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1. Introduction, Definitions and Notations

q-Stirling numbers of the second kind were first defined by Carlitz [1]. After Carlitz’s paper, many
combinatorial papers have centered around the q-analogue, the earliest by Milne [2]; (among others) also
see [3–20].

In [16], Simsek studied the generating functions of the fermionic and deformic Stirling numbers. By
applying the derivative operator dn

dtn
|t=0 to these functions, he constructed interpolation functions of

these numbers at negative integers.
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It is well known that the Stirling numbers of the second kind S(n, k) are defined by means of the
generating function [16–21]:

FS(t, k) =
(−1)k

k!
(1− et)k =

∞∑
n=0

S(n, k)
tn

n!
(1)

It is also well known that the usual Stirling numbers of the second kind S(α)(n, k) are defined by
means of the generating function [16–21]:

Fα(t, k) =
(−1)k

k!
eαt(1− et)k =

∞∑
n=0

S(α)(n, k)
tn

n!
(2)

and

F r
α(t, k) =

(−1)k

k!
eαt(1− ert)k =

∞∑
n=0

S(α
r
)(n, k)

tn

n!
(3)

Let q ∈ C with | q |< 1. Some well known results related to the q-integers are given by (see for
detail [1–28]):

[n, q] = [n] =
1− qn

1− q
[k + j] = [k] + qk[j]

[kj] = [k][j, qk]

and

[n]! = [n][n− 1]...[2][1], [0]! = 1 and

(
n

k

)
q

=
[n]!

[n− k]![k]!

Note that limq→1[n] = n, [1–28].
Generating functions of the q-Stirling numbers of the second kind were defined in [8]:

Fq(t) = q

 k

2


1

[k]!

k∑
j=0

(
k

j

)
(−1)k−jq

 k − j
2


exp([j]t) (4)

and

[x]n =
n∑
k=0

(
m

n

)
q

[k]!q

 k

2


S2(n, k, q)

By the above equation, we have [1,8]

S2(n, k, q) = q

−

 k

2


1

[k]!

k∑
j=0

(−1)jq

 j

2

(
k

j

)
q

[k − j]n
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2. New Generating Functions for q-Stirling Numbers of the Second Kind

Here, by using the same method of Simsek [16,18], we construct interpolation functions for the
generalized q-Stirling numbers of the second kind. We shall define new functions to interpolate the
second kind q-Stirling numbers. We define q-version of Equations (1) and (2) functions. Generalized
q-Stirling numbers of the second kind are defined by means of the following generating functions:

Fq,α(t, k) =
1

[k]!

(
−
∞∑
n=0

qn exp
(

[n− α

k
]t
))−k

(5)

=
∞∑
n=0

S(α)(n, k, q)
tn

n!

or

F ∗q,α(t, k) =
1

[k]!

k∑
j=0

(−1)k+j

(
k

j

)
qke[α+j]t (6)

=
∞∑
n=0

1

[k]!

k∑
j=0

(−1)k+j

(
k

j

)
qk

[α + j]ntn

n!

and

F ∗q,α(t) =
∞∑
n=0

S(α)(n, k, q)
tn

n!

By comparing the coefficients of tn

n!
on both sides of the above equations, we easily obtain that

S(α)(n, k, q) =
1

[k]!

k∑
j=0

(−1)k+j

(
k

j

)
qk[α + j]n

=
(1− q)−n

[k]!

k∑
j=0

n∑
c=0

(−1)k+j+c

(
k

j

)(
n

c

)
qk+(α+j)c

Observe that when q → 1, Equations (5) and (6) reduce to Equation (2). When q → 1 in Equation (5),
we have

lim
q→1

Fq,α(t, k) =
1

k!

(
−
∞∑
n=0

qn exp
(
nt− α

k
t
))−k

∞∑
n=0

S(α)(n, k)
tn

n!
=

(−1)k

k!

(
et − 1

)k
=

(−1)k exp(αt)

k!

k∑
y=0

(
k

y

)
(−1)y exp(yt)

=
∞∑
n=0

(
(−1)k exp(αt)

k!

k∑
y=0

(
k

y

)
(−1)yyn

)
tn

n!

Here we use the binomial expansion and the fact that

ex =
∞∑
n=0

xn

n!
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By comparing the coefficients of tn

n!
on both sides of the above equations, we easily obtain that

S(n, k) =
(−1)k exp(αt)

k!

k∑
y=0

(
k

y

)
(−1)yyn

We also see that

S(α)(n, k) =
(−1)k

k!

k∑
y=0

(
k

y

)
(−1)y(α + y)n

with recurrence relation in [21]

S(α)(n, k) = S(α)(n− 1, k − 1) + (k + α)S(α)(n− 1, k)

We also define the following generating function which is generalized Equation (6):

F ∗q,α
r
(t, k) =

1

[k]!

k∑
j=0

(−1)k+j

(
k

j

)
qke[α+rj]t (7)

=
∞∑
n=0

S(α
r
)(n, k, q)

tn

n!

