of all couplings between iy and /iy

Example 3. When Y = {p}, uy = 0p, and thus, there is a unique coupling between X and Y:
U(px, pry) = {px @ 6}

Example 4. Consider for example the spaces with two points each that we depicted above. In that case,

11 3 1

px can be identified with the vector (3, 5) and py with the vector (3, §

i

). In this case, one sees that
the matrix:

= s =
O N

induces a valid coupling.
Now, given p > 1, consider the function
(:U7 Y, ‘1:/7 y/) = ‘dX(l’, JJ/) - dY(y7 y/) |p

and pick any p € U(px, p1y ). One then integrates this function against the measure p ® p and infimizes

over the choice of 11 € U(px, py) to define the Gromov—Wasserstein distance of order p [3]:

1. 1/p
o, (X, = int ([ (o) = (o e x ) i x o)

Remark 1. This is an L? analogue of Equation (1).

Theorem 3 ([3]). The Gromov-Wasserstein distance of order p > 1 defines a proper distance on the

collection of isomorphism classes of mm-spaces.

By standard compactness arguments, one can prove that the infimum above is always attained [3].
Let UP*(X,Y') denote the set of all the couplings in U (s, p1y) that achieve the minimum. The structure

of the former set depends not only on xx and py, but also on dx, dy and p.



Axioms 2014, 3 338

Example 5. Consider the mm-space with exactly one point: ({x}, (0), d.). Then,

dim(Xa t=h) = % (// (dX(x’x/))pHX(dif) #X(dw/>)l/p

and we define diam,, (X )—the p-statistical diameter of X—as twice the right-hand side. Notice that
lim,,~, diam,, (X) is equal to the usual diameter of X (as a metric space).

Question 1. 7o what extent are we able to replicate the nice properties of (M, dgy,) in the context of
(MY, dgwp)? In particular, it is of interest to investigate whether this new space of datasets is complete

and whether one can easily identify rich pre-compact classes.
3.1. Pre-Compactness

Theorem 4 ([3]). For a function non-decreasing p : [0,00) — [0, 1], such that p(¢) > 0 fore > 0
and D > 0, let F*(p, D) C MY denote the set of all mm-spaces X, such that diam (X) < D and
inf, px (B:(z)) > p(e) for all e > 0. Then, F*(p, D) is pre-compact for the Gromov—-Wasserstein
topology, for any p > 1.

Remark 2. Recall Example 2, where closed n-dimensional Riemannian manifolds were regarded
as metric spaces. One can, all the same, embed closed Riemannian manifolds into
M"Y via (X, gx) — (X,dx, pux), where dx is the geodesic distance induced by the metric tensor gy
and px stands for the normalized volume measure on X. It is well known [4] that for ¢ > 0 small,
px(Be(r)) = woitge™ (1 — 6:?;—5?1))52 + O(e")), where sx(z) is the scalar curvature of X at z, and
vol(X) is the total volume of X. Thus, a lower bound on px (B:(x)) plays the role of a proxy for an

upper bound on curvature.

3.2. Completeness

The Space M™ with any p-Gromov—Wasserstein distance is not complete. Indeed, consider the
following family of mm-spaces: A, € M"™, where A,, consists of n € N points at distance one from
each other, and all with weights 1/n.

Claim 1. Forall n,m > 1, dgyw p(An, Ap) < 3 (077 + m~V/P).
The claim will follow from the following claim and triangle inequality for dgyy ,:
Claim 2. Foralln,m > 1, dgy »(An, Apm) < %n‘l/p.

In order to verify the claim, we denote by {x;, zs,...,z,} the points of A, and label the points in
Apm DY {U11, o Yimy Y21y -+ s Yoy e e - - s Ynls - - - » Ynm } - Consider the following coupling between i,
and t,,..,, the reference measures on A, and A,,.,,:

1
p(xi, yrj) == ——0x, foralli, ke {1,...,n}andj e {1,...,m}
n-m

It is clear that this defines a valid coupling between pi,, and fi,.,.
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Now, note that
J (1) :Z Z |da, (i, Tir) = A (Ygs Y ) [P 1(25 Uiy ) 1(2ir, Yo )
41" (k,g),(K',5")

1
Z Z |da, (25, i) — da,,. (Yij, Yirgr) P

. 2
(n m) 7;,7;’ j,jl

=m22\1 — 05|

g

Now, by definition, dgw , (A, Ap) < %(J(,u))l/p, so the claim follows.
Claim 1 indicates that {A, },cn constitutes a Cauchy sequence in M™. However, a potential limit
object for this sequence will have countably infinitely many points at distance one from each other.

