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Abstract

We consider a two-step numerical approach for solving parabolic initial boundary value
problems in 3D simply connected smooth regions. The method uses the Laplace transform
in time, reducing the problem to a set of independent stationary boundary value problems
for the Helmholtz equation with complex parameters. The inverse Laplace transform
is computed using a sinc quadrature along a suitably chosen contour in the complex
plane. We show that due to a symmetry of the quadrature nodes, the number of stationary
problems can be decreased by almost a factor of two. The influence of the integration
contour parameters on the approximation error is also researched. Stationary problems are
numerically solved using a boundary integral equation approach applying the Nyström
method, based on the quadratures for smooth surface integrals. Numerical experiments
support the expectations.

Keywords: heat equation; Helmholtz equation; 3D initial boundary value problem;
numerical Laplace transform inversion; boundary integral equation method; Nyström
method; Wienert quadratures; sinc quadratures
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1. Introduction
The boundary integral equation (BIE) method is a very powerful approach for the

numerical solution of various boundary value problems (BVPs). The main advantage of
the BIE method consists in the dimensionality decrease of the given differential problem:
the BVP is reduced to the BIE, where the unknown function is defined only on the domain
boundary [1]. Clearly, the considered differential equation needs to have a fundamental
solution and be homogeneous. For the numerical solution of such a BIE, effective numerical
methods have been developed, for example, projection methods [1].

In the case of non-stationary BVPs, there are additional difficulties caused by the
presence of time as an independent variable. There are several ways to apply the BIE
to such BVPs [2]. One approach involves a fundamental solution of the time-dependent
differential equation. Then, by a direct or indirect BIE method, the initial BVP can be
reduced to a time-domain boundary integral equation. The numerical solution of such a
BIE is more difficult than in the stationary case. The most popular method for time-domain
boundary integral equations is the convolution quadrature method suggested by Christian
Lubich in the 1980s [3].
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Another so-called two-step method consists of the semi-discretization of the given
initial BVP with respect to the time variable. As a result, the set of stationary BVPs for
elliptic equations is obtained. This time discretization can be achieved using approaches
such as finite-difference approximations (e.g., the Rothe method [4]) or integral transforms
(e.g., the Laguerre transform [5,6], the Laplace transform [7]). In the second step, which
addresses the spatial variable, various techniques are available, including the BIE method.
Two-step methods offer several advantages, such as dimension reduction and the avoidance
of volume integrals. The finite-difference semi-discretization is the simplest approach,
which gives the numerical solution in a fixed set of time moments. In the case of integral
transforms, we have an approximation for an arbitrary time, but it is necessary to calculate
the inverse transform numerically.

The application of the Laplace transform to time-dependent problems has a long
history. It can be used in combination with the finite difference method [8], finite element
method [9], boundary element method [10,11] and others. In the case of the parabolic
initial BVP, stationary BVPs for the Helmholtz-type equations with complex parameters
can be obtained. The inverse Laplace transform is defined as the Bromwich integral on the
complex plane, and there are multiple numerical methods for its calculation (see [7,12–19]
and references therein).

In this paper, we use the two-step approach based on the Laplace transform and
the BIE method to solve parabolic initial BVPs in 3D domains. To calculate the inverse
transform, the sinc-quadrature rule suggested in [13] is applied. This leads to a set of
independent BVPs for the Helmholtz-type equation, which can be numerically solved in
parallel. We consider the case of specific smooth surfaces, diffeomorphic to the unit sphere.
It provides the possibility of applying effective numerical schemes for the received BIE.
We apply the Nyström method based on the Wienert’s quadrature rules for the surface
integrals [20].

The main contribution of this work is reducing computational costs by selecting
optimal values for the inverse Laplace transform’s contour parameters, decreasing the
number of stationary BVPs due to the symmetry of the quadrature nodes and applying an
efficient method for numerically solving the resulting BIEs.

The outline of the present work is as follows. In Section 2, we apply the Laplace
transform to the parabolic initial boundary value problem and describe the sinc quadrature
for the numerical inverse transform. Two ideas for decreasing computational cost are
presented in Sections 2.1 and 2.2. In Section 2.1, it is shown that due to a certain symmetry
of the sinc-quadrature nodes, the number of stationary problems can be reduced almost
twice. In Section 2.2 reflects how the choice of integration contour in the complex plane
influences the precision of the sinc quadrature. In Section 3, we apply the indirect BIE
method to stationary elliptic problems. The unknown solution is presented in the form of a
double-layer potential, and a BIE of the second kind is obtained. Taking into account that
the boundary surface is diffeomorphic to the unit sphere, we apply the Nyström method
based on the Wienert’s quadrature rules. Section 4 presents numerical examples to clarify
our approach and its optimization.

