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Abstract:

 In this paper, we give a pedagogical introduction to several beautiful formulas discovered by Ramanujan. Using these results, we evaluate a Ramanujan-type integral formula. The result can be expressed in terms of the Golden Ratio.
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1. Introduction

The celebrated Rogers–Ramanujan continued fraction is defined as follows. For [image: there is no content],



[image: there is no content]



(1)




For excellent introductions, see [1,2]. For a recent introduction, see [3], especially Chapter 11.
Ramanujan discovered the following remarkable integral formula regarding [image: there is no content], which is recorded in his “lost” notebook:



R(q)=[image: there is no content]−12exp−15∫q1(1−t)5(1−t2)5(1−t3)5⋯(1−t5)(1−t10)(1−t15)⋯dtt



(2)




This was first proved by Andrews [4]. See also Section 14.4 of [5] and Chapter 15 of [3]. This article is a pedagogical introduction to this remarkable identity. As a corollary, we will derive the following integral identity:


ln4ϕ+3−ϕ2=−15∫e−2π1(1−t)5(1−t2)5(1−t3)5⋯(1−t5)(1−t10)(1−t15)⋯dtt



(3)




Here, [image: there is no content] is the Golden Ratio. The integrand in this equation is the same integrand that appears in Equation (2).


2. Proof of Equation (3)

We will break up this task into several steps (BIG STEPS 1, 2 and 3 below).



[image: there is no content]








First we recall the differential version of Equation (2):



5qddqlnR(q)=∏n=1∞(1−qn)5(1−q5n)



(4)




This will allows us to find a formula analogous to Equation (2) in the next step.
In order to make our discussion self-contained and motivated, we will give some details on one of the known proofs, following the work of Dobbie [6] (as it illustrates many nice tricks in dealing with q-series).

Equation (4) is not easy to prove. One may ask, “How do we take the derivative of the continued fraction [image: there is no content] on the left-hand side of it?” What comes to rescue us is the following remarkable identity due to Rogers and Ramanujan (who discovered it independently):



[image: there is no content]



(5)




Before we move on, we note that the infinite products on right-hand side of Equation (5) are related to the first and the second Rogers–Ramanujan identities; e.g., see [7]; see also Part II of [3], where readers will find three different proofs of these famous identities.
By using Equation (5), we can rewrite Equation (4) as



1−5∑n=1∞(5n−1)q5n−11−q5n−1+(5n−4)q5n−41−q5n−4−(5n−2)q5n−21−q5n−2−(5n−3)q5n−31−q5n−3=∏n=1∞(1−qn)5(1−q5n)



(6)




To prove the last identity, we will turn to yet another identity:


x[image: there is no content]−z(1−z)2+∑j=1∞jqj1−qj(xj+x−j−zj−z−j)=(x−z)(1−xz)[image: there is no content](1−z)2×










×∏n=1∞(1−xzqn)(1−x−1z−1qn)(1−x−1zqn)(1−xz−1qn)(1−qn)4(1−xqn)2(1−x−1qn)2(1−zqn)2(1−z−1qn)2



(7)




Now it seems that we are making things worse: it looks like we just traded one difficult identity for another identity that is more difficult! But it turns out, to one’s surprise, Equation (7) is more manageable than Equation (6). The reason is that there are more variables (x and z) in Equation (7). These variables allow us to explore the symmetries of the identity, which are essential to its proof.
Before we prove Equation (7), let us indicate how it implies Equation (6). This is be done by setting [image: there is no content] and [image: there is no content] We will let readers fill in the details (see Dobbie’s original paper, or Section 15.2 of [3]).

Let us prove Equation (7). We will follow closely the discussion in Section 15.2 of [3].


	Step I: Rewriting the sum side of Equation (7)

Our goal is to show that the left-hand side of Equation (7) is the same as



[image: there is no content]



(8)




Indeed, let us consider the sum involving x in Equation (8). We break it up according to [image: there is no content], [image: there is no content] and [image: there is no content]:



∑n=−∞∞xqn(1−xqn)2=x[image: there is no content]+∑n=1∞xqn(1−xqn)2+xq−n(1−xq−n)2=x[image: there is no content]+∑n=1∞xqn(1−xqn)2+x−1qn(1−x−1qn)2=x[image: there is no content]+∑j,n=1∞jxjqjn+jx−jqjn=x[image: there is no content]+∑j=1∞jxjqj1−qj+jx−jqj1−qj








This is the same as the sum involving x on the left-hand side of Equation (7). Doing the same with the sum involving z in Equation (8) gives the rest of the left-hand side of Equation (7).


