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Abstract: A geometric model for a biologically-inspired visual front-end is proposed, based
on an isotropic, scale-invariant two-form field. The model incorporates a foveal property
typical of biological visual systems, with an approximately linear decrease of resolution
as a function of eccentricity, and by a physical size constant that measures the radius
of the geometric foveola, the central region characterized by maximal resolving power.
It admits a description in singularity-free canonical coordinates generalizing the familiar
log-polar coordinates and reducing to these in the asymptotic case of negligibly-sized
geometric foveola or, equivalently, at peripheral locations in the visual field. It has predictive
power to the extent that quantitative geometric relationships pertaining to retino-cortical
magnification along the primary visual pathway, such as receptive field size distribution and
spatial arrangement in retina and striate cortex, can be deduced in a principled manner. The
biological plausibility of the model is demonstrated by comparison with known facts of
human vision.
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1. Introduction

The visual system of humans (and other mammalian species) interfaces the optical world via a
sensorium (or visual front-end, the internal embodiment of the visual field) that is characterized by
receptive fields, i.e., light sensitive cells, of various sizes and aperture profiles. Scale space theory
provides a foundation for a rigorous taxonomy and functional interpretation of visual receptive fields as
(exact) non-infinitesimal differential operators. The conjecture that the brain can be seen as a “geometry
engine” has been introduced by Koenderink in his seminal papers and has been amply exploited in the
image analysis literature [1–11]. The keyword is resolution (or its inverse, scale).
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Conventional linear scale space theory, however, typically presumes (scale-wise) uniform sampling,
ignoring the foveal properties and real-time dynamics typical of biological visual systems. For the
temporal aspects, the reader is again referred to Koenderink for an interesting proposition [12]. The
present article concerns the static foveation aspect of the visual front-end, de-emphasizing specific
characteristics of visual receptive fields other than the size and spatial arrangement of their effective
domains of support.

The visual system of humans shows a roughly linear decrease of visual acuity with eccentricity, is
more or less rotationally invariant relative to the foveal point and exhibits a large degree of invariance
to object size. Ample empirical evidence supports these claims, including quantitative studies of
retino-cortical magnification [13]. Among others, this phenomenon is responsible for the fact that, in the
case of humans, about half of the striate cortex is devoted to a foveal region covering only one percent of
the visual field. The log-polar mapping arises naturally in simplified models of foveal systems endowed
with the aforementioned properties, cf. [14]. Image processing algorithms, as well as space-variant
CMOScameras [15,16] have been constructed to mimic this mapping. These dimensionality reducing
sampling devices have turned out to be useful in computer vision, as they help to optimize visual tasks,
such as time to impact calculations.

However, no previously proposed theory seems to provide a principled account of the spatial
organization of the entire retina, including the fovea centralis (the central, avascular zone of the retina
with maximal acuity), where the log-polar model breaks down, due to its physically void singularity.
This shortcoming is reflected in the design of log-polar mapping algorithms and space-variant cameras,
in which one typically employs some heuristics to handle the transition between periphery and
central retina.

In this article, based on previous workshop papers [14,17], a model is presented that overcomes the
difficulties of the log-polar paradigm. It is based on the same invariance principles, viz. global rotation
invariance (with respect to the foveal point) and scale invariance, but explicitly incorporates a physical
resolution limitation. The model admits so-called canonical coordinates, inducing a natural discrete grid
for operational representation in software, hardware or biological “wetware”. Its biological merits will
be discussed by comparison with known facts on human vision. To guide the reader not familiar with the
biological terminology used in this article, a glossary of relevant biological terms has been appended.

For simplicity, stereopsis will be ignored. The retina will be modeled as a flat disk, representing the
domain of definition of the full visual field. This field comprises two hemifields, each of which projects
onto a (contralateral) hemiretina, in turn projecting retinotopically to the primary visual (or striate) cortex
through the optic radiation via the subcortical lateral geniculate nucleus. Thus, each lateral part of the
visual cortex reflects the contralateral visual hemifield [13], cf. the sketch in Figure 1.