Before closing this section, we formulate the problem to be studied. Let D ⊂ R3 be
a simply connected region with a smooth boundary Γ. It is necessary to find function
u ∈ C2,1(D × (0, ∞)) ∩ C(D × [0, ∞)), which satisfies the heat equation

∂u
∂t

(x, t) = ∆u(x, t), (x, t) ∈ D × (0, ∞), (1)

the initial condition

u(x, 0) = 0, x ∈ D (2)
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and the Dirichlet boundary value condition

u(x, t) = g(x, t), (x, t) ∈ Γ × (0, ∞). (3)

Assume that the given function g is bounded and continuous and satisfies the compatibility
condition g(x, 0) = 0, x ∈ Γ.

We consider surfaces Γ, diffeomorphic to the unit sphere

S2 = {p(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ), (θ, ϕ) ∈ [0, π]× [0, 2π)}

described by an analytic function q : S2 → Γ with a nonzero Jacobian J.

2. Time Semi-Discretization via Laplace Transform
The Laplace transform of a function f (t) is given by

Lt( f ) = F(s) =
∫ ∞

0
e−st f (t)dt, s = σ + iτ, s ∈ C. (4)

The integral in (4) is convergent for Re(s) > a0, where a0 is the order of growth of
function f (t), and F(s) is an analytic function [21].

For the known image F, the original f can be reconstructed by using the inverse
Laplace transform, described by the Bromwich integral

L−1
s (F) = f (t) =

1
2πi

∫
C

estF(s)ds, (5)

where C is a suitable integration contour (see [7,13–16] and references therein).
A popular strategy to use the Laplace transform for the heat problems is as follows:

1. Apply the Laplace transform in time to the initial boundary value problem to obtain
boundary value problems for the Helmholtz-type equations.

2. Build an effective solver for stationary problems.
3. Reconstruct time-domain solution via numerical inversion of the Laplace transform.

One approach to approximating the inverse Laplace transform was proposed in [13].
If F can be analytically continued to the set C \ Σδ, where

Σδ = {s ∈ C : | arg(−s)| ≤ δ, 0 < δ <
π

2
}

and there exists M > 0 such that

|F(s)| ≤ M
|s| , s ∈ C \ Σδ,

then to approximate the inverse Laplace transform of function F, a quadrature formula
is proposed based on the use of sinc quadrature for integral (5) with a special integration
contour (see Figure 1)

γ(ω) = λ
(
1 − sin(α + iω)

)
, ω ∈ R. (6)

Here, λ > 0, 0 < α < π
2 − δ are arbitrary parameters that define the geometry of contour (6).
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Figure 1. Set Σδ and integration contour γ(ω), δ = π/6, α = π/4, λ = 1.

Using contour (6) to parametrize integral (5), we obtain

L−1
s (F) = f (t) = − 1

2πi

∫ ∞

−∞
eγ(ω)tF(γ(ω))γ′(ω)dω. (7)

Let Nt > 0, Nt ∈ N, hN = ln Nt/Nt, ωj = hN j, j = −Nt, . . . , Nt. Integral (7) can be
approximated using the following quadrature formula [13]

f (t) ≈ (TNt F)(t) =
hN
2πi

Nt

∑
j=−Nt

eγ(ωj)tF(γ(ωj))γ
′(ωj). (8)

Let us denote sj = γ(ωj) and γj = hNγ′(ωj)/2πi; then, we obtain

f (t) ≈ (TNt F)(t) =
Nt

∑
j=−Nt

γje
tsj F(sj). (9)

Note that when computing TNt F for different values of t, one can use the same set of values

F(sj). The approximation error of (9) is shown to behave like O
(

e−cNt/ ln Nt
)

and is stable
to the perturbations of F(sj). This is especially important when values F(sj) are computed
numerically [13].

Since the solution of the non-stationary problem (1)–(3) u is bounded with respect
to the time variable, i.e., its order of growth is equal to 0, the Laplace transform with
respect to time can be applied to both parts of Equation (1). Taking into account property
Lt( f ′(t)) = sF(s) − f (0) [21] and the zero initial condition, we obtain the following
equation for the Laplace image Us(x) = Lt(u(x, t))

∆Us(x)− sUs(x) = 0, x ∈ D. (10)

On the boundary of the domain, the function Us satisfies the following condition

Us(x) = Gs(x), x ∈ Γ, (11)
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where Gs(x) = Lt(g(x, t)). Thus, for Us we get a boundary value problem (10) and (11) for
the Helmholtz equation with a complex wavenumber.

Applying the described approach for the inverse Laplace transform, in order to find
an approximate solution of problem (1)–(3), it is necessary to compute

Uj(x) = Usj(x), j = −Nt, . . . , Nt, x ∈ D,

that is, to solve a set of 2Nt + 1 problems (10) and (11) for s = sj

∆Uj(x)− sjUj(x) = 0, x ∈ D, (12)

Uj(x) = Gj(x), x ∈ Γ. (13)

Here, Gj = Gsj . It is important to emphasize that problems (12) and (13) are independent of
each other, enabling their parallel solution.

In [7,14], it was shown that the image of the solution to the heat problem Us,
as a function of the complex argument s, could be analytically continued to the set
Z = C \ (−∞, 0], and there existed a constant M > 0 such that

|Us(·)| ≤
M
|s| , s ∈ Z.

