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Abstract: Logistic regression models encounter challenges with correlated predictors and
influential outliers. This study integrates robust estimators, including the Bianco–Yohai
estimator (BY) and conditionally unbiased bounded influence estimator (CE), with the
logistic Liu (LL), logistic ridge (LR), and logistic KL (KL) estimators. The resulting estima-
tors (LL-BY, LL-CE, LR-BY, LR-CE, KL-BY, and KL-CE) are evaluated through simulations
and real-life examples. KL-BY emerges as the preferred choice, displaying superior perfor-
mance by reducing mean squared error (MSE) values and exhibiting robustness against
multicollinearity and outliers. Adopting KL-BY can lead to stable and accurate predictions
in logistic regression analysis.

Keywords: logistic regression; outliers; multicollinearity; robust estimators; Bianco–Yohai
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1. Introduction
Logistic regression is a powerful statistical tool widely used for modeling the rela-

tionship between a binary response variable and one or more explanatory variables. Its
versatility has made it a fundamental tool in medicine, biostatistics, finance, social sciences,
engineering, and many other fields. Despite their popularity, logistic regression models
can be affected by challenges such as overfitting, multicollinearity, and outliers. These
challenges can lead to inaccurate conclusions and poor predictive performance, highlight-
ing the importance of developing robust predictive models for logistic regression [1]. The
logistic (inverse-link) function, characterized by its S-shaped curve, is fundamental to logis-
tic regression modeling. It transforms any independent variable value into a probability
ranging between 0 and 1, where 0 indicates the lowest probability of the event occurring
and 1 represents the highest probability of the event occurring.

The maximum likelihood estimator (MLE) is a widely adopted method for estimating
the parameters of a logistic regression model. However, this technique is susceptible to
multicollinearity and outliers in the data, which can compromise the validity and reliability
of the results. Multicollinearity occurs when two or more explanatory variables in the
model are correlated. This can make it difficult to distinguish the individual effects of each
variable on the outcome variable and can result in unstable and unreliable parameter esti-
mates [2]. Similarly, outliers can significantly impact the estimated coefficients, particularly

Axioms 2025, 14, 19 https://doi.org/10.3390/axioms14010019

https://doi.org/10.3390/axioms14010019
https://doi.org/10.3390/axioms14010019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-2881-1297
https://orcid.org/0009-0009-4122-7061
https://orcid.org/0000-0002-0506-5984
https://doi.org/10.3390/axioms14010019
https://www.mdpi.com/article/10.3390/axioms14010019?type=check_update&version=2


Axioms 2025, 14, 19 2 of 29

in smaller datasets. These issues can cause the model to overfit the data, leading to poor
predictive performance and potentially erroneous conclusions. As a result, it is essential to
identify and address multicollinearity and outliers in the data before building a logistic
regression model.

Several estimators have been developed to account for multicollinearity in the logistic
regression model. These include the logistic ridge estimator [3], the principal component
logistic estimator [4], the Liu logistic estimator [5], the Liu-type logistic estimator [6], the
linearized ridge logistic estimator [7], the modified ridge-type logistic estimator [8], and
the Kibria–Lukman logistic estimator [9].

Outliers are observations that deviate significantly from the rest of the data and can
substantially impact statistical analysis [10]. Outliers can arise due to measurement errors,
data entry errors, or genuine extreme values. They can distort the relationship between
variables and lead to inaccurate estimates of statistical parameters. In linear regression
analysis, outliers can pull the regression line toward themselves, leading to biased estimates
of the coefficients and affecting prediction accuracy. Outliers can also increase the variance
of the regression estimates, thus reducing the precision of the results. One common
approach to address the influence of outliers is to use robust estimation techniques. These
methods dampen the effect of the outliers on the estimation process and provide more
reliable estimates of the regression coefficients. Robust estimation techniques are essential
when the data distribution is non-normal or when there is an outlier. Robust estimation
methods for linear regression models include the M-estimator, MM-estimator, S-estimator,
least absolute deviation, and the least trimmed squares estimator, among others [11–13].

Research on linear regression has demonstrated that models can be significantly
affected by both multicollinearity and outliers [14–16]. To address these challenges, various
methods have been developed, such as shrinkage techniques (e.g., ridge regression) to
mitigate multicollinearity and robust estimators (e.g., the M-estimator) to handle outliers. In
some cases, these techniques have been combined to simultaneously address both problems
in linear regression [14–16]. However, similar advancements have not been adequately
explored in the context of logistic regression. Existing studies on logistic regression have
primarily focused on addressing multicollinearity or outliers individually, leaving a gap in
the research for methods capable of handling both issues simultaneously.

This study proposes a novel approach for logistic regression that integrates shrinkage
estimators like ridge regression with robust methods such as the Bianco–Yohai estimator.
By combining these two techniques, our work offers a unified solution to simultaneously
handle multicollinearity and outliers. This dual-focus approach distinguishes our study
from previous research, which has only tackled these problems separately. Our contribution,
therefore, provides a more robust and accurate method for modeling logistic regression
under the simultaneous presence of multicollinearity and outliers.

The article is structured as follows. In Section 2, we provide a comprehensive review
of some of the existing methods and introduce the novel estimator. We delve into the
discussion of the properties of this innovative estimator and the existing ones. See Section 3
for the theoretical comparison. To empirically validate the performance of the new es-
timator, we conducted a rigorous Monte Carlo simulation study, described in Section 4.
Through meticulous experimentation and analysis, we uncover valuable insights into its
effectiveness and efficiency compared to existing estimators. Furthermore, to illustrate the
practical relevance of the proposed estimator, we present a compelling numerical example
in Section 5. Finally, in Section 6, we summarize the main findings of our research, high-
lighting the contributions of the new estimator and discussing its implications for future
advancements in estimation techniques.
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2. Review
Logistic regression is a powerful statistical tool for modeling the relationship between

a binary response variable and one or more explanatory variables. In logistic regression,
the binary response variable yi is modeled using a Bernoulli distribution: yi ∼ Be(πi).

p(yi) = π
yi
i (1 − πi)

1−yi (1)

where πi =
exT

i β

1+exT
i β

= 1

1+e−(xT
i β)

, i = 1,2,. . .,n, xi is the ith row of X, which is an n ×(p + 1)

matrix of independent variables, and β is a (p + 1)× 1 vector of regression coefficients.
The logistic regression model is popularly estimated using the MLE when there is no
multicollinearity. The next section presents a concise overview of this method.

2.1. The Maximum Likelihood Estimator (MLE)

The MLE is frequently adopted for parameter estimation in the logistic regression
model. However, this technique is susceptible to multicollinearity and outliers in the data,
which can compromise the validity and reliability of the estimates. The MLE of β for the
logistic regression model is as follows:

β̂LMLE =
(

XTĜnX
)−1

XTĜn ẑ (2)

where Ĝn = diag(π̂i(1 − π̂i)) and ẑi = log(π̂i) +
yi−π̂i

π̂i(1−π̂i)
.

The asymptotic covariance matrix is calculated as follows:

Cov
(

β̂LMLE
)
≈
(

XTĜnX
)−1

(3)

The matrix mean squared error (MMSE) of β̂LMLE is obtained by

MMSE
(

β̂LMLE
)
= Cov

(
β̂LMLE

)
=
(

XTĜnX
)−1

(4)

The scalar mean squared error (SMSE) of β̂LMLE is obtained by

SMSE
(

β̂LMLE
)
= trace

(
XTĜnX

)−1
= ∑p+1

j=1
1
λj

(5)

where λj is the jth eigenvalue of the (XTĜnX) matrix, and j = 1, 2, . . . , p + 1.
Multicollinearity impacts the MLE in the regression model, and its presence can

influence the variance in the regression parameters. In the subsequent section, we will
discuss three alternative methods to the MLE with a single shrinkage parameter when
dealing with multicollinearity.

2.2. Logistic Ridge Regression (LR)

Ridge regression is a powerful approach for addressing multicollinearity in regression
analysis. It offers a reliable solution for estimating and interpreting regression parameters
when multicollinearity exists in the regression models. The ridge regression estimator (RRE)
provides an excellent alternative to the widely used MLE in linear and logistic regression
models [3,17]. The logistic ridge estimator (LR) is defined as follows:

β̂LR =
(

XTĜnX + kIp

)−1(
XTĜnX

)
β̂LMLE (6)
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where Ip is the identity matrix, and k is the ridge parameter with k ≥ 0, defined by Hoerl
et al. [18] for the linear regression as

k =
(p + 1)σ2

∑
p+1
j=1 α2

j

(7)

and α = QT β̂LMLE, where Q is the eigenvector of
(
XTĜnX

)
. However, the logistic version

is defined by Schaefer et al. [3] as follows:

k =
(p + 1)

∑
p+1
j=1 α2

j

(8)

The estimated covariance matrix is calculated as follows:

Cov
(

β̂LR
)
=
(

XTĜnX + kIp

)−1(
XTĜnX

)(
XTĜnX + kIp

)−1
(9)

The bias of β̂LR is obtained by

Bias
(

β̂LR
)
= E

(
β̂LR

)
− β =

[(
XTĜnX + kIp

)−1(
XTĜnX

)
− Ip

]
β (10)

Thus, the matrix mean squared error (MMSE) of β̂LR can be written as

MMSE
(

β̂LR
)
= Cov

(
β̂LR

)
+ bias

(
β̂LR

)
bias

(
β̂LR

)′
(11)

MMSE
(

β̂LR ) = (XTĜnX + kIp
)−1(XTĜnX

)(
XTĜnX + kIp

)−1

+
[(

XTĜnX + kIp
)−1(XTĜnX

)
− Ip

]
ββ′
[(

XTĜnX + kIp
)−1(XTĜnX

)
− Ip

]′ (12)

2.3. Logistic Liu Estimator (LL)

The Liu estimator is an alternative to the ridge estimator in the linear regression
model [19]. The logistic Liu estimator (LL) [5] is expressed as follows:

β̂LL =
(

XTĜnX + Ip

)−1(
XTĜnX + dIp

)
β̂LMLE (13)

We adopted the Liu parameter (d) suggested by Ozkale and Kaciranlar [20] and
adapted to the logistic regression as follows:

d = min

(
α2

j

1/λj
+ α2

j

)
(14)

where min represents the minimum operator, and λj and αj (j = 1, 2, . . . , p + 1) are as
defined before. The estimated covariance matrix is calculated as follows:

Cov
(

β̂LL
)
=
(

XTĜnX + Ip

)−1(
XTĜnX + dIp

)(
XTĜnX

)−1(
XTĜnX + dIp

)(
XTĜnX + Ip

)−1
(15)

