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1. Introduction

Throughout the paper, we use the customary notation (a; ) := 1,

n—1

(G;Q)n = H(l - aqk)> n>1
k=0

(@; @)oo := lim (a;q)n, gl <1

and
n

(ar, s, ... andays @) = [ (5 0)oc

i=1
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The well-known Rogers-Ramanujan functions [1-3] are defined for |¢| < 1 by

n2

- 1
Glg) = (1.1)

(D) (4,040

n=0

d
an 0 qn(nJrl) 1
H(q) = E = (1.2)
(@) —~ (0 (%)

In his lost notebook [4], Ramanujan recorded forty beautiful modular relations involving the
Rogers-Ramanujan functions without proof. The forty identities were first brought before the
mathematical world by B. J. Birch [5]. Many of these identities have been established by L. J. Rogers [6],
G. N. Watson [7], D. Bressoud [8,9] and A. J. F. Biagioli [10]. Recently, B. C. Berndt et al. [11] offered
proofs of 35 of the 40 identities. Most likely, these proofs might have been given by Ramanujan himself.
A number of mathematicians tried to find new identities for the Rogers-Ramanujan functions similar to
those that have been found by Ramanujan [4], including Berndt and H. Yesilyurt [12], S. Robins [13]
and C. Gugg [14].

Two beautiful analogues to the Rogers-Ramanujan functions are the Gollnitz-Gordon functions,
which are defined as

— (G 2 1
S(q) =) 55" = (1.3)
= (¢ ¢°)n (¢:4" 4" ¢%)
and
(=GP0 p2 40 1
T(a) ::Z o 0 = g (1.4)
— (0% ¢*)n (¢, a* 4% ¢®) oo

Identities (1.3) and (1.4) can be found in L. J. Slater’s list [15]. S.-S. Huang [16] has established a
number of modular relations for the Gollnitz-Gordon functions. S.-L. Chen and Huang [17] have derived
some new modular relations for the G6llnitz-Gordon functions. N. D. Baruah, J. Bora and N. Saikia [18]
offered new proofs of many of these identities by using Schroter’s formulas and some theta-function
identities found in Ramanujan’s notebooks, as well as establishing some new relations. Gugg [14] found
new proofs of modular relations, which involve only S(¢) and 7'(¢). E. X. W. Xia and X. M. Yao [19]
offered new proofs of some modular relations established by Huang [16] and Chen and Huang [17].
They also established some new relations that involve only Gollnitz-Gordon functions.

H. Hahn [20,21] defined the septic analogues of the Rogers-Ramanujan functions as

ey 2n? 7 3 4T
q (¢.¢°, 4% 4 )
Alq) == = (1.5)
@ nz_% (% ¢*)n(—a: @)2n (4% 4%)oo
Blg) — — &Y (@ %) 06
= (% (=4 @)2n (4% %)oo
d
. o 2n(n+1) 7 6. 7
= (% ¢*)n(— 4 @)2nt1 (4% 4%)oo

Identities (1.5), (1.6) and (1.7) are due to Rogers [22]. Later, Slater [15] offered different proofs

of these identities. Hahn [20,21] discovered and established several modular relations involving
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only A(q), B(q) and C(q), as well as relations that are connected with the Rogers-Ramanujan and
Gollnitz-Gordon functions.

Baruah and Bora [23] considered the following nonic analogues of the Rogers-Ramanujan functions:

00 4 5 9. 9
Z q q 3nq _ (g ,qg,qg,q )oo (1.8)

— (0% 6%)2n (4% ¢%)oo
i (¢;q)3n(1 — qg"”)q?’”(”“) (%4 4% ) (1.9)

(4% ¢®)n(d®; ¢%)2 () '
n=0 ) n+1 479" ) o
and .

Flg =Y (@ Dan10™ " (0,6%, 0% ¢) (1.10)

"0 (2% ¢*)n(@®; ¢*)2n 11 (7% ¢%) oo

Identities (1.8), (1.9) and (1.10) are due to W. N. Bailey [24]. Baruah and Bora [23] established
several modular relations involving D(q), E(q) and F'(q). They also established some modular identities
involving quotients of these functions, as well as relations that are connected with the Rogers-Ramanujan
and Gollnitz-Gordon functions.

C. Adiga, K. R. Vasuki and N. Bhaskar [25] established several modular relations for the following
cubic functions:

S n2+42n 6 5. 6
Z qq nq _ (60 2(q ;q,q,q)oo (L1D)
— (4% 6%)os
and ,
— " (=45 4% oo (d%, % ¢ ¢%)
Qq) == = (1.12)
@ ; (4% ¢*)n (4% ¢%)oo
The identities (1.11) and (1.12) can be found in [26].
Vasuki, G. Sharat and K. R. Rajanna [27], studied two different cubic functions defined by
o n+2n e 2 5 6. .6
Zq QQ) _ q7q)002(q,;1,q,Q)oo (L13)
— (4% ¢*)o
and ) 0
0" (G0 (%)@, ¢, 0% ¢%)oo
M(q) == = (1.14)
& ; (g% q*)n (4% ¢%)oo

The identities (1.13) and (1.14) are due to G. E. Andrews [26] and Slater [15], respectively. Vasuki,
Sharat and Rajanna [27] derived some modular relations involving L(q) and M (q).
Vasuki and P. S. Guruprasad [28] considered the following Rogers-Ramanujan type functions U(q)

and V' (q) of order twelve and established modular relations involving them:

(6P e (0705 ¢
U(q) = —q" = (1.15)
0= 2 (gt @ )
and
(0D 2ms1 4 (2,9, "% ¢"%) e
Vig) =) 22 gan(ntl) — 1 (1.16)
& ;(q“;q‘*)znﬂq (4% q") oo

The latter equalities in (1.15) and (1.16) are due to Slater [15].
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Adiga, Vasuki and B. R. Srivatsa Kumar [29] established modular relations involving the functions
Si1(q) and T1(q) defined by

0 qn +n 1
Si@) =Y 55 = 5 (1.17)
—~ (%) (¢%40")
and
" URTDE (1.18)

—~ (@5 (4:6% ¢
Baruah and Bora [30] considered the following two functions, which are analogous to the
Rogers-Ramanujan functions:

o 1_ n+1Y\ ,n(n+2) 11 12, 12 -
Z —¢*¢%) ¢"")q _ (9,4%.4%¢7) (1.19)
- (45 @)2nt2 (45 9)oo
and
x© 2; 2n_ 1+ qg" n? 5’ 7’ 12; 12OO
Y(q):zz( 7 q°) .1( a")q" _ (4’4 (el ) (1.20)
n=0 (CL Q)Qn ((L q)oo

where the later equalities are also due to Slater [15]. Baruah and Bora established many of modular
relations involving some combinations of X (¢q) and Y (q), as well as relations that are connected
with the Rogers-Ramanujan functions, Gollnitz-Gordon functions, septic analogues and with nonic
analogues functions.

