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Abstract: This paper demonstrates several of Ostrowski-type inequalities for fuzzy number functions
and investigates their connections with other inequalities. Specifically, employing the Aumann inte-
gral and the Kulisch–Miranker order, as well as the inclusion order on the space of real and compact
intervals, we establish various Ostrowski-type inequalities for fuzzy-valued mappings (F·V·Ms).
Furthermore, by employing diverse orders, we establish connections with the classical versions of
Ostrowski-type inequalities. Additionally, we explore new ideas and results rooted in submodular
measures, accompanied by examples and applications to illustrate our findings. Moreover, by using
special functions, we have provided some applications of Ostrowski-type inequalities.
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1. Introduction

Interval-valued and fuzzy-valued functions hold a crucial position in numerous aca-
demic fields and bear significant mathematical and practical importance. Their distinctive
characteristics and properties are integral to the examination of random set analysis, in-
terval differentiation equations, and interval optimization. Specifically, interval-valued
functions with integrability and differentiation play a key role in the fields listed above.
These functions also hold a key place in fuzzy theory because they make it possible to
provide fuzzy-valued functions through a collection of interval-valued functions that make
use of the number of levels within a fuzzy interval. This work focuses on Ostrowski-type
inequality (see [1]).

The renowned integral inequalities of the Ostrowski, Čebyšev, and Grüss varieties
permeate numerous branches of mathematics (for historical context and generalizations,
refer to the seminal monograph [2], as well as works [3,4]). The Čebyšev- and Ostrowski-
type inequalities, closely intertwined (refer to [5] for elaboration), hold significance in
various mathematical applications and have garnered considerable attention from scholars.
Ujević [6] derived the subsequent Ostrowski-type inequality. For further information on
additional Ostrowski-type inequalities, we direct interested readers to [7–11].
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Developing a range of integral inequalities is a contemporary focus. In recent years,
significant progress has been made utilizing various integrals, such as the Sugenointe-
gral [12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged as
an important mathematical area, serving as a crucial tool for addressing practical problems,
notably in mathematical economics [17]. Recent studies have expanded certain classical
integral inequalities to encompass interval-valued functions.

Costa et al. [18] introduced novel interval adaptations of Minkowski and Beckenbach’s
integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Ostrowski-type
inequalities within this framework [19]. Furthermore, they tackled Hermite–Hadamard and
Hermite–Hadamard-type inequalities using interval-valued Riemann–Liouville fractional
integrals [20]. Zhao et al. [21–23] investigated Chebyshev-type inequalities, Opial-type
integral inequalities, and Jensen and Hermite–Hadamard-type inequalities for interval-
valued functions, employing the concepts of gH-differentiability or h-convexity. Budak
et al. [24] derived innovative fractional inequalities of the Ostrowski type for interval-
valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] introduced
log-h-convex fuzzy-interval-valued functions as a distinct class of convex fuzzy-interval-
valued functions, using a fuzzy order relation. This class facilitated the establishment of
Jensen and Hermite-Hadamard inequalities.

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-
valued functions, also known as functions with interval values, were at the core of Anastas-
siou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived by
Anastassiou [26] also expanded their applicability to interval-valued functions. To fully
understand the limitations imposed by the concept of the H-derivative on interval-valued
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. [28].
Notably, recent contributions by Chalco-Cano et al. [29] have effectively established an
Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable
interval-valued functions. The paramount importance of generalized Hukuhara differentia-
bility as the most comprehensive concept for characterizing the differentiability of interval-
valued functions has been emphasized in significant studies by Bede and Gal [27], as well
as Chalco-Cano et al. [30]. For more information, see [31–43] and the references therein.

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic
F·V·M. Section 3 delves into a novel estimation of quadrature rules, which includes the
special quadrature rule as a special case, building upon the findings. In Section 4, with
the help of special functions such as Gamma and Beta functions, some new findings are
obtained as applications of Ostrowski-type inequalities.

2. Preliminaries

We let N be the set of real numbers. A fuzzy subset A of N is characterized by the
mapping ψ̃ : N → [0, 1] , called the membership function, for each fuzzy set and ı ∈ (0, 1],
then ı-level sets of ψ̃ are denoted and defined as follows: ψı =

{

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

∈ N
∣∣ψ̃(
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) ≥ ı
}

. If ı = 0,

then supp
(
ψ̃
)
=
{
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Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties:

a. ψ̃ is normal, i.e., there exists
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F0 denotes the set of all fuzzy numbers. For a fuzzy number, it is convenient to
distinguish the following ı-levels,

ψı =
{
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,

From these definitions, we have

ψı = [ψ∗(ı), ψ∗(ı)],

where
ψ∗(ı) = in f

{
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.

Since each ρ ∈ N is also a fuzzy number, it can be defined as

ρ̃(
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̸= ρ.

Thus, a fuzzy number ψ̃ can be identified by a parametrized pair:

{[ψ∗(ı), ψ∗(ı)] : ı ∈ [0, 1]}.

This leads to the following characterization of a fuzzy number in terms of the two end
point functions ψ∗(ı) and ψ∗(ı).

Theorem 1 ([36]). Suppose that ψ∗(ı) : [0, 1] → N and ψ∗(ı) : [0, 1] → N satisfy the following
conditions:

1. ψ∗(ı) is a non-decreasing function.
2. ψ∗(ı) is a non-increasing function.
3. ψ∗(1) ≤ ψ∗(1).
4. ψ∗(ı) and ψ∗(ı) are bounded and left continuous on (0, 1] and right continuous at ı = 0.
5. Moreover, if ψ̃ : N → [0, 1] is a fuzzy number with parametrization given by

{(ψ∗(ı), ψ∗(ı)) : ı ∈ [0, 1]}, then function ψ∗(ı) and ψ∗(ı) find the conditions 1–4.