	Step II: Identifying the poles of the infinite product in Equation (7)

Let us denote by [image: there is no content] the right-hand side of Equation (7). First we treat [image: there is no content] as a function of x. At the same time, we will treat z as a parameter that is not an integral power of q. We claim that [image: there is no content] has poles of order two at



[image: there is no content]








with [image: there is no content].

Indeed, the denominator [image: there is no content] in [image: there is no content] implies [image: there is no content] is a pole of order 2. Similarly, the denominator [image: there is no content] implies [image: there is no content] is a pole of order 2. This proves our claim.

Next we want to find the partial fraction expansion of [image: there is no content]. To this end, we need to determine the symmetries of [image: there is no content].


	Step III: Exploring the symmetries of [image: there is no content]

Readers can easily verify the following:



[image: there is no content]=−F(z,x)



(9)






[image: there is no content]=F(qx,z)



(10)






=F(q−1x,z)



(11)





	Step IV: Finding the partial fraction expansion of [image: there is no content]

Our goal is to prove that



F(x,z)=∑[image: there is no content]xqn(1−xqn)2+H(x,z):=G(x)+H(x,z)



(12)




Here [image: there is no content] is a “remainder” term that has a Laurent expansion in x. Note that, by comparing with Step I above, Equation (12) implies that we have “half” of Equation (7).

To prove Equation (12), we start with the observation that Step II implies



F(x,z)=[image: there is no content][image: there is no content]+∑n=1∞an(x)(1−xqn)2+a−n(x)(1−x−1qn)2+H(x,z)



(13)




We need to determine [image: there is no content].

First we show that [image: there is no content]. The part of [image: there is no content] that contributes to [image: there is no content] comes solely from the overall prefactor (note that the infinite product becomes 1 as [image: there is no content]). Regarding this prefactor, we note that



(x−z)(1−xz)[image: there is no content](1−z)2=x[image: there is no content]−z(1−z)2








This implies the principal part at [image: there is no content] is



x[image: there is no content]








and therefore [image: there is no content].

For [image: there is no content], we have



[image: there is no content]



(14)




Indeed, [image: there is no content] follows from the fact that [image: there is no content] and Equation (10), and [image: there is no content] follows from [image: there is no content] and Equation (11).

By folding the sum in x in Equation (13), we obtain Equation (12).


	Step V: Determining [image: there is no content]

This is the final step: let us show that



[image: there is no content]



(15)




We recall that both H and G were defined in Equation (12). Previously, [image: there is no content] represented what cannot be determined by understanding the pole structure of [image: there is no content]. What Equation (15) says is that, [image: there is no content] can indeed be written as something known (i.e., G)—but there is a catch: the argument of G on the right-hand side of Equation (15) is z, not x. In fact, the same equation tells us the [image: there is no content] is independent of x. Let us turn to the proof.

Since [image: there is no content] is a Laurent expansion in x (cf. the sentence right after Equation (12)), we can write it as



H(x,z)=∑[image: there is no content][image: there is no content](z)xn



(16)




To determine [image: there is no content], we need to know the symmetry of [image: there is no content].

First we note that [image: there is no content] satisfies



[image: there is no content]








This can be easily verified and we will omit the detail of its proof. This, with Equation (10), implies



[image: there is no content]



(17)




Indeed,



[image: there is no content]=F(x,z)−G(x)=F(xq,z)−G(xq)=H(xq,z)








Equation (17) implies that only [image: there is no content] survives in the expansion in Equation (16):



[image: there is no content]








This, with Equation (12), implies



[image: there is no content]



(18)




By Equations (9) and (18), we have



[image: there is no content]








Rearranging this equation gives



[image: there is no content]



(19)




Since the left-hand side of this equation depends on x and the right-hand side on z, we conclude that both sides equal a constant independent of either x or z. If we call this constant [image: there is no content], we have



[image: there is no content]



(20)




Equations (18) and (20) imply



[image: there is no content]



(21)




We want to show that [image: there is no content]. To this end, we note that Equations (9) and (21) imply



[image: there is no content]








This shows that [image: there is no content], and, with Equation (21), we arrive at our final conclusion,



[image: there is no content]








which is Equation (7); cf. the definition of G in Equation (12) and Step I.





[image: there is no content]











Integrating the differential equation (4) gives



R(q)=Aexp−15∫q[image: there is no content]∏n=1∞(1−tn)5(1−t5n).dtt



(22)




where [image: there is no content].
Let us set [image: there is no content]. As [image: there is no content], we have



[image: there is no content]








Hence [image: there is no content]. This gives Equation (2).
There is another choice for [image: there is no content] (hence A). Ramanujan discovered the following remarkable result



[image: there is no content]



(23)




This is one of striking formulas that convinced Hardy that Ramanujan’s result is deep. On Equation (23) (and several other results), Hardy said [7]:

I had never seen anything in the least like them before. A single look at them is enough to show that they could only be written down by a mathematician of the highest class. They must be true because, if they were not true, no one would have had the imagination to invent them.