Recently, the authors [31], established a large class of modular relations for the functions defined by

o0 n(n+1)/2 . 3 7 _10. 10
Z _ (690 4" 07547 (121)
“—~ (¢:q n+1(q @n (4 @)oo
and o))
— (=4 )nd""? (—4:0)0(0,4°, 4" 4"")
K=y CEDT L (24 0)elt ) (122)
= (q:6%)n+1(¢: @)n (¢; 9)ox

which are analogous to Rogers-Ramanujan functions. The identities (1.21) and (1.22) are due to
Rogers [22]. In Section 3 of this paper, we establish modular relations connecting J(¢) and K (¢q) with
G(q) and H(q). In Section 4, we establish modular relations connecting .J(¢) and K (q) with S(q) and
T'(q). In Section 5, we establish modular relations connecting .J(¢) and K (g) with P(q) and Q(g). In
Section 6, we give partition theoretic interpretations of some of our modular relations.

2. Definitions and Preliminary Results

Ramanujan’s general theta function is defined by

fla,b) :== Z amMHD/2pn(n=D2 5 gh| < 1 (2.1)

n=—oo

The Jacobi triple product identity [32, Entry 19] in Ramanujan’s notation is

f(av b) = (_a; ab)oo<_b; ab)oo(ab; ab)oo (22)
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The function f(a, b) satisfies the following basic properties [32]:

fla,b) = f(b,a) (2.3)
f(1,a) =2f(a,a”) (2.4)
f(=1,a) =0 (2.5)
and, if n 1s an integer,
f(a,b) = @™ HD2pn(=D/2 £ (g (ab)™ b(ab) ™) (2.6)
The three special cases of (2.1) [32, Entry 22] are
o(@):=Fflaa)= > ¢ =34 2.7)
o0 2. 2
W(g) = flg, %) =) q""P = M (2.8)
— (45 G%) oo
and .
f(=q) = f(=q,=¢) = > (=1)"¢"*" I = (g;9)w (2.9)

Also, after Ramanujan, it is defined
X(@) = (—=4:¢%)os
For convenience, we define
fo = F(=0") = (4"1¢")os
for positive integer n.

In order to prove our modular relations, we first establish some lemmas.

Lemma 2.1. We have

_ 5 _f3 B _ B
olq) = 72 U(q) = 7 fla) = TR x(q) = o
IR iy gy = fifs b
p(—q) = 7 (—q) = 5 and x(=q) = T
This lemma is a consequence of (2.2) and Entry 24 of [32]. We shall use Lemma 2.1 many times in
this paper.
It is easy to verify that
(=", —¢°) f(=4,—4q")
Glq) = e (q) = 7 (2.10)
f(=¢*,—4") f(=a,—¢")
J K(q) = ————= 2.11
(9) P (9) o (2.11)
f(d* ¢°) fla,q")
S(— — .
fl=4,—¢") f(=¢*—d")
= d .
_f _ fofi
G(q)H(q) = and  J(q)K(q) = 73 (2.14)
N fifs
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Lemma 2.2. Let m = [sir}’ Il =m(s—r)—r, k = —m(s—7r)+sand h = mr —

m(m —1)(s —r)
2

(i) fla" ) =qa"f(d, d"

(i) f(=q¢" —¢") = (=D)"¢ " f(=d",—¢")

For a proof of Lemma, 2.2 see [31].

, 0 <r < s. Here [x] denotes the largest integer less than or equal to x. Then,

The following lemma is an easy consequence of Entry 29 [32]:

Lemma 2.3.
fla,b)f(c,d) = f(ac,bd) f(ad,bc) + af(b/c,ac*d) f(b/d, acd?) (2.15)
f(a,0)f(=a,~b) = f(—a* —b*)p(—ab) (2.16)

Lemma 2.4.
fl=, ="V (=", —¢*) = F(—=q) f (=" (2.17)

Identity (2.17) can be found in [32] as a corollary of Entry 28.

Lemma 2.5. For any integers m > 1 and r > 1, we have

Gl = 6@ ] ) (2.18)

o [T (=l —wmtqh)

and
H(g™) = H(a) [] e )

m—1 l 42m" m—I ,3m" (219)
n=0 Hl:l f(_wmq ) _wm q )

where w,, = *m/™,

The proof of Lemma 2.5 follows easily by induction.

We use a theorem of R. Blecksmith, J. Brillhart and I. Gerst [33], which provides a representation
for a product of two theta functions as a sum of m products of a pair of theta functions, under certain
conditions. This theorem generalizes formulas of H. Schroter, which can be found in [32].

Define, for € € {0,1} and |ab| < 1,

[e.9]

fla,b) = 37 (=1)7(ab)"*(a/b)?

n=—oo

Theorem 2.6. (Blecksmith, Brillhart and Gerst [33]). Let a,b, c, and d denote positive numbers with
|lab|, |cd| < 1.

Suppose that there exist positive integers o, 3 and m such that
(ab)? = (cd)m—ab)
Let €1, €5 € {0, 1} and define 6,,9, € {0,1} by

01 = €1 —aey (mod 2) and 0y = Beg + peg (Mod 2)
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respectively, where p = m — a3. Then, if R denotes any complete residue system modulo m,

fEl (G7 b)fe2 (C, d) = Z(_1>€2rcr(r+l)/2dr(r71)/2

reR
aled)@r1=2r) /2 p( oqyelati+2r)/2

xfgl( (cd) — ’ (cd) — ) 220)
(b/a)B/2(cd)PmH1=21)/2 (g /b)B/2(cd)pimt1+2r)/2

o < o | & )

The function f(a, b) satisfies a beautiful addition formula, which we need in proving some identities.
For each positive integer k, let

U, i= qFO+D/2pk(k=1)/2 and V, o= gF1)/2ph(k41)/2

Then

(2.21)

k—1
Uk:—i—n ‘/k—n
Fa,b) = (U1 V) = Unf( | )
b ; U, ' U,

For the proof of (2.21), see [32, Entry 31] . The following two identities follow from (2.21) by setting
k=2,a=qq*and b= ¢* and ¢>, respectively:

fla,q") = f(d",d") +af (&, ¢"7) (2.22)
f(@®d*) = f(¢’.a") + ¢ f(q,¢") (2.23)

Yesilyurt [34, Theorem 3.1] gave a generalization of Rogers’s identity, which has been used to prove
some of the Ramanujan’s forty identities for the Rogers-Ramanujan functions, as well as new identities
for Rogers-Ramanujan functions. To prove some of our results, we use Corollary 3.2 found in [34].