Thus, in our case, we can apply the approach from [13] and use contour (6) for any λ > 0
and 0 < α < π

2 .
Note that in order to solve problems (12) and (13), it is necessary to have boundary

functions Gj, i.e., have the Laplace image Gs of the original boundary condition g. If
Gs is not available in a closed form, it can be approximated using various techniques,
including using Laguerre polynomials or exponential sums’ expansions of the original
function [22,23], approximation of the original function by rational functions [24], applying
quadrature rules to the Laplace transform integral [25] and others. The approximation
of Gs is beyond the scope of the current article, and we use examples of g with a known
Laplace transform for the numerical experiments.

Recalling problems (12) and (13) are 3D stationary boundary value problems, it is
easy to see that solving them numerically may pose a significant computational effort. The
main motivation for this article was to suggest certain ideas for decreasing the amount of
computational work, as described further.

2.1. Reducing the Number of Stationary Problems

It is easy to notice that ω−j = −ωj, j = 1, . . . , Nt.
Then,

s−j = γ(ωj) = λ
(
1 − sin(α + iωj)

)
=

= λ
(
1 − sin(α − iωNt−j)

)
= λ

(
1 − sin(α + iωNt−j)

)
= sj, j = 1, . . . , Nt, (14)

where z denotes the complex conjugate of z. We use the fact that sin(z) = sin(z) for any
complex z [26].

Thus, quadrature nodes (14) are pairwise conjugate, except for node s0. This allows us
to reduce the solution of the set of 2Nt + 1 stationary problems to Nt + 1 problems.
We show that

U−j(x) = Uj(x), j = 1, . . . , Nt.

Theorem 1. Assume D ⊂ R3 is a simply connected region with a smooth boundary Γ from C2,
G ∈ C(Γ) and complex-valued parameter s ∈ C \ (−∞, 0]. Let U ∈ C2(D) ∩ C(D) be a solution
of the problem
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(a) ∆U(x)− sU(x) = 0, x ∈ D,
(b) U(x) = G(x), x ∈ Γ.

Then, U ∈ C2(D) ∩ C(D) is a solution of the problem

(c) ∆U(x)− s U(x) = 0, x ∈ D,
(d) U(x) = G(x), x ∈ Γ.

Proof. Statement (d) follows directly from (b). Let us show that (c) follows from (a).
We denote

s = a + ib, U(x) = V(x) + iW(x), x ∈ D,

s = a − ib, U(x) = V(x)− iW(x), x ∈ D.

Then, (a) can be written as

∆V + i∆W = aV − bW + i(bV + aW)

Thus,

∆V = aV − bW, ∆W = bV + aW.

Then,

∆U = ∆V − i∆W =

= aV − bW − ibV − iaW =

= (a − ib)V − i(a − ib)W =

= (a − ib)(V − iW) = s U,

which proves statement (c).

Corollary 1. Solutions of problems (12) and (13) with indices −j and j are complex conjugates

U−j(x) = Uj(x), j = 1, . . . , Nt, x ∈ D.

Proof. Using the well-known fact that F(s) = F(s) (for real valued f (t) [26]), it is easy
to see that the boundary conditions of the problems with indices −j and j are complex
conjugates. Since s−j = sj, it follows from Theorem 1 that the solutions of problems (12)
and (13) with indices −j and j are also complex conjugates.

Thus, it is sufficient to solve the stationary problems for indices j = 0, . . . , Nt, and the
solutions for indices j = −Nt, . . . ,−1 can be obtained automatically from the Corollary 1.

2.2. Integration Contour Parameters Optimization

As mentioned earlier, integration contour (6) depends on parameters λ > 0 and
0 < α < π

2 . Figures 2 and 3 show the influence of parameters α and λ on the shape of the
contour and placement of the nodes for Nt = 4.
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Figure 2. Influence of α on the integration contour: when α gets closer to π/2, the contour branches
get closer to the real axis.

Figure 3. Influence of λ on the integration contour: when λ is larger, the contour is “scaled out”, and
nodes are spread further along the branches.

Since the approximate solution of the 3D stationary problems requires a large number
of computations, it makes sense to select parameters α and λ in such a way as to reduce the
expected error.

To find parameters α and λ for which the error is minimized, we define search intervals
for the optimal values of α and λ and construct a uniform grid of test values for them:

α ∈ [α0, α1] ⊂ (0; π/2), λ ∈ [λ0, λ1] ⊂ (0; ∞),

αν = α0 + νhα, ν = 0, . . . , Nα, Nα ∈ N, hα = (α1 − α0)/Nα, (15)

λµ = λ0 + µhλ, µ = 0, . . . , Nλ, Nλ ∈ N, hλ = (λ1 − λ0)/Nλ. (16)
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We fix certain values of t and Nt and select a Laplace transform pair of test functions uT and
UT

s . It is natural to select uT to be similar to the behavior of the boundary condition g. Then,
for each pair of values (αν, λµ), we compute the absolute or relative errors Eabs and Erel

of the numerical Laplace transform inversion (9) for UT
s and find the values (αmin, λmin)

for which
Eabs,min = min{Eabs | (αν,λµ

), ν = 0, . . . , Nα, µ = 0, . . . , Nλ}, (17)