2. Theory

2.1. Modeling the Sensorium

Consider the basic scale invariant non-exact (the barred symbol, d̄, is used to stress the anholonomic
nature of the one-forms) one-forms:
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d̄ξ =
dx√

x2 + y2 + a2
and d̄η =

dy√
x2 + y2 + a2

(1)

in which (x, y) ∈ R2 are Cartesian coordinates. From an operational point of view, one could regard
these as locally adaptive measurement rods, with the help of which, one may assign a numeric value to
a vector depending on the base point to which it is attached. More precisely, if v(x, y) = vx(x, y)ex +

vy(x, y)ey is such a vector, “living” at base point (x, y) and expressed relative to globally-defined
Cartesian unit vectors ex and ey, then:

d̄ξ(v) =
vx(x, y)√
x2 + y2 + a2

and d̄η(v) =
vy(x, y)√
x2 + y2 + a2

(2)

Figure 1. Schematic representation of the optic pathways from each of the four quadrants of
view for both eyes. Adapted from Wikimedia Commons, original illustration by Ratznium.
LGN, lateral geniculate nucleus.

These numeric values could be interpreted to represent the “visual significance” of the respective
Cartesian vector components depending on the position in the visual field. Clearly, in order to be equally
significant, the components of a vector at some peripheral location (large

√
x2 + y2 + a2) will need to

be larger than those of a more central one (small
√
x2 + y2 + a2). The reason for this is to geometrically

express the roughly linear increase of typical receptive field size (with a concomitant linear decrease of
spatial resolving power) as a function of eccentricity

√
x2 + y2. The (small) physical size parameter
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a > 0 is needed to avoid a non-physical singularity at the center. Its visual significance will become
apparent below.

We will confine the region of interest to a disk of radius R, which represents the radius of
the geometric retina(

√
x2 + y2 ≤ R). The parameter, a, represents a transient radius separating

the geometric foveola(the geometric foveola is a construct of our model, to be distinguished from
the biological foveolain the mammalian retina; terminology betrays a modest amount of foresight)
(
√
x2 + y2≤a) from its periphery(

√
x2 + y2>a).

The one-forms of Equation (1) induce a scale invariant area two-form, geometrically representing
a spatially-weighted area of support (regardless of shape) of a Euclidean sensory element, dx ∧ dy, at
position (x, y) relative to the foveal center:

Ω =
√
g dx ∧ dy = d̄ξ ∧ d̄η (3)

in which:
√
g =

1

x2 + y2 + a2
(4)

is the square root of the metric determinant associated with the two-dimensional spatial metric:

G =
dx⊗ dx+ dy ⊗ dy

x2 + y2 + a2
= d̄ξ ⊗ d̄ξ + d̄η ⊗ d̄η (5)

Again, the number in Equation (4) reflects the fact that a peripheral receptive field will need to have a
larger area of support in order to be treated on par with a similar one closer to the foveal center.

As an aside, recall that the every two-dimensional Riemannian manifold is conformally flat and that
the Ricci curvature tensor, Ric, is always proportional to the metric tensor, viz.:

Rµν =
1

2
R gµν (µ, ν = 1, 2) (6)

in which Rµν and gµν are the components of Ric and G, respectively. For the case at hand, Equation (5),
the space-variant Ricci scalar (equal to twice the Gaussian curvature) equals:

R(x, y) =
4a2

x2 + y2 + a2
(7)

This curvature scalar assumes appreciable values within the fovea centralis. The point of departure in
previous work [14] was based on the assumption that R = 0 for all (x, y) 6= (0, 0). Combined with the
aforementioned symmetries and applied to a conformally flat metric, this requirement admits a family
of metrics, of which Equation (5) is a particular member, only if a = 0, leaving a spurious singularity at
the origin. It is clearly not compatible with our regularized metric with a > 0.