We let ψ̃, ϕ̃ ∈ F0 be represented parametrically
{(

ψ*(ı), ψ*(ı)
)

: ı ∈ [0, 1]
}

and{(
ϕ*(ı), ϕ*(ı)

)
: ı ∈ [0, 1]

}
, respectively. We say that ψ̃ ≤F ϕ̃ if for all ı ∈ (0, 1], ψ*(ı) ≤ ϕ*(ı),

and ψ*(ı) ≤ ϕ*(ı). If ψ̃ ≤F ϕ̃, then there exists ı ∈ (0, 1] such that ψ*(ı) < ϕ*(ı) or
ψ*(ı) ≤ ϕ*(ı). We say it is comparable if, for any ψ̃, ϕ̃ ∈ F0, we have ψ̃ ≤F ϕ̃ or ψ̃ ≥F ϕ̃,
otherwise they are non-comparable. We may sometimes write ψ̃ ≤F ϕ̃ instead of ϕ̃ ≥F ψ̃,
and note that we may say that F0 is a partial ordered set under the relation ⪯.

If ψ̃, ϕ̃ ∈ F0, there exists ˜̃µ ∈ F0 such that ψ̃ = ϕ̃ ⊕ µ̃, then, by this result, we have
the existence of a generalized Hukuhara (ℊH) difference of ψ̃ and ϕ̃, and we say that µ̃ is
the ℊH-difference of ψ̃ and ϕ̃, which is denoted by ψ̃ ⊖ℊH ϕ̃ (see [37]). If ℊH-difference
exists, then

(µ̃)∗(ı) =
(
ψ̃ ⊖ℊH ϕ̃

)∗
(ı) = ψ∗(ı)− ϕ∗(ı), (µ̃)∗(ı) =

(
ψ̃ ⊖ℊH ϕ̃

)
∗(ı) = ψ∗(ı)− ϕ∗(ı),

and

ψ̃ ⊖ℊH ϕ̃ = µ̃ ⇔
{

µ̃ = ψ̃ ⊖ℊH ϕ̃

or ψ̃ = ϕ̃ ⊕ (−1)⊙ µ̃.

Now, we discuss some properties of fuzzy numbers under addition and scaler multi-
plication; if ψ̃, ϕ̃ ∈ F0 and 0 < ρ ∈ N, then ψ̃ ⊕ ϕ̃ and ρ ⊙ ψ̃ can be defined as

ψ̃ ⊕ ϕ̃ = {(ψ∗(ı) + ϕ∗(ı), ψ∗(ı) + ϕ∗(ı)) : ı ∈ [0, 1]},

ρ ⊙ ψ̃ = {(ρψ∗(ı), ρψ∗(ı)) : ı ∈ [0, 1]}.
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Remark 1. Obviously, F0 is closed under addition and nonnegative scaler multiplication and the
above defined properties on F0 are equivalent to those derived from the usual extension principle.
Furthermore, for each scalar number ρ ∈ N,

ψ̃ ⊕ ρ = {(ψ∗(ı) + ρ, ψ∗(ı) + ρ) : ı ∈ [0, 1]}.

It is widely recognized (refer to, for example, [36]) that the space F0 equipped with the
supremum metric, denoted as D

(
ψ̃, ϕ̃

)
= sup

0≤κ≤1
H
([

ψ̃
]κ ,
[
ϕ̃
]κ), forms a complete metric

space with the following properties:

a. D
(
ψ̃ ⊕ µ̃, ϕ̃ ⊕ µ̃

)
= D

(
ψ̃, ϕ̃

)
, for all ψ̃, ϕ̃, µ̃ ∈ F0;

b. D
(
ρ ⊙ ψ̃, ρ ⊙ ϕ̃

)
= |ρ|D

(
ψ̃, ϕ̃

)
, for all ψ̃, ϕ̃ ∈ F0 and ρ ∈ N;

c. D
(

ψ̃ ⊕ ϕ̃, Θ̃ ⊕ µ̃
)
= D

(
ψ̃, Θ

)
⊕D

(
ϕ̃, µ̃

)
, for all ψ̃, ϕ̃, Θ, µ̃ ∈ F0;

d. D
(

ψ̃ ⊕ ϕ̃, 0̃
)

≤ D
(

ψ̃, 0̃
)
⊕ D

(
ϕ̃, 0̃
)

, for all ψ̃, ϕ̃ ∈ F0, where 0̃ is the function

0̃ : N → [0, 1] defined by 0̃(
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Definition 2 ([36]). A F·V·M P̃ : [θ, λ] → F0 is said to be D-continuous, i.e., for a given
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Definition 4 ([28]). Let L = (m, n) and
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∈ L. Then, F·V·M P̃ : (m, n) → F0 is said
to be a generalized Hukuhara differentiable (in short, ℊH-differentiable) at
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By examining the collection B(P̃ ,F0) comprising all bounded fuzzy-valued functions
P̃ : ∇ → F0 , and since (F0, ⊕, ⊙) constitutes a quasilinear space, we can consequently
establish a quasilinear space structure on B(P ,RI), where the quasinorm ∥·∥ is provided
(refer to [39]) as

∥P̃∥ = sup
0≤κ≤1

{∥Pı∥} = sup
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Definition 5 ([40]). Let P̃ : [θ, λ] ⊂ N → F0 be an F·V·M. Then, the fuzzy integral of P̃ over
[θ, λ], denoted by (FA)

∫ λ
θ P̃(
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∫ λ

θ
P̃(
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for all ı ∈ (0, 1], where R([θ, λ], ı) denotes the collection of Lebesgue-integrable mappings

of I-V-Ms. The F·V·M P̃ is FA-integrable over [θ, λ] if (FA)
∫ λ

θ P̃(
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Definition 6 ([34]). The set Λ = [θ, λ] is said to be a harmonically (H) convex set, if, for
all
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Axioms 2024, 13, x FOR PEER REVIEW 5 of 20 
 

or 

limఛ→଴శ 𝒫෨ (తାఛ)⊖ℊℋ𝒫෨ (త)ఛ = limఛ→଴శ 𝒫෨ (తିఛ)⊖ℊℋ𝒫෨ (త)ିఛ = 𝒫෨ℊℋᇱ (𝜘), 

or 

limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తାఛ)ିఛ = limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తିఛ)ఛ = 𝒫෨ℊℋᇱ (𝜘). 