The bias of β̂BLE is obtained by

Bias
(

β̂LL
)
= E

(
β̂LL
)
− β =

[(
XTĜnX + Ip

)−1(
XTĜnX + dIp

)
− Ip

]
β (16)
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Thus, the matrix mean squared error (MMSE) of β̂LL can be written as

MMSE
(

β̂LL
)
= Cov

(
β̂LL

)
+ Bias

(
β̂LL
)

Bias
(

β̂LL
)′

(17)

MMSE
(

β̂LL ) = (XTĜnX + Ip
)−1(XTĜnX + dIp

)(
XTĜnX

)−1(XTĜnX + dIp
)(

XTĜnX + Ip
)−1

+
[(

XTĜnX + Ip
)−1(XTĜnX + dIp

)
− Ip

]
ββ′
[(

XTĜnX + Ip
)−1(XTĜnX + dIp

)
− Ip

]′ (18)

2.4. Logistic Kibria–Lukman Estimator (KL)

The Kibria–Lukman estimator (KL), introduced by Kibria and Lukman [21], stands
out among the class of single-parameter estimators, particularly when compared to estab-
lished methods like the ridge and Liu estimators. Its competitive performance makes it
a noteworthy contribution to linear regression modeling. Building upon the success of
the KL estimator for linear regression, Lukman et al. [9] recently introduced the logistic
Kibria–Lukman estimator (LKL). The expression is as follows:

β̂LKL =
(

XTĜnX + kIp

)−1(
XTĜnX − kIp

)
β̂LMLE (19)

We adopted the ridge parameter (k) in Equation (8). The estimated covariance matrix
is calculated as follows:

Cov
(

β̂LKL
)
=
(

XTĜnX + kIp

)−1(
XTĜnX − kIp

)(
XTĜnX

)−1(
XTĜnX − kIp

)(
XTĜnX + kIp

)−1
(20)

The bias of β̂LKL is obtained by

Bias
(

β̂LKL
)
= E

(
β̂LKL

)
− β =

[(
XTĜnX + kIp

)−1(
XTĜnX − kIp

)
− Ip

]
β (21)

Thus, the matrix mean squared error (MMSE) of β̂LKL can be written as

MMSE
(

β̂LKL
)
= Cov

(
β̂LKL

)
+ Bias

(
β̂LKL

)
Bias

(
β̂LKL

)′
(22)

MMSE
(

β̂LKL ) = (XTĜnX + kIp
)−1(XTĜnX − kIp

)(
XTĜnX

)−1(XTĜnX − kIp
)(

XTĜnX + kIp
)−1

+
[(

XTĜnX + kIp
)−1(XTĜnX − kIp

)
− Ip

]
ββ′
[(

XTĜnX + kIp
)−1(XTĜnX − kIp

)
− Ip

]′ (23)

2.5. Outliers

Outliers are observations that significantly deviate from the rest of the data and
can substantially impact statistical analysis. They can arise due to measurement errors,
data entry errors, or genuine extreme values. When dealing with logistic regression, it is
important to differentiate between different types of outliers that can occur in the Y-space
(response variable), X-space (predictor variables), or both. In the case of binary logistic
regression, where the response variable is binary, outliers in the Y-space can only occur
as errors in the classification of the response variable. These outliers are also known as
residual outliers or misclassification-type errors. For example, a misclassification-type
outlier can happen when an observation with a true value of 0 is mistakenly classified as 1
or vice versa [22].

On the other hand, outliers in the X-space, known as leverage points, refer to extreme
observations in the design space of predictor variables. A leverage point can be considered
either good or bad. A good leverage point occurs when the response variable (Y) equals
1 with a high probability (large value of p (Y = 1|xi)) or when Y equals 0 with a low
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probability (small value of p (Y = 1|xi)). Conversely, a bad leverage point occurs when
the response variable has the opposite characteristics. The influence of extreme values
in the design space (X) on maximum likelihood estimates has been studied by Victoria-
Feser [23]. Additionally, the impact of misclassification errors in logistic regression has
been explored [22,24]. Croux et al. [25] found that the most problematic outliers, called bad
leverage points, are misclassified observations and exhibit outlying behavior in the design
space of predictor variables. The consequences of an outlier in a model are as follows:

Influence on Parameter Estimates: Outliers can substantially affect the estimation of
logistic regression coefficients. Since logistic regression models the relationship between in-
dependent variables and the probability of an event occurring, outliers with extreme values
can pull the estimated coefficients toward them, leading to biased estimates. Consequently,
the estimated effects of independent variables may be distorted, and the interpretation of
their impact on the outcome variable may be misleading.

Impact on Model Fit: Outliers can also influence the goodness-of-fit statistics of the
logistic regression model. Influential outliers can inflate model fit statistics such as deviance,
chi-square, or likelihood ratio tests, making the model appear a better fit than it is. This
can lead to overconfidence in the model’s performance and inaccurate assessments of its
predictive power.

Inaccurate Inference: Outliers might substantially impact the hypothesis testing and
confidence intervals. Since outliers may affect parameter estimates and standard errors,
statistical tests may yield incorrect results, leading to flawed inferences. Confidence inter-
vals can also be biased, potentially giving misleading conclusions about the significance
and precision of the estimated coefficients.

Model Assumptions: Outliers can violate the assumptions underlying logistic re-
gression models. Logistic regression assumes that the relationship between independent
variables and the log odds of the outcome variable is correctly specified.

2.6. Robust Regression

Robust regression is employed when the distribution of residuals deviates from nor-
mality or when outliers significantly impact the model. Robust regression is a valuable
method for analyzing data affected by outliers, ensuring the resulting models remain
reliable and unaffected by these influential observations. When researchers construct
regression models and encounter violations of common regression assumptions, tradi-
tional transformations often prove inadequate in eliminating or mitigating the influence
of outliers, leading to biased predictions. In such situations, robust regression emerges
as the preferred method, capable of providing reliable results resilient to the influence of
outliers [26].

The subsequent section will cover the application of robust regression in both the
linear and the logistic regression models.

2.6.1. M-Estimator

An M-estimator is a robust statistical method for estimating unknown parameters in
a linear regression model. It is adopted when dealing with outliers, as it is less influenced
by them compared to the maximum likelihood estimates. The estimation process involves
solving an optimization problem by minimizing a criterion function, typically represented
as ρ(u), which measures the discrepancy between the observed data and the model’s
predicted values [27]. The M-estimator selects parameter values that minimize the sum
of the criterion function evaluated at each data point. Popular choices for the criterion
function include Huber loss, Tukey’s biweight, etc. This approach has found applications in
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various fields, including statistics, econometrics, and machine learning, providing reliable
estimates even in the presence of outliers.

2.6.2. MM-Estimator

The MM-estimator [12] is a distinct form of M-estimation that combines the desirable
qualities of M-estimators, which possess high asymptotic relative efficiency, with the
robustness exhibited by S-estimators. MM-estimation refers to the utilization of multiple
M-estimation procedures during the computation of the estimator. Yohai [12] outlined
three distinct stages that define an MM-estimator:

Stage 1 To obtain an initial estimate, a high breakdown estimator, denoted as β̃, is
employed. This estimator is chosen for its ability to handle outliers effectively while
maintaining efficiency. Using this initial estimate, the residuals can be computed as follows:
ri(β) = yi − XT

i β̂.
Stage 2 Using these residuals from the robust fit, where 1

n ∑n
i=1 ρ

( ri
s
)
= k. k is a constant,

and with the objective function ρ, an M-estimate of scale with a 50% breakdown point
(BDP) is computed. This s(r1 β̃, . . . , rn β̃) is denoted by sn. The objective function used in
this stage is labeled ρ0.

Stage 3 The MM-estimator, β̃, is defined as an M-estimator of β using a redescending
score function, φ1(u) =

∂ρ1(u)
∂u , and the scale estimate sn obtained from stage 2. In other

words, β̃ is a solution to the following equation:

∑n
i=1 xij φ1

(
yi − XT

i β̂

sn

)
= 0, j = 1, . . . , p + 1 (24)

2.7. Robust Logistic Regression

Various robust estimators are available for the logistic regression model, with some
readily available in statistical software packages [28,29]. Two of the estimators are discussed
in the next subsection.

2.7.1. The Bianco and Yohai Estimator (BY)

Pregibon [24] introduced robust M-estimates as an alternative to the total deviance
function by minimizing the weighted total deviance:

M(β) = ∑n
i=1 ρ

(
d2(πi(β), yi)

)
(25)

where ρ(u) is an increasing Huber loss function. Deviance residuals represent the discrep-
ancies between the predicted probabilities, obtained using regression coefficients β, and the
observed values. They identify how well the logistic regression model fits the data, with
positive residuals indicating overestimation and negative residuals indicating underesti-
mation. Later, Bianco and Yohai [30] addressed the limitations of the existing estimator,
which lacked the down-weighting of high leverage points and exhibited inconsistency.
They proposed an improvement by minimizing the estimator, as follows:

M(β) = ∑n
i=1 ρ

(
d2(πi(β), yi)

)
+ q(πi(β)) (26)

The function ρ(u) mentioned is a bounded, differentiable, and non-decreasing function,
which is defined by

ρ(u) =

{
u −

(
x2

2k

)
, f or x ≤ k

s/2 otherwise
(27)
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where s is a positive number. The researchers defined q(u) = v(u) + v(1 − u) with
v(u) = 2

∫ u
0 ψ(−2 log t)dt and ψ = ρT .

2.7.2. Conditionally Unbiased Bounded Influence Estimator

Künsch et al. [31] improved the resilience of the maximum likelihood estimator by
integrating the M-estimator with a distinct mathematical expression:

∑n
i=1 Ψ(yi, xi, β) (28)

where Ψ : R1+p+p → Rp Rp such that

E(Ψ(yi, x, β)|xi) = 0 (29)

These estimators, abbreviated as CE, possess the property of Fisher consistency. The
optimal score function Φ can be expressed in the following manner:

Ψ(yi, x, β, b, B) = W(β, y, x, b, B)
{

y − g
(

βTx
)
− c
(

βTx,
b

h(x, β)

)}
(30)

They introduce a parameter b, representing the maximum permissible value for the
measure of infinitesimal sensitivity. Alongside this, they incorporate a dispersion matrix
denoted as B. Additionally, they define a function h(x, B) which serves as a leverage
measure. The function W adjusts the influence of unusual observations and ensures that
the function Ψ remains bounded. Consequently, the resulting M-estimator exhibits limited
influence due to this adjustment. The function c

(
βTx, b

h(x,β)

)
serves as a bias-correction

term, specifically chosen to satisfy the condition in Equation (29). Let us define the corrected
residual in the following manner:

r(y, x, β, b, B) = y − g
(

βTx
)
− c
(

βTx,
b

h(x, β)

)
(31)

Thus, the weights are of the form

W(y, x, β, b, B) = Wb(r(y, x, β)h(x, B)) (32)

where Wb is the Huber weight function given by

Wb(x) = min
{

1,
b
|x|

}
(33)

Additionally, like the Schweppe-type GM estimators, the weight matrix W is tailored to
reduce the influence of observations with high values in the product of corrected residuals
and leverage. This down-weighting scheme aims to mitigate the impact of influential obser-
vations during the estimation process. The dispersion matrix B fulfills certain requirements,
as follows:

E
(

Ψ(y, x, β, b, B)ΨT(y, x, β, b, B)
)
= B (34)

For concise implementation instructions for the CE, please refer to Künsch et al. [31].
The next section presents the methodology employed in this research to address the chal-
lenges of multicollinearity and outliers in logistic regression models.

