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Abstract: The necessity of a rigorously operative formulation of quantum mechanics, 
functional to the exigencies of quantum computing, has raised the interest again in the 
nature of probability and the inference in quantum mechanics. In this work, we show a 
relation among the probabilities of a quantum system in terms of information of non-local 
correlation by means of a new quantity, the Bell length. 
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1. Introduction 

For about half a century Bell’s work has clearly introduced the problem of a new type of “non-local 
realism” as a characteristic trait of quantum mechanics [1,2]. This exigency progressively affected the 
Copenhagen interpretation, where non–locality appears as an “unexpected host”. Alternative readings, 
such as Bohm’s one, thus developed at the origin of Bell’s works. In recent years, approaches such as 
the transactional one [3–5] or the Bayesian one [6,7] founded on a “de-construction” of the wave 
function, by focusing on quantum probabilities, as they manifest themselves in laboratory. 
Nonetheless, according to the authors, the peculiar distribution of the probabilities makes necessary a 
theoretical scenario in which it is possible to characterize the type of information/entropy associated 
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with quantum events. In this work we utilize a Bohmian entropy which allows a new physical meaning 
of Bell-CHSH inequalities based on a new measuring system of non-local correlations to be provided. 

The paper is structured as follows. In chapter 2 we will review the salient results of the debate on  
non-locality and contextuality; in chapter 3 we will introduce the entropic approach and the Bell 
length; finally, in chapter 4, we will re-write the Bell-CHSH inequalities by using the Bell length. 

2. Non-Locality: A Survey 

The Bell inequalities concern measurements made by observers on pairs of particles that have 
interacted and then are separated. According to the quantum mechanical formalism they are entangled, 
while local realism would limit the correlation of subsequent measurements of the particles. On the 
basis of the Bell inequalities, entanglement became thus a property of states which could not be 
described by local realistic theories. Many formulations of the Bell inequalities exist. For example, the 
well known Clauser, Horne, Shimony, and Holt (CHSH) inequality and Clauser and Horne (CH) 
inequality [8,9] are used for the verification of nonlocal correlations in a two-dimensional Hilbert 
space. The Bell inequality of a qubit pair in the form derived by Clauser, Horne, Shimony and Holt can 
be formulated as 

( ) 2≤ΒCHSHTr ρ  (1) 

where the Bell-CHSH operator is 

( ) ( ) σσσσ 









⋅−⊗⋅+⋅+⊗⋅=Β ''' bbabbaCHSH  (2) 

and its expected value is maximized over real-valued three-dimensional unit vectors a , 'a , b


 and 'b


 
(here σ  are the usual Pauli matrices). The states for which ( ) 2>ΒCHSHTr ρ  are the ones which cannot 

be described by a realistic local theory and are thus associated with non-classical correlation and  
non-locality. 

In virtue of the work of R. F. Werner [10], the Bell inequalities provided an operative definition of 
entangled states, indicating the formal conditions for what Einstein called “elements of physical 
reality”, namely states which are not obtainable through local operations and classical information. In 
Werner’s approach, separable mixed states can be written as 

( ) ( )∑ ⊗=
k

k
B

k
AkAB p ρρρ  (3) 

with 0 ≤ kp ≤ 1 and ∑ =
k

kp 1 , thus their correlation derives from the probabilities kp . Werner’s 

results suggest that mixed separable entangled states may exist that do not violate Bell inequalities! 
Entanglement is therefore not a very strong condition in order to characterize non-locality. On the 
other hand, from the point of view of quantum field theory (QFT), a result of this type seems to be 
unsurprising [11]. 

In a recent paper, two-qubit mixed states were shown to be more entangled than pure states: a 
comparison of the relative entropy of entanglement for a given nonlocality by Horst, Bartkiewicz and 
Miranowicz [12] showed a degree of violation of Bell-CHSH inequality and thus of quantum  
non-locality which was evaluated by using the function 
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( ) ( )[ ]1,0max −= ρρ MB  (4) 

where  

( ) { } 2max ≤+=
< kjkj

hhM ρ  (5) 

where jh  are the eigenvalues of the real symmetric matrix TTU T= , ( )[ ]jiij TrT σσρ ⊗=  being the 

correlation matrix, whilst the degree of entanglement was measured by using the relative entropy of 
entanglement defined as 

( ) ( )σρρ σ //min SE DR ∈=  (6) 

which is the relative entropy 

( ) ( )σρρρσρ 22 loglog// −= TrS  (7) 

minimized over the set D of separable states σ . However, the relative entropy of entanglement used 
by Horst, Bartkiewicz and Miranowicz is limited to the possibility of distinguishing a density matrix 
ρ  from the closest separable state σ  only and does not provide a measure of the relative entropy of 
entanglement of a general two-qubit mixed state. 