By Equation (7), we obtain

S(α
r
)(n, k, q) =

1

[k]!

k∑
j=0

n∑
d=0

(−1)k+j

(
k

j

)(
n

d

)
qk+dα[α]n−d[rj]d

By using Pb. 189 in [24], we can write

S(n, k) =
1

k!

(
kn −

(
k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n − ...+ (−1)k0n

)
, n ≥ 1 (8)

We give the q-version of the above equation as follows

S(n, k, q) =
1

[k]!

[k]n −

(
k

1

)
q

[k − 1]n +

(
k

2

)
q

[k − 2]n ...+ [−1]k[0]n


3. Some Special Zeta Functions

Throughout this section, let s ∈ C with Res > 1. By using the same method of Simsek [16,18], we
construct interpolation functions for the generalized q-Stirling numbers of the second kind. By applying
the Mellin transform to Equation (4), we have

1

Γ(s)

∫ ∞
0

ts−1Fq(−t)dt

= q

 k

2


1

[k]!

k∑
j=0

(
k

j

)
(−1)k−jq

 k − j
2


1

Γ(s)

∫ ∞
0

ts−1 exp(−[j]t)dt

= q

 k

2


1

[k]!

k∑
j=0

(
k

j

)
(−1)k−jq

 k − j
2


1

[j]s−1

Thus we define the following zeta function:
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Definition 1 Let s ∈ C and k ∈ Z+, the set of positive integers.

z(s, k) = q

 k

2


1

[k]!

k∑
j=0

(
k

j

)
(−1)k−jq

 k − j
2


1

[j]s−1

By substituting s = 1− n into above definition, we have

zq(1− n, k) = q

 k

2


1

[k]!

k∑
j=0

(
k

j

)
(−1)k−jq

 k − j
2


[j]n

Using the above relation, we arrive at the following result:

Theorem 1 Let n and k be positive integers. Then

zq(1− n, k) = S(n, k, q)

By applying the Mellin transform to the Equation (2), we have

1

Γ(s)

∫ ∞
0

ts−1Fα(−t, k)dt =
(−1)k

k!

k∑
j=0

(
k

j

)
(−1)j

(j + α)s−1

So we have the following definition:

Definition 2 Let s ∈ C and k ∈ Z+.

zα(s, k) =
(−1)k

k!

k∑
j=0

(
k

j

)
(−1)j

(j + α)s−1

Remark 1 If α = 0 above, then we have

z0(s, k) =
(−1)k

k!

k∑
j=0

(
k

j

)
(−1)j

js−1

For s = 1− n, n ∈ Z+ above equation, we obtain

zα(1− n, k) =
(−1)k

k!

k∑
j=0

(
k

j

)
(−1)j

(j + α)−n

= S(α)(n, k)

Therefore, we arrive at the following result:

Corollary 1 Let n ∈ Z+. Then we have

zα(1− n, k) = S(α)(n, k)
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Remark 2

(et − 1)k =
k∑
j=0

(
k

j

)
(−1)jejt

=
∞∑
n=0

(
kn

(
k

0

)
−

(
k

j

)
(k − 1)n + ...+

(
k

k

)
(−1)k(k − k)n

)
tn

n!

By using Equation (8), we have

(et − 1)k = k!
∞∑
n=0

z0(1− n, k)
tn

n!

By applying the Mellin transform to Equations (6) and (7), we define the following
functions, respectively:

1

Γ(s)

∫ ∞
0

ts−1F ∗q,α(−t, k)dt = zαq (s, k)

1

Γ(s)

∫ ∞
0

ts−1F ∗q,α
r
(−t, k)dt = z

α
r
q (s, k)

The above functions interpolate the numbers S(α)(n, k, q) and S(α
r
)(n, k, q) at negative

integers, respectively.

4. Relations between Bernoulli Numbers of Order k and Stirling Numbers of the Second Kind

Let

FB(t) =
tk

(et − 1)k
=
∞∑
n=0

B(k)
n

tn

n!
(9)

where the coefficientsB(k)
n are called Bernoulli numbers of order k [19,20,28]. By Equation (1), we have

FS(t, k) =
1

k!
(et − 1)k (10)

By using Equations (9) and (10), relation between FB(t) and FS(t) is given by

FB(t)FS(t) =
tk

k!