3. Methodology
The methodology employed in this study addressed the challenges of multicollinearity

and outliers in logistic regression models.
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3.1. Proposed Estimators

We obtained the proposed estimators for the logistic regression model by combining
the ridge, Liu, and KL estimators with two robust estimators: the Bianco and Yohai (BY)
estimator and the conditionally unbiased bounded influence estimator (CE). To create the
LR-BY estimator, we integrate LR with the BY estimator, resulting in a hybrid approach
denoted as the LR-BY estimator. The LR-BY estimator of β is defined as

β̂LR
BY =

(
XTĜnX + km1 Ip

)−1
XTĜnXβ̂BY (35)

where km1 = 1
max

(
α̂2

j,BY

) .

Similarly, we propose the LR-CE estimator, which combines the ridge estimator with
the conditionally unbiased bounded influence estimator. The LR-CE estimator of β is
defined as:

β̂LR
CE =

(
XTĜnX + km2 Ip

)−1
XTĜnXβ̂CE (36)

where km2 = 1
max

(
α̂2

j,CE

) . The robust Liu estimator is developed by integrating the Liu

estimator with the BY estimator, resulting in the LL-BY estimator. The LL-BY estimator of β

is defined as
β̂LL

BY =
(

XTĜnX + Ip

)−1(
XTĜnX + dm1 Ip

)
β̂BY (37)

where dm1 is the robust Liu parameter and is defined as follows:

dm1 = min

 α̂2
j,BY

1
λj

+ α̂2
j,BY

.

Also, we propose another robust Liu estimator by integrating the Liu estimator with
the CE, resulting in the LL-BY estimator. The LL-CE estimator of β is defined as

β̂LL
CE =

(
XTĜnX + Ip

)−1(
XTĜnX + dm2 Ip

)
β̂CE (38)

where dm2 is the robust Liu parameter and is defined as follows:

dm2 = min

 α̂2
j,CE

1
λj

+ α̂2
j,CE

.

We combine the KL estimator with the BY estimator, leading to a hybrid approach
denoted as the KL-BY estimator. The KL-BY estimator of β is defined as

β̂KL
BY =

(
XTĜnX + km1 Ip

)−1(
XTĜnX + km1 Ip

)
β̂BY (39)

where km1 = 1
max

(
α̂2

j,BY

) .

Likewise, we suggest the KL-CE estimator, which combines the KL estimator with
the conditionally unbiased bounded influence estimator. The LK-CE estimator of β is
defined as

β̂KL
CE =

(
XTĜnX + km2 Ip

)−1(
XTĜnX + km2 Ip

)
β̂CE (40)

where km2 = 1
max

(
α̂2

j,CE

) .

We conduct extensive simulations and real-life data analysis to evaluate the efficacy of
the proposed estimators.
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3.2. Scalar Mean Squared Errors of the Estimators

We retain the spectral decomposition of the estimated information matrix (XTĜnX)
to offer the precise form of the matrix mean squared errors (MMSEs) and the scalar mean
squared errors (SMSEs) for the previously stated biased estimator. Assume that a matrix Q
exists such that α̂LMLE = QT β̂LMLE, where QTXTĜnXQ = Λ = diag

(
λ1, . . . .λp+1

)
. Here,

λ1 ≥ λ2 ≥ . . . ≥ λp+1, and Λ represents the matrix of eigenvalues of (XTĜnX), while
Q is a matrix in which the columns are the eigenvectors of (XTĜnX). It is important to
note that there exists a relationship between the estimator α and β, namely α̂ = QT β̂LMLE,
resulting in SMSE

(
α̂LMLE) = SMSE

(
β̂LMLE). Consequently, it is sufficient to focus on

the canonical form exclusively. Equations (41)–(50) provide the scalar mean squared error
of the following estimators: MLE, LR, LL, LL-BY, LL-CE, LR-BY, LR-CE, KL, KL-BY, and
KL-CE. The SMSEs of the mentioned estimators are as follows:

SMSE
(

α̂LMLE
)
= ∑p∗

j=1
1
λj

(41)

SMSE
(

α̂LL
)
= ∑p∗

j=1

(
λj + d

)2

λj
(
λj + 1

)2 + ∑p∗

j=1

(d − 1)2α2
j(

λj + 1
)2 (42)

SMSE
(

α̂LL
BY

)
= ∑p∗

j=1

(
λj + dm1

)2

λj
(
λj + 1

)2 + ∑p∗

j=1

(dm1 − 1)2α2
j,BY(

λj + 1
)2 (43)

SMSE
(

α̂LL
CE

)
= ∑p∗

j=1

(
λj + dm2

)2

λj
(
λj + 1

)2 + ∑p∗

j=1

(dm2 − 1)2α2
j,CE(

λj + 1
)2 (44)

SMSE
(

α̂LR
)
= ∑p∗

j=1

λj(
λj + k

)2 + ∑p∗

j=1

α2
j(

λj + k
)2 (45)

SMSE
(

α̂LR
BY

)
= ∑p∗

j=1

λj(
λj + km1

)2 + ∑p∗

j=1

α2
j,BY(

λj + km1
)2 (46)

SMSE
(

α̂LR
CE

)
= ∑p∗

j=1

λj(
λj + km2

)2 + ∑p∗

j=1

α2
j,CE(

λj + km2
)2 (47)

SMSE
(

α̂KL
)
= ∑p∗

j=1

(
λj − k

)2

λj
(
λj + k

)2 + 4k2 ∑p∗

j=1

α2
j(

λj + k
)2 (48)

SMSE
(

α̂KL
BY

)
= ∑p∗

j=1

(
λj − km1

)2

λj
(
λj + km1

)2 + 4k2
m1 ∑p∗

j=1

α2
j,BY(

λj + km1
)2 (49)

SMSE
(

α̂KL
CE

)
= ∑p∗

j=1

(
λj − km2

)2

λj
(
λj + km2

)2 + 4k2
m2 ∑p∗

j=1

α2
j,CE(

λj + km2
)2 (50)

3.3. Theoretical Comparisons Between the Estimators

3.3.1. The α̂LR
BY Estimator and the ML Estimator

The estimator α̂LR
BY is superior to the estimator α̂MLE in the sense of the SMSE criterion,

i.e., SMSE
(
α̂LR

BY
)
− SMSE

(
α̂MLE) < 0 if

(
λj + km1

)2
> λj

(
λj + α2

j,BY

)
and km1 > 0.
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Proof. The difference between SMSE
(
α̂LR

BY
)

and SMSE
(
α̂MLE) is as follows:

SMSE
(

α̂LR
BY

)
− SMSE

(
α̂MLE

)
= ∇ = ∑p∗

j=1

(
λj + α2

j,BY

)
(
λj + km1

)2 − ∑p∗

j=1
1
λj

(51)

∇ = ∑p∗

j=1

λj

(
λj + α2

j,BY

)
−
(
λj + km1

)2

λj
(
λj + km1

)2 (52)

The difference ∇ < 0 occurs if
(
λj + km1

)2
> λj

(
λj + α2

j,BY

)
, and then it can be

observed that the estimator α̂LR
BY is superior to the estimator α̂MLE when km1 > 0 for all

j = 1, 2, . . . , p∗. □

3.3.2. The α̂LR
CE Estimator and the ML Estimator

The estimator α̂LR
CE is superior to the estimator α̂MLE in the sense of the SMSE criterion,

i.e., SMSE
(
α̂LR

CE
)
− SMSE

(
α̂MLE) < 0 if

(
λj + km2

)2
> λj

(
λj + α2

j,CE

)
and km2 > 0.

Proof. The difference between SMSE
(
α̂LR

CE
)

and SMSE
(
α̂MLE) is as follows:

SMSE
(

α̂LR
CE

)
− SMSE

(
α̂MLE

)
= ∇ = ∑p∗

j=1

(
λj + α2

j,CE

)
(
λj + km2

)2 − ∑p∗

j=1
1
λj

(53)

∇ = ∑p∗

j=1

λj

(
λj + α2

j,CE

)
−
(
λj + km2

)2

λj
(
λj + km2

)2 (54)

The difference ∇ < 0 occurs if
(
λj + km2

)2
> λj

(
λj + α2

j,CE

)
, and then it can be

observed that the estimator α̂LR
CE is superior to the estimator α̂MLE when km2 > 0 for all

j = 1, 2, . . . , p∗. □

3.3.3. The α̂LL
BY Estimator and the ML Estimator

The estimator α̂LL
BY is superior to the estimator α̂MLE in the sense of the SMSE criterion,

i.e., SMSE
(
α̂LL

BY
)
− SMSE

(
α̂MLE) < 0 if

(
λj + 1

)2
>
(
λj + dm1

)2
+ (dm1 − 1)2α2

j,BY and
0 ≤ dm1 < 1.