In the case of two qubits A and B described by the density operator ABρ , an interesting measuring 
system of the degree of entanglement is provided by Hall’s quantum correlation distance [13]: 

( ) [ ]( ) [ ]( )22 112 BAAB TrTrC ρρρ −−>  (8) 

which can also be expressed as 

( ) ∑ ⊗=
kj

kjjkAB TTrC
,4

1 σσρ  (9) 

where T denotes the 3×3 spin covariance matrix with coefficients 

kjkjjk IIT σσσσ ⊗⊗−⊗=  (10) 

Hall’s quantum correlation distance (8) leads to the following expression for the lower bound for 
the quantum mutual information shared by the two qubits A and B: 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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1,
24

14log
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2

1,
2

12log

AB
ABABABAB

AB
ABAB

AB

CCCCCH

CCCH
I

ρ
ρρρρ

ρ
ρρ

ρ  (10a) 

where H is the Shannon entropy of the probability distribution of the system of the two qubits into 
consideration. 

3. Quantum Inference as Non Classical Distribution  

The problem of the anomalous conceptual position of the inference in the theoretical plant of 
quantum mechanics (QM) is a consequence of the rather paradoxical fact that the standard 
interpretation does not contain the tools required in order to describe non-locality as a crucial feature 
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of the theory. Thus a situation has occurred which remembers Wittgenstein’s famous proposition: “The 
limits of my language are the limits of my world” [Tractatus, prop. 5.62]. In fact quantum physicists 
are in the position to investigate and experience something about which they should be silent! The 
advent of Bohmian Quantum Mechanics resolves this gap by the quantum potential, which showed to 
be not only the central expression of the nth “interpretation” but also an “open door” in order to treat 
non-locality in contexts that are otherwise difficult, such as particle physics, cosmology and quantum 
information [14]. In particular, it is possible to show that a deep mathematical connection exists 
between Bohm’s quantum potential and Feynman’s paths, they complete each other both in the 
physical meaning and as an efficacious tool [15]. 

In a series of recent works, the utility of a quantity indicating an entropic correlation built on 
Sbitnev’s quantum entropy has been shown [16–18]: 

ρln
2
1

−=QS  (11) 

which provides the quantum counterpart of a Boltzmann-type law and evaluates the degree of order 
and chaos of the configuration space produced by the density ρ  of the ensemble of particles 
associated with the wave function under consideration. In Sbitnev’s approach, by introducing the 
quantity (11), Bohm’s quantum potential for a one-body system can be written in the following form 

( ) ( )QQ S
m

S
m

Q 2
2

2
2

22
∇+∇−=

  (12) 

namely emerges as an information channel into the behaviour of the physical system where the 

quantity ( )2
2

2 QS
m

∇−
  can be interpreted as the quantum corrector of its kinetic energy while the 

quantity ( )QS
m

2
2

2
∇

  can be interpreted as the quantum corrector of its potential energy [16,17]. 

Moreover, according to current research [19,20], Bohm’s potential can be identified with the curvature 
scalar of the Weyl integrable space, namely 

Ω
Ω∇

−=
22

2m
Q   (13) 

where the scalar function Ω  is linked with the curvature through relation 
Ω
Ω∇

=
2

8R . In this picture, 

the inverse square root of the curvature scalar defines a typical length (Weyl length) that can be used to 
evaluate the strength of quantum effects, in other words the quantity 

Ω
Ω∇

=
2

1
WL  

(14) 

can be defined as the quantum length. In virtue of the equivalence of the approaches based on 
Equations (12) and (13), one obtains therefore 

( ) ( )QQ SS 22 ∇−∇
Ω
Ω∇

=
2

 (14a) 
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or, in terms of the density ρ , 

Ω
Ω∇

=


















 ∇
−

∇ 222

22 ρ
ρ

ρ
ρ  (14b) 