Erel,min = min{Erel | (αν,λµ
), ν = 0, . . . , Nα, µ = 0, . . . , Nλ}. (18)

The obtained contour parameters (αmin, λmin) are then used to define quadrature
nodes sj and solve Nt + 1 stationary problems. We do not provide an explicit recipe to
define [α0, α1] and [λ0, λ1]. For [α0, α1] it seems natural to define α0 close to 0 and α1 close
to π/2 and thus “scan” most of the (0; π/2) interval. For [λ0, λ1], it seems natural to define
λ0 close to 0, and it is empirically observed that increasing λ1 prevents us from finding
different λmin’s after certain values of λ1. This is intuitively supported by understanding
that for large values of λ, nodes sj quickly start to extend far into the left half-plane and
their contribution in sum (9) becomes negligible.

3. Solver for Stationary Boundary Value Problems
In this section, we consider the numerical solution of the stationary problems (12)–(13).

We apply the BIE method with later application of the Nyström method based on the
quadrature rules for surface integrals proposed by Wienert [20].
For brevity, we rewrite problems (12) and (13) as

∆Us(x)− sUs(x) = 0, x ∈ D, s ∈ {sj, j = 0, . . . , Nt}, (19)

Us(x) = Gs(x), x ∈ Γ. (20)

The fundamental solution of Equation (19) has the following form [27]

Φs(x, y) =
1

4π

e−
√

s|x−y|

|x − y| , x, y ∈ R3, x ̸= y, Re(
√

s) > 0. (21)

Since s /∈ (−∞, 0], it is known that under suitable assumptions on the boundary Γ and for
sufficiently smooth boundary data Gs, the solution of the Dirichlet problem exists and is
unique; see [27] and references therein. The solution of (19) can be written in the form of a
double-layer potential

Us(x) =
∫
Γ

φ(y)Φν,s(x, y)ds(y), x ∈ Γ, (22)

where Φν,s(x, y) = ∂Φs(x,y)
∂ν(y) , φ ∈ C(Γ) is the potential density, and ν is the unit outward

normal vector to Γ.
Potential (22) is a solution of problems (12) and (13) if the density φ is a solution of the

Fredholm integral equation of the second kind

−1
2

φ(x) +
∫
Γ

φ(y)Φν,s(x, y)ds(y) = Gs(x), x ∈ Γ. (23)

For any Gs ∈ C(Γ), Equation (23) has a unique solution φ in C(Γ) [27].
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Since Γ =
{

x = q(x̂), x̂ ∈ S2)
}

, we can obtain the parametrized integral equation
on S2

−1
2

ψ(x̂) +
∫
S2

ψ(ŷ)K(x̂, ŷ) ds(ŷ) = Ĝs(x̂), x̂ ∈ S2, (24)

where we denoted ψ(x̂) = φ(q(x̂)), Ĝs(x̂) = Gs(q(x̂)), x̂ ∈ S2 and

K(x̂, ŷ) = Φν,s(q(x̂), q(ŷ))J(ŷ), x̂, ŷ ∈ S2, x̂ ̸= ŷ.

Function K is a weakly singular integral kernel that can be rewritten in the form

K(x̂, ŷ) =
M(x̂, ŷ)
|x̂ − ŷ| , x̂, ŷ ∈ S2, x̂ ̸= ŷ,

where

M(x̂, ŷ) =
e−

√
s|q(x̂)−q(ŷ)|

4π

(q(x̂)− q(ŷ), ν(q(ŷ)))
|q(x̂)− q(ŷ)|2

|x̂ − ŷ|J(ŷ)
|q(x̂)− q(ŷ)|

(√
s|q(x̂)− q(ŷ)|+ 1

)
.

Note that due to the analyticity of q, the well-posedness of (23) also applies to (24). In order
to discretize (24), we consider the quadrature rules proposed by Wienert [20]. For a given
space discretization parameter N ∈ N, the following values are defined

p̂β,µ = p
(
ϑβ, φµ

)
, ϑβ = arccos ξβ, φµ =

π

N
µ, (25)

w(1)
β =

2π

N(1 − ξ2
β)
(

P′
N(ξβ)

)2 , β = 1, . . . , N, µ = 0, . . . , 2N − 1.

where ξ1 < · · · < ξN are the zeros of the Legendre polynomials PN [28].