Proof. The difference between SMSE
(
α̂LL

BY
)

and SMSE
(
α̂MLE) is as follows:

SMSE
(

α̂LL
BY

)
− SMSE

(
α̂MLE

)
= ∇ = ∑p∗

j=1

(
λj + dm1

)2
+ (dm1 − 1)2α2

j,BY

λj
(
λj + 1

)2 − ∑p∗

j=1
1
λj

(55)

∇ = ∑p∗

j=1

(
λj + dm1

)2
+ (dm1 − 1)2α2

j,BY −
(
λj + 1

)2

λj
(
λj + 1

)2 (56)

The difference ∇ < 0 occurs if
(
λj + 1

)2
>
(
λj + dm1

)2
+ (dm1 − 1)2α2

j,BY, and then it

can be observed that the estimator α̂LL
BY is superior to the estimator α̂MLE when 0 ≤ dm1 < 1

for all j = 1, 2, . . . , p∗. □

3.3.4. The α̂LL
CE Estimator and the ML Estimator

The estimator α̂LL
CE is superior to the estimator α̂MLE in the sense of the SMSE criterion,

i.e., SMSE
(
α̂LL

CE
)
− SMSE

(
α̂MLE) < 0 if

(
λj + 1

)2
>
(
λj + dm2

)2
+ (dm2 − 1)2α2

j,CE and
0 ≤ dm2 < 1.
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Proof. The difference between SMSE
(
α̂LL

CE
)

and SMSE
(
α̂MLE) is as follows:

SMSE
(

α̂LL
CE

)
− SMSE

(
α̂MLE

)
= ∇ = ∑p∗

j=1

(
λj + dm2

)2
+ (dm2 − 1)2α2

j,CE

λj
(
λj + 1

)2 − ∑p∗

j=1
1
λj

(57)

∇ = ∑p∗

j=1

(
λj + dm2

)2
+ (dm2 − 1)2α2

j,CE −
(
λj + 1

)2

λj
(
λj + 1

)2 (58)

The difference ∇ < 0 occurs if
(
λj + 1

)2
>
(
λj + dm2

)2
+ (dm2 − 1)2α2

j,CE, and then it

can be observed that the estimator α̂LL
CE is superior to the estimator α̂MLE when 0 ≤ dm2 < 1

for all j = 1, 2, . . . , p∗. □

3.3.5. The α̂KL
BY Estimator and the ML Estimator

The estimator α̂KL
BY is superior to the estimator α̂MLE in the sense of the SMSE crite-

rion, i.e., SMSE
(
α̂KL

BY
)
− SMSE

(
α̂MLE) < 0 if

(
λj + km1

)2
>
(
λj − km1

)2
+ 4k2

m1α2
j,BY and

km1 > 0.

Proof. The difference between SMSE
(
α̂KL

BY
)

and SMSE
(
α̂MLE) is as follows:

SMSE
(

α̂KL
BY

)
− SMSE

(
α̂MLE

)
= ∇ = ∑p∗

j=1

(
λj − km1

)2
+ 4k2

m1α2
j,BY

λj
(
λj + km1

)2 − ∑p∗

j=1
1
λj

(59)

∇ = ∑p∗

j=1

(
λj − km1

)2
+ 4k2

m1α2
j,BY −

(
λj + km1

)2

λj
(
λj + km1

)2 (60)

The difference ∇ < 0 occurs if
(
λj + km1

)2
>
(
λj − km1

)2
+ 4k2

m1α2
j,BY, and then it can

be observed that the estimator α̂KL
BY is superior to the estimator α̂MLE when km1 > 0 for all

j = 1, 2, . . . , p∗. □

3.3.6. The α̂KL
CE Estimator and the ML Estimator

The estimator α̂KL
CE is superior to the estimator α̂MLE in the sense of the SMSE crite-

rion, i.e., SMSE
(
α̂KL

CE
)
− SMSE

(
α̂MLE) < 0 if

(
λj + km2

)2
>
(
λj − km2

)2
+ 4k2

m2α2
j,CE and

km2 > 0.

Proof. The difference between SMSE
(
α̂KL

CE
)

and SMSE
(
α̂MLE) is as follows:

SMSE
(

α̂KL
CE

)
− SMSE

(
α̂MLE

)
= ∇ = ∑p∗

j=1

(
λj − km2

)2
+ 4k2

m2α2
j,CE

λj
(
λj + km2

)2 − ∑p∗

j=1
1
λj

(61)

∇ = ∑p∗

j=1

(
λj − km2

)2
+ 4k2

m2α2
j,CE −

(
λj + km2

)2

λj
(
λj + km2

)2 (62)

The difference ∇ < 0 occurs if
(
λj + km2

)2
>
(
λj − km2

)2
+ 4k2

m2α2
j,CE, and then it can

be observed that the estimator α̂KL
CE is superior to the estimator α̂MLE when km2 > 0 for all

j = 1, 2, . . . , p∗. □

3.3.7. The α̂LR
BY Estimator and the α̂LR Estimator

The estimator α̂LR
BY is superior to the estimator α̂LR in the sense of the SMSE criterion,

i.e., SMSE
(
α̂LR

BY
)
− SMSE

(
α̂LR) < 0 if

(
λj + α2

j

)(
λj + km1

)2
>
(

λj + α2
j,BY

)(
λj + k

)2 and
0 < k < km1.
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Proof. The difference between SMSE
(
α̂LR

BY
)

and SMSE
(
α̂LR) is as follows:

SMSE
(

α̂LR
BY

)
− SMSE

(
α̂LR

)
= ∇ = ∑p∗

j=1

(
λj + α2

j,BY

)
(
λj + km1

)2 − ∑p∗

j=1

(
λj + α2

j

)
(
λj + k

)2 (63)

∇ = ∑p∗

j=1

(
λj + α2

j,BY

)(
λj + k

)2 −
(

λj + α2
j

)(
λj + km1

)2(
λj + k

)2(
λj + km1

)2 (64)

The difference ∇ < 0 occurs if
(

λj + α2
j

)(
λj + km1

)2
>
(

λj + α2
j,BY

)(
λj + k

)2, and

then it can be observed that the estimator α̂LR
BY is superior to the estimator α̂LR when

0 < k < km1 for all j = 1, 2, . . . , p∗. □

3.3.8. The α̂LR
CE Estimator and the α̂LR Estimator

The estimator α̂LR
CE is superior to the estimator α̂LR in the sense of the SMSE criterion,

i.e., SMSE
(
α̂LR

CE
)
− SMSE

(
α̂LR) < 0 if

(
λj + α2

j

)(
λj + km2

)2
>
(

λj + α2
j,CE

)(
λj + k

)2 and
0 < k < km2.

Proof. The difference between SMSE
(
α̂LR

CE
)

and SMSE
(
α̂LR) is as follows:

SMSE
(

α̂LR
CE

)
− SMSE

(
α̂LR

)
= ∇ = ∑p∗

j=1

(
λj + α2

j,CE

)
(
λj + km2

)2 − ∑p∗

j=1

(
λj + α2

j

)
(
λj + k

)2 (65)

∇ = ∑p∗

j=1

(
λj + α2

j,CE

)(
λj + k

)2 −
(

λj + α2
j

)(
λj + km2

)2(
λj + k

)2(
λj + km2

)2 (66)

The difference ∇ < 0 occurs if
(

λj + α2
j

)(
λj + km2

)2
>
(

λj + α2
j,CE

)(
λj + k

)2, and

then it can be observed that the estimator α̂LR
CE is superior to the estimator α̂LR when

0 < k < km2 for all j = 1, 2, . . . , p∗. □

3.3.9. The α̂LL
BY Estimator and the α̂LR Estimator

The estimator α̂LL
BY is superior to the estimator α̂LR in the sense of the SMSE crite-

rion, i.e., SMSE
(
α̂LL

BY
)
−SMSE

(
α̂LR) < 0 if λj

(
λj + α2

j

)(
λj + 1

)2
>
(
λj + dm1

)2(
λj + k

)2
+(

λj + k
)2
(dm1 − 1)2α2

j,BYλj and 0 < k, 0 ≤ dm1 < 1.

Proof. The difference between SMSE
(
α̂LL

BY
)

and SMSE
(
α̂LR) is as follows:

SMSE
(

α̂LL
BY

)
− SMSE

(
α̂LR

)
= ∇ = ∑p∗

j=1

(
λj + dm1

)2
+ (dm1 − 1)2α2

j,BYλj

λj
(
λj + 1

)2 − ∑p∗

j=1

(
λj + α2

j

)
(
λj + k

)2 (67)

∇ = ∑p∗

j=1

(
λj + dm1

)2(
λj + k

)2
+
(
λj + k

)2
(dm1 − 1)2α2

j,BYλj − λj

(
λj + α2

j

)(
λj + 1

)2

λj
(
λj + 1

)2(
λj + k

)2 (68)

The difference ∇ < 0 occurs if
λj

(
λj + α2

j

)(
λj + 1

)2
>
(
λj + dm1

)2(
λj + k

)2
+
(
λj + k

)2
(dm1 − 1)2α2

j,BYλj, and then

it can be observed that the estimator α̂LL
BY is superior to the estimator α̂LR when 0 < k,

0 ≤ dm1 < 1 for all j = 1, 2, . . . , p∗. □
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3.3.10. The α̂LL
CE Estimator and the α̂LR Estimator

The estimator α̂LL
CE is superior to the estimator α̂LR in the sense of the SMSE crite-

rion, i.e., SMSE
(
α̂LL

CE
)
−SMSE

(
α̂LR) < 0 if λj

(
λj + α2

j

)(
λj + 1

)2
>
(
λj + dm2

)2(
λj + k

)2
+(

λj + k
)2
(dm2 − 1)2α2

j,CEλj and 0 < k, 0 ≤ dm2 < 1.

Proof. The difference between SMSE
(
α̂LL

CE
)

and SMSE
(
α̂LR) is as follows:

SMSE
(

α̂LL
CE

)
− SMSE

(
α̂LR

)
= ∇ = ∑p∗

j=1

(
λj + dm2

)2
+ (dm2 − 1)2α2

j,CEλj

λj
(
λj + 1

)2 − ∑p∗

j=1

(
λj + α2

j

)
(
λj + k

)2 (69)

∇ = ∑p∗

j=1

(
λj + dm2

)2(
λj + k

)2
+
(
λj + k

)2
(dm2 − 1)2α2

j,CEλj − λj

(
λj + α2

j

)(
λj + 1

)2

λj
(
λj + 1

)2(
λj + k

)2 (70)

The difference ∇ < 0 occurs if
λj

(
λj + α2

j

)(
λj + 1

)2
>
(
λj + dm2

)2(
λj + k

)2
+
(
λj + k

)2
(dm2 − 1)2α2

j,CEλj, and then

it can be observed that the estimator α̂LL
BY is superior to the estimator α̂LR when 0 < k,

0 ≤ dm2 < 1 for all j = 1, 2, . . . , p∗. □

3.3.11. The α̂KL
BY Estimator and the α̂LR Estimator

The estimator α̂KL
BY is superior to the estimator α̂LR in the sense of the SMSE criterion,

i.e., SMSE
(
α̂KL

BY
)
− SMSE

(
α̂LR) < 0 if λj

(
λj + α2

j

)(
λj + km1

)2
>
(
λj − km1

)2(
λj + k

)2
+

4k2
m1α2

j,BY
(
λj + k

)2 and 0 < k < km1.