By examining the collection ℬ൫𝒫෨ , 𝔽଴൯  comprising all bounded fuzzy-valued func-
tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 

for all 𝚤 ∈ (0, 1], where ℛ(ሾఏ,ఒ],ప) denotes the collection of Lebesgue-integrable mappings 
of 𝛪-𝘝-𝘔s. The 𝘍·𝘝·𝘔 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if (𝐹𝐴) ׬ 𝒫෨ (𝜘)𝑑𝜘ఒఏ ∈ 𝔽଴. Note that, 
if 𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)  are Lebesgue-integrable, then 𝒫  is fuzzy Aumann-integrable map-
ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ప =  ቈ(𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ

ఏ , (𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ
ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

κ

Axioms 2024, 13, x FOR PEER REVIEW 5 of 20 
 

or 

limఛ→଴శ 𝒫෨ (తାఛ)⊖ℊℋ𝒫෨ (త)ఛ = limఛ→଴శ 𝒫෨ (తିఛ)⊖ℊℋ𝒫෨ (త)ିఛ = 𝒫෨ℊℋᇱ (𝜘), 

or 

limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తାఛ)ିఛ = limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తିఛ)ఛ = 𝒫෨ℊℋᇱ (𝜘). 

By examining the collection ℬ൫𝒫෨ , 𝔽଴൯  comprising all bounded fuzzy-valued func-
tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 

for all 𝚤 ∈ (0, 1], where ℛ(ሾఏ,ఒ],ప) denotes the collection of Lebesgue-integrable mappings 
of 𝛪-𝘝-𝘔s. The 𝘍·𝘝·𝘔 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if (𝐹𝐴) ׬ 𝒫෨ (𝜘)𝑑𝜘ఒఏ ∈ 𝔽଴. Note that, 
if 𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)  are Lebesgue-integrable, then 𝒫  is fuzzy Aumann-integrable map-
ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ప =  ቈ(𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ

ఏ , (𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ
ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

+ (1 − κ)
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Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
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Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 
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Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
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then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

κ
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or 

limఛ→଴శ 𝒫෨ (తାఛ)⊖ℊℋ𝒫෨ (త)ఛ = limఛ→଴శ 𝒫෨ (తିఛ)⊖ℊℋ𝒫෨ (త)ିఛ = 𝒫෨ℊℋᇱ (𝜘), 

or 

limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తାఛ)ିఛ = limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తିఛ)ఛ = 𝒫෨ℊℋᇱ (𝜘). 

By examining the collection ℬ൫𝒫෨ , 𝔽଴൯  comprising all bounded fuzzy-valued func-
tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 

for all 𝚤 ∈ (0, 1], where ℛ(ሾఏ,ఒ],ప) denotes the collection of Lebesgue-integrable mappings 
of 𝛪-𝘝-𝘔s. The 𝘍·𝘝·𝘔 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if (𝐹𝐴) ׬ 𝒫෨ (𝜘)𝑑𝜘ఒఏ ∈ 𝔽଴. Note that, 
if 𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)  are Lebesgue-integrable, then 𝒫  is fuzzy Aumann-integrable map-
ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ప =  ቈ(𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ

ఏ , (𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ
ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

+ (1 − κ)
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or 

limఛ→଴శ 𝒫෨ (తାఛ)⊖ℊℋ𝒫෨ (త)ఛ = limఛ→଴శ 𝒫෨ (తିఛ)⊖ℊℋ𝒫෨ (త)ିఛ = 𝒫෨ℊℋᇱ (𝜘), 

or 

limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తାఛ)ିఛ = limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తିఛ)ఛ = 𝒫෨ℊℋᇱ (𝜘). 

By examining the collection ℬ൫𝒫෨ , 𝔽଴൯  comprising all bounded fuzzy-valued func-
tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 

for all 𝚤 ∈ (0, 1], where ℛ(ሾఏ,ఒ],ప) denotes the collection of Lebesgue-integrable mappings 
of 𝛪-𝘝-𝘔s. The 𝘍·𝘝·𝘔 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if (𝐹𝐴) ׬ 𝒫෨ (𝜘)𝑑𝜘ఒఏ ∈ 𝔽଴. Note that, 
if 𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)  are Lebesgue-integrable, then 𝒫  is fuzzy Aumann-integrable map-
ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ప =  ቈ(𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ

ఏ , (𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ
ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

)
≥ (1 − κ)P(
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or 

limఛ→଴శ 𝒫෨ (తାఛ)⊖ℊℋ𝒫෨ (త)ఛ = limఛ→଴శ 𝒫෨ (తିఛ)⊖ℊℋ𝒫෨ (త)ିఛ = 𝒫෨ℊℋᇱ (𝜘), 

or 

limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తାఛ)ିఛ = limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తିఛ)ఛ = 𝒫෨ℊℋᇱ (𝜘). 

By examining the collection ℬ൫𝒫෨ , 𝔽଴൯  comprising all bounded fuzzy-valued func-
tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 

for all 𝚤 ∈ (0, 1], where ℛ(ሾఏ,ఒ],ప) denotes the collection of Lebesgue-integrable mappings 
of 𝛪-𝘝-𝘔s. The 𝘍·𝘝·𝘔 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if (𝐹𝐴) ׬ 𝒫෨ (𝜘)𝑑𝜘ఒఏ ∈ 𝔽଴. Note that, 
if 𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)  are Lebesgue-integrable, then 𝒫  is fuzzy Aumann-integrable map-
ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ప =  ቈ(𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ

ఏ , (𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ
ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

) + κP(
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or 

limఛ→଴శ 𝒫෨ (తାఛ)⊖ℊℋ𝒫෨ (త)ఛ = limఛ→଴శ 𝒫෨ (తିఛ)⊖ℊℋ𝒫෨ (త)ିఛ = 𝒫෨ℊℋᇱ (𝜘), 

or 

limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తାఛ)ିఛ = limఛ→଴శ 𝒫෨ (త)⊖ℊℋ𝒫෨ (తିఛ)ఛ = 𝒫෨ℊℋᇱ (𝜘). 