Thus the entropic quantum potential (12) leads to define a quantum-entropic length (Bell length) 
describing the geometrical properties of the configuration space associated with the quantum entropy, 
given by the following relation 

( ) QQ

quantum
SS

L
22

1

∇−∇
=  (15) 

On the basis of the two quantum correctors of the energy appearing in Equation (12), the Bell 
length (15) can be interpreted as an indicator of non-local correlation (and thus provides a direct 
measure of the degree of departure from the Euclidean geometry characteristic of classical physics). 
The maximum value of (15) is obtained for 1max =quantumL , which corresponds to the maximum degree of  

non-local correlation of a quantum system [21]. 
A geometric approach based on the quantum entropy and a quantum-entropic length can be directly 

extended to the analysis of the entanglement of a qubir pair of spin ½ particles. By considering a two 
qubit system of two particles 1 and 2 in the state 

↓↑+↑↓=
2

sin
2

cos ϑϑψ ϕie  (16) 

(where ↑↓  corresponds to the state of the system when the first qubit is in the “up” state, i.e., in the 

direction of the z-axis, and the second qubit is in the “down” state, while ↓↑  corresponds to the state 

of the system when the first qubit is in the “down” state and the second qubit is in the “up” state), in 
the geometric entropic approach the quantum potential for this physical system may be written as 
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 (17) 

where 

SMiM 11
ˆ

=  (18) 

SMiM 22
ˆ

=  (19) 

are the angular momenta of the two qubits 1 and 2 respectively, S  is the phase of the wave function 
(16) of the system, I is the moment of inertia. The expression (17) for the quantum potential of a two 
qubits system in the general state (16) derives directly from the well known relation 

( )
IR

RMMQ
2

ˆˆ 2
2

2
1 +

=  (17a) 

by writing it in terms of the quantum entropy (11). 
Moreover, the deformation of the geometry associated with the entangled qubit pair can be 

described by the following Bell length 
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(20) 

The Bell length for a two qubits system provides a direct measure of the entanglement degree of the 
two particles in the state (16). In an EPR-Bell situation, stronger the non-local correlation between two 
particles will be, bigger the departure of distribution of the results from the classical one will be. In the 
following chapter we will show in what sense the entropic correlation length (20) introduced here can 
throw new light on Bell’s inequalities. 

4. Bell Inequalities and Entropic Correlation Length 

In the geometric approach based on Equation (20), by using Equation (8) and taking into account 
that, in terms of the quantum entropy, ( )

AQA S2exp −=ρ  and ( )
BQB S2exp −=ρ , the strong condition 

for the entanglement between the two qubits becomes 
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( )( )[ ]( ) ( )( )[ ]( )22 2exp12exp12
BA QQ STrSTr −−−−>  

(21) 

which may be expressed also as 

( )( )[ ]( ) ( )( )[ ]( )
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(22) 

In analogy with Hall’s approach (where the quantum correlation distance (8) leads to the quantum 
mutual information (10a)), the Bell length (20) leads us to define a tight lower bound for the quantum 
mutual information shared by two qubits, which is given by the following relation: 

( )
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quantum
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S

L
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S
LI  (23) 

here ( )
ABBA QQQquantum SSSLI −+= . For 72654,0≤quantumL  this lower bound can only be reached by 

entangled states, and cannot be achieved by any classical distribution having the same correlation 
distance. It is also interesting to remark that, for 72654,0>quantumL , the bound is tight if only one of the 

reduced states is maximally mixed. 
In the approach here proposed, the Bell length (20) plays the role of Hall’s quantum correlation 

distance (8) and can be considered as the ultimate visiting card determining the non-local correlations 
and thus violations of Bell inequalities. In order to clarify this point, before all, let us consider the joint 
probability ( )baPAB ,  of outcomes a and b, for measurements of variables A and B on respective 
spacelike-separated qubits and let λ  be any underlying variables relevant for the correlations between 
these two qubits. The probability distribution ( )baPAB ,  has the following form 
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( ) ( ) ( )∑=
λ

λλ baPpbaP ABABAB ,,  
(24) 