Following Yesilyurt [34], we define

folab) = f(a,b) ?f k =0 (mod 2) (2.24)
f(=a,=b) ifk =1 (mod2)

Let m be an integer and «, Bp and \ be positive integers, such that
am? + 3 = pA

Let 0 and ¢ be integers. Further, let [ and ¢ be real and x and y be nonzero complex numbers. Recall that
in the general theta functions f, f; are defined by (2.1) and (2.24). With the parameters defined this way,
we set

R(€757l7t7a’/8’m7p’A7x7y) :

p—1
n2 (6% 2 anm. T anm — — a—anm
_ Z (_1)skykq{)\ +pal?+2 l}/4f6(xq(1+l)p + T 1q(1 Dp )

k=0
n=2k+t

X feprmas (YL g 2y PP (2.25)
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Lemma 2.7. [34, Corollary 3.2].
R(€767 l7t7a’ﬁ’m7p’ A?"'Ij?y) = R((S’e?t?l? 1’a67am7)\7pa7y7$)

To prove some of our results, we need the following two Schroter’s formulas, which can be found
in [32]. We assume that i, and v are integers, such that ;1 > v > 0.

Lemma 2.8.

20(q* ) ()

-1
Z 2pm +21/m (2u+4m)(u2—v2)’q(2u—4m)(u2—v2))f(q4#+4l’m,q—‘“’m) (2.26)

m=0

Lemma 2.9. If i is odd, then

W@ (g" ) :quf’/4fu/4w< 2M(M2*V2))f(qﬂ+ﬂl/q#*lw)

(n—=3)/2
+ Z g™ m+1 (u+2m+1)(u2*vz) q(u*2m*1)(u2*1/2))

Y

x f(qu+u+2ym7q,u v— 21/m) (227)

3. Identities Connecting .J(¢) and K (q) with Rogers-Ramanujan Functions G(¢) and H ()

In this section, we present some modular relation that are connecting J(¢q) and K(q) with
Rogers-Ramanujan functions G(q) and H(q).

Theorem 3.1. We have 5 o 3 2/ 2 4
J(@) (@) + K (Q)K*(¢°)  fi

== 3.1)
K(q)G*(q") + aJ () H*(¢*)  f3
Proof. Putting a = —¢®, b= —¢" and ¢ = d = ¢” in (2.15), we obtain
=2, =V (@ @) = (=%, —¢") = @ (=%, —¢") (3:2)
Dividing (3.2) throughout by ©?(—¢?), employing (2.10) and (2.11) and then using the Lemma 2.1, we
obtain oy i
= (@)e(e”) = 3G Y — K3 (¢) (3.3)
f3 f3

Setting a = —¢q, b = —¢° and ¢ = d = ¢° in (2.15) and after simplifications, we obtain

f}f4K< Yold®) = (@) — g j}Hz( 1 (3.4)
2 2

Now, dividing (3.3) by (3.4), we deduce
4
Iq) 7 - KA

- - 3.5
K{q) TA(q?) — afh H?(q) o

from which we obtain (3.1). L]
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Theorem 3.2. We have

) G0 ()t aH (@)K (—q) = jﬁ— — G(q)H(q),
(i) G*(¢)J(—q) — qH*(¢)K(—q) = 25”2222

Proof. We recall the following identity stated by Ramanujan [4] and proved by Rogers [6], Watson [7]
and Berndt et al. [11]:
G(q)G(q") + ¢H(a)H(q") = x*(q) (3.6)
We can write (3.6) in the form
GG _ x*(q)
H(q)H(q")  H(q)H(q")
Now, setting m = 2 and r = 2 in (2.18) and (2.19) and multiplying the resulting equations by G(¢) and

—q (3.7

H(q), respectively, we obtain

f(=a®) f(=¢")

G(q)G(q*) = G? 3.8
(@C) (Q)f(q,q4)f(q2,q8) 69
nd P (™)
H(q)H(q") = H*(q)-~ 1 3.9
(@) (Q)f(q27q3)f(q4,q6) G2
Dividing (3.8) by (3.9) and then employing (3.7), we find that
o) G 0) I q) (3.10)
H(q)H(q") H2(q)f(q,4") (% ¢®) '
Now, we show that
f@*, @) fla'd°) _ J(=q) 3.11)
fla.a)f(q%q®)  K(—q) '
By (2.2), we have
@ @) f(d" %) _ (=& -, " ) (—4", —0° 0" 0")os
fla,a")f(@* )  (=¢,—0* ¢ 4%)oc (=% =05, 1% ¢10)
(.- - -, - —¢*,—d" . %, —¢°, =" ¢") o
(—¢, =% =3, —¢*, =, —¢% —¢", =%, —¢°, —¢'%; ¢'0)
" (=% —4¢"¢")
(_Q7 _q97 qlo)oo
_f@q") _ J(=q)
fle,¢°)  K(—q)
Now, using (3.11) in (3.10), we obtain
2V H () K (—
G*(q) T (—q) + gH*(q) K (—q) = ~ @ @4 (=4) (3.12)
H(q")
It remains for us to show that
2(VH(q) K (—
X(@H(@QK(=q) _ f5 _ Gl H(Q) (3.13)
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Using (1.2) (2.11) and Lemma 2.1, we see that

(OH@E(=q) _ fio (=4 =¢"¢")=(d®, 47 ™)
H(q*) fo (4, =4, 47, 6% =% ¢"*) e (6%, 4125 ¢*°)
. floX(—q5) _ ﬁ _
B sz(—Q) N S B G(Q)H(Q)

This completes the proof of (i).
To prove (ii), we need the following identity stated by Ramanujan [4], the proof of which can be
found in [7] and [11, Entry 3.3]:

GGl a0 () = 0 (3.14)
We can write (3.14) in the form

Gl9)Gl¢") o(q°)

HgH(¢") 1 F(—)H()H(q") G-15)

Now, employing (3.8) and (3.9) in (3.15) and then use (3.11) to obtain
p(¢*)H(q)K(—q)

G*(q)J(—q) — qH* () K (—q) = (3.16)
(9)J(—q) (0)K(—q) A H
On employing (3.13) in (3.16) and then using Lemma 2.1, we obtain (ii). This completes the proof of
the theorem. U
Theorem 3.3. We have
(i) K(@)G@)G@*) — J@H@H(¢) =0
(i) K(q)G(q)G(q*) + J(a)H(q)H(¢%) = 27
1
Proof. Using (2.2), we have
(=0, =" = (6:0")oo(0"0°) o (4°; ")
= (4:0")50(0% 0" (0" 0" (0" 4" (@°; 4" (0" 4"
_ fa =) (=" =¢") f5

f
Now employing (2.10) and (2.11) in the last equality, we obtain

o koole)ew G.17)

f12 = q q q .
Similarly, we can show that

f2

ﬁ = J(q)H(¢*)H (q) (3.18)

i

Now, (i) and (ii) easily follow from (3.17) and (3.18). ]

We prove the following theorem using ideas similar to those of Watson [7]. In Watson’s method,
one expresses the left sides of the identities in terms of theta functions by using (2.10) and (2.11). After
clearing fractions, we see that the right side can be expressed as a product of two theta functions, say

with summations indices m and n. One then tries to find a change of indices of the form
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am+0n=5M+a and ym+on=>5N +b

so that the product on the right side decomposes into the requisite sum of two products of theta functions
on the left side.

Theorem 3.4. Let J.(q) := H(q)G(¢?) and K.(q) :== G(q)H(q?*), then

2 2 r2 2 r5
SR+ PRCOR G - S ) o)
.8 5 8 ~ fihofi {ngfg [l }
TEOMD TR EORD) = e\ T Bl (20
5r3 2 £2 5
oo owio- S AL o

2 £2 5 £2
J() (%) — K () K. (¢") = f‘;}i}zo {‘jﬁ’;ﬁ —q f?;il;zo} (3.22)

Proof. Using (2.10), (2.11), (2.17) and Lemma 2.1, we can write (3.19) in the form

H@, (¢, =gV (=", =) + P, N (=&, =) f(=a*, —°)

- _soq(?jés()_q’ =0 La()0(a’) — wla*)ola™)} (3.23)

Setting a = ¢,q? and b = ¢*, ¢°, respectively, in (2.16) and then employing the resulting identities in
(3.23), we obtain

F(@®d) (@, ") + P fla, q) (@ ) = 20(a*)v(g®) — ¥(d°) (") (3.24)

Thus, it suffices to establish the identity (3.24). Using (2.4) and (2.8), we have

W(" () = fF(L.¢°)f(1,¢*) = i gmm ) /2 (3.25)

In this representation, we make the change of indices by setting
3Im—2n=5M+a and m+n=5N+b
where @ and b have values selected from the set {0, =1, +2}. Then
m=M+2N+ (a+2b)/5 and n=-M+3N+ (3b—a)/5
It follows that values of a and b are associated, as in the following table:

a 0 +1 +2
b 0 +2 F1

m M+ 2N M+2N £1 M + 2N
n ~M+3N | -M+3N£1|-M+3NF1
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When a assumes the values —2, — 1, 0, 1 and 2 in succession, it is easy to see that the corresponding
values of 3m? + 3m + 2n? + 2n are, respectively,

5M? — 3M + 30N? + 24N + 4

5M?* — M + 30N? — 12N
5M? + M + 30N? + 12N
5M? 4+ 3M + 30N? 4 36N + 10
5M? +5M + 30N?

It is evident, from the equations connecting m and n with M and N that, there is a one-one
correspondence between all pairs of integers (m,n) and all sets of integers (M, N,a). From this
correspondence, we can write (3.25) as

o0

4¢(q3)1/1(q2):q2 Z q(5M2—3M+30N2+24N)/2
M,N=—c0

2_ 2_ 2 2
1 Z ((BMP=M+30N?—12)/2 Z (M +M+30N?+12N)/2
M,N=—c M,N=—oc0
2 2 2 2
+ q5 Z q(5M +3M+30N2+36N)/2 + Z q(5M +5M+30N?2)/2
M,N=—oc0 M,N=—c0
= (0. 4" (. &) + (&, ) [ (&, ) + f(® ) fF(d )
+ (0. 4" (a7 ¢*) + [, ) f(d,¢")

Upon using Lemma 2.2 and after some simplifications, we get (3.24). This completes the proof of (3.19).
Using (2.10), (2.11), (2.17) and Lemma 2.1, we find that (3.20) is equivalent to the identity

H@ ) (=", — ) (=, —a") + f (. d*) (=, —®) F (=, —¢*)
e s ;g(lfq<5;q’ 4 p(appla") - 9()eld™)) (3.26)

Setting a = ¢,q° and b = ¢*, ¢°, respectively, in (2.16) and then employing the resulting identities in
(3.26), we obtain

af (¢ ) (@, 0) + d° fq,q) F(¢°,47) = L@ (qh) — ¥(d°)e(d™) (3.27)

Thus, it suffices to prove (3.27). Using (2.8), we may write

o)

V(@w(gh) = fla, ) f(d" g% = Y g (3.28)

In this representation, we make the change of indices by setting
m+4n=5M+a and m—n=5N+b

where @ and b have values selected from the set {0, £1, +2}. Then
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m=M+4N + (a+4b)/5 and n=M — N+ (a—1b)/5
It follows easily that a = b, and som = M 4+ 4N +aandn = M — N, where —2 < a < 2. Thus,

there is one-to-one correspondence between the set of all pairs of integers (m,n), —oo < m,n < oo and
triples of integers (M, N, a), —oo < M, N < 0o, — 2 < a < 2. From (3.28), we find that