By examining the collection ℬ൫𝒫෨ , 𝔽଴൯  comprising all bounded fuzzy-valued func-
tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 

for all 𝚤 ∈ (0, 1], where ℛ(ሾఏ,ఒ],ప) denotes the collection of Lebesgue-integrable mappings 
of 𝛪-𝘝-𝘔s. The 𝘍·𝘝·𝘔 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if (𝐹𝐴) ׬ 𝒫෨ (𝜘)𝑑𝜘ఒఏ ∈ 𝔽଴. Note that, 
if 𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)  are Lebesgue-integrable, then 𝒫  is fuzzy Aumann-integrable map-
ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ప =  ቈ(𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ

ఏ , (𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ
ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

). (2)
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(
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then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

)
≤F ℏ(1 − κ)⊙ P̃(
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or 
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By examining the collection ℬ൫𝒫෨ , 𝔽଴൯  comprising all bounded fuzzy-valued func-
tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 

for all 𝚤 ∈ (0, 1], where ℛ(ሾఏ,ఒ],ప) denotes the collection of Lebesgue-integrable mappings 
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if 𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)  are Lebesgue-integrable, then 𝒫  is fuzzy Aumann-integrable map-
ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 
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ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

)⊕ ℏ(κ)⊙ P̃(
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tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 
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ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 
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ఏ , (𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ
ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

), (3)

for all
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By examining the collection ℬ൫𝒫෨ , 𝔽଴൯  comprising all bounded fuzzy-valued func-
tions 𝒫෨ : 𝛻 → 𝔽଴ , and since (𝔽଴,⊕,⊙)  constitutes a quasilinear space, we can conse-
quently establish a quasilinear space structure on ℬ(𝒫, ℜூ), where the quasinorm ‖·‖ is 
provided (refer to [39]) as ฮ𝒫෨ฮ = sup଴ஸ఑ஸଵሼ‖𝒫ప‖ሽ = supత∈ఇ 𝒟൫𝒫෨(𝜘), 0෨൯. 
Definition 5 ([40]). Let 𝒫෨ : ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔. Then, the fuzzy integral of 𝒫෨  over ሾ𝜃, 𝜆], denoted by (𝐹𝐴) ׬ 𝒫෨(𝜘)𝑑𝜘ఒఏ , is given level-wise by 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ ప = (𝐼𝐴) න 𝒫ప(𝜘)𝑑𝜘ఒ

ఏ = ቊන 𝒫(𝜘, 𝚤)𝑑𝜘ఒ
ఏ : 𝒫(𝜘, 𝚤) ∈ ℛ(ሾఏ,ఒ],ప)ቋ. 

for all 𝚤 ∈ (0, 1], where ℛ(ሾఏ,ఒ],ప) denotes the collection of Lebesgue-integrable mappings 
of 𝛪-𝘝-𝘔s. The 𝘍·𝘝·𝘔 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if (𝐹𝐴) ׬ 𝒫෨ (𝜘)𝑑𝜘ఒఏ ∈ 𝔽଴. Note that, 
if 𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)  are Lebesgue-integrable, then 𝒫  is fuzzy Aumann-integrable map-
ping over ሾ𝜃, 𝜆]. 
Theorem 2 ([40]). Let 𝒫෨: ሾ𝜃, 𝜆] ⊂ 𝔑 → 𝔽଴ be an 𝘍·𝘝·𝘔, and its 𝛪-𝘝-𝘔s are classified according 
to their 𝚤-levels 𝒫ప: ሾ𝜃, 𝜆] ⊂ 𝔑 → ℒ஼ which are given by 𝒫ప(𝜘) = ሾ𝒫∗(𝜘, 𝚤), 𝒫∗(𝜘, 𝚤)] for all 𝜘 ∈ሾ𝜃, 𝜆] and for all 𝚤 ∈ (0, 1]. Then, 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆] if, and only if, 𝒫∗(𝜘, 𝚤) and 𝒫∗(𝜘, 𝚤) are both 𝐴-integrable over ሾ𝜃, 𝜆]. Moreover, if 𝒫෨  is 𝐹𝐴-integrable over ሾ𝜃, 𝜆], then 

ቈ(𝐹𝐴) න 𝒫෨ (𝜘)𝑑𝜘ఒ
ఏ ቉ప =  ቈ(𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ

ఏ , (𝐴) න 𝒫∗(𝜘, 𝚤)𝑑𝜘ఒ
ఏ ቉ 

= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 

,
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= (𝐼𝐴) ׬ 𝒫ప(𝜘)𝑑𝜘ఒఏ . 

Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
Definition 7 ([34]). The relation 𝒫: ሾ𝜃, 𝜆] → 𝔑 is named an 𝘏-convex mapping on ሾ𝜃, 𝜆] if 𝒫 ൬ бⱴ𝜅б + (1 − 𝜅)ⱴ൰ ≤ (1 − 𝜅)𝒫(б) + 𝜅𝒫(ⱴ), (1)

for all б, ⱴ ∈ ሾ𝜃, 𝜆], 𝜅 ∈ ሾ0, 1], where 𝒫(б) ≥ 0 for all б ∈ ሾ𝜃, 𝜆]. If Expression (1) is inverted, 
then 𝒫 is named 𝘏-concave mapping on ሾ𝜃, 𝜆], such that 
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Definition 6 ([34]). The set 𝛬 = ሾ𝜃, 𝜆] is said to be a harmonically (𝘏) convex set, if, for all б,ⱴ ∈ 𝛬, 𝜅 ∈ ሾ0, 1], we have бⱴ𝜅б + (1 − 𝜅)ⱴ ∈ 𝛬. 
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belongs to [θ, λ] and ℏ : [0, 1] ⊆ [θ, λ]
→ N such that ℏ
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Note that Definition 8 is helpful in proving the upcoming results. 
In 1938, Ostrowski [1] explored the following compelling integral inequalities: 
Let 𝒫: 𝐼 = ሾ𝜃, 𝜆ሿ → 𝔑  be a differentiable function on 𝐼଴  with ሺ𝜃, 𝜆ሻ . If 𝒫 ∈ ℒሾ𝜃, 𝜆ሿ 

and |𝒫ᇱሺ𝜘ሻ| ≤ 𝑀, for all 𝜘 ∈ ሾ𝜃, 𝜆ሿ, then 

ቚ𝒫ሺ𝜘ሻ − ଵఒିఏ ׬ 𝒫ሺ𝑢ሻఒఏ 𝑑𝑢ቚ ≤ 𝑀ሺ𝜆 − 𝜃ሻ ൥ଵସ − ቀతିഇశഊమ ቁమሺఒିఏሻమ ൩.  