With this understood, we let [image: there is no content]=e−2π in Equation (22), and we have (with Equation (23)),



R(q)=(2+ϕ−ϕ)exp−15∫qe−2π∏n=1∞(1−tn)5(1−t5n).dtt



(24)




Before we turn to the last BIG STEP, let us pause and sketch a proof of Equation (23). We will follow Watson [8]. He believed that this is how Ramanujan derived this striking result. For another proof, see Section 12.1 of [3].

The key of this proof is to start with



∏n=1∞1−qn/51−q5n=∑[image: there is no content](−1)nqn(3n+1)/10∑[image: there is no content](−1)nq5n(3n+1)/2



(25)




To obtain the second equality, we have used Euler’s pentagonal theorem (e.g., see [1,2,3,9,10,11]): For [image: there is no content],


[image: there is no content]








Looking carefully at the sum in the numerator reveals that it can be written as


∑[image: there is no content](−1)nqn(3n+1)/10=∑m∈Z[image: there is no content]qm+q2/5∑m∈Zbmqm+q1/5∑m∈Zcmqm










:=J1˜+q2/5J2˜+q1/5J3˜



(26)




Here Ji˜ are integral power series of q.
In fact, we have more: careful analysis reveals that J3˜ is actually the denominator of Equation (25):



−J3˜=∑[image: there is no content](−1)nq5n(3n+1)/2



(27)




This is remarkable!
Equations (25)–(27) imply that



[image: there is no content]



(28)




where we have defined Ji:=−Ji˜/J3˜ for [image: there is no content].
The next step is truly miraculous: one can show that



J1(q)J2(q)=−1








and


J1(q)=q1/5[image: there is no content]








The proof of these identities are long and we refer readers to Watson’s paper [8] (or see Section 12.2 of [3]).
With Equation (28), these identities imply



q−1/5∏n=1∞1−qn/51−q5n=1[image: there is no content]−1−R(q)



(29)




which is a key step in proving Equation (23). As an aside, we note that Equation (29) can be used to derive Ramanujuan’s “Most Beautiful Identity”: for [image: there is no content],


∑[image: there is no content]∞p(5n+4)qn=5∏n=1∞(1−q5n)5(1−qn)6








Here [image: there is no content] is the partition function defined by ∑[image: there is no content]∞p(n)qn=∏n=1∞(1−qn)−1. For an excellent introduction to this amazing identity, see a recent paper by Hirschhorn [12] (and stay tuned for his forthcoming book). To understand how Equation (29) implies this identity, see Chapter 16 of [3].
At [image: there is no content], the left-hand side of Equation (29) can be shown to reduce to [image: there is no content]. This is the consequence of a famous identity satisfied by the eta function [image: there is no content], where [image: there is no content] and [image: there is no content]:



[image: there is no content]



(30)




(see, e.g., Apostol’s book [13] for a proof; see also Appendix A of [3], which sketches three different proofs of this important result). In other words, we have


1R(e−2π)−1−R(e−2π)=[image: there is no content]








Solving this equation gives the desired result [image: there is no content].


[image: there is no content]








This is actually a small step! By equating Equation (2) and Equation (24), we have


1ϕexp−15∫q1∏n=1∞(1−tn)5(1−t5n).dtt=(2+ϕ−ϕ)exp−15∫qe−2π∏n=1∞(1−tn)5(1−t5n).dtt








Rearranging this equation gives


ϕ(2+ϕ−ϕ)=exp−15∫e−2π1∏n=1∞(1−tn)5(1−t5n).dtt








which is equivalent to our key result Equation (3). ☐


3. Final Remarks

Recently the present author, inspired by Equation (5), discovered a Wallis-type formula for the Golden Ratio (see [14]):



1ϕ=1×6×11×16×⋯4×9×14×19×⋯2×7×12×17×⋯3×8×13×18×⋯



(31)




To see this heuristically: let [image: there is no content] in Equation (5) and apply the L’Hôpital’s rule. See [14] for a simple but rigorous proof. (One of the reviewers kindly showed us a proof of it. It turns out, it is essentially same as that in [14]! ) Note that one may regard Equation (5) as a q-deformation of Equation (31).
This formula further implies (again, see [14] for details):



[image: there is no content]



(32)




where we have used the [image: there is no content] notation for continued fractions (where [image: there is no content] is for Kettenbrüche in German):


[image: there is no content]n=1∞BnAn=B1A1+B2A2+B3⋱.








Here is an open question: find a q-deformation of Equation (32).
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