2.2. Modeling Retino-Cortical Magnification

Consider the area (measured by the Riemannian metric of Equation (5)) of an infinitesimally narrow
ring δΓ : ρ<

√
x2 + y2<ρ+ δρ around the fovea:

δV (ρ) =

∫∫
δΓ

d̄ξ ∧ d̄η = δρ

∫ 2π

0

ρ

ρ2 + a2
dφ =

2πρ δρ

ρ2 + a2
(8)
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Geometrically, the quantity:

V ′(ρ) =
2πρ

ρ2 + a2

def
= P (ρ) (9)

measures the (Riemannian) perimeter of a the circle of radius ρ around the fovea. It is easy to see that
there exists a maximal circle, with perimeter P+ = P (a), demarcating the transition ρ+ = a between
the geometric foveola and periphery (whether this transient circle has a distinguished functional role in
mammalian vision is not clear, but anatomical evidence does show a fairly sharp demarcation of the
biological foveola [13]).

If we normalize V (ρ), such that V (0) = 0, and introduce the dimensionless quantities:

v′(t, T ) =
∂v(t, T )

∂t
(10)

and:
v(t, T ) =

V (a t)

V (a T )
(11)

with 0 ≤ t ≤ T , and:

t =
ρ

a
and T =

R

a
(12)

then:

v(t, T ) =
ln (1 + t2)

ln (1 + T 2)
(13)

This integrated retino-cortical magnificationmeasures the relative capacity dedicated to the central
region inside a foveal disk of radius ρ= at relative to that of the full retina. Limiting cases are clearly
v(0, T ) = 0 and v(T, T ) = 1. For the foveola, we have v(t+

def
= 1, T ) = ln 2/ ln(1 + T 2); cf. Figure 2 for

an illustration.
To verify the biological plausibility of our model, consider the case of a peripheral ring with the same

processing capacity as the enclosed foveal disk, i.e., Equation (13) with equipartitioning radiusρ 1
2

= a t 1
2

defined, such that:

v(t 1
2
, T )

def
=

1

2
(14)

A straightforward computation yields:

t 1
2

=

√√
1 + T 2 − 1 ≈

√
T (15)

in which the approximation reflects the phenomenological case, T � 1. In other words, under this
assumption, the theoretical equipartitioning radius approximately equals the geometric mean of the radii
of the geometric foveola and geometric retina:

ρ 1
2
≈
√
aR (16)

Generalizing Equations (14)–(16), we may define the α-partitioning radii ρα = atα, via:

v(tα, T )
def
= α for 0 ≤ α ≤ 1 (17)

yielding (the approximations hold for not too small α, i.e., well outside the geometric foveola):

tα =
√

(1 + T 2)α − 1 ≈ Tα (T � 1) (18)
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or, in terms of physical length scales,

ρα ≈ a1−αRα (R� a) (19)

This prediction likewise admits experimental verification once consistent values of a and R are
at hand.

Vice versa, we may use Equations (16)–(19) to definethe constant, a, given empirical data for R
and, say, ρ 1

2
. For instance, in the case of humans, it is known that about half of the striate cortex is

devoted to the portion of the retina that lies within 7◦–8◦ of the fovea [13]. Assuming that the striate
cortex has a homogeneous distribution of similar visual cells, the fractional size within it occupied by the
retinotopically-mapped central portion of the visual field will be tantamount to its fractional processing
capacity. A typical retina measures [18] R≈ 21 mm; 1◦ of visual angle corresponds to approximately
288 µm. The monocular visual field covers approximately 160◦× 175◦ (width× height [19]), or roughly
(85 ± 5)◦ in eccentricity when approximated by an isotropic figure for our purposes (Hartridge [20]
reports a functional limit on visual field eccentricity of 104◦). With these figures, we have (for the
biological counterparts of the quantities involved) t 1

2
/T = ρ 1

2
/R ≈ 0.1024, from which one deduces

with the help of Equations (12) and (15) that a = (t 1
2
/T )2R ≈ 0.22 mm. The phenomenological value

T = (R/ρ 1
2
)2 ≈ 95 used in Figure 2 justifies our assumption, T � 1, and the predicted size of the

geometric foveola happens to agree remarkably well with that of the human foveola (Rodieck ([13],
Chapter 9) reports a value of 0.20 mm), which gives us a biological interpretation of the constant, a,
and, at the same time, justifies the name “geometric foveola”; cf. Figure 3.