2

a’*+a 2 a 2 o
V(Qv(q*) = Z e Z gt OM H(ats)M Z LN +160N

a=—2 M=—o00 N=—o00
2
— Z q2a2+af(q15+4a’ q5—4a).]('((]40—}-1(‘3(17 q40—16a)
a=-—2
=°f(¢®, a){f(d" d) + af (¢, ¢")}
+af (@ N d") + P F(a,0)} + (@) e(d") (3.29)
Employing (2.22) and (2.23) in (3.29), we obtain (3.27). The proofs of (3.21) and (3.22) follow similarly.
O
Theorem 3.5. We have 12/
J(@*) K. (q) + aK (¢)) J.(q) = 5= (3.30)
fila
and ;
2 2 ~ fafio
J(@)K(q) — 9K (q7)J(q) = 557 (3.31)
F3 15 f20
where J.(q) and K.(q) are as defined in theorem 3.4.
Proof. Using (1.1), we have
Glg) = 1
q) =
(454" o0 (0% ¢") 0 (4% 4'%) o (6”5 ¢")
flO 7°)
. (3.32)
“o(—9)K(q)
Identity (3.32) can be written in the form
H(¢*) = G(g)K (q)M (3.33)
J10
Similarly, we have
2\ _ ¢(—q)
G(q) = H(Q)J(Q)T (3.34)
Replacing ¢ by ¢? in (3.33) and (3.34) and then employing the resulting identities in (3.6) and (3.14), we
get (3.30) and (3.31), respectively. L]
Theorem 3.6. We have
fafoo [ fLf2 f2 5
J(q) ). () — aK (9) K. (¢*) = +q (3.35)
(@7) (@EAT) fifafio U f3 fto
" A [ BFh S
J’_qK* q3 +K_qJ* q3 — 1J4 30{ 2 12_ 107 30 } (3.36)
SR ECOR ) = s s Bt
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Proof. Using (2.10), (2.11), (2.17) and Lemma 2.1, we find that (3.35) is equivalent to the identity

f=a, =V (=", =) f(=a*, —¢") — af (=4, —¢*) f (=", —¢°) f (=", —4"°)
BT D) o gyt + a0l (3.37)
Putting a = ¢2, ¢* and b = ¢, ¢%, respectively, in (2.16) and then using the resulting identities in (3.37),
we obtain
f(=a®, =" f(d",¢°) — af (=4, =" F (¢, ¢*) = p(=)¥(¢®) + ap(—a")¥(¢") (3.38)

Thus (3.38) is equivalent to (3.35). To prove (3.38), we employ Theorem 2.6 with the parameters
a=b=qc=¢ d=¢,¢ =16 =0,a =1,3 = 4and m = 5 and then using
Lemma 2.2, we get

(=¥ (¢*) =f(=¢, - ) (¢' ,q22)+q2f(—q‘1,—q Nfa, ¢
+q%f(=q7% —¢") f (¢, q34)+q3°f(—q‘ L= (g% ")
+ ¢ (=%, =) f (a7, ¢)
=f(—¢* —q ){f(q )+ q f(q ¢*)}
— f(=q, =)} (@' ) + P, ™)} — qo(=a")(¢") (3.39)

Changing ¢ to ¢, in (2.22) and (2.23), and then employing the resulting identities in (3.39), we
obtain (3.38). The proof of (3.36) follows similarly. [

Theorem 3.7. We have

e ik - SR (-l
R B v Vo il vl S
) PR - (G- ) e
T(@)7.(¢") = K (9)K.(¢") = f;;i4;210{f3]}76];§124f28+q25 ]{Cf’oﬁj(; } nd  (343)
R R el Ul v -l v S

Proof. Using (2.10), (2.11), (2.17) and Lemma 2.1, one can write (3.40) in the form
f(= =) (=, =) (@, ¢*) + " F(—q, —¢") [ (=4", —=°) [ (¢", ¢'*)

- :Jg;)(f_(q_f’;ﬂ D) (i) — H(@)pla™)} (3.45)
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Employing (2.16) with a = ¢, ¢*> and b = ¢*, ¢°, respectively, in (3.45), we find that

W(@)(q*) — e(@®)0(@®) = @ f(a,4") [ (@, ¢*) + (@, ¢®) fa*, ') (3.46)

Thus, (3.40) is equivalent to (3.46). However, identity (3.46) can be verified easily using (2.26) with
setting ;1 = 5 and ¥ = 1 and then changing ¢* to ¢ in the resulting identity. The proofs of (3.41)
and (3.42) follow similarly using (2.26) with setting 4 = 5, v = 2 and v = 4, respectively. In a
similar way, identities (3.43) and (3.44) can be established using (2.27) with setting ;x = 5, ¥ = 2 and
v = 4, respectively. U

Observation 3.8. In most of the above identities, the functions J(q), K(q), J.(q) and K.(q) occur
in combinations

J(q") T (q®) — ¢CrHIPK (¢ K (¢°), where 3r + s = 0(mod 5)and (3.47)
J(@K(¢°) + ¢® 9K (q")J.(¢°), where 3r — s = 0(mod 5) (3.48)

or when one or both of " and q° are replaced by —q" and —q°, respectively, in either (3.47) or (3.48).

4. Identities Connecting .J(¢) and K (q) with Gollnitz-Gordon Functions S(¢) and 7'(q)

In this section, we present relations involving some combinations of J(¢) and K(g) with the
Gollnitz-Gordon functions S(g) and T'(q).

Theorem 4.1. Define
J(q*)J(q") + PP K (¢™) K (%)

U*(ev, B) == K(¢*)J(¢°) + ¢* T J(¢*) K (¢7)

=

B

=
Il

V(a,B) == S(—¢*)S(=4") + ¢"“T*T(—¢*)T(—¢")
V*(a,B) =T (=¢*)S(—¢") + ¢ /25 (—¢*) T (—¢")
Then
fo 2 [is6.f390
U(1,39) + 22J47156J39 1,9 g
L3+ R, el 2T
. f2f390 { f156f6524 o f52f1295 2 20f82f3212 4 8f3?2f12248} 41
T2 12 1 \ TS oS Tiofso L fifiss L o fom &1
f2f14f66.f2
U(7,33 24T SO0 I924 (9 462
O3 o 2162
_ f14f66 { f156f35696 _ f325f1265 2 116f82f12848 4 96f322f72392} 42
T2 25 \ T2 s T fofin L ffou L Fugfans (+2)
U*(1,31) — MV*(?, 62)

q2f12f2f??1f62
_ f2fe2 { f§6f4596 _ fs?f1255 +2q16f82f2248 +4q64f§2f392}
2q7f12f§1 f82f322f2248f9292 fiof310 fafi2a J16f196