For a given function f ∈ C(S2 \ {(0, 0,±1)}), approximation AN f is defined as

(AN f )(x̂) =
N

∑
β=1

2N−1

∑
µ=0

w(1)
β f ( p̂β,µ) aβ,µ(x̂), (26)

where aβ,µ(x̂) =
N−1

∑
n=0

2n + 1
4π

Pn(x̂ · p̂β,µ), and by x̂ · p̂β,µ we denote a scalar product of two

vectors. Note that the poles are excluded from the continuity requirements, since values of
the parametrized functions f ◦ p at the poles may depend on the direction of approach (i.e.,
specific value of φ) and may be not continuous at the poles.
For non-singular integrands, the following quadrature rule is suggested

∫
S2

f (ŷ) ds(ŷ) ≈
∫
S2
(AN f )(ŷ) ds(ŷ) =

N

∑
β=1

2N−1

∑
µ=0

w(1)
β f ( p̂β,µ). (27)

For weakly singular integrands, the following quadrature rule can be used

∫
S2

f (ŷ)
|n̂p − ŷ| ds(ŷ) ≈

∫
S2

(AN f )(ŷ)
|n̂p − ŷ| ds(ŷ) =

N

∑
β=1

2N−1

∑
µ=0

w(2)
β f ( p̂β,µ), (28)

where w(2)
β = w(1)

β

N−1

∑
n=0

Pn(ξβ) and n̂p = (0, 0, 1).
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Both quadratures are obtained by approximating the regular part of the integrand via
approximation AN and then using exact integration. According to results in [20], these
quadrature rules have super-algebraic or even exponential convergence order, depending
on the smoothness of f .

By simple substitution, the quadrature rule (28) can be extended to a more general
case

∫
S2

f (ŷ)
|x̂ − ŷ| ds(ŷ) =

∫
S2

f (T−1
x̂ ŷ)

|n̂p − ŷ| ds(ŷ) ≈
N

∑
β=1

2N−1

∑
µ=0

w(2)
β f (T−1

x̂ p̂β,µ), x̂ ∈ S2, (29)

where Tx̂ is usually a rotation, such that Tx̂ x̂ = n̂p, see [20].
Applying (29) to the integral in (24), for ψ̃ ≈ ψ, we get an approximation equation

−1
2

ψ̃(x̂) +
N

∑
β=1

2N−1

∑
µ=0

w(2)
β ψ̃(T−1

x̂ p̂β,µ) M(x̂, T−1
x̂ p̂β,µ) = Ĝs(x̂), x̂ ∈ S2. (30)

We observe that (30) contains values of the density ψ̃ in the rotated nodes T−1
x̂ p̂β,µ. In

order to be able to construct a system of linear equations, we replace ψ̃(T−1
x̂ p̂β,µ) with its

approximation by AN (26)

ψ̃(T−1
x̂ p̂β,µ) ≈ (ANψ̃)(T−1

x̂ p̂β,µ) =
N

∑
β′=1

2N−1

∑
µ′=0

w(1)
β′ ψ̃( p̂β′ ,µ′)aβ′ ,µ′(T−1

x̂ p̂β,µ). (31)

Substituting (31) back into (30), we get

−1
2

ψ̃(x̂) +
N

∑
β′=1

2N−1

∑
µ′=0

ψ̃( p̂β′ ,µ′)w(3)
β′ ,µ′(x̂) = Ĝs(x̂), x̂ ∈ S2, (32)

where w(3)
β′ ,µ′(x̂) = w(1)

β′

N

∑
β=1

2N−1

∑
µ=0

w(2)
β M(x̂, T−1

x̂ p̂β,µ)aβ′ ,µ′(T−1
x̂ p̂β,µ).

Collocating the Equation (32) in the nodes p̂β2,µ2 , β2 = 1, . . . , N, µ2 = 0, . . . , 2N − 1,
we get a 2N2 × 2N2 system of linear equations for the unknown values ψ̃( p̂β2,µ2)

−1
2

ψ̃( p̂β2,µ2) +
N

∑
β′=1

2N−1

∑
µ′=0

ψ̃( p̂β′ ,µ′)w(3)
β′ ,µ′( p̂β2,µ2) = Ĝs( p̂β2,µ2). (33)

After solving (33), the approximate solutions of problems (19) and (20) for parameter
s = {sj, j = 0, . . . , Nt} can be found by applying the quadrature rule (27) to (22)

Uj,N(x) =
N

∑
β2=1

2N−1

∑
µ2=0

w(1)
β2

ψ̃j( p̂β2,µ2)Φν,sj(x, q( p̂β2,µ2))J( p̂β2,µ2), x ∈ D, j = 0, . . . , Nt, (34)

where ψ̃j( p̂β2,µ2) = ψ̃( p̂β2,µ2) for the parameter value s = sj.
Having solved a set of problems (19) and (20), we can construct the approximate

solution of the original non-stationary problems (1)–(3)

u(x, t) ≈ uNt ,N(x, t) =
Nt

∑
j=0

γje
tsj Uj,N(x) +

−1

∑
j=−Nt

γje
tsj U−j,N(x), (x, t) ∈ D × (0, ∞). (35)

As previously mentioned, the error rate of the numerical inversion of the Laplace transform
behaves like O

(
e−cNt/ ln Nt

)
and is stable to perturbations of Uj values. In our case, these

perturbations are created by the fact that Uj are approximated by Uj,N , which in practice
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exhibits a super-algebraic convergence rate for sufficiently smooth surfaces and boundary
conditions. As result, when Nt and N are selected in a balanced way, the overall error rate
of the original non-stationary problem is super-algebraic, which is shown in the following
numerical experiments.