In the next section, we consider the modification of the log-polar map by taking into
account the physical resolution limitation of the fovea centralis and show how the log-polar map
emerges asymptotically.

Figure 2. Retino-cortical magnification, V ′(t, T ) (left), and its integral, V (t, T ) (right), as
a function of dimensionless eccentricity, t, illustrated for the case T = 95 (dashed vertical
line); recall Equations (12)–(15). The peak on the left occurs at t+ = 1 and marks the border
ρ+ = a of the geometric foveola. The half maximum on the right is reached at t 1

2
≈
√
T ,

corresponding to the geometric equipartitioning radius (left vertical line), ρ 1
2
≈
√
aR. With

our choice of parameters (motivated in the text), the tiny geometric foveola has a relative
processing capacity v(t+ = 1, T = 95) ≈ 8%; recall Equation (13).
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Figure 3. Retino-cortical mapping of macaque monkey. (Left) Retina with spoke-wheel
stimulus. (Right) Stimulus image retinotopically mapped onto the posterior part of
(hemifield) striate cortex, a.k.a. calcarine sulcus. Source: Tootell et al. [21].

2.3. Canonical Coordinates

Retino-cortical magnification can be conveniently described in terms of canonical coordinates(recall
that the primary visual cortex on one side of the brain represents a hemifield, hence the bounds on φ):

p = arcsinh t = ln
(
t+
√

1 + t2
)

,

q =
t φ√
1 + t2

(0 ≤ t ≤ T , −π
2
≤ φ ≤ π

2
)

(20)

Using these canonical coordinates, it follows that the basic area two-form (recall Equation (3)) can be
expressed as the wedge product of holonomic one-forms, warranting the attribute “canonical”:

Ω = dp ∧ dq (21)

Note that near the foveal point, we have:{
p ≈ t

q ≈ t φ (0 ≤ t� 1 , −π
2
≤ φ ≤ π

2
)

(22)

In the periphery, we reobtain the familiar log-polar coordinates (up to an irrelevant offset):{
p ≈ ln 2t

q ≈ φ (1� t ≤ T , −π
2
≤ φ ≤ π

2
)

(23)

The physical part of the (p, q)-domain is reminiscent of the actually observed shape of the cortical
surface of V1; compare Figures 3 and 4.
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Figure 4. The canonical (p, q)-domain is the region between the graphs of q±π
2

=±π
2

tanh p

and the lines p = 0 and p = arcsinhT . On the left, (t, φ) are dimensionless radial and
azimuthal coordinates. On the right, the canonical (p, q)-coordinates are plotted as Cartesian
coordinates, with p on the horizontal axis. Recall Equation (28), and compare with Figure 3.

Expressed in canonical coordinates, the retino-cortical metric, Equation (5), looks rather
more cumbersome:

G =

(
1 +

4q2

sinh2(2p)

)
dp⊗ dp− 4q

sinh(2p)
dp⊗ dq + dq ⊗ dq (24)

It is evident that the (p, q)-coordinate lines do not intersect perpendicularly, unlike with log-polar
coordinates; cf. Figure 4. For the angle of intersection, α, at a fiducial point (p, q), we have:

cosα =
−2q√

4q2 + sinh2(2p)
(25)

For peripheral points, this is close to zero:

cosα ≈ −a
2φ

ρ2
≈ 0 (ρ� a) (26)

For central points, on the other hand, we have:

cosα ≈ − φ√
1 + φ2

(ρ� a) (27)

independent of eccentricity, revealing the non-orthogonal intersection of canonical coordinate lines away
from the horizon (φ = 0). The deviation from orthogonality remains nonetheless fairly small almost
everywhere, reaching its maximum at the foveal point, with an intersection angle still close to 60◦.
Typical measurements, such as Figure 3, lack resolving power to delineate foveal details in the most
posterior part of the striate cortex and, thus, remain indecisive.