On the other hand, Ujević [6] derived the subsequent Ostrowski-type inequality: 

ቤ𝒫ሺ𝜘ሻ − 1𝜆 − 𝜃 න 𝒫ሺ𝑢ሻఒ
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where 𝒫: ሾ𝜃, 𝜆ሿ → 𝔑  is a differentiable function with 𝒫ᇱ ∈ 𝐿ଶ ሾ𝜃, 𝜆ሿ  and ଵଶ√ଷ  is the best 
possible value. 

Note that, with the support of Gamma and Beta functions, some new findings are 
obtained as applications of Ostrowski-type inequalities: 

Gamma and Beta functions are respectively characterized as 𝛤ሺ𝓎ሻ = ׬ 𝜅𝓎ିଵ𝑒ି఑ஶ଴ 𝑑𝜅,  (4)

for ℛሺ𝓎ሻ > 0 

ßሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
  

0. In the event that Expression (3) is reversed, P is denoted as an H-
concave F·V·M on [θ, λ].

Note that Definition 8 is helpful in proving the upcoming results.
In 1938, Ostrowski [1] explored the following compelling integral inequalities:
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Let P : I = [θ, λ] → N be a differentiable function on I0 with (θ, λ). If P ∈ L[θ, λ]
and |P ′(
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Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

)| ≤ M, for all
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On the other hand, Ujević [6] derived the subsequent Ostrowski-type inequality:
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.

where P : [θ, λ] → N is a differentiable function with P ′ ∈ L2[θ, λ] and 1
2
√

3
is the best

possible value.
Note that, with the support of Gamma and Beta functions, some new findings are

obtained as applications of Ostrowski-type inequalities:
Gamma and Beta functions are respectively characterized as

Γ(𝓎) =
∫ ∞

0
κ𝓎−1e−κdκ, (4)

for R(𝓎) > 0
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Note that, with the support of Gamma and Beta functions, some new findings are 
obtained as applications of Ostrowski-type inequalities: 

Gamma and Beta functions are respectively characterized as 𝛤ሺ𝓎ሻ = ׬ 𝜅𝓎ିଵ𝑒ି఑ஶ଴ 𝑑𝜅,  (4)

for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
  

(𝓎,𝓏) =
∫ 1

0
κ𝓎−1(1 − κ)𝓏−1dκ =

Γ(𝓎)Γ(𝓏)
Γ(𝓎+𝓏)

, (5)

for R(𝓎) > 0, R(𝓏) > 0.
The integral representation of the hypergeometric function is

2F1(𝓎,𝓏; c;
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for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)
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(𝓏, c −𝓏)

∫ 1

0
κ𝓏−1(1 − κ)c−𝓏−1(1 − xκ)−𝓎dκ, (6)

for |x| < 1, R(c) > 0, R(𝓏) > 0.

3. Main Results

In this section, we introduce novel Ostrowski-type inequalities for gH-differentiable
fuzzy-valued functions. Some generalized forms of classical Ostrowski-type inequalities
are also obtained that can be seen as applications. Additionally, some new exceptional
cases are also discussed by using Gamma and Beta functions. Firstly, we start with the
following identity:

Lemma 1. Let P∗(., ı),P∗(., ı) : [θ, λ] → N be two ℊH-differentiable functions on I0 with (θ, λ),
where ı ∈ [0, 1]. If P is integrable over [θ, λ], then[

P∗(
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, ı)− θλ

λ − θ

∫ λ

θ
P∗(u, ı)du,P∗(
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κ

(κθ + (1 − κ)
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Proof. Integration by parts finalizes the proof. □
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Theorem 3. Let P̃ : [θ, λ] → F0 be a ℊH-differentiable F · V · M on I0 with
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for all  б, ⱴ ∈ ሾ𝜃, 𝜆ሿ, 𝜅 ∈ ሾ0, 1ሿ,  given 𝒫෨ ሺбሻ ≥𝔽 0෨  for all б  belongs to ሾ𝜃, 𝜆ሿ  and ℏ: ሾ0,1ሿ ⊆ሾ𝜃, 𝜆ሿ → 𝔑 such that ℏ ≢ 0. In the event that Expression (3) is reversed, 𝒫 is denoted as an 𝘏-
concave 𝘍·𝘝·𝘔 on ሾ𝜃, 𝜆ሿ. 

Note that Definition 8 is helpful in proving the upcoming results. 
In 1938, Ostrowski [1] explored the following compelling integral inequalities: 
Let 𝒫: 𝐼 = ሾ𝜃, 𝜆ሿ → 𝔑  be a differentiable function on 𝐼଴  with ሺ𝜃, 𝜆ሻ . If 𝒫 ∈ ℒሾ𝜃, 𝜆ሿ 

and |𝒫ᇱሺ𝜘ሻ| ≤ 𝑀, for all 𝜘 ∈ ሾ𝜃, 𝜆ሿ, then 

ቚ𝒫ሺ𝜘ሻ − ଵఒିఏ ׬ 𝒫ሺ𝑢ሻఒఏ 𝑑𝑢ቚ ≤ 𝑀ሺ𝜆 − 𝜃ሻ ൥ଵସ − ቀతିഇశഊమ ቁమሺఒିఏሻమ ൩.  

On the other hand, Ujević [6] derived the subsequent Ostrowski-type inequality: 

ቤ𝒫ሺ𝜘ሻ − 1𝜆 − 𝜃 න 𝒫ሺ𝑢ሻఒ
ఏ 𝑑𝑢 − 𝒫ሺ𝜆ሻ − 𝒫ሺ𝜃ሻ𝜆 − 𝜃 ൬𝜘 − 𝜃 + 𝜆2 ൰ቤ ≤ ටሺ𝜆 − 𝜃ሻ‖𝒫ᇱ‖ଶଶ − ൫𝒫ሺ𝜆ሻ − 𝒫ሺ𝜃ሻ൯ଶ2√3 . 

where 𝒫: ሾ𝜃, 𝜆ሿ → 𝔑  is a differentiable function with 𝒫ᇱ ∈ 𝐿ଶ ሾ𝜃, 𝜆ሿ  and ଵଶ√ଷ  is the best 
possible value. 