Proof. The difference between SMSE
(
α̂KL

BY
)

and SMSE
(
α̂LR) is as follows:

SMSE
(

α̂KL
BY

)
− SMSE

(
α̂LR

)
= ∇ = ∑p∗

j=1

(
λj − km1

)2
+ 4k2

m1α2
j,BY

λj
(
λj + km1

)2 − ∑p∗

j=1

(
λj + α2

j

)
(
λj + k

)2 (71)

∇ = ∑p∗

j=1

(
λj − km1

)2(
λj + k

)2
+ 4k2

m1α2
j,BY
(
λj + k

)2 − λj

(
λj + α2

j

)(
λj + km1

)2

λj
(
λj + km1

)2(
λj + k

)2 (72)

The difference ∇ < 0 occurs if
λj

(
λj + α2

j

)(
λj + km1

)2
>
(
λj − km1

)2(
λj + k

)2
+ 4k2

m1α2
j,BY
(
λj + k

)2, and then it can

be observed that the estimator α̂KL
BY is superior to the estimator α̂LR when 0 < k < km1 for

all j = 1, 2, . . . , p∗. □

3.3.12. The α̂KL
CE Estimator and the α̂LR Estimator

The estimator α̂KL
CE is superior to the estimator α̂LR in the sense of the SMSE criterion,

i.e., SMSE
(
α̂KL

CE
)
− SMSE

(
α̂LR) < 0 if λj

(
λj + α2

j

)(
λj + km2

)2
>
(
λj − km2

)2(
λj + k

)2
+

4k2
m2α2

j,CE
(
λj + k

)2 and 0 < k < km2.

Proof. The difference between SMSE
(
α̂KL

CE
)

and SMSE
(
α̂LR) is as follows:

SMSE
(

α̂KL
CE

)
− SMSE

(
α̂LR

)
= ∇ = ∑p∗

j=1

(
λj − km2

)2
+ 4k2

m2α2
j,CE

λj
(
λj + km2

)2 − ∑p∗

j=1

(
λj + α2

j

)
(
λj + k

)2 (73)

∇ = ∑p∗

j=1

(
λj − km2

)2(
λj + k

)2
+ 4k2

m2α2
j,CE
(
λj + k

)2 − λj

(
λj + α2

j

)(
λj + km2

)2

λj
(
λj + km2

)2(
λj + k

)2 (74)
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The difference ∇ < 0 occurs if
λj

(
λj + α2

j

)(
λj + km2

)2
>
(
λj − km2

)2(
λj + k

)2
+ 4k2

m2α2
j,CE
(
λj + k

)2, and then it can

be observed that the estimator α̂KL
CE is superior to the estimator α̂LR when 0 < k < km2 for

all j = 1, 2, . . . , p∗. □

3.3.13. The α̂LL
BY Estimator and the α̂KL Estimator

The estimator α̂LL
BY is superior to the estimator α̂KL in the sense of the SMSE cri-

terion, i.e., SMSE
(
α̂LL

BY
)
− SMSE

(
α̂KL) < 0 if

(
λj + 1

)2(
λj − k

)2
+
(
λj + 1

)24k2α2
j >(

λj + dm1
)2(

λj + k
)2

+
(
λj + k

)2
(dm1 − 1)2α2

j,BY and k > 0 and 0 ≤ dm1 < 1.

Proof. The difference between SMSE
(
α̂LL

BY
)

and SMSE
(
α̂KL) is as follows:

MSE
(

α̂LL
BY

)
− SMSE

(
α̂KL

)
= ∇ = ∑p∗

j=1

(
λj + dm1

)2
+ (dm1 − 1)2α2

j,BY

λj
(
λj + 1

)2 − ∑p∗

j=1

(
λj − k

)2
+ 4k2α2

j

λj
(
λj + k

)2 (75)

∇ = ∑p∗

j=1

(
λj + dm1

)2(
λj + k

)2
+
(
λj + k

)2
(dm1 − 1)2α2

j,BY −
(
λj + 1

)2(
λj − k

)2
+
(
λj + 1

)24k2α2
j

λj
(
λj + 1

)2(
λj + k

)2 (76)

The difference ∇ < 0 occurs if
(
λj + 1

)2(
λj − k

)2
+
(
λj + 1

)24k2α2
j >

(
λj + dm1

)2(
λj + k

)2
+
(
λj + k

)2
(dm1 − 1)2α2

j,BY, and then it can be observed that the estimator α̂LL
BY is

superior to the estimator α̂KL when k > 0 and 0 ≤ dm1 < 1 for all j = 1, 2, . . . , p∗. □

3.3.14. The α̂LL
CE Estimator and the α̂KL Estimator

The estimator α̂LL
CE is superior to the estimator α̂KL in the sense of the SMSE cri-

terion, i.e., SMSE
(
α̂LL

CE
)
− SMSE

(
α̂KL) < 0 if

(
λj + 1

)2(
λj − k

)2
+
(
λj + 1

)24k2α2
j >(

λj + dm2
)2(

λj + k
)2

+
(
λj + k

)2
(dm2 − 1)2α2

j,CE and k > 0 and 0 ≤ dm2 < 1.

Proof. The difference between SMSE
(
α̂LL

CE
)

and SMSE
(
α̂KL) is as follows:

MSE
(

α̂LL
CE

)
− SMSE

(
α̂KL

)
= ∇ = ∑p∗

j=1

(
λj + dm2

)2
+ (dm2 − 1)2α2

j,CE

λj
(
λj + 1

)2 − ∑p∗

j=1

(
λj − k

)2
+ 4k2α2

j

λj
(
λj + k

)2 (77)

∇ = ∑p∗

j=1

(
λj + dm2

)2(
λj + k

)2
+
(
λj + k

)2
(dm2 − 1)2α2

j,CE −
(
λj + 1

)2(
λj − k

)2
+
(
λj + 1

)24k2α2
j

λj
(
λj + 1

)2(
λj + k

)2 (78)

The difference ∇ < 0 occurs if(
λj + 1

)2(
λj − k

)2
+
(
λj + 1

)24k2α2
j >

(
λj + dm2

)2(
λj + k

)2
+
(
λj + k

)2
(dm2 − 1)2

α2
j,CE, and then it can be observed that the estimator α̂LL

CE is superior to the estimator

α̂KL when k > 0 and 0 ≤ dm2 < 1 for all j = 1, 2, . . . , p∗. □

3.3.15. The α̂LR
BY Estimator and the α̂KL Estimator

The estimator α̂LR
BY is superior to the estimator α̂KL in the sense of the SMSE crite-

rion, i.e., SMSE
(
α̂LR

BY
)
− SMSE

(
α̂KL) < 0 if

(
λj − k

)2(
λj + km1

)2
+
(
λj + km1

)24k2α2
j >

λj
(
λj + k

)2
(

λj + α2
j,BY

)
and 0 < k < km1.

Proof. The difference between SMSE
(
α̂LR

BY
)

and SMSE
(
α̂KL) is as follows:

MSE
(

α̂LR
BY

)
− SMSE

(
α̂KL

)
= ∇ = ∑p∗

j=1 ∑p∗

j=1

(
λj + α2

j,BY

)
(
λj + km1

)2 − ∑p∗

j=1

(
λj − k

)2
+ 4k2α2

j

λj
(
λj + k

)2 (79)
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∇ = ∑p∗

j=1

λj
(
λj + k

)2
(

λj + α2
j,BY

)
−
(
λj − k

)2(
λj + km1

)2
+
(
λj + km1

)24k2α2
j

λj
(
λj + km1

)2(
λj + k

)2 (80)

The difference ∇ < 0 occurs if
(
λj − k

)2(
λj + km1

)2
+
(
λj + km1

)24k2α2
j > λj

(
λj + k

)2(
λj + α2

j,BY

)
, and then it can be observed that the estimator α̂LR

BY is superior to the estimator

α̂KL when 0 < k < km1 for all j = 1, 2, . . . , p∗. □

3.3.16. The α̂LR
CE Estimator and the α̂KL Estimator

The estimator α̂LR
CE is superior to the estimator α̂KL in the sense of the SMSE crite-

rion, i.e., SMSE
(
α̂LR

CE
)
− SMSE

(
α̂KL) < 0 if

(
λj − k

)2(
λj + km2

)2
+
(
λj + km2

)24k2α2
j >

λj
(
λj + k

)2
(

λj + α2
j,CE

)
and 0 < k < km2.

Proof. The difference between SMSE
(
α̂LR

CE
)

and SMSE
(
α̂KL) is as follows:

MSE
(

α̂LR
CE

)
− SMSE

(
α̂KL

)
= ∇ = ∑p∗

j=1 ∑p∗

j=1

(
λj + α2

j,CE

)
(
λj + km2

)2 − ∑p∗

j=1

(
λj − k

)2
+ 4k2α2

j

λj
(
λj + k

)2 (81)

∇ = ∑p∗

j=1

λj
(
λj + k

)2
(

λj + α2
j,CE

)
−
(
λj − k

)2(
λj + km2

)2
+
(
λj + km2

)24k2α2
j

λj
(
λj + km2

)2(
λj + k

)2 (82)

The difference ∇ < 0 occurs if(
λj − k

)2(
λj + km2

)2
+
(
λj + km2

)24k2α2
j > λj

(
λj + k

)2
(

λj + α2
j,CE

)
, and then it can

be observed that the estimator α̂LR
CE is superior to the estimator α̂KL when 0 < k < km2 for

all j = 1, 2, . . . , p∗. □

3.3.17. The α̂KL
BY Estimator and the α̂KL Estimator

The estimator α̂KL
BY is superior to the estimator α̂KL in the sense of the SMSE criterion,

i.e., SMSE
(
α̂KL

BY
)
− SMSE

(
α̂KL) < 0 if λj

(
λj + α2

j

)(
λj + km1

)2
>
(
λj − km1

)2(
λj + k

)2
+

4k2
m1α2

j,BY
(
λj + k

)2 and 0 < k < km1.