4.3)
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U(13,27) +q37—ﬁf 2[5/ 12404&/*(2 702)

o s oo
_ f26f54 { f156f5?616 o f625f1235 + 2q176 f82f22808 + 4q704 f§2f121232}
2q8f]_23f227 f§f§2f22808f121232 f130f270 f4f1404 f16f5616
. [ f6f26 /s
U = ey, VBT
_fefas { fiofse 1155 +2q20@+4q80f§2f12248}
2q5f32f123 f82f3?2f’?8f3212 f30f130 f4f156 f16f624

13 f31fa6fTs64
U(17,23) + ¢t 22221564y 789
A ) 2 2 | (2 782)

_ f34f46 { f156f65256 o f825f1215 +2 196f82f??128 +4 784f322f122512}

2q8f127f223 f82f??2f??128f122512 f170f230 f4f1564 f16f6256
fi fasfazfisoe
U(19,21) 4 ¢* V(2,798
O s 2T
_ f38f42 { f156f65384 . f925f1205 + 2q200 f82f3?192 + 4q800 f??2f122768}
2q8f129f221 fgf:;z2f32192f122768 f190f110 f4f1596 f16f6384

2 2
U(3,37) + q7mv*(2, 222)

f213 f3: faro
_ f6f72 { f156f15776 o f125f1285 +2q56f82f8288 _'_4q224f322f32552}
2% 35 \ 3 [ fastasse  faofsmo fafaaa Ji6f1776
fifisfea T
U(9,31) 4 ¢?" =222 101/ (9 558
O3 R | (2 %8)

_ f18f62 { f156f4i)464 . féf5f1255 + 2q142 f§f22232 + 4q562f§2f82928}
2q8.f92f3?1 f&?f322f22232f82928 f90f310 f4f1116 f16f4464

Proof. Using (2.11), (2.12) and Lemma 2.1, we can write (4.1) in the alternative form

o(—=)p(—=¢"") + 2¢° f(—=¢*, —q") f(—=¢""T, —¢°™)
+2¢2f(=¢, =" f(=¢>', —¢*)

=0(¢*)(@**) = 2¢° F(¢°, ¢"*) F(@***, ) + 2¢%°(¢") 0 (")
— 20 f(¢*, 4" F (@™, ™) + 4¢°¢(¢"%) ¥ (¢°*)

35

4.4)

4.5)

(4.6)

4.7)

(4.8)

(4.9)

(4.10)

Identity (4.10) can be easily verified using Lemma 2.7, (2.25) and Lemma 2.2 with the following sets of

choice of parameters:
R(0,1,0,0,1,39,1,5,8,1,1) = R(0,1,0,0,1,39,1,8,5,1,1)

This completes the proof of (4.1). The proofs of (4.2—4.9) follow in a similar way.
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5. Identities Connecting .J(¢) and K (¢) with Cubic Functions P(q) and Q(q)

In this section, we present relations involving some combinations of J(¢) and K(¢) with the cubic
functions P(q) and Q(q).

Theorem 5.1. Define
Ula, B) := o(=q¢")(q”) {J(¢*) I (—=¢") = *“ TP K (¢")K(—4¢")}

Via,r) = 9(—¢*)v(—¢*) {Q(¢*)Q(¢”) + (—1)"¢* /*P(¢*) P(¢*) }

- U(7,23) + ¢*'V(322,0) = 2%]6 {o(=a®)p(@'?®) = o(=¢°)p(=¢"*) } (5.1)
U(1,29) = 2V(58,1) = 55 {e(=a")ela™) = (=" )o(=™)} (52)

U(11.19) = ¢V (8,1) = 55 {o(—a)ele”) = ol=hpl—a ) and  (53)

U(13.17) = 'V (42,1) = 5 {o(=a)eld") = ol=a)el—a"")} (5.4)

Proof. Using (2.11) and (2.13), we can write (5.1) in the form
e(—a®)e(d"°) = 2¢° F(=¢*", =) F(d*, ¢"") + 26 F(—q", —4®) f (¢, ¢*)
=p(=4*)o(=¢") +2¢ f(—q", —=¢*) F (—=¢°*, =¢"*)
+ 2q108f(_q27 _ql())f(_q3227 _q1610) (55)

Identity (5.5) can be easily verified using Lemma 2.7, (2.25) and Lemma 2.2 with the following sets of
choice of parameters:

R(1,1,0,0,7,23,1,5,6,1,1) = R(1,1,0,0,1,161,7,6,35,1,1)

This completes the proof of (5.1). The proofs of (5.2-5.4) follow similarly. [

6. Applications to the Theory of Partitions

Some of our modular relations yield theorems in the theory of partitions. In this section, we present
partition theoretic interpretations of the Theorem 3.2 and the identities (3.1), (3.21) and (3.35).

Definition 6.1. A positive integer n has k colors if there are k copies of n available and all of
them are viewed as distinct objects. Partitions of a positive integer into parts with colors are called
“colored partitions “.

For example, if 1 is allowed to have two colors, say 7 (red) and g (green), then all the colored partitions
of dare 3,2+1,,2+1,1,+1,+1,,1, +1,+ 1, 1, + 1, +15and 1, + 1, + 1,. It is easy to see that
L

(4 4)%
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is the generating function for the number of partitions of n, where all the parts are congruent to u
(mod v) and have £ colors. For simplicity, we define

r+

(@500 = (0",

where 7 and s are positive integers with r < s.

In this section, we shall use the following alternative definitions of J(¢) and K (q):

(qlo; qlo)oo

J(q) =
@ (4, 6°, 4% 0'°) oo (45 @)

(6.1)

e (4% ')

(0% @°, 4" 4")oo (45 @)oo
Theorem 6.2. Let pi(n) denote the number of partitions of n into parts congruent to +1, +2, +4,
+8, +9 (mod 20) with £2, +4 and £8 (mod 20) having two colors. Let ps(n) denote the number of
partitions of n into parts congruent to £3, £4, £6, £7and £8 (mod 20) with +4, £6 and £8 (mod 20)
having two colors. Let p3(n) denote the number of partitions of n into parts congruent to +2, +3, 44,
+6 and 7 (mod 20) with £2, +4 and £6 (mod 20) having two colors. Let py(n) denote the number of
partitions of n into parts congruent to +1, £2, 46, +8 and 19 (mod 20) with £2, £6 and £8 (mod 20)

having two colors. Then, for any positive integer n > 3,

K(q) = (6.2)

p1(n) + pa(n—3) = p3(n) + ps(n — 1)
Proof. Using (1.1), (1.2), (6.1) and (6.2), it is easy to verify that the identity (3.1) is equivalent to
(g2; )2
(¢:6°, 4% ¢")oo (62, 4", 4" )3 (0% ¢*)5%