Note that, with the support of Gamma and Beta functions, some new findings are 
obtained as applications of Ostrowski-type inequalities: 

Gamma and Beta functions are respectively characterized as 𝛤ሺ𝓎ሻ = ׬ 𝜅𝓎ିଵ𝑒ି఑ஶ଴ 𝑑𝜅,  (4)

for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
  

(1+q,1)
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for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
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for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)
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then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

)2q dκ,

=
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Let 𝒫: 𝐼 = ሾ𝜃, 𝜆ሿ → 𝔑  be a differentiable function on 𝐼଴  with ሺ𝜃, 𝜆ሻ . If 𝒫 ∈ ℒሾ𝜃, 𝜆ሿ 

and |𝒫ᇱሺ𝜘ሻ| ≤ 𝑀, for all 𝜘 ∈ ሾ𝜃, 𝜆ሿ, then 
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On the other hand, Ujević [6] derived the subsequent Ostrowski-type inequality: 
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ఏ 𝑑𝑢 − 𝒫ሺ𝜆ሻ − 𝒫ሺ𝜃ሻ𝜆 − 𝜃 ൬𝜘 − 𝜃 + 𝜆2 ൰ቤ ≤ ටሺ𝜆 − 𝜃ሻ‖𝒫ᇱ‖ଶଶ − ൫𝒫ሺ𝜆ሻ − 𝒫ሺ𝜃ሻ൯ଶ2√3 . 

where 𝒫: ሾ𝜃, 𝜆ሿ → 𝔑  is a differentiable function with 𝒫ᇱ ∈ 𝐿ଶ ሾ𝜃, 𝜆ሿ  and ଵଶ√ଷ  is the best 
possible value. 

Note that, with the support of Gamma and Beta functions, some new findings are 
obtained as applications of Ostrowski-type inequalities: 

Gamma and Beta functions are respectively characterized as 𝛤ሺ𝓎ሻ = ׬ 𝜅𝓎ିଵ𝑒ି఑ஶ଴ 𝑑𝜅,  (4)

for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
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Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 
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for all  б, ⱴ ∈ ሾ𝜃, 𝜆ሿ, 𝜅 ∈ ሾ0, 1ሿ,  given 𝒫෨ ሺбሻ ≥𝔽 0෨  for all б  belongs to ሾ𝜃, 𝜆ሿ  and ℏ: ሾ0,1ሿ ⊆ሾ𝜃, 𝜆ሿ → 𝔑 such that ℏ ≢ 0. In the event that Expression (3) is reversed, 𝒫 is denoted as an 𝘏-
concave 𝘍·𝘝·𝘔 on ሾ𝜃, 𝜆ሿ. 
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Let 𝒫: 𝐼 = ሾ𝜃, 𝜆ሿ → 𝔑  be a differentiable function on 𝐼଴  with ሺ𝜃, 𝜆ሻ . If 𝒫 ∈ ℒሾ𝜃, 𝜆ሿ 

and |𝒫ᇱሺ𝜘ሻ| ≤ 𝑀, for all 𝜘 ∈ ሾ𝜃, 𝜆ሿ, then 

ቚ𝒫ሺ𝜘ሻ − ଵఒିఏ ׬ 𝒫ሺ𝑢ሻఒఏ 𝑑𝑢ቚ ≤ 𝑀ሺ𝜆 − 𝜃ሻ ൥ଵସ − ቀతିഇశഊమ ቁమሺఒିఏሻమ ൩.  

On the other hand, Ujević [6] derived the subsequent Ostrowski-type inequality: 

ቤ𝒫ሺ𝜘ሻ − 1𝜆 − 𝜃 න 𝒫ሺ𝑢ሻఒ
ఏ 𝑑𝑢 − 𝒫ሺ𝜆ሻ − 𝒫ሺ𝜃ሻ𝜆 − 𝜃 ൬𝜘 − 𝜃 + 𝜆2 ൰ቤ ≤ ටሺ𝜆 − 𝜃ሻ‖𝒫ᇱ‖ଶଶ − ൫𝒫ሺ𝜆ሻ − 𝒫ሺ𝜃ሻ൯ଶ2√3 . 

where 𝒫: ሾ𝜃, 𝜆ሿ → 𝔑  is a differentiable function with 𝒫ᇱ ∈ 𝐿ଶ ሾ𝜃, 𝜆ሿ  and ଵଶ√ଷ  is the best 
possible value. 

Note that, with the support of Gamma and Beta functions, some new findings are 
obtained as applications of Ostrowski-type inequalities: 

Gamma and Beta functions are respectively characterized as 𝛤ሺ𝓎ሻ = ׬ 𝜅𝓎ିଵ𝑒ି఑ஶ଴ 𝑑𝜅,  (4)

for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
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valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
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Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
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and |𝒫ᇱሺ𝜘ሻ| ≤ 𝑀, for all 𝜘 ∈ ሾ𝜃, 𝜆ሿ, then 

ቚ𝒫ሺ𝜘ሻ − ଵఒିఏ ׬ 𝒫ሺ𝑢ሻఒఏ 𝑑𝑢ቚ ≤ 𝑀ሺ𝜆 − 𝜃ሻ ൥ଵସ − ቀతିഇశഊమ ቁమሺఒିఏሻమ ൩.  

On the other hand, Ujević [6] derived the subsequent Ostrowski-type inequality: 

ቤ𝒫ሺ𝜘ሻ − 1𝜆 − 𝜃 න 𝒫ሺ𝑢ሻఒ
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where 𝒫: ሾ𝜃, 𝜆ሿ → 𝔑  is a differentiable function with 𝒫ᇱ ∈ 𝐿ଶ ሾ𝜃, 𝜆ሿ  and ଵଶ√ଷ  is the best 
possible value. 