Proof. The difference between SMSE
(
α̂KL

BY
)

and SMSE
(
α̂KL) is as follows:

SMSE
(

α̂KL
BY

)
− SMSE

(
α̂KL

)
= ∇ = ∑p∗

j=1

(
λj − km1

)2
+ 4k2

m1α2
j,BY

λj
(
λj + km1

)2 − ∑p∗

j=1

(
λj − k

)2
+ 4k2α2

j

λj
(
λj + k

)2 (83)

∇ = ∑p∗

j=1

(
λj − km1

)2(
λj + k

)2
+ 4k2

m1α2
j,BY
(
λj + k

)2 −
(
λj − k

)2(
λj + km1

)2
+ 4k2α2

j
(
λj + km1

)2

λj
(
λj + km1

)2(
λj + k

)2 (84)

The difference ∇ < 0 ocurs if(
λj − k

)2(
λj + km1

)2
+ 4k2α2

j
(
λj + km1

)2
>
(
λj − km1

)2(
λj + k

)2
+ 4k2

m1α2
j,BY
(
λj + k

)2,

and then it can be observed that the estimator α̂KL
BY is superior to the estimator α̂KL when

0 < k < km1 for all j = 1, 2, . . . , p∗. □

3.3.18. The α̂KL
CE Estimator and the α̂KL Estimator

The estimator α̂KL
CE is superior to the estimator α̂KL in the sense of the SMSE criterion,

i.e., SMSE
(
α̂KL

CE
)
− SMSE

(
α̂KL) < 0 if λj

(
λj + α2

j

)(
λj + km2

)2
>
(
λj − km2

)2(
λj + k

)2
+

4k2
m1α2

j,CE
(
λj + k

)2 and 0 < k < km2.

Proof. The difference between SMSE
(
α̂KL

CE
)

and SMSE
(
α̂KL) is as follows:
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SMSE
(

α̂KL
CE

)
− SMSE

(
α̂KL

)
= ∇ = ∑p∗

j=1

(
λj − km2

)2
+ 4k2

m2α2
j,CE

λj
(
λj + km2

)2 − ∑p∗

j=1

(
λj − k

)2
+ 4k2α2

j

λj
(
λj + k

)2 (85)

∇ = ∑p∗

j=1

(
λj − km2

)2(
λj + k

)2
+ 4k2

m2α2
j,CE
(
λj + k

)2 −
(
λj − k

)2(
λj + km2

)2
+ 4k2α2

j
(
λj + km2

)2

λj
(
λj + km2

)2(
λj + k

)2 (86)

The difference ∇ < 0 occurs if(
λj − k

)2(
λj + km2

)2
+ 4k2α2

j
(
λj + km2

)2
>
(
λj − km2

)2(
λj + k

)2
+ 4k2

m2α2
j,CE
(
λj + k

)2,

and then it can be observed that the estimator α̂KL
CE is superior to the estimator α̂KL when

0 < k < km2 for all j = 1, 2, . . . , p∗. □

4. Monte Carlo Simulation
In this section, we conduct a comparative analysis of logistic regression estimators

through a simulation study. Numerous researchers have undertaken simulation studies to
evaluate the performance of estimators for linear and logistic regression models [32,33].

The MSE is a function of β and p and is minimized subject to constraint βT β = 1 [34,35].
Schaeffer et al. [3] demonstrated that the logistic regression model can be constructed using
a similar methodology to the linear regression model. The procedure outlined by Kibria
et al. [36] can be employed to generate the correlated explanatory variables for this purpose:

xij =
(

1 − ρ2
)1/2

ωij + ρωi(j+1), i = 1, 2, . . . , n , j = 1, 2, . . . , p (87)

In the given context, the variables ωij are assumed to be independent standard normal
random variables, and ρ2 represents the correlation between any two independent variables.
We considered four levels of multicollinearity, ρ = 0.8, 0.9, 0.95, and 0.99. The response

variable follows the Bernoulli distribution, i.e., yi ∼ Be(πi), where πi =
exp(XT

i β)

1+exp(XT
i β)

.

Sample size n is varied, i.e., 30, 50, 100, or 200. In this study, two cases of contamination
were examined. In case 1, the model was contaminated with 10% outliers in the y-direction,
while in case 2, the contamination level was increased to 20%. The simulation study was
carried out using R-Studio (2024.12.0+467). We determined the number of outliers by
multiplying the length of the response variable by 0.1 or 0.2, representing 10 percent or
20 percent of the total observations. In R, we utilize the round () function to obtain the
nearest integer value for the number of outliers. To introduce outliers, we use the sample ()
function to randomly select indices from the response variable Y, which correspond to the
observations where we will add outliers. Finally, we flip the values at the selected indices
by subtracting them from 1. This operation effectively converts 0 s to 1 s and 1 s to 0 s [22].
The estimated MSE is calculated as

MSE
(

β̂
)
=

1
1000 ∑1000

i=1

(
β̂i − β

)T(
β̂i − β

)
(88)

In the experiment, the vector β̂i represents the estimated regression coefficients in the
ith replication, while β denotes the vector of true parameter values. The true parameter
values β are chosen such that βT β = 1. The experiment was replicated 1000 times. The
estimated mean squared errors (MSEs) are presented in Tables 1 and 2 for p = 3, with
10 and 20 percent outliers, respectively. Similarly, for p = 5, the results are provided in
Tables 3 and 4, and for p = 7, the results are presented in Tables 5 and 6. Tables 1–6 show
the estimated MSE for different estimators with different correlation coefficients (ρ) in the
presence of outliers. Based on the provided tables (Tables 1–6), we can discuss the results
as follows.
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Table 1. Estimated MSE for different estimators when p = 3 with 10% outliers.

n ρ MLE LL LL-BY LL-CE LR LR-BY LR-CE KL KL-BY KL-CE

30 0.8 2.3667 1.3344 2.0663 1.7486 1.1316 0.9932 1.0617 0.8906 0.7762 0.8679

0.9 4.0135 1.9736 2.1172 1.9905 1.0952 1.0386 1.0363 1.0587 1.0223 1.0245

0.95 7.7846 2.8569 4.4857 4.1533 2.0742 2.9920 2.0298 2.5645 2.1007 2.3126

0.99 35.7174 9.6487 12.0985 12.6381 3.8876 3.8369 3.8497 3.2078 2.8987 2.6757

50 0.8 1.0746 0.9135 0.9128 0.9153 0.8449 0.8436 0.8451 0.7232 0.7219 0.7222

0.9 1.4745 1.1337 1.1086 1.1303 0.9148 0.9120 0.9131 0.9103 0.8772 0.8789

0.95 2.5356 1.6298 1.5467 1.6228 1.0073 1.0034 1.0048 0.9963 0.8892 0.8905

0.99 9.4855 5.0952 4.7838 5.0980 2.9185 2.9139 2.9183 1.4127 1.4022 1.4115

100 0.8 0.7866 0.7495 0.7449 0.7489 0.7080 0.7126 0.7120 0.6569 0.6530 0.6565

0.9 1.0340 0.9086 0.8991 0.9077 0.8187 0.8133 0.8176 0.8027 0.8013 0.8018

0.95 1.7614 1.2665 1.2529 1.2575 1.0255 1.0201 1.0206 0.8678 0.8556 0.8567

0.99 6.3481 2.6469 2.5970 2.6244 1.1340 1.1255 1.1278 0.9719 0.9654 0.9679

200 0.8 0.5321 0.5294 0.5316 0.5294 0.5290 0.5269 0.5269 0.5259 0.5242 0.5243

0.9 0.6230 0.6062 0.6089 0.6063 0.5880 0.5859 0.5859 0.5625 0.5599 0.5601

0.95 0.8556 0.7787 0.7815 0.7786 0.7168 0.7132 0.7134 0.5840 0.5811 0.5813

0.99 2.3353 1.4464 1.4590 1.4382 0.8981 0.8861 0.8871 0.6113 0.6093 0.6101

Table 2. Estimated MSE for different estimators when p = 3 with 20% outliers.

n ρ MLE LL LL-BY LL-CE LR LR-BY LR-CE KL KL-BY KL-CE

30 0.8 2.6073 1.3384 1.3781 1.3375 1.1018 1.0747 1.0762 0.8898 0.8700 0.8733

0.9 4.6440 1.6009 1.6574 1.5864 1.1509 1.1348 1.1297 1.1465 1.1174 1.1206

0.95 7.7352 2.0290 1.9976 1.9885 2.1242 2.1193 2.1172 2.1213 2.1107 2.1134

0.99 36.1123 7.0375 6.2995 6.6513 3.9684 3.9544 3.9570 3.4126 3.2316 3.2343

50 0.8 1.1544 1.0301 1.0305 1.0299 0.9444 0.9431 0.9441 0.8174 0.8156 0.8162

0.9 1.7432 1.3693 1.3717 1.3702 1.1207 1.1201 1.1205 0.9804 0.9730 0.9735

0.95 2.6725 1.7791 1.8135 1.7916 1.1699 1.1598 1.1625 1.1263 1.1212 1.1215

0.99 10.6493 5.5129 5.4835 5.5508 1.2289 1.2223 1.2225 1.2127 1.2082 1.2116

100 0.8 0.8673 0.8414 0.8396 0.8415 0.8175 0.8160 0.8176 0.7801 0.7791 0.7800

0.9 1.0665 0.9790 0.9771 0.9789 0.9017 0.9003 0.9014 0.7919 0.7912 0.7918

0.95 1.5526 1.2585 1.2555 1.2579 1.0396 1.0369 1.0384 1.0244 1.0125 1.0129

0.99 5.2257 2.5697 2.5920 2.5578 1.1937 1.1919 1.1934 1.1855 1.1753 1.1760

200 0.8 0.6581 0.6540 0.6519 0.6540 0.6694 0.6513 0.6513 0.6464 0.6451 0.6461

0.9 0.7321 0.7120 0.7097 0.7122 0.6957 0.6933 0.6953 0.6680 0.6668 0.6675

0.95 0.9755 0.8935 0.8947 0.8941 0.8294 0.8280 0.8285 0.7211 0.7191 0.7207

0.99 2.4798 1.5666 1.5336 1.5677 1.0288 1.0231 1.0301 1.0012 0.9878 0.9882
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Table 3. Estimated MSE for different estimators when p = 5 with 10% outliers.