( 20. 20)2
_|_ q3 q 9 q o0
(%, 6°, 475 4"0) (4% ¢, 4" 4%0)3 (0% 4" )&
1
(@ % 47 0o (0 4% 0702 (6% 7)%
q
+ (6.3)
(4,8°, 0% 4" (4%, 4" 4*°) 2. (% %)%
Now, rewrite all the products on both sides of (6.3) subject to the common base ¢*° to obtain
1 . 7
(¢, °F; ¢2) oo (25, ¢, 3% ¢20)2 (63, 475 ¢20) oo (¢, ¢5F, ¢°%; ¢20)2
1
= + ] (6.4)

(0%, 475 4%)oo(6%5, ¢, 45 6205 (4,675 6%) 0 (6%%, 4°F, 4555 47°)3
The four quotients of (6.4) represent the generating functions for p;(n), pa(n), ps(n) and py(n),

respectively. Hence, (6.4) is equivalent to

Zpl n)q" +q32p2 n)q" —Zp?) n)q" +q2p4

where we set p;(0) = pa(0) = p3(0) = ps(0) = 1. Equating coefficients of ¢" (n > 3) on both sides
yields the desired result. [
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Example 6.3. The following table illustrates the case n = 5 in Theorem 6.2

pi(5) =8 p2(2) =0 | p3(5) =2 pa(4) =6
4414+ 1,2, 42, +1 342, 2+ 2 2, + 2,
2 42,41, 2, +2,+1 342, | 2,425 2-+1+1

2, 4141412, +1+1+1 2+ 1+1
14+14+1+1+1 14+1+1+1

Theorem 6.4. Let pi(n) denote the number of partitions of n into parts congruent to +1, +2, +4, +6,
+9 and 10 (mod 20) with £2, £4 and 10 (mod 20) having two colors and +6 (mod 20) having three
colors. Let po(n) denote the number of partitions of n into parts congruent to +2, £3, +6, 7, £8 and
10 (mod 20) with 6, £8 and 10 (mod 20) having two colors and +2 (mod 20) having three colors.
Let p3(n) denote the number of partitions of n into odd parts having two colors. Then, for any positive

integer n > 1,
p1(n) + pa(n — 1) = ps(n)

Proof. Using (2.11), (2.16), (2.7), (1.1), (1.2) and (2.2), we find that the Theorem 3.2(i) is equivalent to

1
(0,0% )% (3,47, "% ¢'°) oo (02, 4%, ¢%°; ¢*°)

N q
(% % )3 (q, 4%, 4" qlo) (¢° 05 4%)oo
_ e e 65
(45 @)oo (4" ¢*°)35 (6% %) o (@2, q18 q2° oo (@, 4, 6%% ¢*) o
Now, rewrite all the products on both sides of (6.5) subject to the common base ¢*° to obtain
1
("%, %% %) oo (®F0**, 61 ¢%°) 3 (¢°%; ¢%0)%
N q
(q3i’ q7i; q20)oo(q6iq8i’ q10; CIQO)C%O(C]H; q20)§o
1
- (', 3%, g%, 7=, ¢°F; )2
1
_ (6.6)
(¢: %)%

The three quotients of (6.6) represent the generating functions for p;(n), p2(n) and p3(n), respectively.
Hence, (6.6) is equivalent to

Zpl n)q" +C]ZP2 n)q" —ZP3

where we set p1(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢" (n > 1) on both sides yields the
desired result. [

Example 6.5. The following table illustrates the case n = 4 in Theorem 6.4
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pi(4) =38 p2(3) =1 p3(4) =9
4,4, 2 12,2 12, 3 3, + 1,3 +1,3,+1,3,+1,
2, +2, 2 +1+1 L+l 41 +1, L, +1,+1,+1,
2, +1+11+1+1+1 Lo+l 41,411, 41, +1,+1,
1, +1,+1,+1,

Theorem 6.6. Let pi(n) denote the number of partitions of n into parts congruent to +1, +4, +6, +9
and 10 (mod 20) with £4 and 10 (mod 20) having two colors. Let py(n) denote the number of partitions
of n into parts congruent to +2, +3, +7, 8 and 10 (mod 20) with £8 and 10 (mod 20) having two
colors. Let p3(n) denote the number of partitions of n into parts congruent to £2, +4, 5, +6 and +8
(mod 20) with £5 (mod 20) having two colors. Then, for any positive integer n > 1, we have

pi(n) = pa(n —1) = ps(n)
Proof. In a similar way, as in Theorem 6.4, the Theorem 3.2(ii) is equivalent to
1 q
(07, 0%, 475 6%)oo (@, 0% 0% (625, 6%F, 075 4% (¢35, 4105 ¢2°)2
1
(P 0 P R 5 5 ) ©D
The three quotients of (6.7) represent the generating functions for p;(n), p2(n) and p3(n), respectively.

Hence, (6.7) is equivalent to

Zpl n)q" —qsz n)q" —Zps

where we set p;(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢" (n > 1) on both sides yields the
desired result. [

Example 6.7. The following table illustrates the case of n = 8 in Theorem 6.6

n8) =7 pa(7) =2 p3(8) =5
6+1+1,4,+4, 4, +44 4, +4, 7 8, 6+2 4+14,
4, +1+1+1+1,4,+14+14+14+1|3+2+2 |44+24+2,2+2+2+2
1+1+1+1+1414+1+1