Note that, with the support of Gamma and Beta functions, some new findings are 
obtained as applications of Ostrowski-type inequalities: 

Gamma and Beta functions are respectively characterized as 𝛤ሺ𝓎ሻ = ׬ 𝜅𝓎ିଵ𝑒ି఑ஶ଴ 𝑑𝜅,  (4)

for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
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hence the required result. □

The subsequent outcome integrates the suitable rendition for powers of the absolute
value of the initial derivative:

Theorem 4. Let P̃ : [θ, λ] → F0 be a ℊH-differentiable F · V · M on I0 with

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

∈ (θ, λ).
Let P̃ ′

ℊH be D-continuous as well as
∥∥∥P̃ ′

ℊH

∥∥∥ be a harmonic convex F · V · M with
∣∣∣P̃ ′(

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

)
∣∣∣ ≥F 0̃,

where ı ∈ [0, 1]. Then, for q ≥ 1, we have

D
(

θλ

λ − θ
⊙ (FA)

∫ λ

θ

P̃(u)
u2 du, P̃(

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

)

)

≤F
θλ

λ−θ ⊙
[

Φ
1− 1

q (θ,

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

)(

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

− θ)2 ⊙
{∥∥∥P̃ ′(θ)

∥∥∥q
⊙ ψ◦

1 (θ,

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

; 1; κ)⊕
∥∥∥P̃ ′(

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

)
∥∥∥q

⊙ ψ◦
2 (θ,

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

; 1; κ)
} 1

q ⊕

Φ
1− 1

q (λ,

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

)(λ −

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

)
2
⊙
{∥∥∥P̃ ′(λ)

∥∥∥q
⊙ ψ◦

3 (λ,

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 

; 1; κ)⊕
∥∥∥P̃ ′(

Axioms 2024, 13, x FOR PEER REVIEW 2 of 20 
 

Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 
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,

hence the required result. □

Further generalized versions of Theorems 3 and 4 are provided below:
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Theorem 5. Let P̃ : [θ, λ] → F0 be a ℊH-differentiable F · V · M on I0 with
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Proof. In accordance with Lemma 1, we have
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Using the power mean inequality and given that |P ′| is harmonic convex F·V·M, for
ı ∈ [0, 1], then we have ∣∣∣∣P∗(
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stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
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Theorem 6. Let P̃ : [θ, λ] → F0 be a ℊH-differentiable F · V · M on I0 with
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Proof. In accordance with Lemma 1, we have
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Using the power mean inequality and given that |P ′| is harmonic convex F·V·M, for
ı ∈ [0, 1], then we have ∣∣∣∣P∗(
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hence the required result. □

In the upcoming result, it is evident that the inequalities derived in Theorem 7 surpass
those in inequality Theorem 6.
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Theorem 7. Let P̃ : [θ, λ] → F0 be a ℊH-differentiable F · V · M on I0 with
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for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
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(p + 1, 1)
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)
.

Proof. In accordance with Lemma 1, using Hölder’s inequality and given that |P ′| is
harmonic convex F·V·M, for ı ∈ [0, 1], then we have∣∣∣∣P∗(
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, ı)− 1
λ − θ

∫ λ

θ
P∗(u, ı)du

∣∣∣∣
≤ θλ(
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4. Applications

In this section, we discuss some applications of Ostrowski-type inequalities for fuzzy
number functions over harmonic convexity. We start the with following proposition
as follows:

Proposition 1. If
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where 𝒫: ሾ𝜃, 𝜆ሿ → 𝔑  is a differentiable function with 𝒫ᇱ ∈ 𝐿ଶ ሾ𝜃, 𝜆ሿ  and ଵଶ√ଷ  is the best 
possible value. 

Note that, with the support of Gamma and Beta functions, some new findings are 
obtained as applications of Ostrowski-type inequalities: 
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for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
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for all  б, ⱴ ∈ ሾ𝜃, 𝜆ሿ, 𝜅 ∈ ሾ0, 1ሿ,  given 𝒫෨ ሺбሻ ≥𝔽 0෨  for all б  belongs to ሾ𝜃, 𝜆ሿ  and ℏ: ሾ0,1ሿ ⊆ሾ𝜃, 𝜆ሿ → 𝔑 such that ℏ ≢ 0. In the event that Expression (3) is reversed, 𝒫 is denoted as an 𝘏-
concave 𝘍·𝘝·𝘔 on ሾ𝜃, 𝜆ሿ. 

Note that Definition 8 is helpful in proving the upcoming results. 
In 1938, Ostrowski [1] explored the following compelling integral inequalities: 
Let 𝒫: 𝐼 = ሾ𝜃, 𝜆ሿ → 𝔑  be a differentiable function on 𝐼଴  with ሺ𝜃, 𝜆ሻ . If 𝒫 ∈ ℒሾ𝜃, 𝜆ሿ 

and |𝒫ᇱሺ𝜘ሻ| ≤ 𝑀, for all 𝜘 ∈ ሾ𝜃, 𝜆ሿ, then 

ቚ𝒫ሺ𝜘ሻ − ଵఒିఏ ׬ 𝒫ሺ𝑢ሻఒఏ 𝑑𝑢ቚ ≤ 𝑀ሺ𝜆 − 𝜃ሻ ൥ଵସ − ቀతିഇశഊమ ቁమሺఒିఏሻమ ൩.  

On the other hand, Ujević [6] derived the subsequent Ostrowski-type inequality: 

ቤ𝒫ሺ𝜘ሻ − 1𝜆 − 𝜃 න 𝒫ሺ𝑢ሻఒ
ఏ 𝑑𝑢 − 𝒫ሺ𝜆ሻ − 𝒫ሺ𝜃ሻ𝜆 − 𝜃 ൬𝜘 − 𝜃 + 𝜆2 ൰ቤ ≤ ටሺ𝜆 − 𝜃ሻ‖𝒫ᇱ‖ଶଶ − ൫𝒫ሺ𝜆ሻ − 𝒫ሺ𝜃ሻ൯ଶ2√3 . 

where 𝒫: ሾ𝜃, 𝜆ሿ → 𝔑  is a differentiable function with 𝒫ᇱ ∈ 𝐿ଶ ሾ𝜃, 𝜆ሿ  and ଵଶ√ଷ  is the best 
possible value. 