n ρ MLE LL LL-BY LL-CE LR LR-BY LR-CE KL KL-BY KL-CE

30 0.8 4.7509 1.7719 1.8694 2.0446 1.3837 1.2094 1.4701 1.2945 1.1547 1.1841

0.9 9.3889 2.7966 3.1155 2.7313 1.3917 1.2229 1.3199 1.3183 1.2213 1.2945

0.95 20.1485 5.4596 8.2924 6.4925 3.5911 3.3180 3.3518 3.5437 3.0907 3.0924

0.99 117.9439 48.1616 54.7636 24.7987 4.4837 4.9376 4.9512 4.3078 4.1847 4.1930

50 0.8 2.2180 1.4932 1.5367 1.4802 1.3211 1.2848 1.2748 0.8161 0.8069 0.8081

0.9 4.0343 1.9980 2.0500 1.9610 1.5669 1.5198 1.5117 1.3023 1.2140 1.2231

0.95 7.2837 2.6262 2.8973 2.6182 1.5750 1.5416 1.5325 1.3113 1.3043 1.3050

0.99 36.4630 8.6211 7.8963 8.5427 2.2457 2.2124 2.2079 2.2132 2.2003 2.2045

100 0.8 1.0057 0.8932 0.9075 0.8981 0.8632 0.8523 0.8548 0.7544 0.7447 0.7453

0.9 1.9873 1.4432 1.4599 1.4322 1.2313 1.2084 1.2013 1.2234 1.1379 1.1388

0.95 3.4729 2.0386 2.0546 2.0149 1.4784 1.4307 1.4271 1.4687 1.4211 1.4234

0.99 16.2475 6.3017 5.3991 6.0793 1.6421 1.5000 1.5969 1.5719 1.4543 1.4579

200 0.8 0.6969 0.6765 0.6778 0.6765 0.6702 0.6690 0.6690 0.6699 0.6439 0.6440

0.9 0.9258 0.8331 0.8390 0.8340 0.8072 0.8025 0.8033 0.8244 0.7188 0.7192

0.95 1.4154 1.1343 1.1511 1.1378 1.0429 1.0260 1.0277 1.0384 0.7518 0.7525

0.99 5.1578 2.0883 2.1673 2.0945 1.3964 1.3695 1.3711 1.3745 1.2682 1.2706

Table 4. Estimated MSE for different estimators when p = 5 with 20% outliers.

n ρ MLE LL LL-BY LL-CE LR LR-BY LR-CE KL KL-BY KL-CE

30 0.8 2.6521 1.2165 1.4282 1.2282 0.9910 0.9358 0.9677 0.9772 0.9222 0.9231

0.9 5.0177 1.4555 2.1246 1.4569 1.3338 1.2300 1.2331 1.2565 1.2267 1.2286

0.95 17.0628 3.8666 11.5752 5.0429 2.9537 2.4343 2.5087 2.9234 2.2355 2.2357

0.99 111.8208 31.9524 40.0553 29.4738 4.1616 4.0202 4.0476 4.1026 3.3863 3.3897

50 0.8 1.9790 1.4599 1.5175 1.4510 1.3402 1.2733 1.2702 1.3395 1.2663 1.2673

0.9 3.3806 1.8582 1.9332 1.8460 1.5521 1.4791 1.4750 1.5478 1.4708 1.4732

0.95 5.9931 2.2945 2.4638 2.2794 1.6484 1.5489 1.5501 1.6278 1.5312 1.5321

0.99 27.3854 5.1222 5.3875 5.0187 2.3050 2.2347 2.2354 2.2279 2.2097 2.2107

100 0.8 1.2265 1.0973 1.1089 1.0995 1.0462 1.0370 1.0378 1.0379 1.0287 1.0296

0.9 1.8024 1.3999 1.4261 1.4005 1.2605 1.2474 1.2471 1.2519 1.2411 1.2418

0.95 2.8681 1.8185 1.8560 1.8147 1.4418 1.4202 1.4170 1.4123 1.4118 1.4122

0.99 11.3100 3.6191 3.4978 3.6768 1.8016 1.6766 1.6758 1.7864 1.6742 1.6756

200 0.8 0.8165 0.7935 0.7953 0.7935 0.7845 0.7729 0.7829 0.7776 0.7516 0.7549

0.9 1.1018 1.0175 1.0195 1.0174 0.9781 0.9662 0.7961 0.9712 0.9568 0.9572

0.95 1.6116 1.3422 1.3471 1.3419 1.2118 1.2083 1.2080 1.2093 1.2060 1.2078

0.99 5.4312 2.4311 2.4556 2.4310 1.6087 1.5966 1.5967 1.5987 1.4576 1.4587
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Table 5. Estimated MSE for different estimators when p = 7 with 10% outliers.

n ρ MLE LL LL-BY LL-CE LR LR-BY LR-CE KL KL-BY KL-CE

30 0.8 3.5601 1.6900 1.9975 1.6859 1.6334 1.4737 1.4819 1.6232 1.4521 1.4552

0.9 7.0527 2.2594 2.4219 2.2155 1.7429 1.5984 1.5994 1.7290 1.5317 1.5378

0.95 13.4857 4.0066 4.6556 4.8187 4.7041 4.5423 4.5421 4.6683 4.4570 4.4598

0.99 69.6288 11.8602 14.3567 12.0148 5.1370 5.0616 5.0646 5.3075 5.2836 5.2860

50 0.8 3.1278 1.6719 1.6435 1.6370 1.6184 1.4276 1.4274 1.5009 1.4226 1.4239

0.9 7.006 2.1247 2.3751 2.1309 1.6678 1.5519 1.5521 1.6455 1.5214 1.5248

0.95 13.1860 2.7181 3.8245 2.7436 1.9197 1.6478 1.6426 1.8762 1.6407 1.6417

0.99 65.6741 10.2304 13.5697 9.7620 3.2418 3.1151 3.1131 3.2099 3.1120 3.1125

100 0.8 1.4038 1.1460 1.1438 1.1435 1.0812 1.0714 1.0790 1.0676 1.0543 1.0578

0.9 2.3730 1.5736 1.5674 1.5710 1.3954 1.3800 1.3769 1.3723 1.3709 1.3711

0.95 4.3467 2.1428 2.1554 2.1331 1.6501 1.6339 1.6286 1.5391 1.5222 1.5234

0.99 4.7679 2.3280 2.2543 2.2571 1.7519 1.7435 1.7482 1.7479 1.7413 1.7456

200 0.8 0.8818 0.8488 0.8348 0.8283 0.8198 0.8139 0.8137 0.8122 0.8093 0.8100

0.9 1.3480 1.1533 1.1413 1.1533 1.1255 1.1086 1.1087 1.1146 1.1119 1.1127

0.95 2.2587 1.6193 1.6124 1.6198 1.5336 1.4932 1.4932 1.5327 1.4128 1.4187

0.99 4.2735 1.9602 1.8145 1.8689 1.7301 1.7293 1.7279 1.7295 1.7268 1.7270

Table 6. Estimated MSE for different estimators when p = 7 with 20% outliers.

n ρ MLE LL LL-BY LL-CE LR LR-BY LR-CE KL KL-BY KL-CE

30 0.8 4.1740 2.7526 2.8720 2.7515 2.6059 2.5138 2.5136 2.6034 2.5052 2.5121

0.9 8.3509 3.0744 2.9618 2.8790 2.7169 2.6184 2.6191 2.7123 2.5826 2.5902

0.95 19.3763 5.8239 5.7925 5.6500 5.6890 5.5807 5.5827 5.6436 5.5483 5.5498

0.99 85.0216 17.9551 16.0241 15.3306 6.2436 6.1813 6.1838 6.2355 6.1726 6.1742

50 0.8 3.1585 1.9454 1.9100 1.7810 1.8651 1.6766 1.6774 1.7735 1.5673 1.5699

0.9 8.2203 2.6601 2.5870 2.2841 1.9091 1.7605 1.7625 1.8595 1.7376 1.7424

0.95 14.8272 3.9815 3.9791 3.8465 2.8527 2.7509 2.7538 2.5662 2.3470 2.5400

0.99 78.4817 15.1810 15.4688 15.2021 5.3170 5.2484 5.2515 4.8867 4.3109 4.4150

100 0.8 1.7304 1.4146 1.4280 1.4131 1.3586 1.3408 1.3399 1.3468 1.3302 1.3389

0.9 3.7697 1.8752 1.8666 1.8466 1.6917 1.6673 1.6653 1.6728 1.6609 1.6618

0.95 4.9520 2.7641 2.6117 2.5436 2.0317 1.9787 1.9770 2.0253 1.8345 1.8423

0.99 20.7055 6.7451 4.7749 4.7526 1.7976 1.7646 1.7630 1.7650 1.7612 1.7677

200 0.8 0.9386 0.8998 0.8981 0.8979 0.8860 0.8752 0.8854 0.8843 0.8736 0.8766

0.9 2.2683 1.1610 1.1362 1.1310 1.1333 1.1303 1.1309 1.1326 1.1249 1.1286

0.95 3.0432 1.6767 1.5841 1.5762 1.5661 1.5557 1.5560 1.5627 1.5212 1.5218

0.99 7.6175 3.8367 3.0594 2.8387 2.0025 1.9661 1.9661 1.9959 1.8276 1.8317

As the sample size increases, the mean squared error (MSE) values generally decrease
across all estimators. This trend indicates that the estimators provide more accurate and
precise estimates with larger sample sizes. This behavior is illustrated in Figure 1. For
a fixed sample size, higher correlation coefficients typically result in increased MSE values



Axioms 2025, 14, 19 21 of 29

across most estimators. This suggests that as the variables in the dataset become more
correlated, the estimators face greater difficulty in capturing the underlying relationships,
leading to larger estimation errors. This behavior is demonstrated in Figure 2. The MSE
values increase as the number of predictors grows, indicating a rise in estimation errors
with more predictors. This trend is depicted in Figure 3. To rank the estimators based
on their performance, we consider the MSE values. Lower MSE values indicate better
performance in terms of estimation accuracy. KL-BY appears to have the lowest MSE values,
indicating the best performance. KL-CE, LR-BY, and LR-CE also demonstrate competitive
performance, while LL and MLE show relatively higher MSE values, suggesting poor
performance when compared to others.
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Therefore, based on this ranking, KL-BY is the preferable estimator among the pro-
vided options, as it consistently exhibits the lowest MSE values and offers better estimation
accuracy. However, it is important to note that the choice of estimator should also consider
other factors, such as computational efficiency, robustness to outliers, and the specific
requirements of the analysis or research question at hand.

It is worth noting that MLE, LL, KL, and LR are non-robust methods, whereas KL-BY,
KL-CE, LL-BY, LL-CE, LR-BY, and LR-CE are robust methods. Therefore, it is expected that
the robust estimators would generally outperform the non-robust estimators in scenarios
with outliers or when the assumptions of the non-robust estimators are violated. Observing
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the provided tables (Tables 1–6), it is apparent that the MSE values of the robust estimators
(KL-BY, KL-CE, LL-BY, LL-CE, LR-BY, and LR-CE) are generally lower than those of the non-
robust estimators (MLE, LL, KL, and LR) across different sample sizes (n) and correlation
coefficients (ρ). This indicates that the robust estimators exhibit better performance in terms
of estimation accuracy, particularly in the presence of outliers.
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The superior performance of the robust estimators can be attributed to their ability to
down-weight or ignore the influence of outliers, thereby producing more accurate estimates.
On the other hand, the non-robust estimators are more sensitive to outliers, leading to
higher MSE values when outliers are present. Based on this information, the revised
ranking of the estimators would be as follows: KL-BY, KL-CE, LR-BY, LR-CE, LR, LL-BY,
LL, LL-CE, and MLE (maximum likelihood estimator). Considering the robust nature of
the estimators and their better performance in the presence of outliers, KL-BY remains the
preferable estimator.
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5. Application
In this section, we analyze two real-life examples to examine the performance of the

estimators under consideration.