Let ΓT denote the full retinal domain. In (p, q)-space this is the area in-between the graphs of:

q±π
2
(p) = ±π

2
tanh p (28)

and the lines p = 0 and p = arcsinhT (to see this, express q as a function of p and parameter φ
using Equation (20), and consider the boundary values φ± = ±π/2). By the same token, if Γt
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denotes the fraction of the retinal domain on the left of the line p = arcsinh t, then a straightforward
computation yields: ∫

Γt
Ω∫

ΓT
Ω

=

∫ arcsinh t
0

qπ
2
(p) dp∫ arcsinhT

0
qπ

2
(p) dp

= v(t, T ) (29)

reproducing Equation (13) as expected. This confirms that the (p, q)-coordinates of Equation (20) are
indeed more natural than the commonly used log-polar coordinates. The latter arise in the limit of
vanishing a. As such, log-polar coordinates fail to describe both foveal, as well as transient behavior,
and are suited only for the peripheral field. Although the periphery represents by far the largest part of
the visual field, it is much less significant in the visual brain.

As a final remark, note that, by construction, (p, q)-space is most naturally discretized by a uniform
sampling (with grid constants ∆p and ∆q of fixed aspect ratio). Biologically, one expects this to be
reflected in a uniform spatial layout and the functional similarity of cortical receptive fields in the entire
primary visual cortex.

3. Conclusion and Discussion

We have established a biologically plausible geometric model for an isotropic, scale-invariant foveal
system that incorporates physical resolution limitations. The model is naturally described in terms of
a canonical coordinate map that generalizes the familiar log-polar map typically used in the context of
foveal systems. Unlike the latter, however, the generalized map has a globally valid domain of definition
and handles the transition from the peripheral field (the classical log-polar regime) to fovea centralis in
a graceful manner.

The model is consistent with certain known facts of biological vision, notably retino-cortical
magnification. Other quantitative predictions may be inferred from it to assess its biological merits
and, perhaps, even to predict hitherto unexplored properties about biological foveal systems. Empirical
verification, however, will require methods of high resolving power in order to discriminate details within
the foveola and its corresponding image in the striate cortex in order to be able to verify or refute the
canonical paradigm stipulated in this article.

An important property that has not been accounted for in our model is the fact that at each
spatial location in the retina or striate cortex, there exist ensembles of similar receptive fields
differing only in size. The proposed model describes the inherent resolution limitation of the
visual system by considering “typical” (e.g., minimal) size as a function of eccentricity. Geometric
models that do take into account the local multiscale nature of the visual system have been proposed
in the context of artificial and biological vision (cf. the Riemannian structure proposed by Eberly
et al. [22] and, in a different application context, van Wijk and Nuij [23]; and the affine structure
stipulated by Florack [24]). Koenderink has considered the surface geometry of an intensity cross-section
induced by a visual stimulus [25]. Many intriguing questions remain, such as how these geometries (one
of which does not necessarily exclude another!) contribute to our perception of the (geometry of the)
visual world “outside”; cf. Koenderink et al. [26,27]. However, even rudimentary questions remain
essentially unsolved, such as how the visual system, without the infinite regression inevitably arising
from the tacit ministration of a homunculus—a little (wo)man inside the brain viewing an internal
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screen—is able to derive topological expertise from a massive body of essentially unordered, parallel
neural signals [28].
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Appendix: Biological Terms

avascular zone the central region of the retina without blood vessels, roughly coinciding with the
fovea.

eccentricity the radial distance from the foveal center, usually measured in degrees.

fovea (centralis) the central part of the retina, accounting for sharp vision.

foveola the central part of the fovea, accounting for the highest visual acuity.

lateral geniculate nucleus the relay center for visual information in-between the retina and V1, cf.
Figure 1.

LGN lateral geniculate nucleus.
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optic radiation a.k.a. the geniculostriate pathway; the collection of axons connecting LGN and V1,
cf. Figure 1.

primary visual cortex part of the cerebral cortex responsible for visual processing, cf. Figure 1.

receptive field the support region and sensitivity profile of a light-sensitive cell.

retina the light-sensitive inner surface of the eye.

retino-cortical magnification defined in Equations (9)–(13) and the surrounding text.

retinotopic mapping mapping (i.c.retina to cortex) preserving neighborhood relations, cf. Figures 3
and 4.

striate cortex same as the primary visual cortex.

V1 same as the primary visual cortex.
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distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).
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