Note that, with the support of Gamma and Beta functions, some new findings are 
obtained as applications of Ostrowski-type inequalities: 

Gamma and Beta functions are respectively characterized as 𝛤ሺ𝓎ሻ = ׬ 𝜅𝓎ିଵ𝑒ି఑ஶ଴ 𝑑𝜅,  (4)

for ℛሺ𝓎ሻ > 0 

ß   ሺ𝓎, ʑሻ = ׬ 𝜅𝓎ିଵሺ1 − 𝜅ሻʑିଵଵ଴ 𝑑𝜅 = ௰ሺ𝓎ሻ௰ሺʑሻ௰ሺ𝓎ାʑሻ , (5)

for ℛሺ𝓎ሻ > 0, ℛሺʑሻ > 0. 
The integral representation of the hypergeometric function is 𝐹ଵଶ ሺ𝓎, ʑ; 𝑐; 𝜘ሻ = ଵßሺʑ,௖ିʑሻ ׬ 𝜅ʑିଵሺ1 − 𝜅ሻ௖ିʑିଵሺ1 − 𝑥𝜅ሻି𝓎ଵ଴ 𝑑𝜅, (6)

for |𝑥| < 1, ℛሺ𝑐ሻ > 0, ℛሺʑሻ > 0. 
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Developing a range of integral inequalities is a contemporary focus. In recent years, 
significant progress has been made utilizing various integrals, such as the Sugenointegral 
[12,13], the pseudointegral [14], and the Choquet integral [15], among others. Interval-
valued functions [16], as a concept extending beyond traditional functions, have emerged 
as an important mathematical area, serving as a crucial tool for addressing practical prob-
lems, notably in mathematical economics [17]. Recent studies have expanded certain clas-
sical integral inequalities to encompass interval-valued functions. 

Costa et al. [18] introduced novel interval adaptations of Minkowski and Becken-
bach’s integral inequalities. They generalized Hermite–Hadamard-, Jensen-, and Os-
trowski-type inequalities within this framework [19]. Furthermore, they tackled Hermite–
Hadamard and Hermite–Hadamard-type inequalities using interval-valued Riemann–Li-
ouville fractional integrals [20]. Zhao et al. [21-23] investigated Chebyshev-type inequali-
ties, Opial-type integral inequalities, and Jensen and Hermite–Hadamard-type inequali-
ties for interval-valued functions, employing the concepts of gH-differentiability or h-con-
vexity. Budak et al. [24] derived innovative fractional inequalities of the Ostrowski type 
for interval-valued functions, leveraging the definitions of gH-derivatives. Khan et al. [25] 
introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex 
fuzzy-interval-valued functions, using a fuzzy order relation. This class facilitated the es-
tablishment of Jensen and Hermite-Hadamard inequalities. 

Incorporating the Ostrowski-type inequality into the realm of fuzzy-valued functions 
necessitated using the Hukuhara derivative, as illustrated by Anastassiou [26]. Fuzzy-val-
ued functions, also known as functions with interval values, were at the core of Ana-
stassiou’s [26] investigation. Interestingly, the fuzzy Ostrowski-type inequalities derived 
by Anastassiou [26] also expanded their applicability to interval-valued functions. To fully 
understand the limitations imposed by the concept of the H-derivative on interval-valued 
functions, it is helpful to examine the works of Bede and Gal [27] and Chalco-Cano et al. 
[28]. Notably, recent contributions by Chalco-Cano et al. [29] have effectively established 
an Ostrowski-type inequality specifically tailored to generalized Hukuhara differentiable 
interval-valued functions. The paramount importance of generalized Hukuhara differen-
tiability as the most comprehensive concept for characterizing the differentiability of in-
terval-valued functions has been emphasized in significant studies by Bede and Gal [27], 
as well as Chalco-Cano et al. [30]. For more information, see [31–43] and the references 
therein. 

The structure of the study is outlined as follows: In Section 2, pertinent preliminaries 
are introduced. Section 3 introduces several types of Ostrowski inequalities over harmonic 𝘍·𝘝·𝘔. Section 3 delves into a novel estimation of quadrature rules, which includes the 
special quadrature rule as a special case, building upon the findings. In Section 4, with the 
help of special functions such as Gamma and Beta functions, some new findings are ob-
tained as applications of Ostrowski-type inequalities. 

2. Preliminaries 
We let 𝔑 be the set of real numbers. A fuzzy subset 𝐴 of 𝔑 is characterized by the 

mapping 𝜓෨: 𝔑 → ሾ0,1], called the membership function, for each fuzzy set and 𝚤 ∈ (0, 1], 
then 𝚤-level sets of 𝜓෨ are denoted and defined as follows: 𝜓ప = ൛𝜘 ∈ 𝔑| 𝜓෨(𝜘) ≥ 𝚤ൟ. If 𝚤 =0, then 𝑠𝑢𝑝𝑝(𝜓෨) = ൛   𝜘   ∈ 𝔑| 𝜓෨(𝜘) > 0ൟ is called the support of 𝜓෨. By ൣ𝜓෨൧଴, we define 
the closure of 𝑠𝑢𝑝𝑝(𝜓෨). 

Definition 1 ([36]). A fuzzy set is said to be fuzzy number with the following properties: 
a. 𝜓෨ is normal, i.e., there exists 𝜘 ∈ 𝔑 such that 𝜓(𝜘) = 1; 
b. 𝜓෨ is upper semi-continuous, i.e., for given 𝜘 ∈ 𝔑, there exists 𝜀 > 0 and there exists 𝛿 >0 such that 𝜓෨(𝜘) − 𝜑(𝜗) < 𝜀 for all 𝜗 ∈ 𝔑 with |𝜘 − 𝜗| < 𝛿; 
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5. Conclusions

In this study, utilizing the power mean integral inequality and an enhanced version
of it, we establish inequalities for fuzzy-valued mappings whose derivatives at certain
powers exhibit convexity in absolute value. Through this approach, we derive a new
integral identity for differentiable functions. Numerical experiments demonstrate that the
enhanced power mean integral inequality offers a more effective approach compared to
the standard power mean integral inequality. Some exceptional cases have been acquired
that can be considered as applications of the main results. Additionally, we present ap-
plications concerning special means of real numbers and obtain error estimates for the
midpoint formula.
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