5.1. Numerical Example 1

The dataset known as the skin data was initially introduced by Finney [37], later by
Pregibon [24], and recently by Croux and Haesbroecks [28] to highlight the significance of
influential observations in logistic regression. It focuses on binary outcomes, specifically
the presence or absence of vasoconstriction of the skin of the digits after air inspiration. We
investigated the relationship between the binary outcomes and two explanatory variables
(the volume of air inspired (x1) and the inspiration rate (x2), both measured in logarithms).

The residuals plotted against the fitted values in Figure 4 identified cases 4, 18, and 24
as outliers. The outliers in this plot indicate that these cases exhibit significant residuals
compared to the other observations, suggesting the presence of potential unusual patterns
or influential points. Also, the Q–Q plot identified cases 4, 18, and 24 as outliers, which
indicate deviations from the expected normal distribution of the residuals. These cases
may exhibit extreme values or patterns that deviate significantly from the assumed model.
The square root Pearson residuals against the predicted values plot also identify cases 4, 18,
and 24 as outliers. Outliers in this plot suggest potential issues with model fit or influential
points that affect the predicted values. Cases with significant square root Pearson residuals
indicate that the model may not accurately capture their characteristics. The standardized
Pearson residual and the leverage plot identified cases 4 and 18 as outliers and case 13 as
leverage. Cook’s distance shows that cases 4, 13, and 18 are influential points. Influential
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points are observations that exert undue influence on the regression model’s coefficients
and may significantly impact the overall fit and conclusions drawn from the model.
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In summary, cases 4, 18, and 24 consistently emerge as outliers across multiple diag-
nostic plots, indicating their display of unusual patterns or characteristics. Moreover, cases
4, 13, and 18 were identified as influential points, signifying their considerable impact on
the regression model’s coefficients and overall fit. Our findings align with Croux and Haes-
broecks’ [28] recognition of observations 4 and 18 as influential points, further reinforcing
the importance of observations 4, 13, and 18 in shaping the results.

The correlation coefficient indicates a weak negative relationship between the two
explanatory variables (r = −0.38). The variance inflation factor (VIF = 2.838) revealed
the absence of multicollinearity in the model. Consequently, the model appears to be
affected primarily by outliers. See Table 7 for the estimation results obtained using the
selected methods.

Table 7. Estimated regression coefficients for the skin data.

Estimators x1 x2 MSE

MLE 2.623 2.467 1.549
LL 2.414 2.268 1.416

LL-BY 2.240 2.006 1.394
LL-CE 2.212 2.069 1.398

LR 1.999 1.873 1.321
LR-BY 1.904 1.678 1.282
LR-CE 1.770 1.648 1.285

KL 1.375 1.278 1.315
KL-BY 1.262 1.071 1.217
KL-CE 1.120 1.029 1.287
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Table 7 presents the coefficient estimates and mean squared error (MSE) for different
estimators, including MLE, LL, LL-BY, LL-CE, LR, LR-BY, LR-CE, KL, KL-BY, and KL-CE.
These results provide valuable insights into the performance of these estimators in terms
of coefficient estimation and prediction accuracy. Comparing the coefficient estimates,
we observe slight variations in the values of x1 and x2 and across the different estimators.
While there are some differences, the general pattern is that the estimators provide relatively
similar estimates for x1 and x2. Thus, this suggests a degree of consistency in the coefficient
estimates among the different estimators.

Lower MSE values indicate better prediction accuracy. Among the considered estima-
tors, KL-BY and KL-CE consistently demonstrate relatively lower MSE values, indicating
better prediction performance than other estimators. However, it is worth noting that the
differences in MSE values among the estimators are relatively small.

Generally, these results suggest that the estimators considered in the analysis provide
reasonably accurate coefficient estimates and demonstrate comparable prediction accuracy.
While slight variations exist in the coefficient estimates, the estimators generally perform
well in connection with prediction accuracy, with KL-BY and KL-CE showing relatively bet-
ter performance. These findings highlight the effectiveness of these estimators in capturing
the relationship between the predictors and the dependent variable.

5.2. Numerical Example 2

Researchers have extensively studied the food stamp dataset in various research works.
Stefanski et al. [38] provided an analysis of the dataset, acknowledging Rizek [39] as the
first source of the study. Subsequently, Künsch et al. [31] and Carroll and Pederson [40]
utilized the dataset to investigate the robustness of estimators for the logistic regression
model. More recently, Kordzakhia et al. [41] employed the dataset. This dataset contains
information from a survey conducted on over 2000 elderly citizens of the United States
(U.S.), with a random sample of 150 individuals. The response variable “participation”
indicates whether an individual participates in the U.S. Food Stamp Program, where “yes”
is encoded as one and “no” as zero. In addition to the response variable, there are three
predictor variables. “Tenancy” (x1) denotes home ownership, with “yes” coded as one and
“no” as zero. The variable “supplemental income” (x2) represents whether an individual
receives supplemental security income; a value of one indicates “yes”, while zero means
“no”. The variable “income” (x3) captures the individual monthly income in U.S. dollars.

Figure 5 illustrates the plot of residuals against the fitted values, revealing cases
66, 137, and 147 as outliers. These observations deviate significantly from the expected
pattern, with their residuals differing considerably from the majority of the data points.
This finding aligns with previous research by Kuinsch et al. [31], which also identified case
66 as an outlier. The Q–Q plot further confirms the presence of outliers, as cases 66, 137,
and 147 exhibit departures from the normal distribution of residuals. These cases display
unusual characteristics compared to the rest of the dataset. Additionally, the residual vs.
leverage plot highlights cases 66, 137, and 147 as outliers and suggests potential issues with
the model’s fit or the presence of influential points. It is worth noting that case 66 stands
out not only as an outlier but also as an influential point, as previously mentioned in the
literature. Furthermore, based on Cook’s distance, cases 66, 22, and 5 emerge as influential
points. These observations exert undue influence on the regression model’s coefficients,
potentially impacting the overall fit, and the conclusions drawn from the analysis [40] also
identified case 5 as a leverage point.

The correlation analysis reveals the presence of weak relationships among the vari-
ables under consideration. Specifically, the correlation coefficients indicate a low negative
relationship between tenancy and supplemental income (r = −0.19) and income and supple-
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mental income (r = −0.18). Conversely, they indicate a weak positive relationship between
income and tenancy (r = 0.28). Furthermore, the variance inflation factor suggests the
absence of multicollinearity within the model, indicating no multicollinearity. However,
outliers influence the model. For detailed estimation outcomes obtained through the
selected methods, please refer to Table 8.
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Table 8. Estimated regression coefficients for the food stamp data.

Estimators x1 x2 x3 MSE

MLE −1.879 0.953 0.182 0.530
LL −1.517 0.806 −0.192 0.432

LL-BY −1.467 0.773 −0.188 0.425
LL-CE −1.528 0.792 −0.191 0.429

LR −1.510 0.805 −0.193 0.375
LR-BY −1.442 0.763 −0.189 0.366
LR-CE −1.523 0.791 −0.191 0.374

KL −1.142 0.656 −0.203 0.410
KL-BY −1.065 0.613 −0.200 0.305
KL-CE −1.153 0.647 −0.202 0.312

Table 8 displays the coefficient estimates and mean squared error (MSE) values for
different estimators across variables, (x1), (x2), and (x3). Analyzing the coefficient estimates,
we observe slight variations in the magnitudes of the coefficients among the estimators.
For instance, in terms of (x1), the estimators MLE, LL, LL-BY, LL-CE, and LR-CE exhibit
relatively similar coefficient estimates, while KL, KL-BY, and KL-CE have slightly different
estimates. A similar pattern exists for variables (x2) and (x3), where the estimators generally
produce similar coefficient estimates with some minor differences.

Focusing on the MSE values, we compared the performance of the estimators in
terms of prediction accuracy. Among the estimators under study, KL-BY consistently
demonstrates the lowest MSE values across all variables, indicating superior predictive
performance. Next in performance is KL-CE, which exhibits relatively low MSE values.
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MLE and LL have higher MSE values than other estimators, suggesting less accurate
predictions. Generally, these results indicate that KL-BY is the most effective estimator
regarding coefficient estimation and prediction accuracy. It consistently produces lower
MSE values and exhibits stable coefficient estimates across the variables.

6. Conclusions
Logistic regression models encounter challenges when confronted with correlated

predictors and influential outliers. The previous conclusion emphasized the potential
of alternative methods, including the Liu and ridge estimators, in enhancing estimation
accuracy for correlated predictors. However, these methods are susceptible to the presence
of outliers, thereby compromising prediction stability. This study proposed the integration
of robust estimators, specifically the Bianco–Yohai estimator (BY) and the conditionally
unbiased bounded influence estimator (CE), with the shrinkage estimators. We evaluated
the resulting estimators (LL-BY, LL-CE, LR-BY, LL-CE, KL-BY, and KL-CE) through simula-
tions and real-life examples. The findings strongly favored the KL-BY, KL-CE, LR-BY, and
LR-CE estimators, with KL-BY emerging as the preferred choice. Of the evaluated estima-
tors, KL-BY consistently demonstrated superior performance in most scenarios, exhibiting
a reduction in estimated mean squared error (MSE) values and displaying greater robust-
ness against multicollinearity and outliers relative to other estimators. Our findings have
practical implications for practitioners working with logistic regression models, as they
frequently encounter challenges associated with multicollinearity and influential outliers.
By adopting the KL-BY estimator proposed in this research, practitioners can achieve more
stable and accurate predictions in their logistic regression analyses.

While this study addressed the impact of outliers in the response variable, further
research is needed to explore the effects of outliers in the predictors. Future work could
include extending the current framework to address outliers in predictor variables, which
can significantly distort parameter estimates and model predictions. This could involve
developing weighted or adaptive robust estimators that mitigate the influence of such
outliers. Additionally, we examined binary logistic regression models with 3, 5, and
7 predictors, which reflect a variety of practical scenarios. However, we recognize the
importance of higher-dimensional cases involving more predictors, as often encountered in
some applied settings. Future research will focus on extending the methodology to address
these higher-dimensional scenarios.

Although the current work is limited to binary logistic regression, the robust methods
developed to address multicollinearity and regression outliers have the potential to be
extended to more complex models, such as ordinal logistic regression and multinomial
logistic regression. Exploring these extensions in future research could further enhance
the utility of the proposed methods in handling a wider variety of regression frameworks,
where outliers and multicollinearity remain significant challenges.
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