4. Numerical Experiments
We consider the following examples of regions Dk, k = 1, 2 and their boundaries Γk to

perform numerical experiments (see Figure 4)

Γ1 = {r1(θ, φ)(sin θ cos ϕ, sin θ sin ϕ, cos θ), (θ, ϕ) ∈ [0, π]× [0, 2π)},

r1(θ, φ) = A1

(
0.6 +

√
4.25 + 2 cos 3θ

)
, A1 ∈ R > 0,

Γ2 = {r2(θ, φ)(sin θ cos ϕ, sin θ sin ϕ, cos θ), (θ, ϕ) ∈ [0, π]× [0, 2π)},

r2(θ, φ) = A2

√
0.8 + 0.2(cos(2φ)− 1)(cos(4θ)− 1), A2 ∈ R > 0.

(a) Surface Γ1, A1 = 0.2 (b) Surface Γ2, A2 = 1

Figure 4. Boundary surfaces.

Note that when defining specific surfaces Γ using mapping q : S2 → Γ, it is possible
to use spherical or Cartesian coordinates to describe points on the unit sphere. For the
mentioned surfaces Γ1 and Γ2, we used spherical coordinates.

4.1. Inverse Laplace Transform

Here, we test the numerical inversion of the Laplace transform and suggested opti-
mizations. Let us consider the fundamental solution of the heat Equation (1)

G̃(x, y, t) =
1√

4πt3
e
|x−y|2

4t , x, y ∈ R3, x ̸= y, t > 0. (36)

The Laplace image of G̃ is a fundamental solution of the Helmholtz Equation (10)

Lt(G̃(x, y, t)) =
∫ ∞

0
e−stG̃(x, y, t)dt = Φs(x, y).

For a given source point y∗ /∈ D1, function

w(x, t) = G̃(x, y∗, t), x ∈ D1, y∗ /∈ D1, t > 0,
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is an exact solution of Equation (1), and its Laplace transform Ws(x) = Φs(x, y∗) is an exact
solution of Equation (10). Clearly, Theorem 1 holds true in this case, so the values of Ws can
be computed only at nodes sj, j = 0, . . . , Nt.

To test the effect of the α, λ selection, we chose some random values of α̃, λ̃ and
calculated the absolute error Eabs = |TNt Ws − w| for the approximate computation of the
inverse Laplace transform. Then, we used the optimization process (17) to find the optimal
parameters αmin and λmin and calculated the absolute error Eabs,min. For the search intervals’
bounds, the following values were used: α0 = 0.01, α1 = π/2 − 0.01, λ0 = 0.1 and λ1 = 20.
The rationale for the [α0, α1] selection was to cover most of the (0, π/2) interval. The
rationale for the [λ0, λ1] selection was based on numerical experiments, where the optimal
λmin value was usually found within the [1, 10] range. Tables 1 and 2 show the comparison
of Eabs,min and Eabs for the different values of x, y∗ and t.

Table 1. Errors Eabs,min and Eabs for x = (0.1, 0.1, 0.2), y∗ = (0, 0, 5), t = 2, Nα = 20, Nλ = 40.

Nt Eabs,min αmin λmin Eabs α̃ λ̃

2 1.27 × 10−8 0.989450 9.794872 2.88 × 10−4 π/2 − 0.2 1
4 2.71 × 10−11 0.826209 5.712821 2.00 × 10−5 π/2 − 0.2 1
8 1.01 × 10−15 1.071071 3.671795 5.56 × 10−7 π/2 − 0.2 1
16 5.45 × 10−20 1.071071 5.712821 8.75 × 10−11 π/2 − 0.2 1

Table 2. Errors Eabs,min and Eabs for x = (0.1, 0.05, 0.05), y∗ = (0, 0, 4), t = 1.5, Nα = 30, Nλ = 60.

Nt Eabs,min αmin λmin Eabs α̃ λ̃

2 6.44 × 10−8 1.212716 8.869492 2.98 × 10−4 π/2 − 0.2 1
4 1.16 × 10−8 1.096689 4.822034 1.82 × 10−4 π/2 − 0.2 1
8 3.11 × 10−15 1.058013 6.171186 3.83 × 10−6 π/2 − 0.2 1
16 1.04 × 10−19 1.077351 9.206780 5.59 × 10−9 π/2 − 0.2 1

The obtained results support the expected error rates. Note that the tested (αmin, λmin)

search routine is computationally fast (it involves Nα × Nλ Laplace inversions), and its cost
is negligible compared to the computational effort of solving the stationary 3D problem.
Comparing specific values in Tables 1 and 2, one could expect a significant reduction in
necessary Nt, i.e., the number of stationary problems to solve.

4.2. Stationary Problem

In this section, we test the numerical solution of the stationary problems (10) and (11)
using the BIE method described in Section 3. As a sample boundary condition, we chose
Gs as the narrowing of the fundamental solution Φs(·, y∗) onto Γ with a source point y∗

outside the region Dk. In this case, the exact solution of problems (10) and (11) is

Us(x) = Φs(x, y∗), x ∈ Dk, y∗ /∈ Dk, k = 1, 2.