Here, the underlying marginal distribution of A, ( )λapA , is independent of whether B or B’ was 

measured on the second system (and vice versa), while λ  is independent of the choice of the measured 
variables A and B, i.e., ( ) ( )λλ ''BAAB pp =  for any A, A’, B, B’. Moreover, any observed correlation 
between A and B arises from ignorance of the underlying variable, namely ( ) ( ) ( )λλλ bPaPbaP BAAB =,  

for all A, B and λ . As shown by Hall, the quantum correlation distance (8) of ( )λbaPAB ,  vanishes 

identically; as a consequence, since here the Bell length (20) plays the role of Hall’s quantum 
correlation distance (8), one obtains that the quantum entropic correlation distance of ( )λbaPAB ,  

vanishes identically too: 

( ) 0=λABquantum PL  (25) 

As is well known, for this system of the two qubits the two-valued random variables A, A’, B, B’ 
with values 1±  satisfy the Bell-CHSH inequality 

2'''' ≤−++≡ BABAABABCHSH  (26) 

whereas quantum correlations can violate this inequality by as much as a factor of 2 . Now, the  
Bell-CHSH inequality (26) can be easily expressed in terms of the Bell length (31). In fact, assuming 
that for these correlations no-signaling and measurement independence hold, and defining max

quantumL  to 
be the maximum value of the Bell length ( )λABquantum PL  over all A, B and λ , the standard Bell-CHSH 

inequality given by Equation (26) may be generalized as 

max2
4''''
quantumL

BABAABAB
−

≤−++  (27) 

In the approach based on the quantum entropic correlation distance (20), it follows therefore that a 
Bell inequality violation can be simulated by the following relation 

VBABAABAB +=−++ 2''''  (28) 

for some V > 0, if the observers share random variables having a quantum entropic correlation distance 
of at least 

V
VLquantum +

≥
2
2max  (29) 

As a consequence, the observers must share a minimum mutual information of 
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+
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 −+
−=

V
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LL
SI Q

quantumquantum
Q 24

2,
24
322log

2
1

,
2

1
2log

maxmax

min  (30) 

The mutual information (41) reduces to zero in the limit of no violation of Bell inequality, i.e., 
when V = 0, and reaches a maximum of 1 bit of information in the limit of the maximum possible 
violation, V = 2, namely for 1max =quantumL , which is the limit value of the Bell length, beyond which the  

de-correlation between the two qubits begins. Therefore, on the basis of the quantum entropic 
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correlation distance (21), an entropic length Bell inequality can be introduced which corresponds to the 
Bell inequality (26) of the form 

0≤entropicCHSH  (31) 

where 

max2
4''''
quantum

entropic L
BABAABABCHSH

−
−−++=  (32) 

The violation of the entropic length Bell inequality (31) essentially coincides with the one of the 
standard CHSH inequality. As regards the entangled state of a two qubit pair (16), the maximal 
violation of the entropic length Bell inequality (31), which corresponds to V = 2, namely to 

1max =quantumL , is obtained for 
2
πϑ = , on which one gets 237,0+≈entropicCHSH . For other values of ϑ , 

the maximal violation of (31) when optimized over the measurements, follows the exact same profile 
as for the standard Bell-CHSH inequality (26). However, the measurements that maximize the 
violation of CHSH are not the ones which give the maximal violation of entropicCHSH . In general, for 

the standard Bell-CHSH scenario, the violation of the standard inequality (26) is a necessary but not 
sufficient condition for the violation of (31). The advantage of the entropic length Bell inequality (31) 
lies in the fact that the results depend directly on the Bell length which emerges directly as correlation 
degree in quantum systems and which provides just an entropic quantum correlation distance. The 
maximum correlation in the two qubits system described by the general state (16), is determined by the 
limit value 1 of the Bell length. It becomes therefore permissible the following re-reading of the spin-
spin correlations in a two qubits system characterized by the wave function (16): the quantum entropy 
leads to the quantum potential (17) which corresponds to a deformation of the geometry described by 
the Bell length (20); the Bell length (20) acts as the ultimate visiting card of quantum inference in the sense 
that its maximum value 1max =quantumL  leads to the maximum violation of an entropic Bell inequality of the 

form (31) which may be considered as a generalization of the standard Bell inequality (26). 
Moreover, on the basis of current research [22], violations of entropic inequalities witness a very 

particular kind of contextuality (nonlocality): if a probabilistic model violates an entropic inequality, 
then the same thing happens for every other probabilistic model obtained by permuting the outcome 
probabilities of a joint measurement, if the permuted joint distribution has the same marginal scenarios 
defined by specifying a set of observables for which certain subsets are known to be compatible and 
can be jointly measured. For example, this leads to the phenomenon that the Popescu-Rohrlich box 

