A Quasi-Boundary Value Method for Solving a Backward Problem of the Fractional Rayleigh–Stokes Equation
Abstract
1. Introduction
2. Preliminaries
2.1. The Formula of the Initial Value
- (a)
- (b)
- are completely monotone for ;
- (c)
- ;
- (d)
- ,
2.2. The Ill-Posedness and Conditional Stability of the Backward Problem
3. The Quasi-Boundary Value Method and Convergence Rates
3.1. The Convergence Estimate Under an a Priori Parameter Choice Rule
- (1)
- If and we set , we are left with the following convergence estimate:
- (2)
- If and we set , we are left with the following convergence estimate:where , and .
3.2. The Convergence Estimate Under an A Posteriori Parameter Choice Rule
- (1)
- is a continuous function;
- (2)
- ;
- (3)
- ;
- (4)
- is a strictly increasing function over .
- (1)
- If , the convergence estimate is given bywhere , and .
- (2)
- If , the convergence estimate is given bywhere , and .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Diffusion Equation; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Shen, F.; Tan, W.; Zhao, Y.; Masuoka, T. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal.-Real World Appl. 2006, 7, 1072–1080. [Google Scholar] [CrossRef]
- Khan, M. The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model. Nonlinear Anal.-Real World Appl. 2009, 10, 3190–3195. [Google Scholar] [CrossRef]
- Xue, C.; Nie, J. Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space. Appl. Math. Model. 2009, 33, 524–531. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Jin, B.; Lazarov, R.; Zhou, Z. An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 2015, 131, 1–31. [Google Scholar] [CrossRef]
- Chen, C.; Liu, F.; Burrage, K.; Chen, Y. Numerical methods of the variable-order Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative. IMA J. Appl. Math. 2013, 78, 924–944. [Google Scholar] [CrossRef]
- Zaky, M.A. An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid. Comput. Math. Appl. 2018, 75, 2243–2258. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M. A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng. Comput. 2017, 33, 587–605. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. Development of a method for solving elliptic differential equation based on a nonlinear compact-polynomial scheme. J. Comput. Appl. Math. 2024, 451, 116098. [Google Scholar] [CrossRef]
- Long, L.D.; Moradi, B.; Nikan, O.; Avazzadeh, Z.; Lopes, A.M. Numerical approximation of the fractional Rayleigh-Stokes problem arsing in a generalised Maxwell fuild. Fractal Fract. 2022, 6, 377. [Google Scholar] [CrossRef]
- Ashurov, R.; Mukhiddinova, O. Inverse problem of determining the order of the fractional derivative in the Rayleigh-Stokes equation. Fractionial Calc. Appl. Anal. 2023, 26, 1691–1708. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Luu, V.C.H.; Nguyen, H.L.; Nguyen, H.T.; Nguyen, V.T. Identification of source term for the Rayleigh-Stokes problem with Gaussian random noise. Math. Methods Appl. Sci. 2018, 41, 5593–5601. [Google Scholar] [CrossRef]
- Liu, S.S. Filter regularization method for inverse source problem of the Rayleigh-Stokes equation. Taiwan J. Math. 2023, 27, 847–861. [Google Scholar] [CrossRef]
- Binh, T.T.; Nashine, H.K.; Long, L.D.; Luc, N.H.; Nguyen, C. Identification of source term for the ill-posed Rayleigh-Stokes problem by Tikhonov regularization method. Adv. Differ. Equ. 2019, 2019, 331. [Google Scholar] [CrossRef]
- Duc, P.N.; Binh, H.D.; Long, L.D.; Van, H.T.K. Reconstructing the right-hand side of the Rayleigh-Stokes problem with local nonlocal in time condition. Adv. Differ. Equ. 2021, 2021, 470. [Google Scholar] [CrossRef]
- Ke, T.D.; Thuy, L.T.P.; Tuan, P.T. An inverse source problem for generalized Rayleigh-Stokes equations involving superlinear perturbations. J. Math. Anal. Appl. 2023, 507, 125797. [Google Scholar] [CrossRef]
- Tuan, N.H.; Zhou, Y.; Thach, T.N.; Can, N.H. Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data. Commun. Nonlinear Sci. Numer. Simul. 2019, 78, 104873. [Google Scholar] [CrossRef]
- Liu, S.S.; Feng, L.X.; Liu, C. A fractional Tikhonov regularization method for identifying a time-independent source in the fractional Rayleigh-Stokes equation. Fractal Fract. 2024, 8, 601. [Google Scholar] [CrossRef]
- Liu, S.S.; Liu, T.; Ma, Q. On a backward problem for the Rayleigh-Stokes equation with a fractional derivative. Axioms 2024, 13, 30. [Google Scholar] [CrossRef]
- Hào, D.N.; Duc, N.V.; Lesnic, D. Regularization of parabolic equations backward in time by a non-local boundary value problem method. IMA J. Appl. Math. 2010, 75, 291–315. [Google Scholar] [CrossRef]
- Feng, X.L.; Yuan, X.Y.; Zhang, Y. A quasi-boundary-value method for solving a nonlinear space-fractional backward diffusion problem. Adv. Comput. Math. 2025, 51, 16. [Google Scholar] [CrossRef]
- Feng, X.L.; Ning, W.T.; Qian, Z. A quasi-boundary-value method for a Cauchy problem of an elliptic equation in multiple dimensions. Inverse Probl. Sci. Eng. 2014, 22, 1045–1061. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Liu, X.; Li, X.X. The quasi-boundary value method for identifying the initial value of the space-time fractional diffusion equation. Acta Math. Sci. 2020, 40B, 641–658. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhou, Y.B.; Wei, T. A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem. Appl. Math. Lett. 2013, 26, 741–757. [Google Scholar] [CrossRef]
- Feng, X.L.; Eldén, L. Solving a Cauchy problem for a 3D elliptic PDE with variable coefficients by a quasi-boundary-value method. Inverse Probl. 2014, 30, 015005. [Google Scholar] [CrossRef]
- Hoang, L.N.; Huy, T.N.; Kirane, M.; Xuan, T.D.D. Identifying initial condition of the Rayleigh-Stokes problem with random noise. Math. Methods Appl. Sci. 2019, 42, 1561–1571. [Google Scholar]
- Li, D.G.; Fu, J.L.; Yang, F.; Li, X.X. Landweber iterative regularization method for identifying the initial value problem of the Rayleigh-Stokes equation. Fractal Fract. 2021, 5, 193. [Google Scholar] [CrossRef]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Springer: Berlin/Heidelberg, Germany, 1996; Volume 375. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, A. A Quasi-Boundary Value Method for Solving a Backward Problem of the Fractional Rayleigh–Stokes Equation. Axioms 2025, 14, 833. https://doi.org/10.3390/axioms14110833
Wang X, Yang A. A Quasi-Boundary Value Method for Solving a Backward Problem of the Fractional Rayleigh–Stokes Equation. Axioms. 2025; 14(11):833. https://doi.org/10.3390/axioms14110833
Chicago/Turabian StyleWang, Xiaomin, and Aimin Yang. 2025. "A Quasi-Boundary Value Method for Solving a Backward Problem of the Fractional Rayleigh–Stokes Equation" Axioms 14, no. 11: 833. https://doi.org/10.3390/axioms14110833
APA StyleWang, X., & Yang, A. (2025). A Quasi-Boundary Value Method for Solving a Backward Problem of the Fractional Rayleigh–Stokes Equation. Axioms, 14(11), 833. https://doi.org/10.3390/axioms14110833