Let y∗ = (0, 0, 5) /∈ Dk, k = 1, 2. To measure the accuracy of the numerical approxima-
tion, we used the following discrete L2 error

EL2 =
1
Ñ

(
Ñ

∑
m=1

Ñ

∑
j=1

∣∣Us(xm,j)− Us,N(xm,j)
∣∣2)1/2

,
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where Us,N is the approximate solution obtained by (34) and Ñ = 10. The test points xm,j

were uniformly distributed on a diminished artificial surface located within the solution
domain, according to the following rule

xm,j = 0.5rk(θm, ϕj)p(θm, ϕj), θm =
π

Ñ + 1
m, ϕj =

2π

Ñ
j, m, j = 1, . . . , Ñ, k = 1, 2.

Tables 3 and 4 and show the error EL2 for the two test surfaces, different equation
parameter values s and space discretization parameter N.

Table 3. Discrete EL2 error for the case D = D1.

N Nodes s1 = 1 s2 = 0.5 − 3i s3 = 2 + 5i

4 32 4.35 × 10−6 2.41 × 10−6 5.43 × 10−8

8 128 6.12 × 10−7 3.51 × 10−7 3.26 × 10−9

16 512 2.56 × 10−9 6.80 × 10−10 2.27 × 10−11

32 2048 7.32 × 10−12 3.66 × 10−12 4.24 × 10−12

Table 4. Discrete EL2 error for the case D = D2.

N Nodes s1 = 1 s2 = 0.5 − 3i s3 = 2 + 5i

4 32 3.75 × 10−6 8.92 × 10−8 1.37 × 10−8

8 128 4.74 × 10−7 1.27 × 10−8 2.43 × 10−9

16 512 6.31 × 10−9 5.83 × 10−9 1.29 × 10−10

32 2048 7.14 × 10−11 4.29 × 10−11 3.92 × 10−11

The obtained results support the error rates provided by Wienert [20].

4.3. Non-Stationary Problem

In this subsection, we test the numerical solution of non-stationary problem (1)–(3).
The first example shows a case with an exactly known solution. The second example
shows a case where the exact solution is not known, but the boundary condition (3) has a
Laplace transform available in closed form. If the boundary condition does not possess a
Laplace transform in the closed form, it is suggested to apply some of the Laplace transform
approximation methods briefly mentioned in Section 2. For all examples, as suggested
in Section 2, we solved only Nt + 1 stationary problems to provide approximate values
Uj,N for the numerical inversion of the Laplace transform. We also applied the selection
technique for parameters (α, λ) described in Section 2 and tested in Section 4.1.

4.3.1. Example with an Exactly Known Solution

As a sample boundary condition (3), we chose a narrowing of the fundamental solu-
tion (36) onto Γ1

g(x, t) = G̃(x, y∗, t), (x, t) ∈ Γ1 × (0, ∞), y∗ /∈ D1.

In this case, the exact solution of problem (1)–(3) is

u(x, t) = G̃(x, y∗, t), (x, t) ∈ D1 × (0, ∞), y∗ /∈ D1.

Let y∗ = (0, 0, 5), x0 = (0.1, 0.1, 0.2). Table 5 shows the absolute error Ẽabs(t) = |u(x0, t)−
uNt ,N(x0, t)| for the different values of t and discretization parameters Nt, N. Note that for
each test point t, contour parameters α and λ were selected using optimization process (17)
.
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Table 5. Absolute error Ẽabs, D = D1.

Nt N t = 2 t = 2.2 t = 2.5

2 4 2.136812 × 10−5 2.462481 × 10−5 2.837609 × 10−5

8 1.946759 × 10−6 2.188658 × 10−6 2.331827 × 10−6

16 2.325619 × 10−8 2.773015 × 10−10 9.600292 × 10−8

32 1.540043 × 10−8 8.910118 × 10−9 8.651947 × 10−8

4 4 2.137816 × 10−5 2.461644 × 10−5 2.844138 × 10−5

8 1.962045 × 10−6 2.179749 × 10−6 2.418113 × 10−6

16 7.838391 × 10−9 8.531891 × 10−9 9.433593 × 10−9

32 1.884036 × 10−11 5.333509 × 10−11 1.013018 × 10−10

8 4 2.137815 × 10−5 2.461638 × 10−5 2.844134 × 10−5

8 1.962032 × 10−6 2.179657 × 10−6 2.418072 × 10−6

16 7.851940 × 10−9 8.624379 × 10−9 9.475018 × 10−9

32 5.286807 × 10−12 8.816986 × 10−12 1.190821 × 10−11

To verify that the obtained error rates agree with error rates of the numerical Laplace
inversion and stationary problems solution, Table 6 highlights decimal exponents of the
absolute errors for the same point x0 = (0.1, 0.1, 0.2) and t = 2.

Table 6. Error rate comparison.