( ) ( )[ ]xybaPR yxbaP ⊕⊕−+= 11
4
1,,  (33) 

defined to be the unique marginal model which maximally violates the standard Bell-CHSH inequality 
(26), is entropically indistinguishable from the marginal model 

( ) ( )[ ]baC yxbaP ⊕−+= 11
4
1,,  (34) 

describing classical correlations. As shown by Chaves and Fritz, entropic quantities associated with the 
Bell length (20) cannot distinguish between the perfect anti-correlation of A' and B' as it appears in 
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(33), and the perfect correlation of A' and B' as in (34) and thus all the joint entropies of the PR-box 
coincide with those of CP . As a consequence, also in the entropic approach of Bell’s inequalities here 
suggested, entropic quantities associated with the Bell length (20) cannot distinguish between the 
perfect anti-correlation of A' and B' as it appears in (33), and the perfect correlation of A' and B' as in 
(34). In other words, for any marginal model with two-outcome measurements one has 

1≤entropicCHSH  (35) 

namely the maximal violation of (31) is +1. 
This boundary for the violation of Bell-CHSH scenario can be obtained by the no-signaling box 

CPR PPP
2
1

2
1max +=  (36) 

which is an equal mixture of the Popescu-Rohrlich box with classical correlations. The distribution (36) 
can be seen as the probabilistic model in which each of the three pairs (A,B), (A,B') and (A',B) displays 
perfect correlation, while the fourth pair (A',B') is uncorrelated. maxP  achieves a value of 3 on the 
standard CHSH scenario, and therefore does not allows a quantum-mechanical realization since it is 
beyond Tsirelson’s bound of 2√2. This example shows that a convex combination of two  
non-violating marginal models may violate an entropic inequality like (31) and suggests the non-linear 
character of the entropic length Bell inequality (42) which is associated with the non-Euclidean 
geometry described by the Bell length. 

5. Conclusions 

In recent years the exponential development of theories and technologies of quantum information 
have lead to a new critical interest for the foundations. This time the interest goes beyond the 
philosophical exigencies regarding the recover of a post-classical view, irreducible compromised. We 
know that the problem of a “pacific coexistence” between relativity and quantum physics are not going 
to be resolved by a battle between Einstein’s elements of local physical reality and “spooky actions at 
distance”, and that rather we have to accept the ultimate non-local reality indicated by D. Bohm’s and 
J. Bell’s works. 

The problem of the quantum inference finds its natural collocation in the scenario of this non-local 
reality where the violation of the Bell inequalities indicates the shifting from the hypotheses and from 
the classical geometry [21,23], and the entropic correlation length (Bell length) measures in a simple and 
precise way the intensity of this shifting. 

Appendix: The Positive-Definite Nature of the Bell Length 

The Bell length (15)—which derives directly from the quantum length (14) as a consequence of the 
equivalence between Sbitnev’s approach to the quantum potential and Novello’s, Salim’s and 
Falciano’s model of the quantum potential in terms of the curvature scalar of Weyl integrable  
space—can be considered as a consistent and valid measure of the geometrical properties of a quantum 
system. Despite the density describing the space-temporal distribution of the ensemble of particles 
associated with the quantum state is a function of the coordinates, the dependence of the Bell length on 
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the coordinates does not imply the necessity of supplementary existence conditions in order to guarantee its 
positive definite nature. Equations (14) and (15) imply that the quantum lengths—associated to Sbitnev’s 
approach and to Novello’s, Salim’s and Falciano’s approach respectively—deriving from the quantum 
potential can never be singular, in the sense that the denominator appearing in their expression can 
become zero only in the classical case. 

In fact, on the basis of Equation (15), the two terms under square parenthesis in the denominator of 
the Bell length are the well-known quantum correctors of kinetic energy and potential energy for a 
quantum system described through Bohm’s potential. They have a precise physical and geometrical 
status, which has been analysed in many works. From the physical point of view, it is evident from 
(15) that the only case in which one may obtain 0 in the denominator of the Bell length is the classical 
one, namely corresponding to the quantum potential equal to 0. 