By using the above relation, we have

∞∑
n=0

B(k)
n

tn

n!

∞∑
n=0

S(n, k)
tn

n!
=
tk

k!

By using Cauchy product above, we get

∞∑
n=0

n∑
j=0

B
(k)
j S(n− j, k)

1

k!

tn

(n− k)!
=
tk

k!

By comparing coefficients of tk in both sides of the above equation, we arrive at the following theorem:
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Theorem 2 Let n, k ∈ N. We have

n!k!
n∑
j=0

(
n

j

)
B

(k)
j S(n− j, k) =

{
1, if n = k

0, if n 6= k

Remark 3 The Barnes’ type multiple Changhee q-Bernoulli polynomials are defined by means of the
following generating function (see for details [28]):

G(k)
q (w, t | w1, w2, ..., wk)

= (−t)k(
k∏
i=1

wi)
∞∑

n1,n2,...,nk=0

qw+n1w1+n2w2+...+nkwke[w+n1w1+n2w2+...+nkwk]t

=
∞∑
n=0

B
(k)
n (w : q | w1, w2, ..., wk)t

n

n!
( | t |< 2π ) (11)

with as usual,
∞∑

n1,n2,...,nk=0

=
∞∑

n1=0

∞∑
n2=0

...
∞∑

nk=0

It follows from Equation (11) that

lim
q→1

G(k)
q (w, t | w1, w2, ..., wk) =

etw(tw1)(tw2)...(twk)

(etw1 − 1)(etw2 − 1)...(etwk − 1)
(12)

This gives the generating function of Barnes’ type multiple Bernoulli numbers. Thus we get the following
limit relationship:

lim
q→1

B(k)
n (w : q | w1, w2, ..., wk) = B(k)

n (w | w1, w2, ..., wk)

This gives the Barnes’ type multiple Bernoulli numbers as a limit when q approaches 1.

If w = 0 and w1 = w2 = wk = 1 in Equation (12), we have

lim
q→1

G(k)
q (0, t | 1, 1, ..., 1) =

tk

(et − 1)k
=
∞∑
n=0

B(k)
n

tn

n!

Using Equation (12), we define

F
(n)
B (t | w1, w2, ..., wk) =

tkn(w1w2...wk)
n

(etw1 − 1)n(etw2 − 1)n...(etwk − 1)n
(13)

=
∞∑
n=0

B(k,n)
n (0 | w1, w2, ..., wk)

tn

n!

Observe that when n = 1, B(k,n)
n (0 | w1, w2, ..., wk) reduces to B(k)

n (0 | w1, w2, ..., wk). We define

F
(n)
S (t | w1, w2, ..., wk) =

(
1

k!

)n
(etw1 − 1)n(etw2 − 1)n...(etwk − 1)n (14)

=
∞∑
n=0

Y (n)(n, k | w1, w2, ..., wk)
tn

n!
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By Equations (13) and (14), we have

(
k!

w1w2...wk
)nF

(n)
S (t | w1, w2, ..., wk)F

(n)
B (t | w1, w2, ..., wk) = tkn

By using the above equation, we have

(
k!

w1w2...wk
)n

∞∑
m=0

Y (n)(m, k | w1, w2, ..., wk)
tm

m!

∞∑
m=0

B(k,n)
m (0 | w1, w2, ..., wk)

tm

m!
= tkn

By applying the Cauchy product to the above, we arrive at the following theorem, which is the
generalized form of Theorem 2:

Theorem 3 Let n, k ∈ N. We have

m!(
k!

w1w2...wk
)n

m∑
j=0

(
m

j

)
B(k,n)
n (0 | w1, w2, ..., wk)Y

(n)(m− j, k | w1, w2, ..., wk)

=

{
1, if m = nk

0, if m 6= nk

Observe that

F
(1)
S (t | 1, 1, ..., 1) =

∞∑
n=0

Y (1)(n, k | 1, 1, ..., 1)
tn

n!

=
1

k!
(et − 1)k

=
∞∑
n=0

S(n, k)
tn

n!

Thus we have
Y (1)(n, k | 1, 1, ..., 1) = S(n, k)

5. Conclusions

q-Stirling numbers of the second kind arise in many different generating functions for various
statistical partitions. The theory of q-Stirling numbers is enriched by combinatorial interpretations.
By using these numbers, one can investigate orthogonality relations, recurrences, explicit expressions,
and generating functions for the generalized (q-) Stirling numbers. Recently, many authors have
generalized the Stirling numbers by differential operators. The Stirling numbers are related to
Newton’s interpolation, (q-) Lah numbers, exponential generating functions, q-calculus and related
topics, combinatorial enumeration problems, Binomial coefficients and Bell numbers.
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