Laplace Inversion Stationary Non-Stationary
Nt log10(Eabs) N log10(EL2) Nt, N log10(Ẽabs)

2 −8 16 −10 2, 16 −8
4 −11 32 −12 4, 32 −11
8 −15 32 −12 8, 32 −12

It is easy to see that the full discretization of the non-stationary problem results in
an error rate defined by the worst error of the Laplace inversion and stationary problem
solution, which is expected. It also indicates a balanced selection of Nt and N may provide
the best overall result.

4.3.2. Example Without Exactly Known Solution

Let us consider the numerical solution of non-stationary problem (1)–(3) with the
following boundary condition

g(x, t) = t2e−t, (x, t) ∈ Γ1 × (0, ∞). (37)

For the stationary problems’ boundary condition, we used the closed form of the Laplace
transform of g

Gs(x) = Lt(g) =
2

(s + 1)3 , x ∈ Γ1, s ∈ C, s ̸= −1.

Table 7 shows the values of the approximate solution of (1)–(3) for different combinations
of Nt and N, different points x ∈ D1 and time points t.

For each combination of x and t, we observe an increasing number of the same decimal
digits as Nt and N grow.

Let us consider region D1 with the scaling parameter of boundary Γ1 set to A1 = 6.
We calculated and plotted the numerical solution of non-stationary problem (1)–(3) with
boundary condition (37) over time interval t ∈ (0; 10] at two points x1 = (0, 0, 0) and
x2 = (2.5, 0, 0). Note that the two test points were intentionally selected so x1 was placed
“deeper” within the region and point x2 was closer to the boundary. Parameter A1 was
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intentionally selected to significantly scale up the region in order to observe a time delay
in the propagation of the boundary condition behavior inside the region. To produce the
plots, we chose a time step ∆t = 0.2 and numerically solved problem (1)–(3) 50 times for
each test point using discretization parameters Nt = 4, N = 8. The entire computation
process took 2–3 min using an average-level PC. This and previous numerical examples
were implemented using MATLAB R2024b.

Table 7. Approximate solution for different Nt, N, x and t.

t Nt N x = (0.1, 0.05, 0.05) x = (0, 0, 0.4)

1

2 4 0.35246148 0.35659063
4 8 0.35245882 0.35987086
4 16 0.35246211 0.35987241
4 32 0.35246211 0.35987241

3

2 4 0.45384016 0.44480551
4 8 0.45327121 0.45057778
4 16 0.45327211 0.45057821
4 32 0.45327211 0.45057821

5

2 4 0.17317714 0.16828926
4 8 0.17226425 0.17033565
4 16 0.17225089 0.17032869
4 32 0.17225089 0.17032869

As can be seen from Figure 5, boundary condition propagation time delays and peak
values at x1 and x2 show the expected behavior.

(a) (b)

Figure 5. Numerical solution and boundary condition. (a) “Deeper” placement of x1 = (0, 0, 0) show-
ing a bigger time delay in “peak” propagation and bigger difference in peak height. (b) Placement
of x2 = (2.5, 0, 0) closer to the boundary showing a smaller time delay in “peak” propagation and
difference in peak height.

Finally, we would like to provide a brief comparison of the results of this paper to those
of previous studies, namely, to the Chapko & Johansson [6], where an exterior 3D initial BVP
was considered, and the authors applied the Laguerre transform for the time discretization.
As a result, stationary BVPs for a recurrent sequence of elliptic equations were obtained,
and to apply the BIE method, one needs to find the fundamental sequence. The inverse
Laguerre transform has the form of the Fourier–Laguerre series, and its summation is a
complicated ill-posed problem, especially for long time periods. Comparing the numerical
results in both papers, we noticed better levels of the errors were obtained for the reasonably
smaller time discretization parameter in case of the Laplace transform.
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5. Conclusions
In this article, an effective combination of the Laplace transform and boundary integral

equation method for the numerical solution of the 3D initial boundary value problem for
the heat equation was proposed and tested.

The optimization of the inverse Laplace transform integration contour parameters
was shown to substantially decrease the approximation error, allowing for the reduction
in the number of stationary BVPs to achieve a certain level of precision. Moreover, using
observed and proven symmetry in the set of boundary value problems, computational
work was further reduced by a factor of almost two. As mentioned in the article, due to the
independence of the boundary value problems, the proposed approach is also suitable for
parallel computing.

The stationary BVPs were solved using the indirect BIE method with application of
the Nyström method based on the Wienert quadrature rules for the surface integrals.

The efficiency and feasibility of the suggested two-step approach were confirmed by
a set of numerical experiments, testing time and space discretization methods separately
and combined.

In future work, the presented approach will be tested with other methods for solving
boundary value problems, as well as different equations or types of boundary conditions.
Further research of the optimization techniques for the numerical Laplace transform in-
version is planned. Another direction of research is to expand the domain types, consider
doubly connected regions, etc. Additionally, the described approach will be used for
the numerical solution of inverse problems, for example, the lateral Cauchy problem to
reconstruct boundary data on part of the domain boundary.
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