On the other hand, the same result may be obtained also from the geometrical point of view, 
utilizing Weyl’s geometry of Novello’s, Salim’s and Falciano’s approach, the denominator of the 

quantum length (14) may be equal to zero only if 0
2

=
Ω
Ω∇  namely 02 =Ω∇  and this corresponds, 

even here, to the classical case! The perfect agreement with the results of other authors confirms our 
conclusion, namely that in EPR-type situations, stronger the non-local correlation between two 
particles will be, bigger the departure of distribution of the results from the classical one will be. 

This property of the Bell length (15) to be always positive definite can be grasped and realized well 
by considering, for example, the one-dimensional harmonic oscillator. In this case, the quantum 
Hamilton-Jacobi equation of de Broglie-Bohm theory assumes the form 

( ) 0
2
1

22
1 22

1

1
22

2
1 =+







 ∇
−∇+

∂
∂ xm

R
R

m
S

mt
S ω  (37) 

where 22

2
1 xmV ω=  is the potential, the stationary states are given by ( ) ( ) /tiE

n
nexutC −=  (where ( )xun  

are real functions proportional to Hermite polynomials and ω





 +=

2
1nEn , n = 0,1,2,… is the 

quantum number associated with each stationary state) and the corresponding quantum potential is 

22

2
1

2
1 xmnQ ωω −





 +=   (38) 

In particular, for a non-dispersive Gaussian-shaped packet given by the following superposition of 
the stationary wave-functions [24]: 

( ) ( )∑
∞

=

−=
0

/,
n

tiE
nn

nexuAtx ψ  (39) 

where 

( ) ( ) 



4/2/12/ 2

!2/ amnnn
n enamA ωω −−
=  (40) 

the quantum state becomes 
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( ) ( ) ( )( ) ( )






















 −+−−−= tataxmtitaxmmtx ωωωωωωπωψ 2sin

2
1sin2/

2
cos2/exp/, 224/1

  (41) 

which represents a Gaussian packet centered around ax =  at 0=t  with half-width 
2/1

0 2






=

ω
σ

m
 . 

The amplitude function of the state (41) is 

( ) ( ) ( )( ){ }24/1 cos2/exp/, taxmmtxR ωωπω −−=   (42) 

and thus the density is 

( ) ( ) ( )( ){ }22/1 cos2/2exp/, taxmmtx ωωπωρ −−=   (43) 

The density of the ensemble of particles (43) describing the one-dimensional harmonic oscillator 
determines a deformation of the geometry of the configuration space described by a quantum entropy 
given by relation 

ln
2
1

−=QS ( ) ( )( ){ }[ ]22/1 cos2/2exp/ taxmm ωωπω −−   (44) 

namely 

( )[ ] ( )22/1 cos
2

/ln
4
1 taxmmSQ ωωπω −+−=



  (45) 

The quantum entropy (45) indicates the degree of order and chaos of the vacuum supporting the 
density of the ensemble of particles associated with the wave function (41) of the harmonic oscillator 
(corresponding to Schiff’s treatment). In this situation, the quantum potential (38) may be expressed as 

( )











−






 −−=



 ωωω mtaxm
m

Q
22

cos
2

 (46) 

Thus, the geometrical properties of the configuration space of the one-dimensional harmonic 
oscillator with density (43) can be characterized by introducing the quantum-entropic length (Bell 
length) given by the following relation 

( )


ωωω mtaxm
Lquantum

−





 −

=
2

cos

1  
(47) 

Equation (47) shows clearly that the Bell length of the harmonic oscillator explicitly depends of the 
coordinate x. The quantum-entropic length (47) turns out to be positive definite if the coordinate x 

satisfies conditions 
ω

ω
m

tax 

−≤ cos  or 
ω

ω
m

tax 

+≥ cos  (which can be considered as its 

existence conditions). Since the intervals 
ω

ω
m

tax 

−≤ cos  or 
ω

ω
m

tax 

+≥ cos  cover all the 

physically sensed and relevant values of the coordinate x for the one-dimensional harmonic oscillator 
having the state (41), one can conclude that the Bell length (47) is always positive definite in all the 
significant intervals for the coordinate. The example of the harmonic oscillator shows thus in an easy 
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and clear way that the Bell length (15) can be used as a consistent quantity measuring the geometrical 
properties of a quantum system. 
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