This space is not compact, thus dg)y ,, is not a complete metric.

3.3. Other Properties: Geodesics and Alexandrov Curvature

Very recently, Sturm [5] pointed out that M™ is a geodesic space when endowed with any dgyy ,,
p > 1. This means that given any two spaces Xy, X7 in M, one can findacurve [0,1] 5 t — X, € MY,
such that dgyw , (X, X5) = |t — s| dgw (X0, X1), s,t € [0, 1].

Proposition 1 ([5]). For each p > 1, the space (MY, dgyy ) is geodesic. Furthermore, for p > 1, the
following curves on M define geodesics between (X, dy, 110) and (X1, dy, py) in M™:

[O, 1] S5t — (XQ X Xl,dt,,u)

where dy((xo, 1), (), 1)) = (1 —t) do(zo, 2p) + t di (1, 3)) for (zo,x1), (xf, 2}) € Xo X X, and
w e L{;’pt(X ,Y'). Furthermore, for p > 1, all geodesics are of this form.

Sturm further proved that the completion M of the space M™ with metric dgyy » satisfies:
Theorem 5 ([5]). The metric space (Mw, dgw’g) is an Alexandrov space of curvature > (.
Amongst the consequences of this property is the fact that one can conceive of gradient flows on the

space of all mm-spaces [5].

3.4. The Metric dgyy , in Applications

Applications of the notion of Gromov-Wasserstein distance arise in shape and data analysis. In shape
analysis, the main application is shape matching under invariances. Many easily computable lower
bounds for the GW distance have been discussed in [3,6]. All of them lead to solving linear programming
optimization problems (for which there are polynomial time algorithms) or can be computed via elicit
formulas. As an example, consider the following invariant of an mm-space (X, dx, jtx):

Hy :[0,00) = [0,1], t = pux @ px ({(z,2)] dx(z,2") < t})
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This invariant simply encodes the distribution of pairwise distances on the dataset X, and it
is defined by analogy with the so-called shape distributions that are well known in computer
graphics [7]. Then, one has:

Proposition 2 ([3,6]). Let X, Y € M"™ be any two mm-spaces and p > 1. Then,
1 (o]
dowa(X.Y) 2 5 [ |Hx(t) ~ Hy (0] d
0

Remark 3. This invariant is also related to the work of Boutin and Kemper [8] and Brinkman
and Olver [9].

Other lower bounds which can be computed in time polynomial in the number of points in the
underlying mm-spaces have been reported in [3]. As a primary example, one has that the local shape
distributions of shapes provide a lower bound which is strictly stronger than the ones in the Proposition

above. In more detail, consider for a given mm-space (X, dx, px) the invariant:
hy : X % [0,00) = [0,1], (,%) — pix <Bt(x)>.

Then, for mm-spaces X and Y consider the cost function cx y : X x Y — R* given by:

exy(eg)i= [ [hx(e.0) = by, e
0
One then has:

Proposition 3 ([3,6]). Let X, Y € M" be any two mm-spaces and p > 1. Then,

L,
dgw p(X,Y) > 5 nf / / cxy (2, y)pu(de x dy),
where 1 ranges in U(pix, ity ).

Remark 4. Solving for the infimum above leads to a mass transportation problem for which there exists
efficient linear programming techniques.

Remark 5. It is possible to define a notion of spectral Gromov-Wasserstein distance which operates
at the level of compact Riemannian manifolds without boundaries, and is based con the comparison of
heat-kernels. This notion permits inter-relating many pre-existing shape matching methods and suggests
some others [12].

4. Discussion and Outlook

The Gromov—Hausdorff distance offers a useful language for expressing different tasks in shape and
data analysis. Its origins are in the work of Gromov on synthetic geometry. For finite metric spaces, the
Gromov-Hausdorff distance leads to solving NP-hard combinatorial optimization problems. Related
to construction is Gromov—Wasserstein distances that operate on metric measure spaces [3,10]. In
contrast to the Gromov—Hausdorff distance, the computation of Gromov—Wasserstein distances leads

to solving quadratic optimization problems on continuous variables. The space of all metric measures
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spaces endowed with a certain variant of the Gromov—Wasserstein distance [3] enjoys nice theoretical

properties [5]. It seems of interest to develop provably correct approximations to these distances when

restricted to some suitable subclasses of finite metric spaces. Other aspects of the Gromov—Wasserstein

distance are discussed in [3,5,10-12].
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