Theorem 6.8. Let pi(n) denote the number of partitions of n into parts congruent to £1, +4, +6, 8,
+9 +11, £14, £16, £19 and 20 (mod 40) with 20 (mod 40) having two colors and +4, +6, +14 and
+16 (mod 40) having three colors. Let ps(n) denote the number of partitions of n into parts congruent
to£2, £3, 7, £8, £12, +13, £16, £17, £18 and 20 (mod 40) with 20 (mod 40) having two colors
and £2, £8, 12 and +18 (mod 40) having three colors. Let p3(n) denote the number of partitions
of n into parts not congruent to +2, +6, £8, +10, £14, £16 and £18 (mod 40) with +4, +5, £12
+15 (mod 20) having two colors and 20 (mod 40) having four colors. Let py(n) denote the number of
partitions of n into parts congruent to +2, £4, £5, 6, £8, £10, £12, +14, £15, £16, +18 (mod 40)
with £4, £5, £8, +10, 12, +15 and £16 (mod 40) having two colors. Then, for any positive integer
n>1,
pi(n) + pa(n — 1) = 2p3(n) — pa(n)
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Proof. Using (2.11), (2.16), (2.7), (1.1), (1.2) and (2.2), we deduce that the identity (3.21) is equivalent to
1
(425 ¢%) 0o (0% 0°) 0 (4% ¢®) % (6% ¢%°) 30 (4, ¢*; 4°) o (0%, 6% ¢10) oo
1
8 (45¢M¢%; ¢*°) oo (g, ¢35, ¢*°; ¢*0) o
N q
(4% 4%)o0 (4% 7)o (0% ¢%) 20 (025 ¢%°)5. (0%, 4% 4°) 5o (6%, 655 40) o
1
. (2%4%¢%%; ¢%) 0 (42, 4%, ¢7%; ¢*) o
2
(4 9)0(0% 4% 0 (62 425, (65, 4%, 4% ¢1°) 0 (¢, G2, ¢*%; ¢*0) oo

1
% ) (02, %, 4 )
1
(% 0% (0% 0520 07)oo (470 4%0)2 (6%, 07, 7% 010) o (620, 620, 4203 4 70)
1
X (g%, 6%, 40 *0) o (¢'2, 423, ¢10; ¢10) o (6.8)
Now, rewrite all the products on both sides of (6.8) subject to the common base ¢*° to obtain
1
(g, 5%, %%, ', q19%; ¢20) o (¢20; ¢10)2_(¢**, ¢BF, g1+, ¢16%; ¢10)3
q
T T 4 5, g ) (7 ) (67, 4, 41, g1 ),
2
- (¢, 3%, q7F, @O, 1T, 135 17 ¢19%: ¢10)
1
@ g P, P g )2,
1
(6.9)

(q2:|:’ q6:|:7 q14:|:7 q18:|:; q40)oo(q4:|:7 q5:|:7 q8:|:7 q10:|: q12:|:7 q15:t q16:i:, q )

The four quotients of (6.9) represent the generating functions for p;(n), pa(n), ps(n) and ps(n),
respectively. Hence, (6.9) is equivalent to

Zpl n)q" +q2pz —2Zp3 n)q" —Zm

where we set p;(0) = p2(0) = p3(0) = p4(0) = 1. Equating coefﬁ01ents of ¢" (n > 1) on both sides
yields the desired result. ]

Example 6.9. The following table illustrates the case of n = 7 in Theorem 6.8

p(7) =17 p2(6) =11 ps(7) =10 | pa(7) =2
6, +1,6,+ 1 3432, 4+2,+2, 7,54+ 1+1 By + 2
6 + 1 % 42 42,242, +2) |5y +1+1,4,+3| 5,+2

4+ 14+1+1 | 2,+2,+25,2,+2,+2, | 4,+3,3+3+1
A+ 14141 [ 20+ 20+ 20 20+ 20+ 20 | 4 +1+1+1

A+ 14141 2,420 +2,20+2,+2, | 4,4+14+1+1

UULE 2, +2,+2, B41+1+1+1

I1+1+1+1
+14+1+4+1
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Theorem 6.10. Let p,(n) denote the number of partitions of n into parts congruent to +1, £3, +4, £5,
+6, +7 £8 and £9 (mod 20) with +1, +5 and +9 (mod 20) having two colors and £4 (mod 20) having
three colors. Let py(n) denote the number of partitions of n into parts congruent to +1, +£2 43, +4, £5,
+7, £8 and £9 (mod 20) with £3, +5 and £7 (mod 20) having two colors and £8 (mod 20) having
three colors. Let p3(n) denote the number of partitions of n into parts congruent to 10 (mod 20) with
two colors. Let py(n) denote the number of partitions of n into parts congruent to +1, +3, £4, +7 +8
and £9 10 (mod 20) with two colors. Then, for any positive integer n > 1,

pi(n) = pa(n — 1) = ps(n) + pa(n — 1)

Proof. Using (1.1), (1.2), (6.1) and (6.2) and then rewriting all the products subject to the common base
q?°, we find that the identity (3.35) is equivalent to

1
(3%, %%, 4™, ¢ ¢%0) oo (¢, ¢°F, ¢7F; 20)2 (¢4 ¢20)2,
q
(M 2, M, g0 g2) o (¢3F, O, ¢7F; ¢20)2 (¢BE; ¢0)3
1 q

(g% )2, " (@', 3%, ¢**, 4™, %%, %, 4105 ¢°) % (6.10)

The four quotients of (6.10) represent the generating functions for p;(n), pa(n), ps(n) and py(n),

respectively. Hence, (6.10) is equivalent to

> pin)d" = q> pa(n)g" = ps(n)g" +q Y pa(n)g"

where we set p;(0) = pa(0) = p3(0) = ps(0) = 1. Equating coefficients of ¢" (n > 1) on both sides
yields the desired result. 0

Example 6.11. We illustrate Theorem 6.10 in the case of n = 10, and we can easily verify that p,(10) =

7. Conclusions

In this paper, we have established several modular relations that are connecting the functions J(q)
and K (q) with Rogers-Ramanujan functions, Gollnitz-Gordon functions and cubic functions, which
are analogues to the well-known Ramanujan’s forty identities for Rogers-Ramanujan functions. We
have used many methods to establish these modular relations, like Watson’s method and the theorem of
R. Blecksmith, J. Brillhart and I. Gerst, as well as some of Schroter’s formulas. Almost all of our modular
relations yield theorems in the theory of partitions. Modular equations play a central role in the proofs of
Ramanujan’s forty identities involving the Rogers-Ramanujan functions. We think that Ramanujan may
have discovered some of his identities by studying the asymptotics of the Rogers-Ramanujan functions.
Many of our theorems in this paper are closely related to some results in [35,36]. Many authors
established several new modular relations for the Gollnitz-Gordon functions by techniques that have
been used by L. J. Rogers, G. N. Watson and D. Bressoud to prove most of Ramanujan’s forty identities.

So far, we are unable to find some of Ramanujan’s principal ideas in proving his identities. We think
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there is a need to establish a systematic method to establish modular relations for Rogers-Ramanujan

type functions.
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